1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides a simple and efficient mechanism for performing general 10 // tree-based pattern matches on the LLVM IR. The power of these routines is 11 // that it allows you to write concise patterns that are expressive and easy to 12 // understand. The other major advantage of this is that it allows you to 13 // trivially capture/bind elements in the pattern to variables. For example, 14 // you can do something like this: 15 // 16 // Value *Exp = ... 17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) 18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), 19 // m_And(m_Value(Y), m_ConstantInt(C2))))) { 20 // ... Pattern is matched and variables are bound ... 21 // } 22 // 23 // This is primarily useful to things like the instruction combiner, but can 24 // also be useful for static analysis tools or code generators. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #ifndef LLVM_IR_PATTERNMATCH_H 29 #define LLVM_IR_PATTERNMATCH_H 30 31 #include "llvm/ADT/APFloat.h" 32 #include "llvm/ADT/APInt.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/Support/Casting.h" 44 #include <cstdint> 45 46 namespace llvm { 47 namespace PatternMatch { 48 49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { 50 return const_cast<Pattern &>(P).match(V); 51 } 52 53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { 54 return const_cast<Pattern &>(P).match(Mask); 55 } 56 57 template <typename SubPattern_t> struct OneUse_match { 58 SubPattern_t SubPattern; 59 60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} 61 62 template <typename OpTy> bool match(OpTy *V) { 63 return V->hasOneUse() && SubPattern.match(V); 64 } 65 }; 66 67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { 68 return SubPattern; 69 } 70 71 template <typename SubPattern_t> struct AllowReassoc_match { 72 SubPattern_t SubPattern; 73 74 AllowReassoc_match(const SubPattern_t &SP) : SubPattern(SP) {} 75 76 template <typename OpTy> bool match(OpTy *V) { 77 auto *I = dyn_cast<FPMathOperator>(V); 78 return I && I->hasAllowReassoc() && SubPattern.match(I); 79 } 80 }; 81 82 template <typename T> 83 inline AllowReassoc_match<T> m_AllowReassoc(const T &SubPattern) { 84 return SubPattern; 85 } 86 87 template <typename Class> struct class_match { 88 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } 89 }; 90 91 /// Match an arbitrary value and ignore it. 92 inline class_match<Value> m_Value() { return class_match<Value>(); } 93 94 /// Match an arbitrary unary operation and ignore it. 95 inline class_match<UnaryOperator> m_UnOp() { 96 return class_match<UnaryOperator>(); 97 } 98 99 /// Match an arbitrary binary operation and ignore it. 100 inline class_match<BinaryOperator> m_BinOp() { 101 return class_match<BinaryOperator>(); 102 } 103 104 /// Matches any compare instruction and ignore it. 105 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } 106 107 struct undef_match { 108 static bool check(const Value *V) { 109 if (isa<UndefValue>(V)) 110 return true; 111 112 const auto *CA = dyn_cast<ConstantAggregate>(V); 113 if (!CA) 114 return false; 115 116 SmallPtrSet<const ConstantAggregate *, 8> Seen; 117 SmallVector<const ConstantAggregate *, 8> Worklist; 118 119 // Either UndefValue, PoisonValue, or an aggregate that only contains 120 // these is accepted by matcher. 121 // CheckValue returns false if CA cannot satisfy this constraint. 122 auto CheckValue = [&](const ConstantAggregate *CA) { 123 for (const Value *Op : CA->operand_values()) { 124 if (isa<UndefValue>(Op)) 125 continue; 126 127 const auto *CA = dyn_cast<ConstantAggregate>(Op); 128 if (!CA) 129 return false; 130 if (Seen.insert(CA).second) 131 Worklist.emplace_back(CA); 132 } 133 134 return true; 135 }; 136 137 if (!CheckValue(CA)) 138 return false; 139 140 while (!Worklist.empty()) { 141 if (!CheckValue(Worklist.pop_back_val())) 142 return false; 143 } 144 return true; 145 } 146 template <typename ITy> bool match(ITy *V) { return check(V); } 147 }; 148 149 /// Match an arbitrary undef constant. This matches poison as well. 150 /// If this is an aggregate and contains a non-aggregate element that is 151 /// neither undef nor poison, the aggregate is not matched. 152 inline auto m_Undef() { return undef_match(); } 153 154 /// Match an arbitrary UndefValue constant. 155 inline class_match<UndefValue> m_UndefValue() { 156 return class_match<UndefValue>(); 157 } 158 159 /// Match an arbitrary poison constant. 160 inline class_match<PoisonValue> m_Poison() { 161 return class_match<PoisonValue>(); 162 } 163 164 /// Match an arbitrary Constant and ignore it. 165 inline class_match<Constant> m_Constant() { return class_match<Constant>(); } 166 167 /// Match an arbitrary ConstantInt and ignore it. 168 inline class_match<ConstantInt> m_ConstantInt() { 169 return class_match<ConstantInt>(); 170 } 171 172 /// Match an arbitrary ConstantFP and ignore it. 173 inline class_match<ConstantFP> m_ConstantFP() { 174 return class_match<ConstantFP>(); 175 } 176 177 struct constantexpr_match { 178 template <typename ITy> bool match(ITy *V) { 179 auto *C = dyn_cast<Constant>(V); 180 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); 181 } 182 }; 183 184 /// Match a constant expression or a constant that contains a constant 185 /// expression. 186 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } 187 188 /// Match an arbitrary basic block value and ignore it. 189 inline class_match<BasicBlock> m_BasicBlock() { 190 return class_match<BasicBlock>(); 191 } 192 193 /// Inverting matcher 194 template <typename Ty> struct match_unless { 195 Ty M; 196 197 match_unless(const Ty &Matcher) : M(Matcher) {} 198 199 template <typename ITy> bool match(ITy *V) { return !M.match(V); } 200 }; 201 202 /// Match if the inner matcher does *NOT* match. 203 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { 204 return match_unless<Ty>(M); 205 } 206 207 /// Matching combinators 208 template <typename LTy, typename RTy> struct match_combine_or { 209 LTy L; 210 RTy R; 211 212 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 213 214 template <typename ITy> bool match(ITy *V) { 215 if (L.match(V)) 216 return true; 217 if (R.match(V)) 218 return true; 219 return false; 220 } 221 }; 222 223 template <typename LTy, typename RTy> struct match_combine_and { 224 LTy L; 225 RTy R; 226 227 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 228 229 template <typename ITy> bool match(ITy *V) { 230 if (L.match(V)) 231 if (R.match(V)) 232 return true; 233 return false; 234 } 235 }; 236 237 /// Combine two pattern matchers matching L || R 238 template <typename LTy, typename RTy> 239 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { 240 return match_combine_or<LTy, RTy>(L, R); 241 } 242 243 /// Combine two pattern matchers matching L && R 244 template <typename LTy, typename RTy> 245 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { 246 return match_combine_and<LTy, RTy>(L, R); 247 } 248 249 struct apint_match { 250 const APInt *&Res; 251 bool AllowPoison; 252 253 apint_match(const APInt *&Res, bool AllowPoison) 254 : Res(Res), AllowPoison(AllowPoison) {} 255 256 template <typename ITy> bool match(ITy *V) { 257 if (auto *CI = dyn_cast<ConstantInt>(V)) { 258 Res = &CI->getValue(); 259 return true; 260 } 261 if (V->getType()->isVectorTy()) 262 if (const auto *C = dyn_cast<Constant>(V)) 263 if (auto *CI = 264 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison))) { 265 Res = &CI->getValue(); 266 return true; 267 } 268 return false; 269 } 270 }; 271 // Either constexpr if or renaming ConstantFP::getValueAPF to 272 // ConstantFP::getValue is needed to do it via single template 273 // function for both apint/apfloat. 274 struct apfloat_match { 275 const APFloat *&Res; 276 bool AllowPoison; 277 278 apfloat_match(const APFloat *&Res, bool AllowPoison) 279 : Res(Res), AllowPoison(AllowPoison) {} 280 281 template <typename ITy> bool match(ITy *V) { 282 if (auto *CI = dyn_cast<ConstantFP>(V)) { 283 Res = &CI->getValueAPF(); 284 return true; 285 } 286 if (V->getType()->isVectorTy()) 287 if (const auto *C = dyn_cast<Constant>(V)) 288 if (auto *CI = 289 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowPoison))) { 290 Res = &CI->getValueAPF(); 291 return true; 292 } 293 return false; 294 } 295 }; 296 297 /// Match a ConstantInt or splatted ConstantVector, binding the 298 /// specified pointer to the contained APInt. 299 inline apint_match m_APInt(const APInt *&Res) { 300 // Forbid poison by default to maintain previous behavior. 301 return apint_match(Res, /* AllowPoison */ false); 302 } 303 304 /// Match APInt while allowing poison in splat vector constants. 305 inline apint_match m_APIntAllowPoison(const APInt *&Res) { 306 return apint_match(Res, /* AllowPoison */ true); 307 } 308 309 /// Match APInt while forbidding poison in splat vector constants. 310 inline apint_match m_APIntForbidPoison(const APInt *&Res) { 311 return apint_match(Res, /* AllowPoison */ false); 312 } 313 314 /// Match a ConstantFP or splatted ConstantVector, binding the 315 /// specified pointer to the contained APFloat. 316 inline apfloat_match m_APFloat(const APFloat *&Res) { 317 // Forbid undefs by default to maintain previous behavior. 318 return apfloat_match(Res, /* AllowPoison */ false); 319 } 320 321 /// Match APFloat while allowing poison in splat vector constants. 322 inline apfloat_match m_APFloatAllowPoison(const APFloat *&Res) { 323 return apfloat_match(Res, /* AllowPoison */ true); 324 } 325 326 /// Match APFloat while forbidding poison in splat vector constants. 327 inline apfloat_match m_APFloatForbidPoison(const APFloat *&Res) { 328 return apfloat_match(Res, /* AllowPoison */ false); 329 } 330 331 template <int64_t Val> struct constantint_match { 332 template <typename ITy> bool match(ITy *V) { 333 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 334 const APInt &CIV = CI->getValue(); 335 if (Val >= 0) 336 return CIV == static_cast<uint64_t>(Val); 337 // If Val is negative, and CI is shorter than it, truncate to the right 338 // number of bits. If it is larger, then we have to sign extend. Just 339 // compare their negated values. 340 return -CIV == -Val; 341 } 342 return false; 343 } 344 }; 345 346 /// Match a ConstantInt with a specific value. 347 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { 348 return constantint_match<Val>(); 349 } 350 351 /// This helper class is used to match constant scalars, vector splats, 352 /// and fixed width vectors that satisfy a specified predicate. 353 /// For fixed width vector constants, poison elements are ignored if AllowPoison 354 /// is true. 355 template <typename Predicate, typename ConstantVal, bool AllowPoison> 356 struct cstval_pred_ty : public Predicate { 357 const Constant **Res = nullptr; 358 template <typename ITy> bool match_impl(ITy *V) { 359 if (const auto *CV = dyn_cast<ConstantVal>(V)) 360 return this->isValue(CV->getValue()); 361 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { 362 if (const auto *C = dyn_cast<Constant>(V)) { 363 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) 364 return this->isValue(CV->getValue()); 365 366 // Number of elements of a scalable vector unknown at compile time 367 auto *FVTy = dyn_cast<FixedVectorType>(VTy); 368 if (!FVTy) 369 return false; 370 371 // Non-splat vector constant: check each element for a match. 372 unsigned NumElts = FVTy->getNumElements(); 373 assert(NumElts != 0 && "Constant vector with no elements?"); 374 bool HasNonPoisonElements = false; 375 for (unsigned i = 0; i != NumElts; ++i) { 376 Constant *Elt = C->getAggregateElement(i); 377 if (!Elt) 378 return false; 379 if (AllowPoison && isa<PoisonValue>(Elt)) 380 continue; 381 auto *CV = dyn_cast<ConstantVal>(Elt); 382 if (!CV || !this->isValue(CV->getValue())) 383 return false; 384 HasNonPoisonElements = true; 385 } 386 return HasNonPoisonElements; 387 } 388 } 389 return false; 390 } 391 392 template <typename ITy> bool match(ITy *V) { 393 if (this->match_impl(V)) { 394 if (Res) 395 *Res = cast<Constant>(V); 396 return true; 397 } 398 return false; 399 } 400 }; 401 402 /// specialization of cstval_pred_ty for ConstantInt 403 template <typename Predicate, bool AllowPoison = true> 404 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt, AllowPoison>; 405 406 /// specialization of cstval_pred_ty for ConstantFP 407 template <typename Predicate> 408 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP, 409 /*AllowPoison=*/true>; 410 411 /// This helper class is used to match scalar and vector constants that 412 /// satisfy a specified predicate, and bind them to an APInt. 