xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/PatternMatch.h (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cstdint>
43 
44 namespace llvm {
45 namespace PatternMatch {
46 
47 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48   return const_cast<Pattern &>(P).match(V);
49 }
50 
51 template <typename SubPattern_t> struct OneUse_match {
52   SubPattern_t SubPattern;
53 
54   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55 
56   template <typename OpTy> bool match(OpTy *V) {
57     return V->hasOneUse() && SubPattern.match(V);
58   }
59 };
60 
61 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62   return SubPattern;
63 }
64 
65 template <typename Class> struct class_match {
66   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67 };
68 
69 /// Match an arbitrary value and ignore it.
70 inline class_match<Value> m_Value() { return class_match<Value>(); }
71 
72 /// Match an arbitrary binary operation and ignore it.
73 inline class_match<BinaryOperator> m_BinOp() {
74   return class_match<BinaryOperator>();
75 }
76 
77 /// Matches any compare instruction and ignore it.
78 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
79 
80 /// Match an arbitrary ConstantInt and ignore it.
81 inline class_match<ConstantInt> m_ConstantInt() {
82   return class_match<ConstantInt>();
83 }
84 
85 /// Match an arbitrary undef constant.
86 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
87 
88 /// Match an arbitrary Constant and ignore it.
89 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
90 
91 /// Matching combinators
92 template <typename LTy, typename RTy> struct match_combine_or {
93   LTy L;
94   RTy R;
95 
96   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
97 
98   template <typename ITy> bool match(ITy *V) {
99     if (L.match(V))
100       return true;
101     if (R.match(V))
102       return true;
103     return false;
104   }
105 };
106 
107 template <typename LTy, typename RTy> struct match_combine_and {
108   LTy L;
109   RTy R;
110 
111   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
112 
113   template <typename ITy> bool match(ITy *V) {
114     if (L.match(V))
115       if (R.match(V))
116         return true;
117     return false;
118   }
119 };
120 
121 /// Combine two pattern matchers matching L || R
122 template <typename LTy, typename RTy>
123 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
124   return match_combine_or<LTy, RTy>(L, R);
125 }
126 
127 /// Combine two pattern matchers matching L && R
128 template <typename LTy, typename RTy>
129 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
130   return match_combine_and<LTy, RTy>(L, R);
131 }
132 
133 struct apint_match {
134   const APInt *&Res;
135 
136   apint_match(const APInt *&R) : Res(R) {}
137 
138   template <typename ITy> bool match(ITy *V) {
139     if (auto *CI = dyn_cast<ConstantInt>(V)) {
140       Res = &CI->getValue();
141       return true;
142     }
143     if (V->getType()->isVectorTy())
144       if (const auto *C = dyn_cast<Constant>(V))
145         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
146           Res = &CI->getValue();
147           return true;
148         }
149     return false;
150   }
151 };
152 // Either constexpr if or renaming ConstantFP::getValueAPF to
153 // ConstantFP::getValue is needed to do it via single template
154 // function for both apint/apfloat.
155 struct apfloat_match {
156   const APFloat *&Res;
157   apfloat_match(const APFloat *&R) : Res(R) {}
158   template <typename ITy> bool match(ITy *V) {
159     if (auto *CI = dyn_cast<ConstantFP>(V)) {
160       Res = &CI->getValueAPF();
161       return true;
162     }
163     if (V->getType()->isVectorTy())
164       if (const auto *C = dyn_cast<Constant>(V))
165         if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
166           Res = &CI->getValueAPF();
167           return true;
168         }
169     return false;
170   }
171 };
172 
173 /// Match a ConstantInt or splatted ConstantVector, binding the
174 /// specified pointer to the contained APInt.
175 inline apint_match m_APInt(const APInt *&Res) { return Res; }
176 
177 /// Match a ConstantFP or splatted ConstantVector, binding the
178 /// specified pointer to the contained APFloat.
179 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
180 
181 template <int64_t Val> struct constantint_match {
182   template <typename ITy> bool match(ITy *V) {
183     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
184       const APInt &CIV = CI->getValue();
185       if (Val >= 0)
186         return CIV == static_cast<uint64_t>(Val);
187       // If Val is negative, and CI is shorter than it, truncate to the right
188       // number of bits.  If it is larger, then we have to sign extend.  Just
189       // compare their negated values.
