1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides a simple and efficient mechanism for performing general 10 // tree-based pattern matches on the LLVM IR. The power of these routines is 11 // that it allows you to write concise patterns that are expressive and easy to 12 // understand. The other major advantage of this is that it allows you to 13 // trivially capture/bind elements in the pattern to variables. For example, 14 // you can do something like this: 15 // 16 // Value *Exp = ... 17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) 18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), 19 // m_And(m_Value(Y), m_ConstantInt(C2))))) { 20 // ... Pattern is matched and variables are bound ... 21 // } 22 // 23 // This is primarily useful to things like the instruction combiner, but can 24 // also be useful for static analysis tools or code generators. 25 // 26 //===----------------------------------------------------------------------===// 27 28 #ifndef LLVM_IR_PATTERNMATCH_H 29 #define LLVM_IR_PATTERNMATCH_H 30 31 #include "llvm/ADT/APFloat.h" 32 #include "llvm/ADT/APInt.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/Support/Casting.h" 44 #include <cstdint> 45 46 namespace llvm { 47 namespace PatternMatch { 48 49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { 50 return const_cast<Pattern &>(P).match(V); 51 } 52 53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { 54 return const_cast<Pattern &>(P).match(Mask); 55 } 56 57 template <typename SubPattern_t> struct OneUse_match { 58 SubPattern_t SubPattern; 59 60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} 61 62 template <typename OpTy> bool match(OpTy *V) { 63 return V->hasOneUse() && SubPattern.match(V); 64 } 65 }; 66 67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { 68 return SubPattern; 69 } 70 71 template <typename Class> struct class_match { 72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } 73 }; 74 75 /// Match an arbitrary value and ignore it. 76 inline class_match<Value> m_Value() { return class_match<Value>(); } 77 78 /// Match an arbitrary unary operation and ignore it. 79 inline class_match<UnaryOperator> m_UnOp() { 80 return class_match<UnaryOperator>(); 81 } 82 83 /// Match an arbitrary binary operation and ignore it. 84 inline class_match<BinaryOperator> m_BinOp() { 85 return class_match<BinaryOperator>(); 86 } 87 88 /// Matches any compare instruction and ignore it. 89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } 90 91 struct undef_match { 92 static bool check(const Value *V) { 93 if (isa<UndefValue>(V)) 94 return true; 95 96 const auto *CA = dyn_cast<ConstantAggregate>(V); 97 if (!CA) 98 return false; 99 100 SmallPtrSet<const ConstantAggregate *, 8> Seen; 101 SmallVector<const ConstantAggregate *, 8> Worklist; 102 103 // Either UndefValue, PoisonValue, or an aggregate that only contains 104 // these is accepted by matcher. 105 // CheckValue returns false if CA cannot satisfy this constraint. 106 auto CheckValue = [&](const ConstantAggregate *CA) { 107 for (const Value *Op : CA->operand_values()) { 108 if (isa<UndefValue>(Op)) 109 continue; 110 111 const auto *CA = dyn_cast<ConstantAggregate>(Op); 112 if (!CA) 113 return false; 114 if (Seen.insert(CA).second) 115 Worklist.emplace_back(CA); 116 } 117 118 return true; 119 }; 120 121 if (!CheckValue(CA)) 122 return false; 123 124 while (!Worklist.empty()) { 125 if (!CheckValue(Worklist.pop_back_val())) 126 return false; 127 } 128 return true; 129 } 130 template <typename ITy> bool match(ITy *V) { return check(V); } 131 }; 132 133 /// Match an arbitrary undef constant. This matches poison as well. 134 /// If this is an aggregate and contains a non-aggregate element that is 135 /// neither undef nor poison, the aggregate is not matched. 136 inline auto m_Undef() { return undef_match(); } 137 138 /// Match an arbitrary poison constant. 139 inline class_match<PoisonValue> m_Poison() { 140 return class_match<PoisonValue>(); 141 } 142 143 /// Match an arbitrary Constant and ignore it. 144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); } 145 146 /// Match an arbitrary ConstantInt and ignore it. 147 inline class_match<ConstantInt> m_ConstantInt() { 148 return class_match<ConstantInt>(); 149 } 150 151 /// Match an arbitrary ConstantFP and ignore it. 152 inline class_match<ConstantFP> m_ConstantFP() { 153 return class_match<ConstantFP>(); 154 } 155 156 struct constantexpr_match { 157 template <typename ITy> bool match(ITy *V) { 158 auto *C = dyn_cast<Constant>(V); 159 return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); 160 } 161 }; 162 163 /// Match a constant expression or a constant that contains a constant 164 /// expression. 165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } 166 167 /// Match an arbitrary basic block value and ignore it. 168 inline class_match<BasicBlock> m_BasicBlock() { 169 return class_match<BasicBlock>(); 170 } 171 172 /// Inverting matcher 173 template <typename Ty> struct match_unless { 174 Ty M; 175 176 match_unless(const Ty &Matcher) : M(Matcher) {} 177 178 template <typename ITy> bool match(ITy *V) { return !M.match(V); } 179 }; 180 181 /// Match if the inner matcher does *NOT* match. 182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { 183 return match_unless<Ty>(M); 184 } 185 186 /// Matching combinators 187 template <typename LTy, typename RTy> struct match_combine_or { 188 LTy L; 189 RTy R; 190 191 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 192 193 template <typename ITy> bool match(ITy *V) { 194 if (L.match(V)) 195 return true; 196 if (R.match(V)) 197 return true; 198 return false; 199 } 200 }; 201 202 template <typename LTy, typename RTy> struct match_combine_and { 203 LTy L; 204 RTy R; 205 206 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} 207 208 template <typename ITy> bool match(ITy *V) { 209 if (L.match(V)) 210 if (R.match(V)) 211 return true; 212 return false; 213 } 214 }; 215 216 /// Combine two pattern matchers matching L || R 217 template <typename LTy, typename RTy> 218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { 219 return match_combine_or<LTy, RTy>(L, R); 220 } 221 222 /// Combine two pattern matchers matching L && R 223 template <typename LTy, typename RTy> 224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { 225 return match_combine_and<LTy, RTy>(L, R); 226 } 227 228 struct apint_match { 229 const APInt *&Res; 230 bool AllowUndef; 231 232 apint_match(const APInt *&Res, bool AllowUndef) 233 : Res(Res), AllowUndef(AllowUndef) {} 234 235 template <typename ITy> bool match(ITy *V) { 236 if (auto *CI = dyn_cast<ConstantInt>(V)) { 237 Res = &CI->getValue(); 238 return true; 239 } 240 if (V->getType()->isVectorTy()) 241 if (const auto *C = dyn_cast<Constant>(V)) 242 if (auto *CI = 243 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) { 244 Res = &CI->getValue(); 245 return true; 246 } 247 return false; 248 } 249 }; 250 // Either constexpr if or renaming ConstantFP::getValueAPF to 251 // ConstantFP::getValue is needed to do it via single template 252 // function for both apint/apfloat. 253 struct apfloat_match { 254 const APFloat *&Res; 255 bool AllowUndef; 256 257 apfloat_match(const APFloat *&Res, bool AllowUndef) 258 : Res(Res), AllowUndef(AllowUndef) {} 259 260 template <typename ITy> bool match(ITy *V) { 261 if (auto *CI = dyn_cast<ConstantFP>(V)) { 262 Res = &CI->getValueAPF(); 263 return true; 264 } 265 if (V->getType()->isVectorTy()) 266 if (const auto *C = dyn_cast<Constant>(V)) 267 if (auto *CI = 268 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) { 269 Res = &CI->getValueAPF(); 270 return true; 271 } 272 return false; 273 } 274 }; 275 276 /// Match a ConstantInt or splatted ConstantVector, binding the 277 /// specified pointer to the contained APInt. 278 inline apint_match m_APInt(const APInt *&Res) { 279 // Forbid undefs by default to maintain previous behavior. 280 return apint_match(Res, /* AllowUndef */ false); 281 } 282 283 /// Match APInt while allowing undefs in splat vector constants. 284 inline apint_match m_APIntAllowUndef(const APInt *&Res) { 285 return apint_match(Res, /* AllowUndef */ true); 286 } 287 288 /// Match APInt while forbidding undefs in splat vector constants. 289 inline apint_match m_APIntForbidUndef(const APInt *&Res) { 290 return apint_match(Res, /* AllowUndef */ false); 291 } 292 293 /// Match a ConstantFP or splatted ConstantVector, binding the 294 /// specified pointer to the contained APFloat. 295 inline apfloat_match m_APFloat(const APFloat *&Res) { 296 // Forbid undefs by default to maintain previous behavior. 297 return apfloat_match(Res, /* AllowUndef */ false); 298 } 299 300 /// Match APFloat while allowing undefs in splat vector constants. 301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { 302 return apfloat_match(Res, /* AllowUndef */ true); 303 } 304 305 /// Match APFloat while forbidding undefs in splat vector constants. 306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { 307 return apfloat_match(Res, /* AllowUndef */ false); 308 } 309 310 template <int64_t Val> struct constantint_match { 311 template <typename ITy> bool match(ITy *V) { 312 if (const auto *CI = dyn_cast<ConstantInt>(V)) { 313 const APInt &CIV = CI->getValue(); 314 if (Val >= 0) 315 return CIV == static_cast<uint64_t>(Val); 316 // If Val is negative, and CI is shorter than it, truncate to the right 317 // number of bits. If it is larger, then we have to sign extend. Just 318 // compare their negated values. 319 return -CIV == -Val; 320 } 321 return false; 322 } 323 }; 324 325 /// Match a ConstantInt with a specific value. 326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { 327 return constantint_match<Val>(); 328 } 329 330 /// This helper class is used to match constant scalars, vector splats, 331 /// and fixed width vectors that satisfy a specified predicate. 332 /// For fixed width vector constants, undefined elements are ignored. 333 template <typename Predicate, typename ConstantVal> 334 struct cstval_pred_ty : public Predicate { 335 template <typename ITy> bool match(ITy *V) { 336 if (const auto *CV = dyn_cast<ConstantVal>(V)) 337 return this->isValue(CV->getValue()); 338 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { 339 if (const auto *C = dyn_cast<Constant>(V)) { 340 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) 341 return this->isValue(CV->getValue()); 342 343 // Number of elements of a scalable vector unknown at compile time 344 auto *FVTy = dyn_cast<FixedVectorType>(VTy); 345 if (!FVTy) 346 return false; 347 348 // Non-splat vector constant: check each element for a match. 