413 template <typename Predicate> struct api_pred_ty : public Predicate { 414 const APInt *&Res; 415 416 api_pred_ty(const APInt *&R) : Res(R) {} 417 418 template <typename ITy> bool match(ITy *V) { 419 if (const auto *CI = dyn_cast<ConstantInt>(V)) 420 if (this->isValue(CI->getValue())) { 421 Res = &CI->getValue(); 422 return true; 423 } 424 if (V->getType()->isVectorTy()) 425 if (const auto *C = dyn_cast<Constant>(V)) 426 if (auto *CI = dyn_cast_or_null<ConstantInt>( 427 C->getSplatValue(/*AllowPoison=*/true))) 428 if (this->isValue(CI->getValue())) { 429 Res = &CI->getValue(); 430 return true; 431 } 432 433 return false; 434 } 435 }; 436 437 /// This helper class is used to match scalar and vector constants that 438 /// satisfy a specified predicate, and bind them to an APFloat. 439 /// Poison is allowed in splat vector constants. 440 template <typename Predicate> struct apf_pred_ty : public Predicate { 441 const APFloat *&Res; 442 443 apf_pred_ty(const APFloat *&R) : Res(R) {} 444 445 template <typename ITy> bool match(ITy *V) { 446 if (const auto *CI = dyn_cast<ConstantFP>(V)) 447 if (this->isValue(CI->getValue())) { 448 Res = &CI->getValue(); 449 return true; 450 } 451 if (V->getType()->isVectorTy()) 452 if (const auto *C = dyn_cast<Constant>(V)) 453 if (auto *CI = dyn_cast_or_null<ConstantFP>( 454 C->getSplatValue(/* AllowPoison */ true))) 455 if (this->isValue(CI->getValue())) { 456 Res = &CI->getValue(); 457 return true; 458 } 459 460 return false; 461 } 462 }; 463 464 /////////////////////////////////////////////////////////////////////////////// 465 // 466 // Encapsulate constant value queries for use in templated predicate matchers. 467 // This allows checking if constants match using compound predicates and works 468 // with vector constants, possibly with relaxed constraints. For example, ignore 469 // undef values. 470 // 471 /////////////////////////////////////////////////////////////////////////////// 472 473 template <typename APTy> struct custom_checkfn { 474 function_ref<bool(const APTy &)> CheckFn; 475 bool isValue(const APTy &C) { return CheckFn(C); } 476 }; 477 478 /// Match an integer or vector where CheckFn(ele) for each element is true. 479 /// For vectors, poison elements are assumed to match. 480 inline cst_pred_ty<custom_checkfn<APInt>> 481 m_CheckedInt(function_ref<bool(const APInt &)> CheckFn) { 482 return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}}; 483 } 484 485 inline cst_pred_ty<custom_checkfn<APInt>> 486 m_CheckedInt(const Constant *&V, function_ref<bool(const APInt &)> CheckFn) { 487 return cst_pred_ty<custom_checkfn<APInt>>{{CheckFn}, &V}; 488 } 489 490 /// Match a float or vector where CheckFn(ele) for each element is true. 491 /// For vectors, poison elements are assumed to match. 492 inline cstfp_pred_ty<custom_checkfn<APFloat>> 493 m_CheckedFp(function_ref<bool(const APFloat &)> CheckFn) { 494 return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}}; 495 } 496 497 inline cstfp_pred_ty<custom_checkfn<APFloat>> 498 m_CheckedFp(const Constant *&V, function_ref<bool(const APFloat &)> CheckFn) { 499 return cstfp_pred_ty<custom_checkfn<APFloat>>{{CheckFn}, &V}; 500 } 501 502 struct is_any_apint { 503 bool isValue(const APInt &C) { return true; } 504 }; 505 /// Match an integer or vector with any integral constant. 506 /// For vectors, this includes constants with undefined elements. 507 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { 508 return cst_pred_ty<is_any_apint>(); 509 } 510 511 struct is_shifted_mask { 512 bool isValue(const APInt &C) { return C.isShiftedMask(); } 513 }; 514 515 inline cst_pred_ty<is_shifted_mask> m_ShiftedMask() { 516 return cst_pred_ty<is_shifted_mask>(); 517 } 518 519 struct is_all_ones { 520 bool isValue(const APInt &C) { return C.isAllOnes(); } 521 }; 522 /// Match an integer or vector with all bits set. 523 /// For vectors, this includes constants with undefined elements. 524 inline cst_pred_ty<is_all_ones> m_AllOnes() { 525 return cst_pred_ty<is_all_ones>(); 526 } 527 528 inline cst_pred_ty<is_all_ones, false> m_AllOnesForbidPoison() { 529 return cst_pred_ty<is_all_ones, false>(); 530 } 531 532 struct is_maxsignedvalue { 533 bool isValue(const APInt &C) { return C.isMaxSignedValue(); } 534 }; 535 /// Match an integer or vector with values having all bits except for the high 536 /// bit set (0x7f...). 537 /// For vectors, this includes constants with undefined elements. 538 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { 539 return cst_pred_ty<is_maxsignedvalue>(); 540 } 541 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { 542 return V; 543 } 544 545 struct is_negative { 546 bool isValue(const APInt &C) { return C.isNegative(); } 547 }; 548 /// Match an integer or vector of negative values. 549 /// For vectors, this includes constants with undefined elements. 550 inline cst_pred_ty<is_negative> m_Negative() { 551 return cst_pred_ty<is_negative>(); 552 } 553 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } 554 555 struct is_nonnegative { 556 bool isValue(const APInt &C) { return C.isNonNegative(); } 557 }; 558 /// Match an integer or vector of non-negative values. 559 /// For vectors, this includes constants with undefined elements. 560 inline cst_pred_ty<is_nonnegative> m_NonNegative() { 561 return cst_pred_ty<is_nonnegative>(); 562 } 563 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } 564 565 struct is_strictlypositive { 566 bool isValue(const APInt &C) { return C.isStrictlyPositive(); } 567 }; 568 /// Match an integer or vector of strictly positive values. 569 /// For vectors, this includes constants with undefined elements. 570 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { 571 return cst_pred_ty<is_strictlypositive>(); 572 } 573 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { 574 return V; 575 } 576 577 struct is_nonpositive { 578 bool isValue(const APInt &C) { return C.isNonPositive(); } 579 }; 580 /// Match an integer or vector of non-positive values. 581 /// For vectors, this includes constants with undefined elements. 582 inline cst_pred_ty<is_nonpositive> m_NonPositive() { 583 return cst_pred_ty<is_nonpositive>(); 584 } 585 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } 586 587 struct is_one { 588 bool isValue(const APInt &C) { return C.isOne(); } 589 }; 590 /// Match an integer 1 or a vector with all elements equal to 1. 591 /// For vectors, this includes constants with undefined elements. 592 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } 593 594 struct is_zero_int { 595 bool isValue(const APInt &C) { return C.isZero(); } 596 }; 597 /// Match an integer 0 or a vector with all elements equal to 0. 598 /// For vectors, this includes constants with undefined elements. 599 inline cst_pred_ty<is_zero_int> m_ZeroInt() { 600 return cst_pred_ty<is_zero_int>(); 601 } 602 603 struct is_zero { 604 template <typename ITy> bool match(ITy *V) { 605 auto *C = dyn_cast<Constant>(V); 606 // FIXME: this should be able to do something for scalable vectors 607 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); 608 } 609 }; 610 /// Match any null constant or a vector with all elements equal to 0. 611 /// For vectors, this includes constants with undefined elements. 612 inline is_zero m_Zero() { return is_zero(); } 613 614 struct is_power2 { 615 bool isValue(const APInt &C) { return C.isPowerOf2(); } 616 }; 617 /// Match an integer or vector power-of-2. 618 /// For vectors, this includes constants with undefined elements. 619 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } 620 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } 621 622 struct is_negated_power2 { 623 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } 624 }; 625 /// Match a integer or vector negated power-of-2. 626 /// For vectors, this includes constants with undefined elements. 627 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { 628 return cst_pred_ty<is_negated_power2>(); 629 } 630 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { 631 return V; 632 } 633 634 struct is_negated_power2_or_zero { 635 bool isValue(const APInt &C) { return !C || C.isNegatedPowerOf2(); } 636 }; 637 /// Match a integer or vector negated power-of-2. 638 /// For vectors, this includes constants with undefined elements. 639 inline cst_pred_ty<is_negated_power2_or_zero> m_NegatedPower2OrZero() { 640 return cst_pred_ty<is_negated_power2_or_zero>(); 641 } 642 inline api_pred_ty<is_negated_power2_or_zero> 643 m_NegatedPower2OrZero(const APInt *&V) { 644 return V; 645 } 646 647 struct is_power2_or_zero { 648 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } 649 }; 650 /// Match an integer or vector of 0 or power-of-2 values. 651 /// For vectors, this includes constants with undefined elements. 652 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { 653 return cst_pred_ty<is_power2_or_zero>(); 654 } 655 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { 656 return V; 657 } 658 659 struct is_sign_mask { 660 bool isValue(const APInt &C) { return C.isSignMask(); } 661 }; 662 /// Match an integer or vector with only the sign bit(s) set. 663 /// For vectors, this includes constants with undefined elements. 664 inline cst_pred_ty<is_sign_mask> m_SignMask() { 665 return cst_pred_ty<is_sign_mask>(); 666 } 667 668 struct is_lowbit_mask { 669 bool isValue(const APInt &C) { return C.isMask(); } 670 }; 671 /// Match an integer or vector with only the low bit(s) set. 672 /// For vectors, this includes constants with undefined elements. 673 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { 674 return cst_pred_ty<is_lowbit_mask>(); 675 } 676 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } 677 678 struct is_lowbit_mask_or_zero { 679 bool isValue(const APInt &C) { return !C || C.isMask(); } 680 }; 681 /// Match an integer or vector with only the low bit(s) set. 682 /// For vectors, this includes constants with undefined elements. 683 inline cst_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero() { 684 return cst_pred_ty<is_lowbit_mask_or_zero>(); 685 } 686 inline api_pred_ty<is_lowbit_mask_or_zero> m_LowBitMaskOrZero(const APInt *&V) { 687 return V; 688 } 689 690 struct icmp_pred_with_threshold { 691 ICmpInst::Predicate Pred; 692 const APInt *Thr; 693 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } 694 }; 695 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) 696 /// to Threshold. For vectors, this includes constants with undefined elements. 697 inline cst_pred_ty<icmp_pred_with_threshold> 698 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { 699 cst_pred_ty<icmp_pred_with_threshold> P; 700 P.Pred = Predicate; 701 P.Thr = &Threshold; 702 return P; 703 } 704 705 struct is_nan { 706 bool isValue(const APFloat &C) { return C.isNaN(); } 707 }; 708 /// Match an arbitrary NaN constant. This includes quiet and signalling nans. 709 /// For vectors, this includes constants with undefined elements. 710 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } 711 712 struct is_nonnan { 713 bool isValue(const APFloat &C) { return !C.isNaN(); } 714 }; 715 /// Match a non-NaN FP constant. 716 /// For vectors, this includes constants with undefined elements. 717 inline cstfp_pred_ty<is_nonnan> m_NonNaN() { 718 return cstfp_pred_ty<is_nonnan>(); 719 } 720 721 struct is_inf { 722 bool isValue(const APFloat &C) { return C.isInfinity(); } 723 }; 724 /// Match a positive or negative infinity FP constant. 725 /// For vectors, this includes constants with undefined elements. 726 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } 727 728 struct is_noninf { 729 bool isValue(const APFloat &C) { return !C.isInfinity(); } 730 }; 731 /// Match a non-infinity FP constant, i.e. finite or NaN. 732 /// For vectors, this includes constants with undefined elements. 733 inline cstfp_pred_ty<is_noninf> m_NonInf() { 734 return cstfp_pred_ty<is_noninf>(); 735 } 736 737 struct is_finite { 738 bool isValue(const APFloat &C) { return C.isFinite(); } 739 }; 740 /// Match a finite FP constant, i.e. not infinity or NaN. 741 /// For vectors, this includes constants with undefined elements. 742 inline cstfp_pred_ty<is_finite> m_Finite() { 743 return cstfp_pred_ty<is_finite>(); 744 } 745 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } 746 747 struct is_finitenonzero { 748 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } 749 }; 750 /// Match a finite non-zero FP constant. 751 /// For vectors, this includes constants with undefined elements. 752 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { 753 return cstfp_pred_ty<is_finitenonzero>(); 754 } 755 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { 756 return V; 757 } 758 759 struct is_any_zero_fp { 760 bool isValue(const APFloat &C) { return C.isZero(); } 761 }; 762 /// Match a floating-point negative zero or positive zero. 763 /// For vectors, this includes constants with undefined elements. 764 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { 765 return cstfp_pred_ty<is_any_zero_fp>(); 766 } 767 768 struct is_pos_zero_fp { 769 bool isValue(const APFloat &C) { return C.isPosZero(); } 770 }; 771 /// Match a floating-point positive zero. 772 /// For vectors, this includes constants with undefined elements. 773 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { 774 return cstfp_pred_ty<is_pos_zero_fp>(); 775 } 776 777 struct is_neg_zero_fp { 778 bool isValue(const APFloat &C) { return C.isNegZero(); } 779 }; 780 /// Match a floating-point negative zero. 781 /// For vectors, this includes constants with undefined elements. 