190       return -CIV == -Val;
191     }
192     return false;
193   }
194 };
195 
196 /// Match a ConstantInt with a specific value.
197 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
198   return constantint_match<Val>();
199 }
200 
201 /// This helper class is used to match scalar and vector integer constants that
202 /// satisfy a specified predicate.
203 /// For vector constants, undefined elements are ignored.
204 template <typename Predicate> struct cst_pred_ty : public Predicate {
205   template <typename ITy> bool match(ITy *V) {
206     if (const auto *CI = dyn_cast<ConstantInt>(V))
207       return this->isValue(CI->getValue());
208     if (V->getType()->isVectorTy()) {
209       if (const auto *C = dyn_cast<Constant>(V)) {
210         if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211           return this->isValue(CI->getValue());
212 
213         // Non-splat vector constant: check each element for a match.
214         unsigned NumElts = V->getType()->getVectorNumElements();
215         assert(NumElts != 0 && "Constant vector with no elements?");
216         bool HasNonUndefElements = false;
217         for (unsigned i = 0; i != NumElts; ++i) {
218           Constant *Elt = C->getAggregateElement(i);
219           if (!Elt)
220             return false;
221           if (isa<UndefValue>(Elt))
222             continue;
223           auto *CI = dyn_cast<ConstantInt>(Elt);
224           if (!CI || !this->isValue(CI->getValue()))
225             return false;
226           HasNonUndefElements = true;
227         }
228         return HasNonUndefElements;
229       }
230     }
231     return false;
232   }
233 };
234 
235 /// This helper class is used to match scalar and vector constants that
236 /// satisfy a specified predicate, and bind them to an APInt.
237 template <typename Predicate> struct api_pred_ty : public Predicate {
238   const APInt *&Res;
239 
240   api_pred_ty(const APInt *&R) : Res(R) {}
241 
242   template <typename ITy> bool match(ITy *V) {
243     if (const auto *CI = dyn_cast<ConstantInt>(V))
244       if (this->isValue(CI->getValue())) {
245         Res = &CI->getValue();
246         return true;
247       }
248     if (V->getType()->isVectorTy())
249       if (const auto *C = dyn_cast<Constant>(V))
250         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251           if (this->isValue(CI->getValue())) {
252             Res = &CI->getValue();
253             return true;
254           }
255 
256     return false;
257   }
258 };
259 
260 /// This helper class is used to match scalar and vector floating-point
261 /// constants that satisfy a specified predicate.
262 /// For vector constants, undefined elements are ignored.
263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264   template <typename ITy> bool match(ITy *V) {
265     if (const auto *CF = dyn_cast<ConstantFP>(V))
266       return this->isValue(CF->getValueAPF());
267     if (V->getType()->isVectorTy()) {
268       if (const auto *C = dyn_cast<Constant>(V)) {
269         if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270           return this->isValue(CF->getValueAPF());
271 
272         // Non-splat vector constant: check each element for a match.
273         unsigned NumElts = V->getType()->getVectorNumElements();
274         assert(NumElts != 0 && "Constant vector with no elements?");
275         bool HasNonUndefElements = false;
276         for (unsigned i = 0; i != NumElts; ++i) {
277           Constant *Elt = C->getAggregateElement(i);
278           if (!Elt)
279             return false;
280           if (isa<UndefValue>(Elt))
281             continue;
282           auto *CF = dyn_cast<ConstantFP>(Elt);
283           if (!CF || !this->isValue(CF->getValueAPF()))
284             return false;
285           HasNonUndefElements = true;
286         }
287         return HasNonUndefElements;
288       }
289     }
290     return false;
291   }
292 };
293 
294 ///////////////////////////////////////////////////////////////////////////////
295 //
296 // Encapsulate constant value queries for use in templated predicate matchers.
297 // This allows checking if constants match using compound predicates and works
298 // with vector constants, possibly with relaxed constraints. For example, ignore
299 // undef values.
300 //
301 ///////////////////////////////////////////////////////////////////////////////
302 
303 struct is_all_ones {
304   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
305 };
306 /// Match an integer or vector with all bits set.
307 /// For vectors, this includes constants with undefined elements.