349 unsigned NumElts = FVTy->getNumElements(); 350 assert(NumElts != 0 && "Constant vector with no elements?"); 351 bool HasNonUndefElements = false; 352 for (unsigned i = 0; i != NumElts; ++i) { 353 Constant *Elt = C->getAggregateElement(i); 354 if (!Elt) 355 return false; 356 if (isa<UndefValue>(Elt)) 357 continue; 358 auto *CV = dyn_cast<ConstantVal>(Elt); 359 if (!CV || !this->isValue(CV->getValue())) 360 return false; 361 HasNonUndefElements = true; 362 } 363 return HasNonUndefElements; 364 } 365 } 366 return false; 367 } 368 }; 369 370 /// specialization of cstval_pred_ty for ConstantInt 371 template <typename Predicate> 372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; 373 374 /// specialization of cstval_pred_ty for ConstantFP 375 template <typename Predicate> 376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; 377 378 /// This helper class is used to match scalar and vector constants that 379 /// satisfy a specified predicate, and bind them to an APInt. 380 template <typename Predicate> struct api_pred_ty : public Predicate { 381 const APInt *&Res; 382 383 api_pred_ty(const APInt *&R) : Res(R) {} 384 385 template <typename ITy> bool match(ITy *V) { 386 if (const auto *CI = dyn_cast<ConstantInt>(V)) 387 if (this->isValue(CI->getValue())) { 388 Res = &CI->getValue(); 389 return true; 390 } 391 if (V->getType()->isVectorTy()) 392 if (const auto *C = dyn_cast<Constant>(V)) 393 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 394 if (this->isValue(CI->getValue())) { 395 Res = &CI->getValue(); 396 return true; 397 } 398 399 return false; 400 } 401 }; 402 403 /// This helper class is used to match scalar and vector constants that 404 /// satisfy a specified predicate, and bind them to an APFloat. 405 /// Undefs are allowed in splat vector constants. 406 template <typename Predicate> struct apf_pred_ty : public Predicate { 407 const APFloat *&Res; 408 409 apf_pred_ty(const APFloat *&R) : Res(R) {} 410 411 template <typename ITy> bool match(ITy *V) { 412 if (const auto *CI = dyn_cast<ConstantFP>(V)) 413 if (this->isValue(CI->getValue())) { 414 Res = &CI->getValue(); 415 return true; 416 } 417 if (V->getType()->isVectorTy()) 418 if (const auto *C = dyn_cast<Constant>(V)) 419 if (auto *CI = dyn_cast_or_null<ConstantFP>( 420 C->getSplatValue(/* AllowUndef */ true))) 421 if (this->isValue(CI->getValue())) { 422 Res = &CI->getValue(); 423 return true; 424 } 425 426 return false; 427 } 428 }; 429 430 /////////////////////////////////////////////////////////////////////////////// 431 // 432 // Encapsulate constant value queries for use in templated predicate matchers. 433 // This allows checking if constants match using compound predicates and works 434 // with vector constants, possibly with relaxed constraints. For example, ignore 435 // undef values. 436 // 437 /////////////////////////////////////////////////////////////////////////////// 438 439 struct is_any_apint { 440 bool isValue(const APInt &C) { return true; } 441 }; 442 /// Match an integer or vector with any integral constant. 443 /// For vectors, this includes constants with undefined elements. 444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { 445 return cst_pred_ty<is_any_apint>(); 446 } 447 448 struct is_all_ones { 449 bool isValue(const APInt &C) { return C.isAllOnes(); } 450 }; 451 /// Match an integer or vector with all bits set. 452 /// For vectors, this includes constants with undefined elements. 453 inline cst_pred_ty<is_all_ones> m_AllOnes() { 454 return cst_pred_ty<is_all_ones>(); 455 } 456 457 struct is_maxsignedvalue { 458 bool isValue(const APInt &C) { return C.isMaxSignedValue(); } 459 }; 460 /// Match an integer or vector with values having all bits except for the high 461 /// bit set (0x7f...). 462 /// For vectors, this includes constants with undefined elements. 463 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { 464 return cst_pred_ty<is_maxsignedvalue>(); 465 } 466 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { 467 return V; 468 } 469 470 struct is_negative { 471 bool isValue(const APInt &C) { return C.isNegative(); } 472 }; 473 /// Match an integer or vector of negative values. 474 /// For vectors, this includes constants with undefined elements. 475 inline cst_pred_ty<is_negative> m_Negative() { 476 return cst_pred_ty<is_negative>(); 477 } 478 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } 479 480 struct is_nonnegative { 481 bool isValue(const APInt &C) { return C.isNonNegative(); } 482 }; 483 /// Match an integer or vector of non-negative values. 484 /// For vectors, this includes constants with undefined elements. 485 inline cst_pred_ty<is_nonnegative> m_NonNegative() { 486 return cst_pred_ty<is_nonnegative>(); 487 } 488 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } 489 490 struct is_strictlypositive { 491 bool isValue(const APInt &C) { return C.isStrictlyPositive(); } 492 }; 493 /// Match an integer or vector of strictly positive values. 494 /// For vectors, this includes constants with undefined elements. 495 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { 496 return cst_pred_ty<is_strictlypositive>(); 497 } 498 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { 499 return V; 500 } 501 502 struct is_nonpositive { 503 bool isValue(const APInt &C) { return C.isNonPositive(); } 504 }; 505 /// Match an integer or vector of non-positive values. 506 /// For vectors, this includes constants with undefined elements. 507 inline cst_pred_ty<is_nonpositive> m_NonPositive() { 508 return cst_pred_ty<is_nonpositive>(); 509 } 510 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } 511 512 struct is_one { 513 bool isValue(const APInt &C) { return C.isOne(); } 514 }; 515 /// Match an integer 1 or a vector with all elements equal to 1. 516 /// For vectors, this includes constants with undefined elements. 517 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } 518 519 struct is_zero_int { 520 bool isValue(const APInt &C) { return C.isZero(); } 521 }; 522 /// Match an integer 0 or a vector with all elements equal to 0. 523 /// For vectors, this includes constants with undefined elements. 524 inline cst_pred_ty<is_zero_int> m_ZeroInt() { 525 return cst_pred_ty<is_zero_int>(); 526 } 527 528 struct is_zero { 529 template <typename ITy> bool match(ITy *V) { 530 auto *C = dyn_cast<Constant>(V); 531 // FIXME: this should be able to do something for scalable vectors 532 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); 533 } 534 }; 535 /// Match any null constant or a vector with all elements equal to 0. 536 /// For vectors, this includes constants with undefined elements. 537 inline is_zero m_Zero() { return is_zero(); } 538 539 struct is_power2 { 540 bool isValue(const APInt &C) { return C.isPowerOf2(); } 541 }; 542 /// Match an integer or vector power-of-2. 543 /// For vectors, this includes constants with undefined elements. 544 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } 545 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } 546 547 struct is_negated_power2 { 548 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } 549 }; 550 /// Match a integer or vector negated power-of-2. 551 /// For vectors, this includes constants with undefined elements. 552 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { 553 return cst_pred_ty<is_negated_power2>(); 554 } 555 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { 556 return V; 557 } 558 559 struct is_power2_or_zero { 560 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } 561 }; 562 /// Match an integer or vector of 0 or power-of-2 values. 563 /// For vectors, this includes constants with undefined elements. 564 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { 565 return cst_pred_ty<is_power2_or_zero>(); 566 } 567 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { 568 return V; 569 } 570 571 struct is_sign_mask { 572 bool isValue(const APInt &C) { return C.isSignMask(); } 573 }; 574 /// Match an integer or vector with only the sign bit(s) set. 575 /// For vectors, this includes constants with undefined elements. 576 inline cst_pred_ty<is_sign_mask> m_SignMask() { 577 return cst_pred_ty<is_sign_mask>(); 578 } 579 580 struct is_lowbit_mask { 581 bool isValue(const APInt &C) { return C.isMask(); } 582 }; 583 /// Match an integer or vector with only the low bit(s) set. 584 /// For vectors, this includes constants with undefined elements. 585 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { 586 return cst_pred_ty<is_lowbit_mask>(); 587 } 588 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } 589 590 struct icmp_pred_with_threshold { 591 ICmpInst::Predicate Pred; 592 const APInt *Thr; 593 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } 594 }; 595 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) 596 /// to Threshold. For vectors, this includes constants with undefined elements. 597 inline cst_pred_ty<icmp_pred_with_threshold> 598 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { 599 cst_pred_ty<icmp_pred_with_threshold> P; 600 P.Pred = Predicate; 601 P.Thr = &Threshold; 602 return P; 603 } 604 605 struct is_nan { 606 bool isValue(const APFloat &C) { return C.isNaN(); } 607 }; 608 /// Match an arbitrary NaN constant. This includes quiet and signalling nans. 609 /// For vectors, this includes constants with undefined elements. 610 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } 611 612 struct is_nonnan { 613 bool isValue(const APFloat &C) { return !C.isNaN(); } 614 }; 615 /// Match a non-NaN FP constant. 616 /// For vectors, this includes constants with undefined elements. 617 inline cstfp_pred_ty<is_nonnan> m_NonNaN() { 618 return cstfp_pred_ty<is_nonnan>(); 619 } 620 621 struct is_inf { 622 bool isValue(const APFloat &C) { return C.isInfinity(); } 623 }; 624 /// Match a positive or negative infinity FP constant. 625 /// For vectors, this includes constants with undefined elements. 626 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } 627 628 struct is_noninf { 629 bool isValue(const APFloat &C) { return !C.isInfinity(); } 630 }; 631 /// Match a non-infinity FP constant, i.e. finite or NaN. 632 /// For vectors, this includes constants with undefined elements. 633 inline cstfp_pred_ty<is_noninf> m_NonInf() { 634 return cstfp_pred_ty<is_noninf>(); 635 } 636 637 struct is_finite { 638 bool isValue(const APFloat &C) { return C.isFinite(); } 639 }; 640 /// Match a finite FP constant, i.e. not infinity or NaN. 641 /// For vectors, this includes constants with undefined elements. 642 inline cstfp_pred_ty<is_finite> m_Finite() { 643 return cstfp_pred_ty<is_finite>(); 644 } 645 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } 646 647 struct is_finitenonzero { 648 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } 649 }; 650 /// Match a finite non-zero FP constant. 651 /// For vectors, this includes constants with undefined elements. 652 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { 653 return cstfp_pred_ty<is_finitenonzero>(); 654 } 655 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { 656 return V; 657 } 658 659 struct is_any_zero_fp { 660 bool isValue(const APFloat &C) { return C.isZero(); } 661 }; 662 /// Match a floating-point negative zero or positive zero. 663 /// For vectors, this includes constants with undefined elements. 