782 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { 783 return cstfp_pred_ty<is_neg_zero_fp>(); 784 } 785 786 struct is_non_zero_fp { 787 bool isValue(const APFloat &C) { return C.isNonZero(); } 788 }; 789 /// Match a floating-point non-zero. 790 /// For vectors, this includes constants with undefined elements. 791 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { 792 return cstfp_pred_ty<is_non_zero_fp>(); 793 } 794 795 /////////////////////////////////////////////////////////////////////////////// 796 797 template <typename Class> struct bind_ty { 798 Class *&VR; 799 800 bind_ty(Class *&V) : VR(V) {} 801 802 template <typename ITy> bool match(ITy *V) { 803 if (auto *CV = dyn_cast<Class>(V)) { 804 VR = CV; 805 return true; 806 } 807 return false; 808 } 809 }; 810 811 /// Match a value, capturing it if we match. 812 inline bind_ty<Value> m_Value(Value *&V) { return V; } 813 inline bind_ty<const Value> m_Value(const Value *&V) { return V; } 814 815 /// Match an instruction, capturing it if we match. 816 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } 817 /// Match a unary operator, capturing it if we match. 818 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } 819 /// Match a binary operator, capturing it if we match. 820 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } 821 /// Match a with overflow intrinsic, capturing it if we match. 822 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { 823 return I; 824 } 825 inline bind_ty<const WithOverflowInst> 826 m_WithOverflowInst(const WithOverflowInst *&I) { 827 return I; 828 } 829 830 /// Match an UndefValue, capturing the value if we match. 831 inline bind_ty<UndefValue> m_UndefValue(UndefValue *&U) { return U; } 832 833 /// Match a Constant, capturing the value if we match. 834 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } 835 836 /// Match a ConstantInt, capturing the value if we match. 837 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } 838 839 /// Match a ConstantFP, capturing the value if we match. 840 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } 841 842 /// Match a ConstantExpr, capturing the value if we match. 843 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } 844 845 /// Match a basic block value, capturing it if we match. 846 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } 847 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { 848 return V; 849 } 850 851 /// Match an arbitrary immediate Constant and ignore it. 852 inline match_combine_and<class_match<Constant>, 853 match_unless<constantexpr_match>> 854 m_ImmConstant() { 855 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); 856 } 857 858 /// Match an immediate Constant, capturing the value if we match. 859 inline match_combine_and<bind_ty<Constant>, 860 match_unless<constantexpr_match>> 861 m_ImmConstant(Constant *&C) { 862 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); 863 } 864 865 /// Match a specified Value*. 866 struct specificval_ty { 867 const Value *Val; 868 869 specificval_ty(const Value *V) : Val(V) {} 870 871 template <typename ITy> bool match(ITy *V) { return V == Val; } 872 }; 873 874 /// Match if we have a specific specified value. 875 inline specificval_ty m_Specific(const Value *V) { return V; } 876 877 /// Stores a reference to the Value *, not the Value * itself, 878 /// thus can be used in commutative matchers. 879 template <typename Class> struct deferredval_ty { 880 Class *const &Val; 881 882 deferredval_ty(Class *const &V) : Val(V) {} 883 884 template <typename ITy> bool match(ITy *const V) { return V == Val; } 885 }; 886 887 /// Like m_Specific(), but works if the specific value to match is determined 888 /// as part of the same match() expression. For example: 889 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will 890 /// bind X before the pattern match starts. 891 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against 892 /// whichever value m_Value(X) populated. 893 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } 894 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { 895 return V; 896 } 897 898 /// Match a specified floating point value or vector of all elements of 899 /// that value. 900 struct specific_fpval { 901 double Val; 902 903 specific_fpval(double V) : Val(V) {} 904 905 template <typename ITy> bool match(ITy *V) { 906 if (const auto *CFP = dyn_cast<ConstantFP>(V)) 907 return CFP->isExactlyValue(Val); 908 if (V->getType()->isVectorTy()) 909 if (const auto *C = dyn_cast<Constant>(V)) 910 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) 911 return CFP->isExactlyValue(Val); 912 return false; 913 } 914 }; 915 916 /// Match a specific floating point value or vector with all elements 917 /// equal to the value. 918 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } 919 920 /// Match a float 1.0 or vector with all elements equal to 1.0. 921 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } 922 923 struct bind_const_intval_ty { 924 uint64_t &VR; 925 926 bind_const_intval_ty(uint64_t &V) : VR(V) {} 927 928 template <typename ITy> bool match(ITy *V) { 929 if (const auto *CV = dyn_cast<ConstantInt>(V)) 930 if (CV->getValue().ule(UINT64_MAX)) { 931 VR = CV->getZExtValue(); 932 return true; 933 } 934 return false; 935 } 936 }; 937 938 /// Match a specified integer value or vector of all elements of that 939 /// value. 940 template <bool AllowPoison> struct specific_intval { 941 const APInt &Val; 942 943 specific_intval(const APInt &V) : Val(V) {} 944 945 template <typename ITy> bool match(ITy *V) { 946 const auto *CI = dyn_cast<ConstantInt>(V); 947 if (!CI && V->getType()->isVectorTy()) 948 if (const auto *C = dyn_cast<Constant>(V)) 949 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison)); 950 951 return CI && APInt::isSameValue(CI->getValue(), Val); 952 } 953 }; 954 955 template <bool AllowPoison> struct specific_intval64 { 956 uint64_t Val; 957 958 specific_intval64(uint64_t V) : Val(V) {} 959 960 template <typename ITy> bool match(ITy *V) { 961 const auto *CI = dyn_cast<ConstantInt>(V); 962 if (!CI && V->getType()->isVectorTy()) 963 if (const auto *C = dyn_cast<Constant>(V)) 964 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowPoison)); 965 966 return CI && CI->getValue() == Val; 967 } 968 }; 969 970 /// Match a specific integer value or vector with all elements equal to 971 /// the value. 972 inline specific_intval<false> m_SpecificInt(const APInt &V) { 973 return specific_intval<false>(V); 974 } 975 976 inline specific_intval64<false> m_SpecificInt(uint64_t V) { 977 return specific_intval64<false>(V); 978 } 979 980 inline specific_intval<true> m_SpecificIntAllowPoison(const APInt &V) { 981 return specific_intval<true>(V); 982 } 983 984 inline specific_intval64<true> m_SpecificIntAllowPoison(uint64_t V) { 985 return specific_intval64<true>(V); 986 } 987 988 /// Match a ConstantInt and bind to its value. This does not match 989 /// ConstantInts wider than 64-bits. 990 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } 991 992 /// Match a specified basic block value. 993 struct specific_bbval { 994 BasicBlock *Val; 995 996 specific_bbval(BasicBlock *Val) : Val(Val) {} 997 998 template <typename ITy> bool match(ITy *V) { 999 const auto *BB = dyn_cast<BasicBlock>(V); 1000 return BB && BB == Val; 1001 } 1002 }; 1003 1004 /// Match a specific basic block value. 1005 inline specific_bbval m_SpecificBB(BasicBlock *BB) { 1006 return specific_bbval(BB); 1007 } 1008 1009 /// A commutative-friendly version of m_Specific(). 1010 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { 1011 return BB; 1012 } 1013 inline deferredval_ty<const BasicBlock> 1014 m_Deferred(const BasicBlock *const &BB) { 1015 return BB; 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Matcher for any binary operator. 1020 // 1021 template <typename LHS_t, typename RHS_t, bool Commutable = false> 1022 struct AnyBinaryOp_match { 1023 LHS_t L; 1024 RHS_t R; 1025 1026 // The evaluation order is always stable, regardless of Commutability. 1027 // The LHS is always matched first. 1028 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1029 1030 template <typename OpTy> bool match(OpTy *V) { 1031 if (auto *I = dyn_cast<BinaryOperator>(V)) 1032 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 1033 (Commutable && L.match(I->getOperand(1)) && 1034 R.match(I->getOperand(0))); 1035 return false; 1036 } 1037 }; 1038 1039 template <typename LHS, typename RHS> 1040 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { 1041 return AnyBinaryOp_match<LHS, RHS>(L, R); 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // Matcher for any unary operator. 1046 // TODO fuse unary, binary matcher into n-ary matcher 1047 // 1048 template <typename OP_t> struct AnyUnaryOp_match { 1049 OP_t X; 1050 1051 AnyUnaryOp_match(const OP_t &X) : X(X) {} 1052 1053 template <typename OpTy> bool match(OpTy *V) { 1054 if (auto *I = dyn_cast<UnaryOperator>(V)) 1055 return X.match(I->getOperand(0)); 1056 return false; 1057 } 1058 }; 1059 1060 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { 1061 return AnyUnaryOp_match<OP_t>(X); 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // Matchers for specific binary operators. 1066 // 1067 1068 template <typename LHS_t, typename RHS_t, unsigned Opcode, 1069 bool Commutable = false> 1070 struct BinaryOp_match { 1071 LHS_t L; 1072 RHS_t R; 1073 1074 // The evaluation order is always stable, regardless of Commutability. 1075 // The LHS is always matched first. 1076 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1077 1078 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { 1079 if (V->getValueID() == Value::InstructionVal + Opc) { 1080 auto *I = cast<BinaryOperator>(V); 1081 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 1082 (Commutable && L.match(I->getOperand(1)) && 1083 R.match(I->getOperand(0))); 1084 } 1085 return false; 1086 } 1087 1088 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } 1089 }; 1090 1091 template <typename LHS, typename RHS> 1092 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, 1093 const RHS &R) { 1094 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); 1095 } 1096 1097 template <typename LHS, typename RHS> 1098 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, 1099 const RHS &R) { 1100 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); 1101 } 1102 1103 template <typename LHS, typename RHS> 1104 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, 1105 const RHS &R) { 1106 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); 1107 } 1108 1109 template <typename LHS, typename RHS> 1110 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, 1111 const RHS &R) { 1112 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); 1113 } 1114 1115 template <typename Op_t> struct FNeg_match { 1116 Op_t X; 1117 1118 FNeg_match(const Op_t &Op) : X(Op) {} 1119 template <typename OpTy> bool match(OpTy *V) { 1120 auto *FPMO = dyn_cast<FPMathOperator>(V); 1121 if (!FPMO) 1122 return false; 1123 1124 if (FPMO->getOpcode() == Instruction::FNeg) 1125 return X.match(FPMO->getOperand(0)); 1126 1127 if (FPMO->getOpcode() == Instruction::FSub) { 1128 if (FPMO->hasNoSignedZeros()) { 1129 // With 'nsz', any zero goes. 1130 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) 1131 return false; 1132 } else { 1133 // Without 'nsz', we need fsub -0.0, X exactly. 1134 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) 1135 return false; 1136 } 1137 1138 return X.match(FPMO->getOperand(1)); 1139 } 1140 1141 return false; 1142 } 1143 }; 1144 1145 /// Match 'fneg X' as 'fsub -0.0, X'. 1146 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { 1147 return FNeg_match<OpTy>(X); 1148 } 1149 1150 /// Match 'fneg X' as 'fsub +-0.0, X'. 