308 inline cst_pred_ty<is_all_ones> m_AllOnes() {
309   return cst_pred_ty<is_all_ones>();
310 }
311 
312 struct is_maxsignedvalue {
313   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
314 };
315 /// Match an integer or vector with values having all bits except for the high
316 /// bit set (0x7f...).
317 /// For vectors, this includes constants with undefined elements.
318 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
319   return cst_pred_ty<is_maxsignedvalue>();
320 }
321 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
322   return V;
323 }
324 
325 struct is_negative {
326   bool isValue(const APInt &C) { return C.isNegative(); }
327 };
328 /// Match an integer or vector of negative values.
329 /// For vectors, this includes constants with undefined elements.
330 inline cst_pred_ty<is_negative> m_Negative() {
331   return cst_pred_ty<is_negative>();
332 }
333 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
334   return V;
335 }
336 
337 struct is_nonnegative {
338   bool isValue(const APInt &C) { return C.isNonNegative(); }
339 };
340 /// Match an integer or vector of nonnegative values.
341 /// For vectors, this includes constants with undefined elements.
342 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
343   return cst_pred_ty<is_nonnegative>();
344 }
345 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
346   return V;
347 }
348 
349 struct is_one {
350   bool isValue(const APInt &C) { return C.isOneValue(); }
351 };
352 /// Match an integer 1 or a vector with all elements equal to 1.
353 /// For vectors, this includes constants with undefined elements.
354 inline cst_pred_ty<is_one> m_One() {
355   return cst_pred_ty<is_one>();
356 }
357 
358 struct is_zero_int {
359   bool isValue(const APInt &C) { return C.isNullValue(); }
360 };
361 /// Match an integer 0 or a vector with all elements equal to 0.
362 /// For vectors, this includes constants with undefined elements.
363 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
364   return cst_pred_ty<is_zero_int>();
365 }
366 
367 struct is_zero {
368   template <typename ITy> bool match(ITy *V) {
369     auto *C = dyn_cast<Constant>(V);
370     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
371   }
372 };
373 /// Match any null constant or a vector with all elements equal to 0.
374 /// For vectors, this includes constants with undefined elements.
375 inline is_zero m_Zero() {
376   return is_zero();
377 }
378 
379 struct is_power2 {
380   bool isValue(const APInt &C) { return C.isPowerOf2(); }
381 };
382 /// Match an integer or vector power-of-2.
383 /// For vectors, this includes constants with undefined elements.
384 inline cst_pred_ty<is_power2> m_Power2() {
385   return cst_pred_ty<is_power2>();
386 }
387 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
388   return V;
389 }
390 
391 struct is_power2_or_zero {
392   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
393 };
394 /// Match an integer or vector of 0 or power-of-2 values.
395 /// For vectors, this includes constants with undefined elements.
396 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
397   return cst_pred_ty<is_power2_or_zero>();
398 }
399 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
400   return V;
401 }
402 
403 struct is_sign_mask {
404   bool isValue(const APInt &C) { return C.isSignMask(); }
405 };
406 /// Match an integer or vector with only the sign bit(s) set.
407 /// For vectors, this includes constants with undefined elements.
408 inline cst_pred_ty<is_sign_mask> m_SignMask() {
409   return cst_pred_ty<is_sign_mask>();
410 }
411 
412 struct is_lowbit_mask {
413   bool isValue(const APInt &C) { return C.isMask(); }
414 };
415 /// Match an integer or vector with only the low bit(s) set.
416 /// For vectors, this includes constants with undefined elements.