664 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { 665 return cstfp_pred_ty<is_any_zero_fp>(); 666 } 667 668 struct is_pos_zero_fp { 669 bool isValue(const APFloat &C) { return C.isPosZero(); } 670 }; 671 /// Match a floating-point positive zero. 672 /// For vectors, this includes constants with undefined elements. 673 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { 674 return cstfp_pred_ty<is_pos_zero_fp>(); 675 } 676 677 struct is_neg_zero_fp { 678 bool isValue(const APFloat &C) { return C.isNegZero(); } 679 }; 680 /// Match a floating-point negative zero. 681 /// For vectors, this includes constants with undefined elements. 682 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { 683 return cstfp_pred_ty<is_neg_zero_fp>(); 684 } 685 686 struct is_non_zero_fp { 687 bool isValue(const APFloat &C) { return C.isNonZero(); } 688 }; 689 /// Match a floating-point non-zero. 690 /// For vectors, this includes constants with undefined elements. 691 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { 692 return cstfp_pred_ty<is_non_zero_fp>(); 693 } 694 695 /////////////////////////////////////////////////////////////////////////////// 696 697 template <typename Class> struct bind_ty { 698 Class *&VR; 699 700 bind_ty(Class *&V) : VR(V) {} 701 702 template <typename ITy> bool match(ITy *V) { 703 if (auto *CV = dyn_cast<Class>(V)) { 704 VR = CV; 705 return true; 706 } 707 return false; 708 } 709 }; 710 711 /// Match a value, capturing it if we match. 712 inline bind_ty<Value> m_Value(Value *&V) { return V; } 713 inline bind_ty<const Value> m_Value(const Value *&V) { return V; } 714 715 /// Match an instruction, capturing it if we match. 716 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } 717 /// Match a unary operator, capturing it if we match. 718 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } 719 /// Match a binary operator, capturing it if we match. 720 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } 721 /// Match a with overflow intrinsic, capturing it if we match. 722 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { 723 return I; 724 } 725 inline bind_ty<const WithOverflowInst> 726 m_WithOverflowInst(const WithOverflowInst *&I) { 727 return I; 728 } 729 730 /// Match a Constant, capturing the value if we match. 731 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } 732 733 /// Match a ConstantInt, capturing the value if we match. 734 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } 735 736 /// Match a ConstantFP, capturing the value if we match. 737 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } 738 739 /// Match a ConstantExpr, capturing the value if we match. 740 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } 741 742 /// Match a basic block value, capturing it if we match. 743 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } 744 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { 745 return V; 746 } 747 748 /// Match an arbitrary immediate Constant and ignore it. 749 inline match_combine_and<class_match<Constant>, 750 match_unless<constantexpr_match>> 751 m_ImmConstant() { 752 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); 753 } 754 755 /// Match an immediate Constant, capturing the value if we match. 756 inline match_combine_and<bind_ty<Constant>, 757 match_unless<constantexpr_match>> 758 m_ImmConstant(Constant *&C) { 759 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); 760 } 761 762 /// Match a specified Value*. 763 struct specificval_ty { 764 const Value *Val; 765 766 specificval_ty(const Value *V) : Val(V) {} 767 768 template <typename ITy> bool match(ITy *V) { return V == Val; } 769 }; 770 771 /// Match if we have a specific specified value. 772 inline specificval_ty m_Specific(const Value *V) { return V; } 773 774 /// Stores a reference to the Value *, not the Value * itself, 775 /// thus can be used in commutative matchers. 776 template <typename Class> struct deferredval_ty { 777 Class *const &Val; 778 779 deferredval_ty(Class *const &V) : Val(V) {} 780 781 template <typename ITy> bool match(ITy *const V) { return V == Val; } 782 }; 783 784 /// Like m_Specific(), but works if the specific value to match is determined 785 /// as part of the same match() expression. For example: 786 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will 787 /// bind X before the pattern match starts. 788 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against 789 /// whichever value m_Value(X) populated. 790 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } 791 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { 792 return V; 793 } 794 795 /// Match a specified floating point value or vector of all elements of 796 /// that value. 797 struct specific_fpval { 798 double Val; 799 800 specific_fpval(double V) : Val(V) {} 801 802 template <typename ITy> bool match(ITy *V) { 803 if (const auto *CFP = dyn_cast<ConstantFP>(V)) 804 return CFP->isExactlyValue(Val); 805 if (V->getType()->isVectorTy()) 806 if (const auto *C = dyn_cast<Constant>(V)) 807 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) 808 return CFP->isExactlyValue(Val); 809 return false; 810 } 811 }; 812 813 /// Match a specific floating point value or vector with all elements 814 /// equal to the value. 815 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } 816 817 /// Match a float 1.0 or vector with all elements equal to 1.0. 818 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } 819 820 struct bind_const_intval_ty { 821 uint64_t &VR; 822 823 bind_const_intval_ty(uint64_t &V) : VR(V) {} 824 825 template <typename ITy> bool match(ITy *V) { 826 if (const auto *CV = dyn_cast<ConstantInt>(V)) 827 if (CV->getValue().ule(UINT64_MAX)) { 828 VR = CV->getZExtValue(); 829 return true; 830 } 831 return false; 832 } 833 }; 834 835 /// Match a specified integer value or vector of all elements of that 836 /// value. 837 template <bool AllowUndefs> struct specific_intval { 838 APInt Val; 839 840 specific_intval(APInt V) : Val(std::move(V)) {} 841 842 template <typename ITy> bool match(ITy *V) { 843 const auto *CI = dyn_cast<ConstantInt>(V); 844 if (!CI && V->getType()->isVectorTy()) 845 if (const auto *C = dyn_cast<Constant>(V)) 846 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); 847 848 return CI && APInt::isSameValue(CI->getValue(), Val); 849 } 850 }; 851 852 /// Match a specific integer value or vector with all elements equal to 853 /// the value. 854 inline specific_intval<false> m_SpecificInt(APInt V) { 855 return specific_intval<false>(std::move(V)); 856 } 857 858 inline specific_intval<false> m_SpecificInt(uint64_t V) { 859 return m_SpecificInt(APInt(64, V)); 860 } 861 862 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { 863 return specific_intval<true>(std::move(V)); 864 } 865 866 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { 867 return m_SpecificIntAllowUndef(APInt(64, V)); 868 } 869 870 /// Match a ConstantInt and bind to its value. This does not match 871 /// ConstantInts wider than 64-bits. 872 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } 873 874 /// Match a specified basic block value. 875 struct specific_bbval { 876 BasicBlock *Val; 877 878 specific_bbval(BasicBlock *Val) : Val(Val) {} 879 880 template <typename ITy> bool match(ITy *V) { 881 const auto *BB = dyn_cast<BasicBlock>(V); 882 return BB && BB == Val; 883 } 884 }; 885 886 /// Match a specific basic block value. 887 inline specific_bbval m_SpecificBB(BasicBlock *BB) { 888 return specific_bbval(BB); 889 } 890 891 /// A commutative-friendly version of m_Specific(). 892 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { 893 return BB; 894 } 895 inline deferredval_ty<const BasicBlock> 896 m_Deferred(const BasicBlock *const &BB) { 897 return BB; 898 } 899 900 //===----------------------------------------------------------------------===// 901 // Matcher for any binary operator. 902 // 903 template <typename LHS_t, typename RHS_t, bool Commutable = false> 904 struct AnyBinaryOp_match { 905 LHS_t L; 906 RHS_t R; 907 908 // The evaluation order is always stable, regardless of Commutability. 909 // The LHS is always matched first. 910 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 911 912 template <typename OpTy> bool match(OpTy *V) { 913 if (auto *I = dyn_cast<BinaryOperator>(V)) 914 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 915 (Commutable && L.match(I->getOperand(1)) && 916 R.match(I->getOperand(0))); 917 return false; 918 } 919 }; 920 921 template <typename LHS, typename RHS> 922 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { 923 return AnyBinaryOp_match<LHS, RHS>(L, R); 924 } 925 926 //===----------------------------------------------------------------------===// 927 // Matcher for any unary operator. 928 // TODO fuse unary, binary matcher into n-ary matcher 929 // 930 template <typename OP_t> struct AnyUnaryOp_match { 931 OP_t X; 932 933 AnyUnaryOp_match(const OP_t &X) : X(X) {} 934 935 template <typename OpTy> bool match(OpTy *V) { 936 if (auto *I = dyn_cast<UnaryOperator>(V)) 937 return X.match(I->getOperand(0)); 938 return false; 939 } 940 }; 941 942 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { 943 return AnyUnaryOp_match<OP_t>(X); 944 } 945 946 //===----------------------------------------------------------------------===// 947 // Matchers for specific binary operators. 948 // 949 950 template <typename LHS_t, typename RHS_t, unsigned Opcode, 951 bool Commutable = false> 952 struct BinaryOp_match { 953 LHS_t L; 954 RHS_t R; 955 956 // The evaluation order is always stable, regardless of Commutability. 957 // The LHS is always matched first. 958 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 959 960 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { 961 if (V->getValueID() == Value::InstructionVal + Opc) { 962 auto *I = cast<BinaryOperator>(V); 963 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || 964 (Commutable && L.match(I->getOperand(1)) && 965 R.match(I->getOperand(0))); 966 } 967 if (auto *CE = dyn_cast<ConstantExpr>(V)) 968 return CE->getOpcode() == Opc && 969 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || 970 (Commutable && L.match(CE->getOperand(1)) && 971 R.match(CE->getOperand(0)))); 972 return false; 973 } 974 975 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } 976 }; 977 978 template <typename LHS, typename RHS> 979 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, 980 const RHS &R) { 981 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); 982 } 983 984 template <typename LHS, typename RHS> 985 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, 986 const RHS &R) { 987 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); 988 } 989 990 template <typename LHS, typename RHS> 991 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, 992 const RHS &R) { 993 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); 994 } 995 996 template <typename LHS, typename RHS> 997 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, 998 const RHS &R) { 999 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); 1000 } 1001 1002 template <typename Op_t> struct FNeg_match { 1003 Op_t X; 1004 1005 FNeg_match(const Op_t &Op) : X(Op) {} 1006 template <typename OpTy> bool match(OpTy *V) { 1007 auto *FPMO = dyn_cast<FPMathOperator>(V); 1008 if (!FPMO) 1009 return false; 1010 1011 if (FPMO->getOpcode() == Instruction::FNeg) 1012 return X.match(FPMO->getOperand(0)); 1013 1014 if (FPMO->getOpcode() == Instruction::FSub) { 1015 if (FPMO->hasNoSignedZeros()) { 1016 // With 'nsz', any zero goes. 1017 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) 1018 return false; 1019 } else { 1020 // Without 'nsz', we need fsub -0.0, X exactly. 