1151 template <typename RHS> 1152 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> 1153 m_FNegNSZ(const RHS &X) { 1154 return m_FSub(m_AnyZeroFP(), X); 1155 } 1156 1157 template <typename LHS, typename RHS> 1158 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, 1159 const RHS &R) { 1160 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); 1161 } 1162 1163 template <typename LHS, typename RHS> 1164 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, 1165 const RHS &R) { 1166 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); 1167 } 1168 1169 template <typename LHS, typename RHS> 1170 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, 1171 const RHS &R) { 1172 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); 1173 } 1174 1175 template <typename LHS, typename RHS> 1176 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, 1177 const RHS &R) { 1178 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); 1179 } 1180 1181 template <typename LHS, typename RHS> 1182 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, 1183 const RHS &R) { 1184 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); 1185 } 1186 1187 template <typename LHS, typename RHS> 1188 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, 1189 const RHS &R) { 1190 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); 1191 } 1192 1193 template <typename LHS, typename RHS> 1194 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, 1195 const RHS &R) { 1196 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); 1197 } 1198 1199 template <typename LHS, typename RHS> 1200 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, 1201 const RHS &R) { 1202 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); 1203 } 1204 1205 template <typename LHS, typename RHS> 1206 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, 1207 const RHS &R) { 1208 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); 1209 } 1210 1211 template <typename LHS, typename RHS> 1212 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, 1213 const RHS &R) { 1214 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); 1215 } 1216 1217 template <typename LHS, typename RHS> 1218 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, 1219 const RHS &R) { 1220 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); 1221 } 1222 1223 template <typename LHS, typename RHS> 1224 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, 1225 const RHS &R) { 1226 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); 1227 } 1228 1229 template <typename LHS, typename RHS> 1230 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, 1231 const RHS &R) { 1232 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); 1233 } 1234 1235 template <typename LHS, typename RHS> 1236 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, 1237 const RHS &R) { 1238 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); 1239 } 1240 1241 template <typename LHS_t, typename RHS_t, unsigned Opcode, 1242 unsigned WrapFlags = 0, bool Commutable = false> 1243 struct OverflowingBinaryOp_match { 1244 LHS_t L; 1245 RHS_t R; 1246 1247 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) 1248 : L(LHS), R(RHS) {} 1249 1250 template <typename OpTy> bool match(OpTy *V) { 1251 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { 1252 if (Op->getOpcode() != Opcode) 1253 return false; 1254 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && 1255 !Op->hasNoUnsignedWrap()) 1256 return false; 1257 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && 1258 !Op->hasNoSignedWrap()) 1259 return false; 1260 return (L.match(Op->getOperand(0)) && R.match(Op->getOperand(1))) || 1261 (Commutable && L.match(Op->getOperand(1)) && 1262 R.match(Op->getOperand(0))); 1263 } 1264 return false; 1265 } 1266 }; 1267 1268 template <typename LHS, typename RHS> 1269 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1270 OverflowingBinaryOperator::NoSignedWrap> 1271 m_NSWAdd(const LHS &L, const RHS &R) { 1272 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1273 OverflowingBinaryOperator::NoSignedWrap>(L, 1274 R); 1275 } 1276 template <typename LHS, typename RHS> 1277 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1278 OverflowingBinaryOperator::NoSignedWrap> 1279 m_NSWSub(const LHS &L, const RHS &R) { 1280 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1281 OverflowingBinaryOperator::NoSignedWrap>(L, 1282 R); 1283 } 1284 template <typename LHS, typename RHS> 1285 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1286 OverflowingBinaryOperator::NoSignedWrap> 1287 m_NSWMul(const LHS &L, const RHS &R) { 1288 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1289 OverflowingBinaryOperator::NoSignedWrap>(L, 1290 R); 1291 } 1292 template <typename LHS, typename RHS> 1293 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1294 OverflowingBinaryOperator::NoSignedWrap> 1295 m_NSWShl(const LHS &L, const RHS &R) { 1296 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1297 OverflowingBinaryOperator::NoSignedWrap>(L, 1298 R); 1299 } 1300 1301 template <typename LHS, typename RHS> 1302 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1303 OverflowingBinaryOperator::NoUnsignedWrap> 1304 m_NUWAdd(const LHS &L, const RHS &R) { 1305 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1306 OverflowingBinaryOperator::NoUnsignedWrap>( 1307 L, R); 1308 } 1309 1310 template <typename LHS, typename RHS> 1311 inline OverflowingBinaryOp_match< 1312 LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap, true> 1313 m_c_NUWAdd(const LHS &L, const RHS &R) { 1314 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1315 OverflowingBinaryOperator::NoUnsignedWrap, 1316 true>(L, R); 1317 } 1318 1319 template <typename LHS, typename RHS> 1320 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1321 OverflowingBinaryOperator::NoUnsignedWrap> 1322 m_NUWSub(const LHS &L, const RHS &R) { 1323 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1324 OverflowingBinaryOperator::NoUnsignedWrap>( 1325 L, R); 1326 } 1327 template <typename LHS, typename RHS> 1328 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1329 OverflowingBinaryOperator::NoUnsignedWrap> 1330 m_NUWMul(const LHS &L, const RHS &R) { 1331 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1332 OverflowingBinaryOperator::NoUnsignedWrap>( 1333 L, R); 1334 } 1335 template <typename LHS, typename RHS> 1336 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1337 OverflowingBinaryOperator::NoUnsignedWrap> 1338 m_NUWShl(const LHS &L, const RHS &R) { 1339 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1340 OverflowingBinaryOperator::NoUnsignedWrap>( 1341 L, R); 1342 } 1343 1344 template <typename LHS_t, typename RHS_t, bool Commutable = false> 1345 struct SpecificBinaryOp_match 1346 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { 1347 unsigned Opcode; 1348 1349 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) 1350 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} 1351 1352 template <typename OpTy> bool match(OpTy *V) { 1353 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); 1354 } 1355 }; 1356 1357 /// Matches a specific opcode. 1358 template <typename LHS, typename RHS> 1359 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, 1360 const RHS &R) { 1361 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); 1362 } 1363 1364 template <typename LHS, typename RHS, bool Commutable = false> 1365 struct DisjointOr_match { 1366 LHS L; 1367 RHS R; 1368 1369 DisjointOr_match(const LHS &L, const RHS &R) : L(L), R(R) {} 1370 1371 template <typename OpTy> bool match(OpTy *V) { 1372 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1373 assert(PDI->getOpcode() == Instruction::Or && "Only or can be disjoint"); 1374 if (!PDI->isDisjoint()) 1375 return false; 1376 return (L.match(PDI->getOperand(0)) && R.match(PDI->getOperand(1))) || 1377 (Commutable && L.match(PDI->getOperand(1)) && 1378 R.match(PDI->getOperand(0))); 1379 } 1380 return false; 1381 } 1382 }; 1383 1384 template <typename LHS, typename RHS> 1385 inline DisjointOr_match<LHS, RHS> m_DisjointOr(const LHS &L, const RHS &R) { 1386 return DisjointOr_match<LHS, RHS>(L, R); 1387 } 1388 1389 template <typename LHS, typename RHS> 1390 inline DisjointOr_match<LHS, RHS, true> m_c_DisjointOr(const LHS &L, 1391 const RHS &R) { 1392 return DisjointOr_match<LHS, RHS, true>(L, R); 1393 } 1394 1395 /// Match either "add" or "or disjoint". 1396 template <typename LHS, typename RHS> 1397 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Add>, 1398 DisjointOr_match<LHS, RHS>> 1399 m_AddLike(const LHS &L, const RHS &R) { 1400 return m_CombineOr(m_Add(L, R), m_DisjointOr(L, R)); 1401 } 1402 1403 /// Match either "add nsw" or "or disjoint" 1404 template <typename LHS, typename RHS> 1405 inline match_combine_or< 1406 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1407 OverflowingBinaryOperator::NoSignedWrap>, 1408 DisjointOr_match<LHS, RHS>> 1409 m_NSWAddLike(const LHS &L, const RHS &R) { 1410 return m_CombineOr(m_NSWAdd(L, R), m_DisjointOr(L, R)); 1411 } 1412 1413 /// Match either "add nuw" or "or disjoint" 1414 template <typename LHS, typename RHS> 1415 inline match_combine_or< 1416 OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1417 OverflowingBinaryOperator::NoUnsignedWrap>, 1418 DisjointOr_match<LHS, RHS>> 1419 m_NUWAddLike(const LHS &L, const RHS &R) { 1420 return m_CombineOr(m_NUWAdd(L, R), m_DisjointOr(L, R)); 1421 } 1422 1423 //===----------------------------------------------------------------------===// 1424 // Class that matches a group of binary opcodes. 1425 // 1426 template <typename LHS_t, typename RHS_t, typename Predicate, 1427 bool Commutable = false> 1428 struct BinOpPred_match : Predicate { 1429 LHS_t L; 1430 RHS_t R; 1431 1432 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1433 1434 template <typename OpTy> bool match(OpTy *V) { 1435 if (auto *I = dyn_cast<Instruction>(V)) 1436 return this->isOpType(I->getOpcode()) && 1437 ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 1438 (Commutable && L.match(I->getOperand(1)) && 1439 R.match(I->getOperand(0)))); 1440 return false; 1441 } 1442 }; 1443 1444 struct is_shift_op { 1445 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } 1446 }; 1447 1448 struct is_right_shift_op { 1449 bool isOpType(unsigned Opcode) { 1450 return Opcode == Instruction::LShr || Opcode == Instruction::AShr; 1451 } 1452 }; 1453 1454 struct is_logical_shift_op { 1455 bool isOpType(unsigned Opcode) { 1456 return Opcode == Instruction::LShr || Opcode == Instruction::Shl; 1457 } 1458 }; 1459 1460 struct is_bitwiselogic_op { 1461 bool isOpType(unsigned Opcode) { 1462 return Instruction::isBitwiseLogicOp(Opcode); 1463 } 1464 }; 1465 1466 struct is_idiv_op { 1467 bool isOpType(unsigned Opcode) { 1468 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; 1469 } 1470 }; 1471 1472 struct is_irem_op { 1473 bool isOpType(unsigned Opcode) { 1474 return Opcode == Instruction::SRem || Opcode == Instruction::URem; 1475 } 1476 }; 1477 1478 /// Matches shift operations. 1479 template <typename LHS, typename RHS> 1480 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, 1481 const RHS &R) { 1482 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); 1483 } 1484 1485 /// Matches logical shift operations. 1486 template <typename LHS, typename RHS> 1487 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, 1488 const RHS &R) { 1489 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); 1490 } 1491 1492 /// Matches logical shift operations. 1493 template <typename LHS, typename RHS> 1494 inline BinOpPred_match<LHS, RHS, is_logical_shift_op> 1495 m_LogicalShift(const LHS &L, const RHS &R) { 1496 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); 1497 } 1498 1499 /// Matches bitwise logic operations. 1500 template <typename LHS, typename RHS> 1501 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> 1502 m_BitwiseLogic(const LHS &L, const RHS &R) { 1503 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); 1504 } 1505 1506 /// Matches bitwise logic operations in either order. 1507 template <typename LHS, typename RHS> 1508 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true> 1509 m_c_BitwiseLogic(const LHS &L, const RHS &R) { 1510 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op, true>(L, R); 1511 } 1512 1513 /// Matches integer division operations. 1514 template <typename LHS, typename RHS> 1515 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, 1516 const RHS &R) { 1517 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); 1518 } 1519 1520 /// Matches integer remainder operations. 1521 template <typename LHS, typename RHS> 1522 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, 1523 const RHS &R) { 1524 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); 1525 } 1526 1527 //===----------------------------------------------------------------------===// 1528 // Class that matches exact binary ops. 1529 // 1530 template <typename SubPattern_t> struct Exact_match { 1531 SubPattern_t SubPattern; 1532 1533 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} 1534 1535 template <typename OpTy> bool match(OpTy *V) { 1536 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) 1537 return PEO->isExact() && SubPattern.match(V); 1538 return false; 1539 } 1540 }; 1541 1542 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { 1543 return SubPattern; 1544 } 1545 1546 //===----------------------------------------------------------------------===// 1547 // Matchers for CmpInst classes 1548 // 1549 1550 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, 1551 bool Commutable = false> 1552 struct CmpClass_match { 1553 PredicateTy *Predicate; 1554 LHS_t L; 1555 RHS_t R; 1556 1557 // The evaluation order is always stable, regardless of Commutability. 1558 // The LHS is always matched first. 