417 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
418   return cst_pred_ty<is_lowbit_mask>();
419 }
420 
421 struct icmp_pred_with_threshold {
422   ICmpInst::Predicate Pred;
423   const APInt *Thr;
424   bool isValue(const APInt &C) {
425     switch (Pred) {
426     case ICmpInst::Predicate::ICMP_EQ:
427       return C.eq(*Thr);
428     case ICmpInst::Predicate::ICMP_NE:
429       return C.ne(*Thr);
430     case ICmpInst::Predicate::ICMP_UGT:
431       return C.ugt(*Thr);
432     case ICmpInst::Predicate::ICMP_UGE:
433       return C.uge(*Thr);
434     case ICmpInst::Predicate::ICMP_ULT:
435       return C.ult(*Thr);
436     case ICmpInst::Predicate::ICMP_ULE:
437       return C.ule(*Thr);
438     case ICmpInst::Predicate::ICMP_SGT:
439       return C.sgt(*Thr);
440     case ICmpInst::Predicate::ICMP_SGE:
441       return C.sge(*Thr);
442     case ICmpInst::Predicate::ICMP_SLT:
443       return C.slt(*Thr);
444     case ICmpInst::Predicate::ICMP_SLE:
445       return C.sle(*Thr);
446     default:
447       llvm_unreachable("Unhandled ICmp predicate");
448     }
449   }
450 };
451 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
452 /// to Threshold. For vectors, this includes constants with undefined elements.
453 inline cst_pred_ty<icmp_pred_with_threshold>
454 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
455   cst_pred_ty<icmp_pred_with_threshold> P;
456   P.Pred = Predicate;
457   P.Thr = &Threshold;
458   return P;
459 }
460 
461 struct is_nan {
462   bool isValue(const APFloat &C) { return C.isNaN(); }
463 };
464 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
465 /// For vectors, this includes constants with undefined elements.
466 inline cstfp_pred_ty<is_nan> m_NaN() {
467   return cstfp_pred_ty<is_nan>();
468 }
469 
470 struct is_any_zero_fp {
471   bool isValue(const APFloat &C) { return C.isZero(); }
472 };
473 /// Match a floating-point negative zero or positive zero.
474 /// For vectors, this includes constants with undefined elements.
475 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
476   return cstfp_pred_ty<is_any_zero_fp>();
477 }
478 
479 struct is_pos_zero_fp {
480   bool isValue(const APFloat &C) { return C.isPosZero(); }
481 };
482 /// Match a floating-point positive zero.
483 /// For vectors, this includes constants with undefined elements.
484 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
485   return cstfp_pred_ty<is_pos_zero_fp>();
486 }
487 
488 struct is_neg_zero_fp {
489   bool isValue(const APFloat &C) { return C.isNegZero(); }
490 };
491 /// Match a floating-point negative zero.
492 /// For vectors, this includes constants with undefined elements.
493 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
494   return cstfp_pred_ty<is_neg_zero_fp>();
495 }
496 
497 ///////////////////////////////////////////////////////////////////////////////
498 
499 template <typename Class> struct bind_ty {
500   Class *&VR;
501 
502   bind_ty(Class *&V) : VR(V) {}
503 
504   template <typename ITy> bool match(ITy *V) {
505     if (auto *CV = dyn_cast<Class>(V)) {
506       VR = CV;
507       return true;
508     }
509     return false;
510   }
511 };
512 
513 /// Match a value, capturing it if we match.
514 inline bind_ty<Value> m_Value(Value *&V) { return V; }
515 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
516 
517 /// Match an instruction, capturing it if we match.
518 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
519 /// Match a binary operator, capturing it if we match.
520 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
521 
522 /// Match a ConstantInt, capturing the value if we match.
523 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
524 
525 /// Match a Constant, capturing the value if we match.
526 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
527 
528 /// Match a ConstantFP, capturing the value if we match.
529 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
530 
531 /// Match a specified Value*.
532 struct specificval_ty {
533   const Value *Val;
534 
535   specificval_ty(const Value *V) : Val(V) {}
536 
537   template <typename ITy> bool match(ITy *V) { return V == Val; }
538 };
539 
540 /// Match if we have a specific specified value.
541 inline specificval_ty m_Specific(const Value *V) { return V; }
542 
543 /// Stores a reference to the Value *, not the Value * itself,
544 /// thus can be used in commutative matchers.
545 template <typename Class> struct deferredval_ty {
546   Class *const &Val;
547 
548   deferredval_ty(Class *const &V) : Val(V) {}
549 
550   template <typename ITy> bool match(ITy *const V) { return V == Val; }
551 };
552 
553 /// A commutative-friendly version of m_Specific().
554 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
555 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
556   return V;
557 }
558 
559 /// Match a specified floating point value or vector of all elements of
560 /// that value.