1021 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) 1022 return false; 1023 } 1024 1025 return X.match(FPMO->getOperand(1)); 1026 } 1027 1028 return false; 1029 } 1030 }; 1031 1032 /// Match 'fneg X' as 'fsub -0.0, X'. 1033 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { 1034 return FNeg_match<OpTy>(X); 1035 } 1036 1037 /// Match 'fneg X' as 'fsub +-0.0, X'. 1038 template <typename RHS> 1039 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> 1040 m_FNegNSZ(const RHS &X) { 1041 return m_FSub(m_AnyZeroFP(), X); 1042 } 1043 1044 template <typename LHS, typename RHS> 1045 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, 1046 const RHS &R) { 1047 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); 1048 } 1049 1050 template <typename LHS, typename RHS> 1051 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, 1052 const RHS &R) { 1053 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); 1054 } 1055 1056 template <typename LHS, typename RHS> 1057 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, 1058 const RHS &R) { 1059 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); 1060 } 1061 1062 template <typename LHS, typename RHS> 1063 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, 1064 const RHS &R) { 1065 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); 1066 } 1067 1068 template <typename LHS, typename RHS> 1069 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, 1070 const RHS &R) { 1071 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); 1072 } 1073 1074 template <typename LHS, typename RHS> 1075 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, 1076 const RHS &R) { 1077 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); 1078 } 1079 1080 template <typename LHS, typename RHS> 1081 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, 1082 const RHS &R) { 1083 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); 1084 } 1085 1086 template <typename LHS, typename RHS> 1087 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, 1088 const RHS &R) { 1089 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); 1090 } 1091 1092 template <typename LHS, typename RHS> 1093 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, 1094 const RHS &R) { 1095 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); 1096 } 1097 1098 template <typename LHS, typename RHS> 1099 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, 1100 const RHS &R) { 1101 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); 1102 } 1103 1104 template <typename LHS, typename RHS> 1105 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, 1106 const RHS &R) { 1107 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); 1108 } 1109 1110 template <typename LHS, typename RHS> 1111 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, 1112 const RHS &R) { 1113 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); 1114 } 1115 1116 template <typename LHS, typename RHS> 1117 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, 1118 const RHS &R) { 1119 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); 1120 } 1121 1122 template <typename LHS, typename RHS> 1123 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, 1124 const RHS &R) { 1125 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); 1126 } 1127 1128 template <typename LHS_t, typename RHS_t, unsigned Opcode, 1129 unsigned WrapFlags = 0> 1130 struct OverflowingBinaryOp_match { 1131 LHS_t L; 1132 RHS_t R; 1133 1134 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) 1135 : L(LHS), R(RHS) {} 1136 1137 template <typename OpTy> bool match(OpTy *V) { 1138 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { 1139 if (Op->getOpcode() != Opcode) 1140 return false; 1141 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && 1142 !Op->hasNoUnsignedWrap()) 1143 return false; 1144 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && 1145 !Op->hasNoSignedWrap()) 1146 return false; 1147 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); 1148 } 1149 return false; 1150 } 1151 }; 1152 1153 template <typename LHS, typename RHS> 1154 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1155 OverflowingBinaryOperator::NoSignedWrap> 1156 m_NSWAdd(const LHS &L, const RHS &R) { 1157 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1158 OverflowingBinaryOperator::NoSignedWrap>(L, 1159 R); 1160 } 1161 template <typename LHS, typename RHS> 1162 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1163 OverflowingBinaryOperator::NoSignedWrap> 1164 m_NSWSub(const LHS &L, const RHS &R) { 1165 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1166 OverflowingBinaryOperator::NoSignedWrap>(L, 1167 R); 1168 } 1169 template <typename LHS, typename RHS> 1170 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1171 OverflowingBinaryOperator::NoSignedWrap> 1172 m_NSWMul(const LHS &L, const RHS &R) { 1173 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1174 OverflowingBinaryOperator::NoSignedWrap>(L, 1175 R); 1176 } 1177 template <typename LHS, typename RHS> 1178 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1179 OverflowingBinaryOperator::NoSignedWrap> 1180 m_NSWShl(const LHS &L, const RHS &R) { 1181 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1182 OverflowingBinaryOperator::NoSignedWrap>(L, 1183 R); 1184 } 1185 1186 template <typename LHS, typename RHS> 1187 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1188 OverflowingBinaryOperator::NoUnsignedWrap> 1189 m_NUWAdd(const LHS &L, const RHS &R) { 1190 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, 1191 OverflowingBinaryOperator::NoUnsignedWrap>( 1192 L, R); 1193 } 1194 template <typename LHS, typename RHS> 1195 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1196 OverflowingBinaryOperator::NoUnsignedWrap> 1197 m_NUWSub(const LHS &L, const RHS &R) { 1198 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, 1199 OverflowingBinaryOperator::NoUnsignedWrap>( 1200 L, R); 1201 } 1202 template <typename LHS, typename RHS> 1203 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1204 OverflowingBinaryOperator::NoUnsignedWrap> 1205 m_NUWMul(const LHS &L, const RHS &R) { 1206 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, 1207 OverflowingBinaryOperator::NoUnsignedWrap>( 1208 L, R); 1209 } 1210 template <typename LHS, typename RHS> 1211 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1212 OverflowingBinaryOperator::NoUnsignedWrap> 1213 m_NUWShl(const LHS &L, const RHS &R) { 1214 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, 1215 OverflowingBinaryOperator::NoUnsignedWrap>( 1216 L, R); 1217 } 1218 1219 template <typename LHS_t, typename RHS_t, bool Commutable = false> 1220 struct SpecificBinaryOp_match 1221 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { 1222 unsigned Opcode; 1223 1224 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) 1225 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} 1226 1227 template <typename OpTy> bool match(OpTy *V) { 1228 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); 1229 } 1230 }; 1231 1232 /// Matches a specific opcode. 1233 template <typename LHS, typename RHS> 1234 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, 1235 const RHS &R) { 1236 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // Class that matches a group of binary opcodes. 1241 // 1242 template <typename LHS_t, typename RHS_t, typename Predicate> 1243 struct BinOpPred_match : Predicate { 1244 LHS_t L; 1245 RHS_t R; 1246 1247 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1248 1249 template <typename OpTy> bool match(OpTy *V) { 1250 if (auto *I = dyn_cast<Instruction>(V)) 1251 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && 1252 R.match(I->getOperand(1)); 1253 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1254 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && 1255 R.match(CE->getOperand(1)); 1256 return false; 1257 } 1258 }; 1259 1260 struct is_shift_op { 1261 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } 1262 }; 1263 1264 struct is_right_shift_op { 1265 bool isOpType(unsigned Opcode) { 1266 return Opcode == Instruction::LShr || Opcode == Instruction::AShr; 1267 } 1268 }; 1269 1270 struct is_logical_shift_op { 1271 bool isOpType(unsigned Opcode) { 1272 return Opcode == Instruction::LShr || Opcode == Instruction::Shl; 1273 } 1274 }; 1275 1276 struct is_bitwiselogic_op { 1277 bool isOpType(unsigned Opcode) { 1278 return Instruction::isBitwiseLogicOp(Opcode); 1279 } 1280 }; 1281 1282 struct is_idiv_op { 1283 bool isOpType(unsigned Opcode) { 1284 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; 1285 } 1286 }; 1287 1288 struct is_irem_op { 1289 bool isOpType(unsigned Opcode) { 1290 return Opcode == Instruction::SRem || Opcode == Instruction::URem; 1291 } 1292 }; 1293 1294 /// Matches shift operations. 1295 template <typename LHS, typename RHS> 1296 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, 1297 const RHS &R) { 1298 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); 1299 } 1300 1301 /// Matches logical shift operations. 1302 template <typename LHS, typename RHS> 1303 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, 1304 const RHS &R) { 1305 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); 1306 } 1307 1308 /// Matches logical shift operations. 1309 template <typename LHS, typename RHS> 1310 inline BinOpPred_match<LHS, RHS, is_logical_shift_op> 1311 m_LogicalShift(const LHS &L, const RHS &R) { 1312 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); 1313 } 1314 1315 /// Matches bitwise logic operations. 1316 template <typename LHS, typename RHS> 1317 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> 1318 m_BitwiseLogic(const LHS &L, const RHS &R) { 1319 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); 1320 } 1321 1322 /// Matches integer division operations. 1323 template <typename LHS, typename RHS> 1324 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, 1325 const RHS &R) { 1326 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); 1327 } 1328 1329 /// Matches integer remainder operations. 