1559 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) 1560 : Predicate(&Pred), L(LHS), R(RHS) {} 1561 CmpClass_match(const LHS_t &LHS, const RHS_t &RHS) 1562 : Predicate(nullptr), L(LHS), R(RHS) {} 1563 1564 template <typename OpTy> bool match(OpTy *V) { 1565 if (auto *I = dyn_cast<Class>(V)) { 1566 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { 1567 if (Predicate) 1568 *Predicate = I->getPredicate(); 1569 return true; 1570 } else if (Commutable && L.match(I->getOperand(1)) && 1571 R.match(I->getOperand(0))) { 1572 if (Predicate) 1573 *Predicate = I->getSwappedPredicate(); 1574 return true; 1575 } 1576 } 1577 return false; 1578 } 1579 }; 1580 1581 template <typename LHS, typename RHS> 1582 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> 1583 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1584 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); 1585 } 1586 1587 template <typename LHS, typename RHS> 1588 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 1589 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1590 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); 1591 } 1592 1593 template <typename LHS, typename RHS> 1594 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 1595 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1596 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); 1597 } 1598 1599 template <typename LHS, typename RHS> 1600 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> 1601 m_Cmp(const LHS &L, const RHS &R) { 1602 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(L, R); 1603 } 1604 1605 template <typename LHS, typename RHS> 1606 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 1607 m_ICmp(const LHS &L, const RHS &R) { 1608 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(L, R); 1609 } 1610 1611 template <typename LHS, typename RHS> 1612 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 1613 m_FCmp(const LHS &L, const RHS &R) { 1614 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(L, R); 1615 } 1616 1617 // Same as CmpClass, but instead of saving Pred as out output variable, match a 1618 // specific input pred for equality. 1619 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy> 1620 struct SpecificCmpClass_match { 1621 const PredicateTy Predicate; 1622 LHS_t L; 1623 RHS_t R; 1624 1625 SpecificCmpClass_match(PredicateTy Pred, const LHS_t &LHS, const RHS_t &RHS) 1626 : Predicate(Pred), L(LHS), R(RHS) {} 1627 1628 template <typename OpTy> bool match(OpTy *V) { 1629 if (auto *I = dyn_cast<Class>(V)) 1630 return I->getPredicate() == Predicate && L.match(I->getOperand(0)) && 1631 R.match(I->getOperand(1)); 1632 return false; 1633 } 1634 }; 1635 1636 template <typename LHS, typename RHS> 1637 inline SpecificCmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> 1638 m_SpecificCmp(CmpInst::Predicate MatchPred, const LHS &L, const RHS &R) { 1639 return SpecificCmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>( 1640 MatchPred, L, R); 1641 } 1642 1643 template <typename LHS, typename RHS> 1644 inline SpecificCmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 1645 m_SpecificICmp(ICmpInst::Predicate MatchPred, const LHS &L, const RHS &R) { 1646 return SpecificCmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>( 1647 MatchPred, L, R); 1648 } 1649 1650 template <typename LHS, typename RHS> 1651 inline SpecificCmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 1652 m_SpecificFCmp(FCmpInst::Predicate MatchPred, const LHS &L, const RHS &R) { 1653 return SpecificCmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>( 1654 MatchPred, L, R); 1655 } 1656 1657 //===----------------------------------------------------------------------===// 1658 // Matchers for instructions with a given opcode and number of operands. 1659 // 1660 1661 /// Matches instructions with Opcode and three operands. 1662 template <typename T0, unsigned Opcode> struct OneOps_match { 1663 T0 Op1; 1664 1665 OneOps_match(const T0 &Op1) : Op1(Op1) {} 1666 1667 template <typename OpTy> bool match(OpTy *V) { 1668 if (V->getValueID() == Value::InstructionVal + Opcode) { 1669 auto *I = cast<Instruction>(V); 1670 return Op1.match(I->getOperand(0)); 1671 } 1672 return false; 1673 } 1674 }; 1675 1676 /// Matches instructions with Opcode and three operands. 1677 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { 1678 T0 Op1; 1679 T1 Op2; 1680 1681 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} 1682 1683 template <typename OpTy> bool match(OpTy *V) { 1684 if (V->getValueID() == Value::InstructionVal + Opcode) { 1685 auto *I = cast<Instruction>(V); 1686 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); 1687 } 1688 return false; 1689 } 1690 }; 1691 1692 /// Matches instructions with Opcode and three operands. 1693 template <typename T0, typename T1, typename T2, unsigned Opcode> 1694 struct ThreeOps_match { 1695 T0 Op1; 1696 T1 Op2; 1697 T2 Op3; 1698 1699 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) 1700 : Op1(Op1), Op2(Op2), Op3(Op3) {} 1701 1702 template <typename OpTy> bool match(OpTy *V) { 1703 if (V->getValueID() == Value::InstructionVal + Opcode) { 1704 auto *I = cast<Instruction>(V); 1705 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 1706 Op3.match(I->getOperand(2)); 1707 } 1708 return false; 1709 } 1710 }; 1711 1712 /// Matches instructions with Opcode and any number of operands 1713 template <unsigned Opcode, typename... OperandTypes> struct AnyOps_match { 1714 std::tuple<OperandTypes...> Operands; 1715 1716 AnyOps_match(const OperandTypes &...Ops) : Operands(Ops...) {} 1717 1718 // Operand matching works by recursively calling match_operands, matching the 1719 // operands left to right. The first version is called for each operand but 1720 // the last, for which the second version is called. The second version of 1721 // match_operands is also used to match each individual operand. 1722 template <int Idx, int Last> 1723 std::enable_if_t<Idx != Last, bool> match_operands(const Instruction *I) { 1724 return match_operands<Idx, Idx>(I) && match_operands<Idx + 1, Last>(I); 1725 } 1726 1727 template <int Idx, int Last> 1728 std::enable_if_t<Idx == Last, bool> match_operands(const Instruction *I) { 1729 return std::get<Idx>(Operands).match(I->getOperand(Idx)); 1730 } 1731 1732 template <typename OpTy> bool match(OpTy *V) { 1733 if (V->getValueID() == Value::InstructionVal + Opcode) { 1734 auto *I = cast<Instruction>(V); 1735 return I->getNumOperands() == sizeof...(OperandTypes) && 1736 match_operands<0, sizeof...(OperandTypes) - 1>(I); 1737 } 1738 return false; 1739 } 1740 }; 1741 1742 /// Matches SelectInst. 1743 template <typename Cond, typename LHS, typename RHS> 1744 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> 1745 m_Select(const Cond &C, const LHS &L, const RHS &R) { 1746 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); 1747 } 1748 1749 /// This matches a select of two constants, e.g.: 1750 /// m_SelectCst<-1, 0>(m_Value(V)) 1751 template <int64_t L, int64_t R, typename Cond> 1752 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, 1753 Instruction::Select> 1754 m_SelectCst(const Cond &C) { 1755 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); 1756 } 1757 1758 /// Matches FreezeInst. 1759 template <typename OpTy> 1760 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { 1761 return OneOps_match<OpTy, Instruction::Freeze>(Op); 1762 } 1763 1764 /// Matches InsertElementInst. 1765 template <typename Val_t, typename Elt_t, typename Idx_t> 1766 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> 1767 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { 1768 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( 1769 Val, Elt, Idx); 1770 } 1771 1772 /// Matches ExtractElementInst. 1773 template <typename Val_t, typename Idx_t> 1774 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> 1775 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { 1776 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); 1777 } 1778 1779 /// Matches shuffle. 1780 template <typename T0, typename T1, typename T2> struct Shuffle_match { 1781 T0 Op1; 1782 T1 Op2; 1783 T2 Mask; 1784 1785 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) 1786 : Op1(Op1), Op2(Op2), Mask(Mask) {} 1787 1788 template <typename OpTy> bool match(OpTy *V) { 1789 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { 1790 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 1791 Mask.match(I->getShuffleMask()); 1792 } 1793 return false; 1794 } 1795 }; 1796 1797 struct m_Mask { 1798 ArrayRef<int> &MaskRef; 1799 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 1800 bool match(ArrayRef<int> Mask) { 1801 MaskRef = Mask; 1802 return true; 1803 } 1804 }; 1805 1806 struct m_ZeroMask { 1807 bool match(ArrayRef<int> Mask) { 1808 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); 1809 } 1810 }; 1811 1812 struct m_SpecificMask { 1813 ArrayRef<int> &MaskRef; 1814 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 1815 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } 1816 }; 1817 1818 struct m_SplatOrPoisonMask { 1819 int &SplatIndex; 1820 m_SplatOrPoisonMask(int &SplatIndex) : SplatIndex(SplatIndex) {} 1821 bool match(ArrayRef<int> Mask) { 1822 const auto *First = find_if(Mask, [](int Elem) { return Elem != -1; }); 1823 if (First == Mask.end()) 1824 return false; 1825 SplatIndex = *First; 1826 return all_of(Mask, 1827 [First](int Elem) { return Elem == *First || Elem == -1; }); 1828 } 1829 }; 1830 1831 template <typename PointerOpTy, typename OffsetOpTy> struct PtrAdd_match { 1832 PointerOpTy PointerOp; 1833 OffsetOpTy OffsetOp; 1834 1835 PtrAdd_match(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) 1836 : PointerOp(PointerOp), OffsetOp(OffsetOp) {} 1837 1838 template <typename OpTy> bool match(OpTy *V) { 1839 auto *GEP = dyn_cast<GEPOperator>(V); 1840 return GEP && GEP->getSourceElementType()->isIntegerTy(8) && 1841 PointerOp.match(GEP->getPointerOperand()) && 1842 OffsetOp.match(GEP->idx_begin()->get()); 1843 } 1844 }; 1845 1846 /// Matches ShuffleVectorInst independently of mask value. 1847 template <typename V1_t, typename V2_t> 1848 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> 1849 m_Shuffle(const V1_t &v1, const V2_t &v2) { 1850 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); 1851 } 1852 1853 template <typename V1_t, typename V2_t, typename Mask_t> 1854 inline Shuffle_match<V1_t, V2_t, Mask_t> 1855 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { 1856 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); 1857 } 1858 1859 /// Matches LoadInst. 1860 template <typename OpTy> 1861 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { 1862 return OneOps_match<OpTy, Instruction::Load>(Op); 1863 } 1864 1865 /// Matches StoreInst. 1866 template <typename ValueOpTy, typename PointerOpTy> 1867 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> 1868 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { 1869 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, 1870 PointerOp); 1871 } 1872 1873 /// Matches GetElementPtrInst. 1874 template <typename... OperandTypes> 1875 inline auto m_GEP(const OperandTypes &...Ops) { 1876 return AnyOps_match<Instruction::GetElementPtr, OperandTypes...>(Ops...); 1877 } 1878 1879 /// Matches GEP with i8 source element type 1880 template <typename PointerOpTy, typename OffsetOpTy> 1881 inline PtrAdd_match<PointerOpTy, OffsetOpTy> 1882 m_PtrAdd(const PointerOpTy &PointerOp, const OffsetOpTy &OffsetOp) { 1883 return PtrAdd_match<PointerOpTy, OffsetOpTy>(PointerOp, OffsetOp); 1884 } 1885 1886 //===----------------------------------------------------------------------===// 1887 // Matchers for CastInst classes 1888 // 1889 1890 template <typename Op_t, unsigned Opcode> struct CastOperator_match { 1891 Op_t Op; 1892 1893 CastOperator_match(const Op_t &OpMatch) : Op(OpMatch) {} 1894 1895 template <typename OpTy> bool match(OpTy *V) { 1896 if (auto *O = dyn_cast<Operator>(V)) 1897 return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); 1898 return false; 1899 } 1900 }; 1901 1902 template <typename Op_t, typename Class> struct CastInst_match { 1903 Op_t Op; 1904 1905 CastInst_match(const Op_t &OpMatch) : Op(OpMatch) {} 1906 1907 template <typename OpTy> bool match(OpTy *V) { 1908 if (auto *I = dyn_cast<Class>(V)) 1909 return Op.match(I->getOperand(0)); 1910 return false; 1911 } 1912 }; 1913 1914 template <typename Op_t> struct PtrToIntSameSize_match { 1915 const DataLayout &DL; 1916 Op_t Op; 1917 1918 PtrToIntSameSize_match(const DataLayout &DL, const Op_t &OpMatch) 1919 : DL(DL), Op(OpMatch) {} 1920 1921 template <typename OpTy> bool match(OpTy *V) { 1922 if (auto *O = dyn_cast<Operator>(V)) 1923 return O->getOpcode() == Instruction::PtrToInt && 1924 DL.getTypeSizeInBits(O->getType()) == 1925 DL.getTypeSizeInBits(O->getOperand(0)->getType()) && 1926 Op.match(O->getOperand(0)); 1927 return false; 1928 } 1929 }; 1930 1931 template <typename Op_t> struct NNegZExt_match { 1932 Op_t Op; 1933 1934 NNegZExt_match(const Op_t &OpMatch) : Op(OpMatch) {} 1935 1936 template <typename OpTy> bool match(OpTy *V) { 1937 if (auto *I = dyn_cast<ZExtInst>(V)) 1938 return I->hasNonNeg() && Op.match(I->getOperand(0)); 1939 return false; 1940 } 1941 }; 1942 1943 template <typename Op_t, unsigned WrapFlags = 0> struct NoWrapTrunc_match { 1944 Op_t Op; 1945 1946 NoWrapTrunc_match(const Op_t &OpMatch) : Op(OpMatch) {} 1947 1948 template <typename OpTy> bool match(OpTy *V) { 1949 if (auto *I = dyn_cast<TruncInst>(V)) 1950 return (I->getNoWrapKind() & WrapFlags) == WrapFlags && 1951 Op.match(I->getOperand(0)); 1952 return false; 1953 } 1954 }; 1955 1956 /// Matches BitCast. 