561 struct specific_fpval {
562   double Val;
563 
564   specific_fpval(double V) : Val(V) {}
565 
566   template <typename ITy> bool match(ITy *V) {
567     if (const auto *CFP = dyn_cast<ConstantFP>(V))
568       return CFP->isExactlyValue(Val);
569     if (V->getType()->isVectorTy())
570       if (const auto *C = dyn_cast<Constant>(V))
571         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
572           return CFP->isExactlyValue(Val);
573     return false;
574   }
575 };
576 
577 /// Match a specific floating point value or vector with all elements
578 /// equal to the value.
579 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
580 
581 /// Match a float 1.0 or vector with all elements equal to 1.0.
582 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
583 
584 struct bind_const_intval_ty {
585   uint64_t &VR;
586 
587   bind_const_intval_ty(uint64_t &V) : VR(V) {}
588 
589   template <typename ITy> bool match(ITy *V) {
590     if (const auto *CV = dyn_cast<ConstantInt>(V))
591       if (CV->getValue().ule(UINT64_MAX)) {
592         VR = CV->getZExtValue();
593         return true;
594       }
595     return false;
596   }
597 };
598 
599 /// Match a specified integer value or vector of all elements of that
600 // value.
601 struct specific_intval {
602   uint64_t Val;
603 
604   specific_intval(uint64_t V) : Val(V) {}
605 
606   template <typename ITy> bool match(ITy *V) {
607     const auto *CI = dyn_cast<ConstantInt>(V);
608     if (!CI && V->getType()->isVectorTy())
609       if (const auto *C = dyn_cast<Constant>(V))
610         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
611 
612     return CI && CI->getValue() == Val;
613   }
614 };
615 
616 /// Match a specific integer value or vector with all elements equal to
617 /// the value.
618 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
619 
620 /// Match a ConstantInt and bind to its value.  This does not match
621 /// ConstantInts wider than 64-bits.
622 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
623 
624 //===----------------------------------------------------------------------===//
625 // Matcher for any binary operator.
626 //
627 template <typename LHS_t, typename RHS_t, bool Commutable = false>
628 struct AnyBinaryOp_match {
629   LHS_t L;
630   RHS_t R;
631 
632   // The evaluation order is always stable, regardless of Commutability.
633   // The LHS is always matched first.
634   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
635 
636   template <typename OpTy> bool match(OpTy *V) {
637     if (auto *I = dyn_cast<BinaryOperator>(V))
638       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
639              (Commutable && L.match(I->getOperand(1)) &&
640               R.match(I->getOperand(0)));
641     return false;
642   }
643 };
644 
645 template <typename LHS, typename RHS>
646 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
647   return AnyBinaryOp_match<LHS, RHS>(L, R);
648 }
649 
650 //===----------------------------------------------------------------------===//
651 // Matchers for specific binary operators.
652 //
653 
654 template <typename LHS_t, typename RHS_t, unsigned Opcode,
655           bool Commutable = false>
656 struct BinaryOp_match {
657   LHS_t L;
658   RHS_t R;
659 
660   // The evaluation order is always stable, regardless of Commutability.
661   // The LHS is always matched first.
662   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
663 
664   template <typename OpTy> bool match(OpTy *V) {
665     if (V->getValueID() == Value::InstructionVal + Opcode) {
666       auto *I = cast<BinaryOperator>(V);
667       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
668              (Commutable && L.match(I->getOperand(1)) &&
669               R.match(I->getOperand(0)));
670     }
671     if (auto *CE = dyn_cast<ConstantExpr>(V))
672       return CE->getOpcode() == Opcode &&
673              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
674               (Commutable && L.match(CE->getOperand(1)) &&
675                R.match(CE->getOperand(0))));
676     return false;
677   }
678 };
679 
680 template <typename LHS, typename RHS>
681 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
682                                                         const RHS &R) {
683   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
684 }
685 
686 template <typename LHS, typename RHS>
687 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
688                                                           const RHS &R) {
689   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
690 }
691 
692 template <typename LHS, typename RHS>
693 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
694                                                         const RHS &R) {
695   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
696 }
697 
698 template <typename LHS, typename RHS>
699 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
700                                                           const RHS &R) {
701   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
702 }
703 
704 template <typename Op_t> struct FNeg_match {
705   Op_t X;
706 
707   FNeg_match(const Op_t &Op) : X(Op) {}
708   template <typename OpTy> bool match(OpTy *V) {
709     auto *FPMO = dyn_cast<FPMathOperator>(V);
710     if (!FPMO) return false;
711 
712     if (FPMO->getOpcode() == Instruction::FNeg)
713       return X.match(FPMO->getOperand(0));
714 
715     if (FPMO->getOpcode() == Instruction::FSub) {
716       if (FPMO->hasNoSignedZeros()) {
717         // With 'nsz', any zero goes.