1330 template <typename LHS, typename RHS> 1331 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, 1332 const RHS &R) { 1333 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); 1334 } 1335 1336 //===----------------------------------------------------------------------===// 1337 // Class that matches exact binary ops. 1338 // 1339 template <typename SubPattern_t> struct Exact_match { 1340 SubPattern_t SubPattern; 1341 1342 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} 1343 1344 template <typename OpTy> bool match(OpTy *V) { 1345 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) 1346 return PEO->isExact() && SubPattern.match(V); 1347 return false; 1348 } 1349 }; 1350 1351 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { 1352 return SubPattern; 1353 } 1354 1355 //===----------------------------------------------------------------------===// 1356 // Matchers for CmpInst classes 1357 // 1358 1359 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, 1360 bool Commutable = false> 1361 struct CmpClass_match { 1362 PredicateTy &Predicate; 1363 LHS_t L; 1364 RHS_t R; 1365 1366 // The evaluation order is always stable, regardless of Commutability. 1367 // The LHS is always matched first. 1368 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) 1369 : Predicate(Pred), L(LHS), R(RHS) {} 1370 1371 template <typename OpTy> bool match(OpTy *V) { 1372 if (auto *I = dyn_cast<Class>(V)) { 1373 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { 1374 Predicate = I->getPredicate(); 1375 return true; 1376 } else if (Commutable && L.match(I->getOperand(1)) && 1377 R.match(I->getOperand(0))) { 1378 Predicate = I->getSwappedPredicate(); 1379 return true; 1380 } 1381 } 1382 return false; 1383 } 1384 }; 1385 1386 template <typename LHS, typename RHS> 1387 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> 1388 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1389 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); 1390 } 1391 1392 template <typename LHS, typename RHS> 1393 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 1394 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1395 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); 1396 } 1397 1398 template <typename LHS, typename RHS> 1399 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 1400 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 1401 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); 1402 } 1403 1404 //===----------------------------------------------------------------------===// 1405 // Matchers for instructions with a given opcode and number of operands. 1406 // 1407 1408 /// Matches instructions with Opcode and three operands. 1409 template <typename T0, unsigned Opcode> struct OneOps_match { 1410 T0 Op1; 1411 1412 OneOps_match(const T0 &Op1) : Op1(Op1) {} 1413 1414 template <typename OpTy> bool match(OpTy *V) { 1415 if (V->getValueID() == Value::InstructionVal + Opcode) { 1416 auto *I = cast<Instruction>(V); 1417 return Op1.match(I->getOperand(0)); 1418 } 1419 return false; 1420 } 1421 }; 1422 1423 /// Matches instructions with Opcode and three operands. 1424 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { 1425 T0 Op1; 1426 T1 Op2; 1427 1428 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} 1429 1430 template <typename OpTy> bool match(OpTy *V) { 1431 if (V->getValueID() == Value::InstructionVal + Opcode) { 1432 auto *I = cast<Instruction>(V); 1433 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); 1434 } 1435 return false; 1436 } 1437 }; 1438 1439 /// Matches instructions with Opcode and three operands. 1440 template <typename T0, typename T1, typename T2, unsigned Opcode> 1441 struct ThreeOps_match { 1442 T0 Op1; 1443 T1 Op2; 1444 T2 Op3; 1445 1446 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) 1447 : Op1(Op1), Op2(Op2), Op3(Op3) {} 1448 1449 template <typename OpTy> bool match(OpTy *V) { 1450 if (V->getValueID() == Value::InstructionVal + Opcode) { 1451 auto *I = cast<Instruction>(V); 1452 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 1453 Op3.match(I->getOperand(2)); 1454 } 1455 return false; 1456 } 1457 }; 1458 1459 /// Matches SelectInst. 1460 template <typename Cond, typename LHS, typename RHS> 1461 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> 1462 m_Select(const Cond &C, const LHS &L, const RHS &R) { 1463 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); 1464 } 1465 1466 /// This matches a select of two constants, e.g.: 1467 /// m_SelectCst<-1, 0>(m_Value(V)) 1468 template <int64_t L, int64_t R, typename Cond> 1469 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, 1470 Instruction::Select> 1471 m_SelectCst(const Cond &C) { 1472 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); 1473 } 1474 1475 /// Matches FreezeInst. 1476 template <typename OpTy> 1477 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { 1478 return OneOps_match<OpTy, Instruction::Freeze>(Op); 1479 } 1480 1481 /// Matches InsertElementInst. 1482 template <typename Val_t, typename Elt_t, typename Idx_t> 1483 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> 1484 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { 1485 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( 1486 Val, Elt, Idx); 1487 } 1488 1489 /// Matches ExtractElementInst. 1490 template <typename Val_t, typename Idx_t> 1491 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> 1492 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { 1493 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); 1494 } 1495 1496 /// Matches shuffle. 1497 template <typename T0, typename T1, typename T2> struct Shuffle_match { 1498 T0 Op1; 1499 T1 Op2; 1500 T2 Mask; 1501 1502 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) 1503 : Op1(Op1), Op2(Op2), Mask(Mask) {} 1504 1505 template <typename OpTy> bool match(OpTy *V) { 1506 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { 1507 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && 1508 Mask.match(I->getShuffleMask()); 1509 } 1510 return false; 1511 } 1512 }; 1513 1514 struct m_Mask { 1515 ArrayRef<int> &MaskRef; 1516 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 1517 bool match(ArrayRef<int> Mask) { 1518 MaskRef = Mask; 1519 return true; 1520 } 1521 }; 1522 1523 struct m_ZeroMask { 1524 bool match(ArrayRef<int> Mask) { 1525 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); 1526 } 1527 }; 1528 1529 struct m_SpecificMask { 1530 ArrayRef<int> &MaskRef; 1531 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} 1532 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } 1533 }; 1534 1535 struct m_SplatOrUndefMask { 1536 int &SplatIndex; 1537 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} 1538 bool match(ArrayRef<int> Mask) { 1539 auto First = find_if(Mask, [](int Elem) { return Elem != -1; }); 1540 if (First == Mask.end()) 1541 return false; 1542 SplatIndex = *First; 1543 return all_of(Mask, 1544 [First](int Elem) { return Elem == *First || Elem == -1; }); 1545 } 1546 }; 1547 1548 /// Matches ShuffleVectorInst independently of mask value. 1549 template <typename V1_t, typename V2_t> 1550 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> 1551 m_Shuffle(const V1_t &v1, const V2_t &v2) { 1552 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); 1553 } 1554 1555 template <typename V1_t, typename V2_t, typename Mask_t> 1556 inline Shuffle_match<V1_t, V2_t, Mask_t> 1557 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { 1558 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); 1559 } 1560 1561 /// Matches LoadInst. 1562 template <typename OpTy> 1563 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { 1564 return OneOps_match<OpTy, Instruction::Load>(Op); 1565 } 1566 1567 /// Matches StoreInst. 1568 template <typename ValueOpTy, typename PointerOpTy> 1569 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> 1570 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { 1571 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, 1572 PointerOp); 1573 } 1574 1575 //===----------------------------------------------------------------------===// 1576 // Matchers for CastInst classes 1577 // 1578 1579 template <typename Op_t, unsigned Opcode> struct CastClass_match { 1580 Op_t Op; 1581 1582 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} 1583 1584 template <typename OpTy> bool match(OpTy *V) { 1585 if (auto *O = dyn_cast<Operator>(V)) 1586 return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); 1587 return false; 1588 } 1589 }; 1590 1591 /// Matches BitCast. 1592 template <typename OpTy> 1593 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { 1594 return CastClass_match<OpTy, Instruction::BitCast>(Op); 1595 } 1596 1597 /// Matches PtrToInt. 1598 template <typename OpTy> 1599 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { 1600 return CastClass_match<OpTy, Instruction::PtrToInt>(Op); 1601 } 1602 1603 /// Matches IntToPtr. 1604 template <typename OpTy> 1605 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { 1606 return CastClass_match<OpTy, Instruction::IntToPtr>(Op); 1607 } 1608 1609 /// Matches Trunc. 1610 template <typename OpTy> 1611 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { 1612 return CastClass_match<OpTy, Instruction::Trunc>(Op); 1613 } 1614 1615 template <typename OpTy> 1616 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> 1617 m_TruncOrSelf(const OpTy &Op) { 1618 return m_CombineOr(m_Trunc(Op), Op); 1619 } 1620 1621 /// Matches SExt. 1622 template <typename OpTy> 1623 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { 1624 return CastClass_match<OpTy, Instruction::SExt>(Op); 1625 } 1626 1627 /// Matches ZExt. 1628 template <typename OpTy> 1629 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { 1630 return CastClass_match<OpTy, Instruction::ZExt>(Op); 1631 } 1632 1633 template <typename OpTy> 1634 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> 1635 m_ZExtOrSelf(const OpTy &Op) { 1636 return m_CombineOr(m_ZExt(Op), Op); 1637 } 1638 1639 template <typename OpTy> 1640 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> 1641 m_SExtOrSelf(const OpTy &Op) { 1642 return m_CombineOr(m_SExt(Op), Op); 1643 } 1644 1645 template <typename OpTy> 1646 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, 1647 CastClass_match<OpTy, Instruction::SExt>> 1648 m_ZExtOrSExt(const OpTy &Op) { 1649 return m_CombineOr(m_ZExt(Op), m_SExt(Op)); 1650 } 1651 1652 template <typename OpTy> 1653 inline match_combine_or< 1654 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, 1655 CastClass_match<OpTy, Instruction::SExt>>, 1656 OpTy> 1657 m_ZExtOrSExtOrSelf(const OpTy &Op) { 1658 return m_CombineOr(m_ZExtOrSExt(Op), Op); 1659 } 1660 1661 template <typename OpTy> 1662 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { 1663 return CastClass_match<OpTy, Instruction::UIToFP>(Op); 1664 } 1665 1666 template <typename OpTy> 1667 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { 1668 return CastClass_match<OpTy, Instruction::SIToFP>(Op); 1669 } 1670 1671 template <typename OpTy> 1672 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { 1673 return CastClass_match<OpTy, Instruction::FPToUI>(Op); 1674 } 1675 1676 template <typename OpTy> 1677 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { 1678 return CastClass_match<OpTy, Instruction::FPToSI>(Op); 1679 } 1680 1681 template <typename OpTy> 1682 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { 1683 return CastClass_match<OpTy, Instruction::FPTrunc>(Op); 1684 } 1685 1686 template <typename OpTy> 1687 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { 1688 return CastClass_match<OpTy, Instruction::FPExt>(Op); 1689 } 1690 1691 //===----------------------------------------------------------------------===// 1692 // Matchers for control flow. 1693 // 1694 1695 struct br_match { 1696 BasicBlock *&Succ; 1697 1698 br_match(BasicBlock *&Succ) : Succ(Succ) {} 1699 1700 template <typename OpTy> bool match(OpTy *V) { 1701 if (auto *BI = dyn_cast<BranchInst>(V)) 1702 if (BI->isUnconditional()) { 1703 Succ = BI->getSuccessor(0); 1704 return true; 1705 } 1706 return false; 1707 } 1708 }; 1709 1710 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } 1711 1712 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 1713 struct brc_match { 1714 Cond_t Cond; 1715 TrueBlock_t T; 1716 FalseBlock_t F; 1717 1718 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) 1719 : Cond(C), T(t), F(f) {} 1720 1721 template <typename OpTy> bool match(OpTy *V) { 1722 if (auto *BI = dyn_cast<BranchInst>(V)) 1723 if (BI->isConditional() && Cond.match(BI->getCondition())) 1724 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); 1725 return false; 1726 } 1727 }; 1728 1729 template <typename Cond_t> 1730 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> 1731 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { 1732 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( 1733 C, m_BasicBlock(T), m_BasicBlock(F)); 1734 } 1735 1736 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> 1737 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> 1738 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { 1739 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); 1740 } 1741 1742 //===----------------------------------------------------------------------===// 1743 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). 1744 // 1745 1746 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, 1747 bool Commutable = false> 1748 struct MaxMin_match { 1749 using PredType = Pred_t; 1750 LHS_t L; 1751 RHS_t R; 1752 1753 // The evaluation order is always stable, regardless of Commutability. 1754 // The LHS is always matched first. 1755 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 1756 1757 template <typename OpTy> bool match(OpTy *V) { 1758 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 1759 Intrinsic::ID IID = II->getIntrinsicID(); 1760 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || 1761 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || 1762 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || 1763 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { 1764 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); 1765 return (L.match(LHS) && R.match(RHS)) || 1766 (Commutable && L.match(RHS) && R.match(LHS)); 1767 } 1768 } 1769 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". 1770 auto *SI = dyn_cast<SelectInst>(V); 1771 if (!SI) 1772 return false; 1773 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); 1774 if (!Cmp) 1775 return false; 1776 // At this point we have a select conditioned on a comparison. Check that 1777 // it is the values returned by the select that are being compared. 1778 auto *TrueVal = SI->getTrueValue(); 1779 auto *FalseVal = SI->getFalseValue(); 1780 auto *LHS = Cmp->getOperand(0); 1781 auto *RHS = Cmp->getOperand(1); 1782 if ((TrueVal != LHS || FalseVal != RHS) && 1783 (TrueVal != RHS || FalseVal != LHS)) 1784 return false; 1785 typename CmpInst_t::Predicate Pred = 1786 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); 1787 // Does "(x pred y) ? x : y" represent the desired max/min operation? 1788 if (!Pred_t::match(Pred)) 1789 return false; 1790 // It does! Bind the operands. 1791 return (L.match(LHS) && R.match(RHS)) || 1792 (Commutable && L.match(RHS) && R.match(LHS)); 1793 } 1794 }; 1795 1796 /// Helper class for identifying signed max predicates. 1797 struct smax_pred_ty { 1798 static bool match(ICmpInst::Predicate Pred) { 1799 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; 1800 } 1801 }; 1802 1803 /// Helper class for identifying signed min predicates. 1804 struct smin_pred_ty { 1805 static bool match(ICmpInst::Predicate Pred) { 1806 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; 1807 } 1808 }; 1809 1810 /// Helper class for identifying unsigned max predicates. 1811 struct umax_pred_ty { 1812 static bool match(ICmpInst::Predicate Pred) { 1813 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; 1814 } 1815 }; 1816 1817 /// Helper class for identifying unsigned min predicates. 1818 struct umin_pred_ty { 1819 static bool match(ICmpInst::Predicate Pred) { 1820 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; 1821 } 1822 }; 1823 1824 /// Helper class for identifying ordered max predicates. 1825 struct ofmax_pred_ty { 1826 static bool match(FCmpInst::Predicate Pred) { 1827 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; 1828 } 1829 }; 1830 1831 /// Helper class for identifying ordered min predicates. 1832 struct ofmin_pred_ty { 1833 static bool match(FCmpInst::Predicate Pred) { 1834 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; 1835 } 1836 }; 1837 1838 /// Helper class for identifying unordered max predicates. 1839 struct ufmax_pred_ty { 1840 static bool match(FCmpInst::Predicate Pred) { 1841 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; 1842 } 1843 }; 1844 1845 /// Helper class for identifying unordered min predicates. 1846 struct ufmin_pred_ty { 1847 static bool match(FCmpInst::Predicate Pred) { 1848 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; 1849 } 1850 }; 1851 1852 template <typename LHS, typename RHS> 1853 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, 1854 const RHS &R) { 1855 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); 1856 } 1857 1858 template <typename LHS, typename RHS> 1859 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, 1860 const RHS &R) { 1861 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); 1862 } 1863 1864 template <typename LHS, typename RHS> 1865 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, 1866 const RHS &R) { 1867 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); 1868 } 1869 1870 template <typename LHS, typename RHS> 1871 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, 1872 const RHS &R) { 1873 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); 1874 } 1875 1876 template <typename LHS, typename RHS> 1877 inline match_combine_or< 1878 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, 1879 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, 1880 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, 1881 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> 1882 m_MaxOrMin(const LHS &L, const RHS &R) { 1883 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), 1884 m_CombineOr(m_UMax(L, R), m_UMin(L, R))); 1885 } 1886 1887 /// Match an 'ordered' floating point maximum function. 1888 /// Floating point has one special value 'NaN'. Therefore, there is no total 1889 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1890 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 1891 /// semantics. In the presence of 'NaN' we have to preserve the original 1892 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. 1893 /// 1894 /// max(L, R) iff L and R are not NaN 1895 /// m_OrdFMax(L, R) = R iff L or R are NaN 1896 template <typename LHS, typename RHS> 1897 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, 1898 const RHS &R) { 1899 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); 1900 } 1901 1902 /// Match an 'ordered' floating point minimum function. 1903 /// Floating point has one special value 'NaN'. Therefore, there is no total 1904 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1905 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1906 /// semantics. In the presence of 'NaN' we have to preserve the original 1907 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. 1908 /// 1909 /// min(L, R) iff L and R are not NaN 1910 /// m_OrdFMin(L, R) = R iff L or R are NaN 1911 template <typename LHS, typename RHS> 1912 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, 1913 const RHS &R) { 1914 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); 1915 } 1916 1917 /// Match an 'unordered' floating point maximum function. 1918 /// Floating point has one special value 'NaN'. Therefore, there is no total 1919 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1920 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 1921 /// semantics. In the presence of 'NaN' we have to preserve the original 1922 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. 1923 /// 1924 /// max(L, R) iff L and R are not NaN 1925 /// m_UnordFMax(L, R) = L iff L or R are NaN 1926 template <typename LHS, typename RHS> 1927 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> 1928 m_UnordFMax(const LHS &L, const RHS &R) { 1929 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); 1930 } 1931 1932 /// Match an 'unordered' floating point minimum function. 1933 /// Floating point has one special value 'NaN'. Therefore, there is no total 1934 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1935 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1936 /// semantics. In the presence of 'NaN' we have to preserve the original 1937 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. 1938 /// 1939 /// min(L, R) iff L and R are not NaN 1940 /// m_UnordFMin(L, R) = L iff L or R are NaN 1941 template <typename LHS, typename RHS> 1942 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> 1943 m_UnordFMin(const LHS &L, const RHS &R) { 1944 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); 1945 } 1946 1947 //===----------------------------------------------------------------------===// 1948 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b 1949 // Note that S might be matched to other instructions than AddInst. 