1957 template <typename OpTy> 1958 inline CastOperator_match<OpTy, Instruction::BitCast> 1959 m_BitCast(const OpTy &Op) { 1960 return CastOperator_match<OpTy, Instruction::BitCast>(Op); 1961 } 1962 1963 template <typename Op_t> struct ElementWiseBitCast_match { 1964 Op_t Op; 1965 1966 ElementWiseBitCast_match(const Op_t &OpMatch) : Op(OpMatch) {} 1967 1968 template <typename OpTy> bool match(OpTy *V) { 1969 auto *I = dyn_cast<BitCastInst>(V); 1970 if (!I) 1971 return false; 1972 Type *SrcType = I->getSrcTy(); 1973 Type *DstType = I->getType(); 1974 // Make sure the bitcast doesn't change between scalar and vector and 1975 // doesn't change the number of vector elements. 1976 if (SrcType->isVectorTy() != DstType->isVectorTy()) 1977 return false; 1978 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcType); 1979 SrcVecTy && SrcVecTy->getElementCount() != 1980 cast<VectorType>(DstType)->getElementCount()) 1981 return false; 1982 return Op.match(I->getOperand(0)); 1983 } 1984 }; 1985 1986 template <typename OpTy> 1987 inline ElementWiseBitCast_match<OpTy> m_ElementWiseBitCast(const OpTy &Op) { 1988 return ElementWiseBitCast_match<OpTy>(Op); 1989 } 1990 1991 /// Matches PtrToInt. 1992 template <typename OpTy> 1993 inline CastOperator_match<OpTy, Instruction::PtrToInt> 1994 m_PtrToInt(const OpTy &Op) { 1995 return CastOperator_match<OpTy, Instruction::PtrToInt>(Op); 1996 } 1997 1998 template <typename OpTy> 1999 inline PtrToIntSameSize_match<OpTy> m_PtrToIntSameSize(const DataLayout &DL, 2000 const OpTy &Op) { 2001 return PtrToIntSameSize_match<OpTy>(DL, Op); 2002 } 2003 2004 /// Matches IntToPtr. 2005 template <typename OpTy> 2006 inline CastOperator_match<OpTy, Instruction::IntToPtr> 2007 m_IntToPtr(const OpTy &Op) { 2008 return CastOperator_match<OpTy, Instruction::IntToPtr>(Op); 2009 } 2010 2011 /// Matches Trunc. 2012 template <typename OpTy> 2013 inline CastInst_match<OpTy, TruncInst> m_Trunc(const OpTy &Op) { 2014 return CastInst_match<OpTy, TruncInst>(Op); 2015 } 2016 2017 /// Matches trunc nuw. 2018 template <typename OpTy> 2019 inline NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap> 2020 m_NUWTrunc(const OpTy &Op) { 2021 return NoWrapTrunc_match<OpTy, TruncInst::NoUnsignedWrap>(Op); 2022 } 2023 2024 /// Matches trunc nsw. 2025 template <typename OpTy> 2026 inline NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap> 2027 m_NSWTrunc(const OpTy &Op) { 2028 return NoWrapTrunc_match<OpTy, TruncInst::NoSignedWrap>(Op); 2029 } 2030 2031 template <typename OpTy> 2032 inline match_combine_or<CastInst_match<OpTy, TruncInst>, OpTy> 2033 m_TruncOrSelf(const OpTy &Op) { 2034 return m_CombineOr(m_Trunc(Op), Op); 2035 } 2036 2037 /// Matches SExt. 2038 template <typename OpTy> 2039 inline CastInst_match<OpTy, SExtInst> m_SExt(const OpTy &Op) { 2040 return CastInst_match<OpTy, SExtInst>(Op); 2041 } 2042 2043 /// Matches ZExt. 2044 template <typename OpTy> 2045 inline CastInst_match<OpTy, ZExtInst> m_ZExt(const OpTy &Op) { 2046 return CastInst_match<OpTy, ZExtInst>(Op); 2047 } 2048 2049 template <typename OpTy> 2050 inline NNegZExt_match<OpTy> m_NNegZExt(const OpTy &Op) { 2051 return NNegZExt_match<OpTy>(Op); 2052 } 2053 2054 template <typename OpTy> 2055 inline match_combine_or<CastInst_match<OpTy, ZExtInst>, OpTy> 2056 m_ZExtOrSelf(const OpTy &Op) { 2057 return m_CombineOr(m_ZExt(Op), Op); 2058 } 2059 2060 template <typename OpTy> 2061 inline match_combine_or<CastInst_match<OpTy, SExtInst>, OpTy> 2062 m_SExtOrSelf(const OpTy &Op) { 2063 return m_CombineOr(m_SExt(Op), Op); 2064 } 2065 2066 /// Match either "sext" or "zext nneg". 2067 template <typename OpTy> 2068 inline match_combine_or<CastInst_match<OpTy, SExtInst>, NNegZExt_match<OpTy>> 2069 m_SExtLike(const OpTy &Op) { 2070 return m_CombineOr(m_SExt(Op), m_NNegZExt(Op)); 2071 } 2072 2073 template <typename OpTy> 2074 inline match_combine_or<CastInst_match<OpTy, ZExtInst>, 2075 CastInst_match<OpTy, SExtInst>> 2076 m_ZExtOrSExt(const OpTy &Op) { 2077 return m_CombineOr(m_ZExt(Op), m_SExt(Op)); 2078 } 2079 2080 template <typename OpTy> 2081 inline match_combine_or<match_combine_or<CastInst_match<OpTy, ZExtInst>, 2082 CastInst_match<OpTy, SExtInst>>, 2083 OpTy> 2084 m_ZExtOrSExtOrSelf(const OpTy &Op) { 2085 return m_CombineOr(m_ZExtOrSExt(Op), Op); 2086 } 2087 2088 template <typename OpTy> 2089 inline CastInst_match<OpTy, UIToFPInst> m_UIToFP(const OpTy &Op) { 2090 return CastInst_match<OpTy, UIToFPInst>(Op); 2091 } 2092 2093 template <typename OpTy> 2094 inline CastInst_match<OpTy, SIToFPInst> m_SIToFP(const OpTy &Op) { 2095 return CastInst_match<OpTy, SIToFPInst>(Op); 2096 } 2097 2098 template <typename OpTy> 2099 inline CastInst_match<OpTy, FPToUIInst> m_FPToUI(const OpTy &Op) { 2100 return CastInst_match<OpTy, FPToUIInst>(Op); 2101 } 2102 2103 template <typename OpTy> 2104 inline CastInst_match<OpTy, FPToSIInst> m_FPToSI(const OpTy &Op) { 2105 return CastInst_match<OpTy, FPToSIInst>(Op); 2106 } 2107 2108 template <typename OpTy> 2109 inline CastInst_match<OpTy, FPTruncInst> m_FPTrunc(const OpTy &Op) { 2110 return CastInst_match<OpTy, FPTruncInst>(Op); 2111 } 2112 2113 template <typename OpTy> 2114 inline CastInst_match<OpTy, FPExtInst> m_FPExt(const OpTy &Op) { 2115 return CastInst_match<OpTy, FPExtInst>(Op); 2116 } 2117 2118 //===----------------------------------------------------------------------===// 2119 // Matchers for control flow. 2120 // 2121 2122 struct br_match { 2123 BasicBlock *&Succ; 2124 2125 br_match(BasicBlock *&Succ) : Succ(Succ) {} 2126 2127 template <typename OpTy> bool match(OpTy *V) { 2128 if (auto *BI = dyn_cast<BranchInst>(V)) 2129 if (BI->isUnconditional()) { 2130 Succ = BI->getSuccessor(0); 2131 return true; 2132 } 2133 return false; 2134 } 2135 }; 2136 2137 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } 2138 2139 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 2140 struct brc_match { 2141 Cond_t Cond; 2142 TrueBlock_t T; 2143 FalseBlock_t F; 2144 2145 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) 2146 : Cond(C), T(t), F(f) {} 2147 2148 template <typename OpTy> bool match(OpTy *V) { 2149 if (auto *BI = dyn_cast<BranchInst>(V)) 2150 if (BI->isConditional() && Cond.match(BI->getCondition())) 2151 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); 2152 return false; 2153 } 2154 }; 2155 2156 template <typename Cond_t> 2157 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> 2158 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { 2159 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( 2160 C, m_BasicBlock(T), m_BasicBlock(F)); 2161 } 2162 2163 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 2164 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> 2165 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { 2166 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); 2167 } 2168 2169 //===----------------------------------------------------------------------===// 2170 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). 2171 // 2172 2173 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, 2174 bool Commutable = false> 2175 struct MaxMin_match { 2176 using PredType = Pred_t; 2177 LHS_t L; 2178 RHS_t R; 2179 2180 // The evaluation order is always stable, regardless of Commutability. 2181 // The LHS is always matched first. 2182 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 2183 2184 template <typename OpTy> bool match(OpTy *V) { 2185 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 2186 Intrinsic::ID IID = II->getIntrinsicID(); 2187 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || 2188 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || 2189 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || 2190 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { 2191 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); 2192 return (L.match(LHS) && R.match(RHS)) || 2193 (Commutable && L.match(RHS) && R.match(LHS)); 2194 } 2195 } 2196 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". 2197 auto *SI = dyn_cast<SelectInst>(V); 2198 if (!SI) 2199 return false; 2200 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); 2201 if (!Cmp) 2202 return false; 2203 // At this point we have a select conditioned on a comparison. Check that 2204 // it is the values returned by the select that are being compared. 2205 auto *TrueVal = SI->getTrueValue(); 2206 auto *FalseVal = SI->getFalseValue(); 2207 auto *LHS = Cmp->getOperand(0); 2208 auto *RHS = Cmp->getOperand(1); 2209 if ((TrueVal != LHS || FalseVal != RHS) && 2210 (TrueVal != RHS || FalseVal != LHS)) 2211 return false; 2212 typename CmpInst_t::Predicate Pred = 2213 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); 2214 // Does "(x pred y) ? x : y" represent the desired max/min operation? 2215 if (!Pred_t::match(Pred)) 2216 return false; 2217 // It does! Bind the operands. 2218 return (L.match(LHS) && R.match(RHS)) || 2219 (Commutable && L.match(RHS) && R.match(LHS)); 2220 } 2221 }; 2222 2223 /// Helper class for identifying signed max predicates. 2224 struct smax_pred_ty { 2225 static bool match(ICmpInst::Predicate Pred) { 2226 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; 2227 } 2228 }; 2229 2230 /// Helper class for identifying signed min predicates. 2231 struct smin_pred_ty { 2232 static bool match(ICmpInst::Predicate Pred) { 2233 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; 2234 } 2235 }; 2236 2237 /// Helper class for identifying unsigned max predicates. 2238 struct umax_pred_ty { 2239 static bool match(ICmpInst::Predicate Pred) { 2240 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; 2241 } 2242 }; 2243 2244 /// Helper class for identifying unsigned min predicates. 2245 struct umin_pred_ty { 2246 static bool match(ICmpInst::Predicate Pred) { 2247 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; 2248 } 2249 }; 2250 2251 /// Helper class for identifying ordered max predicates. 2252 struct ofmax_pred_ty { 2253 static bool match(FCmpInst::Predicate Pred) { 2254 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; 2255 } 2256 }; 2257 2258 /// Helper class for identifying ordered min predicates. 2259 struct ofmin_pred_ty { 2260 static bool match(FCmpInst::Predicate Pred) { 2261 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; 2262 } 2263 }; 2264 2265 /// Helper class for identifying unordered max predicates. 2266 struct ufmax_pred_ty { 2267 static bool match(FCmpInst::Predicate Pred) { 2268 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; 2269 } 2270 }; 2271 2272 /// Helper class for identifying unordered min predicates. 2273 struct ufmin_pred_ty { 2274 static bool match(FCmpInst::Predicate Pred) { 2275 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; 2276 } 2277 }; 2278 2279 template <typename LHS, typename RHS> 2280 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, 2281 const RHS &R) { 2282 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); 2283 } 2284 2285 template <typename LHS, typename RHS> 2286 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, 2287 const RHS &R) { 2288 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); 2289 } 2290 2291 template <typename LHS, typename RHS> 2292 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, 2293 const RHS &R) { 2294 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); 2295 } 2296 2297 template <typename LHS, typename RHS> 2298 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, 2299 const RHS &R) { 2300 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); 2301 } 2302 2303 template <typename LHS, typename RHS> 2304 inline match_combine_or< 2305 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, 2306 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, 2307 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, 2308 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> 2309 m_MaxOrMin(const LHS &L, const RHS &R) { 2310 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), 2311 m_CombineOr(m_UMax(L, R), m_UMin(L, R))); 2312 } 2313 2314 /// Match an 'ordered' floating point maximum function. 2315 /// Floating point has one special value 'NaN'. Therefore, there is no total 2316 /// order. However, if we can ignore the 'NaN' value (for example, because of a 2317 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 2318 /// semantics. In the presence of 'NaN' we have to preserve the original 2319 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. 2320 /// 2321 /// max(L, R) iff L and R are not NaN 2322 /// m_OrdFMax(L, R) = R iff L or R are NaN 2323 template <typename LHS, typename RHS> 2324 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, 2325 const RHS &R) { 2326 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); 2327 } 2328 2329 /// Match an 'ordered' floating point minimum function. 