718         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
719           return false;
720       } else {
721         // Without 'nsz', we need fsub -0.0, X exactly.
722         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
723           return false;
724       }
725 
726       return X.match(FPMO->getOperand(1));
727     }
728 
729     return false;
730   }
731 };
732 
733 /// Match 'fneg X' as 'fsub -0.0, X'.
734 template <typename OpTy>
735 inline FNeg_match<OpTy>
736 m_FNeg(const OpTy &X) {
737   return FNeg_match<OpTy>(X);
738 }
739 
740 /// Match 'fneg X' as 'fsub +-0.0, X'.
741 template <typename RHS>
742 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
743 m_FNegNSZ(const RHS &X) {
744   return m_FSub(m_AnyZeroFP(), X);
745 }
746 
747 template <typename LHS, typename RHS>
748 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
749                                                         const RHS &R) {
750   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
751 }
752 
753 template <typename LHS, typename RHS>
754 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
755                                                           const RHS &R) {
756   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
757 }
758 
759 template <typename LHS, typename RHS>
760 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
761                                                           const RHS &R) {
762   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
763 }
764 
765 template <typename LHS, typename RHS>
766 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
767                                                           const RHS &R) {
768   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
769 }
770 
771 template <typename LHS, typename RHS>
772 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
773                                                           const RHS &R) {
774   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
775 }
776 
777 template <typename LHS, typename RHS>
778 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
779                                                           const RHS &R) {
780   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
781 }
782 
783 template <typename LHS, typename RHS>
784 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
785                                                           const RHS &R) {
786   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
787 }
788 
789 template <typename LHS, typename RHS>
790 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
791                                                           const RHS &R) {
792   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
793 }
794 
795 template <typename LHS, typename RHS>
796 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
797                                                         const RHS &R) {
798   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
799 }
800 
801 template <typename LHS, typename RHS>
802 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
803                                                       const RHS &R) {
804   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
805 }
806 
807 template <typename LHS, typename RHS>
808 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
809                                                         const RHS &R) {
810   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
811 }
812 
813 template <typename LHS, typename RHS>
814 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
815                                                         const RHS &R) {
816   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
817 }
818 
819 template <typename LHS, typename RHS>
820 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
821                                                           const RHS &R) {
822   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
823 }
824 
825 template <typename LHS, typename RHS>
826 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
827                                                           const RHS &R) {
828   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
829 }
830 
831 template <typename LHS_t, typename RHS_t, unsigned Opcode,
832           unsigned WrapFlags = 0>
833 struct OverflowingBinaryOp_match {
834   LHS_t L;
835   RHS_t R;
836 
837   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
838       : L(LHS), R(RHS) {}
839 
840   template <typename OpTy> bool match(OpTy *V) {
841     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
842       if (Op->getOpcode() != Opcode)
843         return false;
844       if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
845           !Op->hasNoUnsignedWrap())
846         return false;
847       if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
848           !Op->hasNoSignedWrap())
849         return false;
850       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
851     }
852     return false;
853   }
854 };
855 
856 template <typename LHS, typename RHS>
857 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
858                                  OverflowingBinaryOperator::NoSignedWrap>
859 m_NSWAdd(const LHS &L, const RHS &R) {
860   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
861                                    OverflowingBinaryOperator::NoSignedWrap>(
862       L, R);
863 }
864 template <typename LHS, typename RHS>
865 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
866                                  OverflowingBinaryOperator::NoSignedWrap>
867 m_NSWSub(const LHS &L, const RHS &R) {
868   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
869                                    OverflowingBinaryOperator::NoSignedWrap>(