1950 // 1951 1952 template <typename LHS_t, typename RHS_t, typename Sum_t> 1953 struct UAddWithOverflow_match { 1954 LHS_t L; 1955 RHS_t R; 1956 Sum_t S; 1957 1958 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) 1959 : L(L), R(R), S(S) {} 1960 1961 template <typename OpTy> bool match(OpTy *V) { 1962 Value *ICmpLHS, *ICmpRHS; 1963 ICmpInst::Predicate Pred; 1964 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) 1965 return false; 1966 1967 Value *AddLHS, *AddRHS; 1968 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); 1969 1970 // (a + b) u< a, (a + b) u< b 1971 if (Pred == ICmpInst::ICMP_ULT) 1972 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) 1973 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 1974 1975 // a >u (a + b), b >u (a + b) 1976 if (Pred == ICmpInst::ICMP_UGT) 1977 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) 1978 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 1979 1980 Value *Op1; 1981 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); 1982 // (a ^ -1) <u b 1983 if (Pred == ICmpInst::ICMP_ULT) { 1984 if (XorExpr.match(ICmpLHS)) 1985 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); 1986 } 1987 // b > u (a ^ -1) 1988 if (Pred == ICmpInst::ICMP_UGT) { 1989 if (XorExpr.match(ICmpRHS)) 1990 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); 1991 } 1992 1993 // Match special-case for increment-by-1. 1994 if (Pred == ICmpInst::ICMP_EQ) { 1995 // (a + 1) == 0 1996 // (1 + a) == 0 1997 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && 1998 (m_One().match(AddLHS) || m_One().match(AddRHS))) 1999 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); 2000 // 0 == (a + 1) 2001 // 0 == (1 + a) 2002 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && 2003 (m_One().match(AddLHS) || m_One().match(AddRHS))) 2004 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); 2005 } 2006 2007 return false; 2008 } 2009 }; 2010 2011 /// Match an icmp instruction checking for unsigned overflow on addition. 2012 /// 2013 /// S is matched to the addition whose result is being checked for overflow, and 2014 /// L and R are matched to the LHS and RHS of S. 2015 template <typename LHS_t, typename RHS_t, typename Sum_t> 2016 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> 2017 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { 2018 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); 2019 } 2020 2021 template <typename Opnd_t> struct Argument_match { 2022 unsigned OpI; 2023 Opnd_t Val; 2024 2025 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} 2026 2027 template <typename OpTy> bool match(OpTy *V) { 2028 // FIXME: Should likely be switched to use `CallBase`. 2029 if (const auto *CI = dyn_cast<CallInst>(V)) 2030 return Val.match(CI->getArgOperand(OpI)); 2031 return false; 2032 } 2033 }; 2034 2035 /// Match an argument. 2036 template <unsigned OpI, typename Opnd_t> 2037 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { 2038 return Argument_match<Opnd_t>(OpI, Op); 2039 } 2040 2041 /// Intrinsic matchers. 2042 struct IntrinsicID_match { 2043 unsigned ID; 2044 2045 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} 2046 2047 template <typename OpTy> bool match(OpTy *V) { 2048 if (const auto *CI = dyn_cast<CallInst>(V)) 2049 if (const auto *F = CI->getCalledFunction()) 2050 return F->getIntrinsicID() == ID; 2051 return false; 2052 } 2053 }; 2054 2055 /// Intrinsic matches are combinations of ID matchers, and argument 2056 /// matchers. Higher arity matcher are defined recursively in terms of and-ing 2057 /// them with lower arity matchers. Here's some convenient typedefs for up to 2058 /// several arguments, and more can be added as needed 2059 template <typename T0 = void, typename T1 = void, typename T2 = void, 2060 typename T3 = void, typename T4 = void, typename T5 = void, 2061 typename T6 = void, typename T7 = void, typename T8 = void, 2062 typename T9 = void, typename T10 = void> 2063 struct m_Intrinsic_Ty; 2064 template <typename T0> struct m_Intrinsic_Ty<T0> { 2065 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; 2066 }; 2067 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { 2068 using Ty = 2069 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; 2070 }; 2071 template <typename T0, typename T1, typename T2> 2072 struct m_Intrinsic_Ty<T0, T1, T2> { 2073 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, 2074 Argument_match<T2>>; 2075 }; 2076 template <typename T0, typename T1, typename T2, typename T3> 2077 struct m_Intrinsic_Ty<T0, T1, T2, T3> { 2078 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, 2079 Argument_match<T3>>; 2080 }; 2081 2082 template <typename T0, typename T1, typename T2, typename T3, typename T4> 2083 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { 2084 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, 2085 Argument_match<T4>>; 2086 }; 2087 2088 template <typename T0, typename T1, typename T2, typename T3, typename T4, 2089 typename T5> 2090 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { 2091 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, 2092 Argument_match<T5>>; 2093 }; 2094 2095 /// Match intrinsic calls like this: 2096 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) 2097 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { 2098 return IntrinsicID_match(IntrID); 2099 } 2100 2101 /// Matches MaskedLoad Intrinsic. 2102 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 2103 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 2104 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 2105 const Opnd3 &Op3) { 2106 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); 2107 } 2108 2109 /// Matches MaskedGather Intrinsic. 2110 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> 2111 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty 2112 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, 2113 const Opnd3 &Op3) { 2114 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); 2115 } 2116 2117 template <Intrinsic::ID IntrID, typename T0> 2118 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { 2119 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); 2120 } 2121 2122 template <Intrinsic::ID IntrID, typename T0, typename T1> 2123 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, 2124 const T1 &Op1) { 2125 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); 2126 } 2127 2128 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> 2129 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty 2130 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { 2131 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); 2132 } 2133 2134 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2135 typename T3> 2136 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty 2137 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { 2138 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); 2139 } 2140 2141 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2142 typename T3, typename T4> 2143 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty 2144 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 2145 const T4 &Op4) { 2146 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), 2147 m_Argument<4>(Op4)); 2148 } 2149 2150 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, 2151 typename T3, typename T4, typename T5> 2152 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty 2153 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, 2154 const T4 &Op4, const T5 &Op5) { 2155 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), 2156 m_Argument<5>(Op5)); 2157 } 2158 2159 // Helper intrinsic matching specializations. 2160 template <typename Opnd0> 2161 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { 2162 return m_Intrinsic<Intrinsic::bitreverse>(Op0); 2163 } 2164 2165 template <typename Opnd0> 2166 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { 2167 return m_Intrinsic<Intrinsic::bswap>(Op0); 2168 } 2169 2170 template <typename Opnd0> 2171 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { 2172 return m_Intrinsic<Intrinsic::fabs>(Op0); 2173 } 2174 2175 template <typename Opnd0> 2176 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { 2177 return m_Intrinsic<Intrinsic::canonicalize>(Op0); 2178 } 2179 2180 template <typename Opnd0, typename Opnd1> 2181 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, 2182 const Opnd1 &Op1) { 2183 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); 2184 } 2185 2186 template <typename Opnd0, typename Opnd1> 2187 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, 2188 const Opnd1 &Op1) { 2189 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); 2190 } 2191 2192 template <typename Opnd0, typename Opnd1, typename Opnd2> 2193 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 2194 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 2195 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); 2196 } 2197 2198 template <typename Opnd0, typename Opnd1, typename Opnd2> 2199 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty 2200 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { 2201 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); 2202 } 2203 2204 template <typename Opnd0> 2205 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { 2206 return m_Intrinsic<Intrinsic::sqrt>(Op0); 2207 } 2208 2209 //===----------------------------------------------------------------------===// 2210 // Matchers for two-operands operators with the operators in either order 2211 // 2212 2213 /// Matches a BinaryOperator with LHS and RHS in either order. 2214 template <typename LHS, typename RHS> 2215 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { 2216 return AnyBinaryOp_match<LHS, RHS, true>(L, R); 2217 } 2218 2219 /// Matches an ICmp with a predicate over LHS and RHS in either order. 2220 /// Swaps the predicate if operands are commuted. 2221 template <typename LHS, typename RHS> 2222 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> 2223 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 2224 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, 2225 R); 2226 } 2227 2228 /// Matches a specific opcode with LHS and RHS in either order. 2229 template <typename LHS, typename RHS> 2230 inline SpecificBinaryOp_match<LHS, RHS, true> 2231 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { 2232 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); 2233 } 2234 2235 /// Matches a Add with LHS and RHS in either order. 2236 template <typename LHS, typename RHS> 2237 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, 2238 const RHS &R) { 2239 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); 2240 } 2241 2242 /// Matches a Mul with LHS and RHS in either order. 2243 template <typename LHS, typename RHS> 2244 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, 2245 const RHS &R) { 2246 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); 2247 } 2248 2249 /// Matches an And with LHS and RHS in either order. 2250 template <typename LHS, typename RHS> 2251 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, 2252 const RHS &R) { 2253 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); 2254 } 2255 2256 /// Matches an Or with LHS and RHS in either order. 