2330 /// Floating point has one special value 'NaN'. Therefore, there is no total 2331 /// order. However, if we can ignore the 'NaN' value (for example, because of a 2332 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 2333 /// semantics. In the presence of 'NaN' we have to preserve the original 2334 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. 2335 /// 2336 /// min(L, R) iff L and R are not NaN 2337 /// m_OrdFMin(L, R) = R iff L or R are NaN 2338 template <typename LHS, typename RHS> 2339 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, 2340 const RHS &R) { 2341 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); 2342 } 2343 2344 /// Match an 'unordered' floating point maximum function. 2345 /// Floating point has one special value 'NaN'. Therefore, there is no total 2346 /// order. However, if we can ignore the 'NaN' value (for example, because of a 2347 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 2348 /// semantics. In the presence of 'NaN' we have to preserve the original 2349 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. 2350 /// 2351 /// max(L, R) iff L and R are not NaN 2352 /// m_UnordFMax(L, R) = L iff L or R are NaN 2353 template <typename LHS, typename RHS> 2354 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> 2355 m_UnordFMax(const LHS &L, const RHS &R) { 2356 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); 2357 } 2358 2359 /// Match an 'unordered' floating point minimum function. 2360 /// Floating point has one special value 'NaN'. Therefore, there is no total 2361 /// order. However, if we can ignore the 'NaN' value (for example, because of a 2362 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 2363 /// semantics. In the presence of 'NaN' we have to preserve the original 2364 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. 2365 /// 2366 /// min(L, R) iff L and R are not NaN 2367 /// m_UnordFMin(L, R) = L iff L or R are NaN 2368 template <typename LHS, typename RHS> 2369 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> 2370 m_UnordFMin(const LHS &L, const RHS &R) { 2371 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); 2372 } 2373 2374 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. 2375 /// NOTE: we first match the 'Not' (by matching '-1'), 2376 /// and only then match the inner matcher! 2377 template <typename ValTy> 2378 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> 2379 m_Not(const ValTy &V) { 2380 return m_c_Xor(m_AllOnes(), V); 2381 } 2382 2383 template <typename ValTy> 2384 inline BinaryOp_match<cst_pred_ty<is_all_ones, false>, ValTy, Instruction::Xor, 2385 true> 2386 m_NotForbidPoison(const ValTy &V) { 2387 return m_c_Xor(m_AllOnesForbidPoison(), V); 2388 } 2389 2390 //===----------------------------------------------------------------------===// 2391 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b 2392 // Note that S might be matched to other instructions than AddInst. 2393 // 2394 2395 template <typename LHS_t, typename RHS_t, typename Sum_t> 2396 struct UAddWithOverflow_match { 2397 LHS_t L; 2398 RHS_t R; 2399 Sum_t S; 2400 2401 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) 2402 : L(L), R(R), S(S) {} 2403 2404 template <typename OpTy> bool match(OpTy *V) { 2405 Value *ICmpLHS, *ICmpRHS; 2406 ICmpInst::Predicate Pred; 2407 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) 2408 return false; 2409 2410 Value *AddLHS, *AddRHS; 2411 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); 2412 2413 // (a + b) u< a, (a + b) u< b 2414 if (Pred == ICmpInst::ICMP_ULT) 2415 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) 2416 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 2417 2418 // a >u (a + b), b >u (a + b) 2419 if (Pred == ICmpInst::ICMP_UGT) 2420 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) 2421 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 2422 2423 Value *Op1; 2424 auto XorExpr = m_OneUse(m_Not(m_Value(Op1))); 2425 // (~a) <u b 2426 if (Pred == ICmpInst::ICMP_ULT) { 2427 if (XorExpr.match(ICmpLHS)) 2428 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); 2429 } 2430 // b > u (~a) 2431 if (Pred == ICmpInst::ICMP_UGT) { 2432 if (XorExpr.match(ICmpRHS)) 2433 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); 2434 } 2435 2436 // Match special-case for increment-by-1. 2437 if (Pred == ICmpInst::ICMP_EQ) { 2438 // (a + 1) == 0 2439 // (1 + a) == 0 2440 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && 2441 (m_One().match(AddLHS) || m_One().match(AddRHS))) 2442 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 2443 // 0 == (a + 1) 2444 // 0 == (1 + a) 2445 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && 2446 (m_One().match(AddLHS) || m_One().match(AddRHS))) 2447 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 2448 } 2449 2450 return false; 2451 } 2452 }; 2453 2454 /// Match an icmp instruction checking for unsigned overflow on addition. 2455 /// 2456 /// S is matched to the addition whose result is being checked for overflow, and 2457 /// L and R are matched to the LHS and RHS of S. 2458 template <typename LHS_t, typename RHS_t, typename Sum_t> 2459 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> 2460 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { 2461 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); 2462 } 2463 2464 template <typename Opnd_t> struct Argument_match { 2465 unsigned OpI; 2466 Opnd_t Val; 2467 2468 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} 2469 2470 template <typename OpTy> bool match(OpTy *V) { 2471 // FIXME: Should likely be switched to use `CallBase`. 2472 if (const auto *CI = dyn_cast<CallInst>(V)) 2473 return Val.match(CI->getArgOperand(OpI)); 2474 return false; 2475 } 2476 }; 2477 2478 /// Match an argument. 2479 template <unsigned OpI, typename Opnd_t> 2480 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { 2481 return Argument_match<Opnd_t>(OpI, Op); 2482 } 2483 2484 /// Intrinsic matchers. 2485 struct IntrinsicID_match { 2486 unsigned ID; 2487 2488 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} 2489 2490 template <typename OpTy> bool match(OpTy *V) { 2491 if (const auto *CI = dyn_cast<CallInst>(V)) 2492 if (const auto *F = CI->getCalledFunction()) 2493 return F->getIntrinsicID() == ID; 2494 return false; 2495 } 2496 }; 2497 2498 /// Intrinsic matches are combinations of ID matchers, and argument 2499 /// matchers. Higher arity matcher are defined recursively in terms of and-ing 2500 /// them with lower arity matchers. Here's some convenient typedefs for up to 2501 /// several arguments, and more can be added as needed 2502 template <typename T0 = void, typename T1 = void, typename T2 = void, 2503 typename T3 = void, typename T4 = void, typename T5 = void, 2504 typename T6 = void, typename T7 = void, typename T8 = void, 2505 typename T9 = void, typename T10 = void> 2506 struct m_Intrinsic_Ty; 2507 template <typename T0> struct m_Intrinsic_Ty<T0> { 2508 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; 2509 }; 2510 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { 2511 using Ty = 2512 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; 2513 }; 2514 template <typename T0, typename T1, typename T2> 2515 struct m_Intrinsic_Ty<T0, T1, T2> { 2516 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, 2517 Argument_match<T2>>; 2518 }; 2519 template <typename T0, typename T1, typename T2, typename T3> 2520 struct m_Intrinsic_Ty<T0, T1, T2, T3> { 2521 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, 2522 Argument_match<T3>>; 2523 }; 2524 2525 template <typename T0, typename T1, typename T2, typename T3, typename T4> 2526 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { 2527 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, 2528 Argument_match<T4>>; 2529 }; 2530 2531 template <typename T0, typename T1, typename T2, typename T3, typename T4, 2532 typename T5> 2533 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { 2534 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, 2535 Argument_match<T5>>; 2536 }; 2537 2538 /// Match intrinsic calls like this: 2539 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) 2540 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { 2541 return IntrinsicID_match(IntrID); 2542 } 2543 2544 /// Matches MaskedLoad Intrinsic. 2545 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 2546 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 2547 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 2548 const Opnd3 &Op3) { 2549 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); 2550 } 2551 2552 /// Matches MaskedGather Intrinsic. 2553 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 2554 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 2555 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 2556 const Opnd3 &Op3) { 2557 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); 2558 } 2559 2560 template <Intrinsic::ID IntrID, typename T0> 2561 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { 2562 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); 2563 } 2564 2565 template <Intrinsic::ID IntrID, typename T0, typename T1> 2566 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, 2567 const T1 &Op1) { 2568 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); 2569 } 2570 2571 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> 2572 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty 2573 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { 2574 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); 2575 } 2576 2577 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2578 typename T3> 2579 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty 2580 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { 2581 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); 2582 } 2583 2584 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2585 typename T3, typename T4> 2586 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty 2587 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 2588 const T4 &Op4) { 2589 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), 2590 m_Argument<4>(Op4)); 2591 } 2592 2593 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2594 typename T3, typename T4, typename T5> 2595 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty 2596 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 2597 const T4 &Op4, const T5 &Op5) { 2598 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), 2599 m_Argument<5>(Op5)); 2600 } 2601 2602 // Helper intrinsic matching specializations. 2603 template <typename Opnd0> 2604 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { 2605 return m_Intrinsic<Intrinsic::bitreverse>(Op0); 2606 } 2607 2608 template <typename Opnd0> 2609 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { 2610 return m_Intrinsic<Intrinsic::bswap>(Op0); 2611 } 2612 2613 template <typename Opnd0> 2614 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { 2615 return m_Intrinsic<Intrinsic::fabs>(Op0); 2616 } 2617 2618 template <typename Opnd0> 2619 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { 2620 return m_Intrinsic<Intrinsic::canonicalize>(Op0); 2621 } 2622 2623 template <typename Opnd0, typename Opnd1> 2624 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, 2625 const Opnd1 &Op1) { 2626 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); 2627 } 2628 2629 template <typename Opnd0, typename Opnd1> 2630 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, 2631 const Opnd1 &Op1) { 2632 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); 2633 } 2634 2635 template <typename Opnd0, typename Opnd1, typename Opnd2> 2636 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 2637 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 2638 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); 2639 } 2640 2641 template <typename Opnd0, typename Opnd1, typename Opnd2> 2642 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 2643 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 2644 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); 2645 } 2646 2647 template <typename Opnd0> 2648 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { 2649 return m_Intrinsic<Intrinsic::sqrt>(Op0); 2650 } 2651 2652 template <typename Opnd0, typename Opnd1> 2653 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, 2654 const Opnd1 &Op1) { 2655 return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); 2656 } 2657 2658 template <typename Opnd0> 2659 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { 2660 return m_Intrinsic<Intrinsic::vector_reverse>(Op0); 2661 } 2662 2663 //===----------------------------------------------------------------------===// 2664 // Matchers for two-operands operators with the operators in either order 2665 // 2666 2667 /// Matches a BinaryOperator with LHS and RHS in either order. 