2257 template <typename LHS, typename RHS> 2258 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, 2259 const RHS &R) { 2260 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); 2261 } 2262 2263 /// Matches an Xor with LHS and RHS in either order. 2264 template <typename LHS, typename RHS> 2265 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, 2266 const RHS &R) { 2267 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); 2268 } 2269 2270 /// Matches a 'Neg' as 'sub 0, V'. 2271 template <typename ValTy> 2272 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> 2273 m_Neg(const ValTy &V) { 2274 return m_Sub(m_ZeroInt(), V); 2275 } 2276 2277 /// Matches a 'Neg' as 'sub nsw 0, V'. 2278 template <typename ValTy> 2279 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, 2280 Instruction::Sub, 2281 OverflowingBinaryOperator::NoSignedWrap> 2282 m_NSWNeg(const ValTy &V) { 2283 return m_NSWSub(m_ZeroInt(), V); 2284 } 2285 2286 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. 2287 template <typename ValTy> 2288 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> 2289 m_Not(const ValTy &V) { 2290 return m_c_Xor(V, m_AllOnes()); 2291 } 2292 2293 template <typename ValTy> struct NotForbidUndef_match { 2294 ValTy Val; 2295 NotForbidUndef_match(const ValTy &V) : Val(V) {} 2296 2297 template <typename OpTy> bool match(OpTy *V) { 2298 // We do not use m_c_Xor because that could match an arbitrary APInt that is 2299 // not -1 as C and then fail to match the other operand if it is -1. 2300 // This code should still work even when both operands are constants. 2301 Value *X; 2302 const APInt *C; 2303 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes()) 2304 return Val.match(X); 2305 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes()) 2306 return Val.match(X); 2307 return false; 2308 } 2309 }; 2310 2311 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the 2312 /// constant value must be composed of only -1 scalar elements. 2313 template <typename ValTy> 2314 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) { 2315 return NotForbidUndef_match<ValTy>(V); 2316 } 2317 2318 /// Matches an SMin with LHS and RHS in either order. 2319 template <typename LHS, typename RHS> 2320 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> 2321 m_c_SMin(const LHS &L, const RHS &R) { 2322 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); 2323 } 2324 /// Matches an SMax with LHS and RHS in either order. 2325 template <typename LHS, typename RHS> 2326 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> 2327 m_c_SMax(const LHS &L, const RHS &R) { 2328 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); 2329 } 2330 /// Matches a UMin with LHS and RHS in either order. 2331 template <typename LHS, typename RHS> 2332 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> 2333 m_c_UMin(const LHS &L, const RHS &R) { 2334 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); 2335 } 2336 /// Matches a UMax with LHS and RHS in either order. 2337 template <typename LHS, typename RHS> 2338 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> 2339 m_c_UMax(const LHS &L, const RHS &R) { 2340 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); 2341 } 2342 2343 template <typename LHS, typename RHS> 2344 inline match_combine_or< 2345 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, 2346 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, 2347 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, 2348 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> 2349 m_c_MaxOrMin(const LHS &L, const RHS &R) { 2350 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), 2351 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); 2352 } 2353 2354 /// Matches FAdd with LHS and RHS in either order. 2355 template <typename LHS, typename RHS> 2356 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> 2357 m_c_FAdd(const LHS &L, const RHS &R) { 2358 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); 2359 } 2360 2361 /// Matches FMul with LHS and RHS in either order. 2362 template <typename LHS, typename RHS> 2363 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> 2364 m_c_FMul(const LHS &L, const RHS &R) { 2365 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); 2366 } 2367 2368 template <typename Opnd_t> struct Signum_match { 2369 Opnd_t Val; 2370 Signum_match(const Opnd_t &V) : Val(V) {} 2371 2372 template <typename OpTy> bool match(OpTy *V) { 2373 unsigned TypeSize = V->getType()->getScalarSizeInBits(); 2374 if (TypeSize == 0) 2375 return false; 2376 2377 unsigned ShiftWidth = TypeSize - 1; 2378 Value *OpL = nullptr, *OpR = nullptr; 2379 2380 // This is the representation of signum we match: 2381 // 2382 // signum(x) == (x >> 63) | (-x >>u 63) 2383 // 2384 // An i1 value is its own signum, so it's correct to match 2385 // 2386 // signum(x) == (x >> 0) | (-x >>u 0) 2387 // 2388 // for i1 values. 2389 2390 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); 2391 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); 2392 auto Signum = m_Or(LHS, RHS); 2393 2394 return Signum.match(V) && OpL == OpR && Val.match(OpL); 2395 } 2396 }; 2397 2398 /// Matches a signum pattern. 2399 /// 2400 /// signum(x) = 2401 /// x > 0 -> 1 2402 /// x == 0 -> 0 2403 /// x < 0 -> -1 2404 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { 2405 return Signum_match<Val_t>(V); 2406 } 2407 2408 template <int Ind, typename Opnd_t> struct ExtractValue_match { 2409 Opnd_t Val; 2410 ExtractValue_match(const Opnd_t &V) : Val(V) {} 2411 2412 template <typename OpTy> bool match(OpTy *V) { 2413 if (auto *I = dyn_cast<ExtractValueInst>(V)) { 2414 // If Ind is -1, don't inspect indices 2415 if (Ind != -1 && 2416 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) 2417 return false; 2418 return Val.match(I->getAggregateOperand()); 2419 } 2420 return false; 2421 } 2422 }; 2423 2424 /// Match a single index ExtractValue instruction. 2425 /// For example m_ExtractValue<1>(...) 2426 template <int Ind, typename Val_t> 2427 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { 2428 return ExtractValue_match<Ind, Val_t>(V); 2429 } 2430 2431 /// Match an ExtractValue instruction with any index. 2432 /// For example m_ExtractValue(...) 2433 template <typename Val_t> 2434 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { 2435 return ExtractValue_match<-1, Val_t>(V); 2436 } 2437 2438 /// Matcher for a single index InsertValue instruction. 2439 template <int Ind, typename T0, typename T1> struct InsertValue_match { 2440 T0 Op0; 2441 T1 Op1; 2442 2443 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} 2444 2445 template <typename OpTy> bool match(OpTy *V) { 2446 if (auto *I = dyn_cast<InsertValueInst>(V)) { 2447 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && 2448 I->getNumIndices() == 1 && Ind == I->getIndices()[0]; 2449 } 2450 return false; 2451 } 2452 }; 2453 2454 /// Matches a single index InsertValue instruction. 2455 template <int Ind, typename Val_t, typename Elt_t> 2456 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, 2457 const Elt_t &Elt) { 2458 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); 2459 } 2460 2461 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or 2462 /// the constant expression 2463 /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` 2464 /// under the right conditions determined by DataLayout. 2465 struct VScaleVal_match { 2466 const DataLayout &DL; 2467 VScaleVal_match(const DataLayout &DL) : DL(DL) {} 2468 2469 template <typename ITy> bool match(ITy *V) { 2470 if (m_Intrinsic<Intrinsic::vscale>().match(V)) 2471 return true; 2472 2473 Value *Ptr; 2474 if (m_PtrToInt(m_Value(Ptr)).match(V)) { 2475 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 2476 auto *DerefTy = GEP->getSourceElementType(); 2477 if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) && 2478 m_Zero().match(GEP->getPointerOperand()) && 2479 m_SpecificInt(1).match(GEP->idx_begin()->get()) && 2480 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8) 2481 return true; 2482 } 2483 } 2484 2485 return false; 2486 } 2487 }; 2488 2489 inline VScaleVal_match m_VScale(const DataLayout &DL) { 2490 return VScaleVal_match(DL); 2491 } 2492 2493 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> 2494 struct LogicalOp_match { 2495 LHS L; 2496 RHS R; 2497 2498 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} 2499 2500 template <typename T> bool match(T *V) { 2501 auto *I = dyn_cast<Instruction>(V); 2502 if (!I || !I->getType()->isIntOrIntVectorTy(1)) 2503 return false; 2504 2505 if (I->getOpcode() == Opcode) { 2506 auto *Op0 = I->getOperand(0); 2507 auto *Op1 = I->getOperand(1); 2508 return (L.match(Op0) && R.match(Op1)) || 2509 (Commutable && L.match(Op1) && R.match(Op0)); 2510 } 2511 2512 if (auto *Select = dyn_cast<SelectInst>(I)) { 2513 auto *Cond = Select->getCondition(); 2514 auto *TVal = Select->getTrueValue(); 2515 auto *FVal = Select->getFalseValue(); 2516 if (Opcode == Instruction::And) { 2517 auto *C = dyn_cast<Constant>(FVal); 2518 if (C && C->isNullValue()) 2519 return (L.match(Cond) && R.match(TVal)) || 2520 (Commutable && L.match(TVal) && R.match(Cond)); 2521 } else { 2522 assert(Opcode == Instruction::Or); 2523 auto *C = dyn_cast<Constant>(TVal); 2524 if (C && C->isOneValue()) 2525 return (L.match(Cond) && R.match(FVal)) || 2526 (Commutable && L.match(FVal) && R.match(Cond)); 2527 } 2528 } 2529 2530 return false; 2531 } 2532 }; 2533 2534 /// Matches L && R either in the form of L & R or L ? R : false. 2535 /// Note that the latter form is poison-blocking. 2536 template <typename LHS, typename RHS> 2537 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, 2538 const RHS &R) { 2539 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); 2540 } 2541 2542 /// Matches L && R where L and R are arbitrary values. 2543 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } 2544 2545 /// Matches L && R with LHS and RHS in either order. 2546 template <typename LHS, typename RHS> 2547 inline LogicalOp_match<LHS, RHS, Instruction::And, true> 2548 m_c_LogicalAnd(const LHS &L, const RHS &R) { 2549 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); 2550 } 2551 2552 /// Matches L || R either in the form of L | R or L ? true : R. 2553 /// Note that the latter form is poison-blocking. 2554 template <typename LHS, typename RHS> 2555 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, 2556 const RHS &R) { 2557 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); 2558 } 2559 2560 /// Matches L || R where L and R are arbitrary values. 2561 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } 2562 2563 /// Matches L || R with LHS and RHS in either order. 2564 template <typename LHS, typename RHS> 2565 inline LogicalOp_match<LHS, RHS, Instruction::Or, true> 2566 m_c_LogicalOr(const LHS &L, const RHS &R) { 2567 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); 2568 } 2569 2570 } // end namespace PatternMatch 2571 } // end namespace llvm 2572 2573 #endif // LLVM_IR_PATTERNMATCH_H 2574