2668 template <typename LHS, typename RHS> 2669 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { 2670 return AnyBinaryOp_match<LHS, RHS, true>(L, R); 2671 } 2672 2673 /// Matches an ICmp with a predicate over LHS and RHS in either order. 2674 /// Swaps the predicate if operands are commuted. 2675 template <typename LHS, typename RHS> 2676 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> 2677 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 2678 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, 2679 R); 2680 } 2681 2682 template <typename LHS, typename RHS> 2683 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> 2684 m_c_ICmp(const LHS &L, const RHS &R) { 2685 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(L, R); 2686 } 2687 2688 /// Matches a specific opcode with LHS and RHS in either order. 2689 template <typename LHS, typename RHS> 2690 inline SpecificBinaryOp_match<LHS, RHS, true> 2691 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { 2692 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); 2693 } 2694 2695 /// Matches a Add with LHS and RHS in either order. 2696 template <typename LHS, typename RHS> 2697 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, 2698 const RHS &R) { 2699 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); 2700 } 2701 2702 /// Matches a Mul with LHS and RHS in either order. 2703 template <typename LHS, typename RHS> 2704 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, 2705 const RHS &R) { 2706 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); 2707 } 2708 2709 /// Matches an And with LHS and RHS in either order. 2710 template <typename LHS, typename RHS> 2711 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, 2712 const RHS &R) { 2713 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); 2714 } 2715 2716 /// Matches an Or with LHS and RHS in either order. 2717 template <typename LHS, typename RHS> 2718 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, 2719 const RHS &R) { 2720 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); 2721 } 2722 2723 /// Matches an Xor with LHS and RHS in either order. 2724 template <typename LHS, typename RHS> 2725 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, 2726 const RHS &R) { 2727 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); 2728 } 2729 2730 /// Matches a 'Neg' as 'sub 0, V'. 2731 template <typename ValTy> 2732 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> 2733 m_Neg(const ValTy &V) { 2734 return m_Sub(m_ZeroInt(), V); 2735 } 2736 2737 /// Matches a 'Neg' as 'sub nsw 0, V'. 2738 template <typename ValTy> 2739 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, 2740 Instruction::Sub, 2741 OverflowingBinaryOperator::NoSignedWrap> 2742 m_NSWNeg(const ValTy &V) { 2743 return m_NSWSub(m_ZeroInt(), V); 2744 } 2745 2746 /// Matches an SMin with LHS and RHS in either order. 2747 template <typename LHS, typename RHS> 2748 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> 2749 m_c_SMin(const LHS &L, const RHS &R) { 2750 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); 2751 } 2752 /// Matches an SMax with LHS and RHS in either order. 2753 template <typename LHS, typename RHS> 2754 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> 2755 m_c_SMax(const LHS &L, const RHS &R) { 2756 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); 2757 } 2758 /// Matches a UMin with LHS and RHS in either order. 2759 template <typename LHS, typename RHS> 2760 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> 2761 m_c_UMin(const LHS &L, const RHS &R) { 2762 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); 2763 } 2764 /// Matches a UMax with LHS and RHS in either order. 2765 template <typename LHS, typename RHS> 2766 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> 2767 m_c_UMax(const LHS &L, const RHS &R) { 2768 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); 2769 } 2770 2771 template <typename LHS, typename RHS> 2772 inline match_combine_or< 2773 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, 2774 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, 2775 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, 2776 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> 2777 m_c_MaxOrMin(const LHS &L, const RHS &R) { 2778 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), 2779 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); 2780 } 2781 2782 template <Intrinsic::ID IntrID, typename T0, typename T1> 2783 inline match_combine_or<typename m_Intrinsic_Ty<T0, T1>::Ty, 2784 typename m_Intrinsic_Ty<T1, T0>::Ty> 2785 m_c_Intrinsic(const T0 &Op0, const T1 &Op1) { 2786 return m_CombineOr(m_Intrinsic<IntrID>(Op0, Op1), 2787 m_Intrinsic<IntrID>(Op1, Op0)); 2788 } 2789 2790 /// Matches FAdd with LHS and RHS in either order. 2791 template <typename LHS, typename RHS> 2792 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> 2793 m_c_FAdd(const LHS &L, const RHS &R) { 2794 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); 2795 } 2796 2797 /// Matches FMul with LHS and RHS in either order. 2798 template <typename LHS, typename RHS> 2799 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> 2800 m_c_FMul(const LHS &L, const RHS &R) { 2801 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); 2802 } 2803 2804 template <typename Opnd_t> struct Signum_match { 2805 Opnd_t Val; 2806 Signum_match(const Opnd_t &V) : Val(V) {} 2807 2808 template <typename OpTy> bool match(OpTy *V) { 2809 unsigned TypeSize = V->getType()->getScalarSizeInBits(); 2810 if (TypeSize == 0) 2811 return false; 2812 2813 unsigned ShiftWidth = TypeSize - 1; 2814 Value *OpL = nullptr, *OpR = nullptr; 2815 2816 // This is the representation of signum we match: 2817 // 2818 // signum(x) == (x >> 63) | (-x >>u 63) 2819 // 2820 // An i1 value is its own signum, so it's correct to match 2821 // 2822 // signum(x) == (x >> 0) | (-x >>u 0) 2823 // 2824 // for i1 values. 2825 2826 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); 2827 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); 2828 auto Signum = m_Or(LHS, RHS); 2829 2830 return Signum.match(V) && OpL == OpR && Val.match(OpL); 2831 } 2832 }; 2833 2834 /// Matches a signum pattern. 2835 /// 2836 /// signum(x) = 2837 /// x > 0 -> 1 2838 /// x == 0 -> 0 2839 /// x < 0 -> -1 2840 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { 2841 return Signum_match<Val_t>(V); 2842 } 2843 2844 template <int Ind, typename Opnd_t> struct ExtractValue_match { 2845 Opnd_t Val; 2846 ExtractValue_match(const Opnd_t &V) : Val(V) {} 2847 2848 template <typename OpTy> bool match(OpTy *V) { 2849 if (auto *I = dyn_cast<ExtractValueInst>(V)) { 2850 // If Ind is -1, don't inspect indices 2851 if (Ind != -1 && 2852 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) 2853 return false; 2854 return Val.match(I->getAggregateOperand()); 2855 } 2856 return false; 2857 } 2858 }; 2859 2860 /// Match a single index ExtractValue instruction. 2861 /// For example m_ExtractValue<1>(...) 2862 template <int Ind, typename Val_t> 2863 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { 2864 return ExtractValue_match<Ind, Val_t>(V); 2865 } 2866 2867 /// Match an ExtractValue instruction with any index. 2868 /// For example m_ExtractValue(...) 2869 template <typename Val_t> 2870 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { 2871 return ExtractValue_match<-1, Val_t>(V); 2872 } 2873 2874 /// Matcher for a single index InsertValue instruction. 2875 template <int Ind, typename T0, typename T1> struct InsertValue_match { 2876 T0 Op0; 2877 T1 Op1; 2878 2879 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} 2880 2881 template <typename OpTy> bool match(OpTy *V) { 2882 if (auto *I = dyn_cast<InsertValueInst>(V)) { 2883 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && 2884 I->getNumIndices() == 1 && Ind == I->getIndices()[0]; 2885 } 2886 return false; 2887 } 2888 }; 2889 2890 /// Matches a single index InsertValue instruction. 2891 template <int Ind, typename Val_t, typename Elt_t> 2892 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, 2893 const Elt_t &Elt) { 2894 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); 2895 } 2896 2897 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or 2898 /// the constant expression 2899 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` 2900 /// under the right conditions determined by DataLayout. 2901 struct VScaleVal_match { 2902 template <typename ITy> bool match(ITy *V) { 2903 if (m_Intrinsic<Intrinsic::vscale>().match(V)) 2904 return true; 2905 2906 Value *Ptr; 2907 if (m_PtrToInt(m_Value(Ptr)).match(V)) { 2908 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2909 auto *DerefTy = 2910 dyn_cast<ScalableVectorType>(GEP->getSourceElementType()); 2911 if (GEP->getNumIndices() == 1 && DerefTy && 2912 DerefTy->getElementType()->isIntegerTy(8) && 2913 m_Zero().match(GEP->getPointerOperand()) && 2914 m_SpecificInt(1).match(GEP->idx_begin()->get())) 2915 return true; 2916 } 2917 } 2918 2919 return false; 2920 } 2921 }; 2922 2923 inline VScaleVal_match m_VScale() { 2924 return VScaleVal_match(); 2925 } 2926 2927 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> 2928 struct LogicalOp_match { 2929 LHS L; 2930 RHS R; 2931 2932 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} 2933 2934 template <typename T> bool match(T *V) { 2935 auto *I = dyn_cast<Instruction>(V); 2936 if (!I || !I->getType()->isIntOrIntVectorTy(1)) 2937 return false; 2938 2939 if (I->getOpcode() == Opcode) { 2940 auto *Op0 = I->getOperand(0); 2941 auto *Op1 = I->getOperand(1); 2942 return (L.match(Op0) && R.match(Op1)) || 2943 (Commutable && L.match(Op1) && R.match(Op0)); 2944 } 2945 2946 if (auto *Select = dyn_cast<SelectInst>(I)) { 2947 auto *Cond = Select->getCondition(); 2948 auto *TVal = Select->getTrueValue(); 2949 auto *FVal = Select->getFalseValue(); 2950 2951 // Don't match a scalar select of bool vectors. 2952 // Transforms expect a single type for operands if this matches. 2953 if (Cond->getType() != Select->getType()) 2954 return false; 2955 2956 if (Opcode == Instruction::And) { 2957 auto *C = dyn_cast<Constant>(FVal); 2958 if (C && C->isNullValue()) 2959 return (L.match(Cond) && R.match(TVal)) || 2960 (Commutable && L.match(TVal) && R.match(Cond)); 2961 } else { 2962 assert(Opcode == Instruction::Or); 2963 auto *C = dyn_cast<Constant>(TVal); 2964 if (C && C->isOneValue()) 2965 return (L.match(Cond) && R.match(FVal)) || 2966 (Commutable && L.match(FVal) && R.match(Cond)); 2967 } 2968 } 2969 2970 return false; 2971 } 2972 }; 2973 2974 /// Matches L && R either in the form of L & R or L ? R : false. 2975 /// Note that the latter form is poison-blocking. 2976 template <typename LHS, typename RHS> 2977 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, 2978 const RHS &R) { 2979 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); 2980 } 2981 2982 /// Matches L && R where L and R are arbitrary values. 2983 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } 2984 2985 /// Matches L && R with LHS and RHS in either order. 2986 template <typename LHS, typename RHS> 2987 inline LogicalOp_match<LHS, RHS, Instruction::And, true> 2988 m_c_LogicalAnd(const LHS &L, const RHS &R) { 2989 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); 2990 } 2991 2992 /// Matches L || R either in the form of L | R or L ? true : R. 2993 /// Note that the latter form is poison-blocking. 2994 template <typename LHS, typename RHS> 2995 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, 2996 const RHS &R) { 2997 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); 2998 } 2999 3000 /// Matches L || R where L and R are arbitrary values. 3001 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } 3002 3003 /// Matches L || R with LHS and RHS in either order. 3004 template <typename LHS, typename RHS> 3005 inline LogicalOp_match<LHS, RHS, Instruction::Or, true> 3006 m_c_LogicalOr(const LHS &L, const RHS &R) { 3007 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); 3008 } 3009 3010 /// Matches either L && R or L || R, 3011 /// either one being in the either binary or logical form. 3012 /// Note that the latter form is poison-blocking. 3013 template <typename LHS, typename RHS, bool Commutable = false> 3014 inline auto m_LogicalOp(const LHS &L, const RHS &R) { 3015 return m_CombineOr( 3016 LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), 3017 LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); 3018 } 3019 3020 /// Matches either L && R or L || R where L and R are arbitrary values. 3021 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); } 3022 3023 /// Matches either L && R or L || R with LHS and RHS in either order. 3024 template <typename LHS, typename RHS> 3025 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { 3026 return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); 3027 } 3028 3029 } // end namespace PatternMatch 3030 } // end namespace llvm 3031 3032 #endif // LLVM_IR_PATTERNMATCH_H 3033