870       L, R);
871 }
872 template <typename LHS, typename RHS>
873 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
874                                  OverflowingBinaryOperator::NoSignedWrap>
875 m_NSWMul(const LHS &L, const RHS &R) {
876   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
877                                    OverflowingBinaryOperator::NoSignedWrap>(
878       L, R);
879 }
880 template <typename LHS, typename RHS>
881 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
882                                  OverflowingBinaryOperator::NoSignedWrap>
883 m_NSWShl(const LHS &L, const RHS &R) {
884   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
885                                    OverflowingBinaryOperator::NoSignedWrap>(
886       L, R);
887 }
888 
889 template <typename LHS, typename RHS>
890 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
891                                  OverflowingBinaryOperator::NoUnsignedWrap>
892 m_NUWAdd(const LHS &L, const RHS &R) {
893   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
894                                    OverflowingBinaryOperator::NoUnsignedWrap>(
895       L, R);
896 }
897 template <typename LHS, typename RHS>
898 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
899                                  OverflowingBinaryOperator::NoUnsignedWrap>
900 m_NUWSub(const LHS &L, const RHS &R) {
901   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
902                                    OverflowingBinaryOperator::NoUnsignedWrap>(
903       L, R);
904 }
905 template <typename LHS, typename RHS>
906 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
907                                  OverflowingBinaryOperator::NoUnsignedWrap>
908 m_NUWMul(const LHS &L, const RHS &R) {
909   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
910                                    OverflowingBinaryOperator::NoUnsignedWrap>(
911       L, R);
912 }
913 template <typename LHS, typename RHS>
914 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
915                                  OverflowingBinaryOperator::NoUnsignedWrap>
916 m_NUWShl(const LHS &L, const RHS &R) {
917   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
918                                    OverflowingBinaryOperator::NoUnsignedWrap>(
919       L, R);
920 }
921 
922 //===----------------------------------------------------------------------===//
923 // Class that matches a group of binary opcodes.
924 //
925 template <typename LHS_t, typename RHS_t, typename Predicate>
926 struct BinOpPred_match : Predicate {
927   LHS_t L;
928   RHS_t R;
929 
930   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
931 
932   template <typename OpTy> bool match(OpTy *V) {
933     if (auto *I = dyn_cast<Instruction>(V))
934       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
935              R.match(I->getOperand(1));
936     if (auto *CE = dyn_cast<ConstantExpr>(V))
937       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
938              R.match(CE->getOperand(1));
939     return false;
940   }
941 };
942 
943 struct is_shift_op {
944   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
945 };
946 
947 struct is_right_shift_op {
948   bool isOpType(unsigned Opcode) {
949     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
950   }
951 };
952 
953 struct is_logical_shift_op {
954   bool isOpType(unsigned Opcode) {
955     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
956   }
957 };
958 
959 struct is_bitwiselogic_op {
960   bool isOpType(unsigned Opcode) {
961     return Instruction::isBitwiseLogicOp(Opcode);
962   }
963 };
964 
965 struct is_idiv_op {
966   bool isOpType(unsigned Opcode) {
967     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
968   }
969 };
970 
971 /// Matches shift operations.
972 template <typename LHS, typename RHS>
973 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
974                                                       const RHS &R) {
975   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
976 }
977 
978 /// Matches logical shift operations.
979 template <typename LHS, typename RHS>
980 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
981                                                           const RHS &R) {
982   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
983 }
984 
985 /// Matches logical shift operations.
986 template <typename LHS, typename RHS>
987 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
988 m_LogicalShift(const LHS &L, const RHS &R) {
989   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
990 }
991 
992 /// Matches bitwise logic operations.
993 template <typename LHS, typename RHS>
994 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
995 m_BitwiseLogic(const LHS &L, const RHS &R) {
996   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
997 }
998 
999 /// Matches integer division operations.
1000 template <typename LHS, typename RHS>
1001 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1002                                                     const RHS &R) {
1003   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1004 }
1005 
1006 //===----------------------------------------------------------------------===//
1007 // Class that matches exact binary ops.
1008 //
1009 template <typename SubPattern_t> struct Exact_match {
1010   SubPattern_t SubPattern;
1011 
1012   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1013 
1014   template <typename OpTy> bool match(OpTy *V) {
1015     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1016       return PEO->isExact() && SubPattern.match(V);
1017     return false;
1018   }
1019 };
1020 
1021 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1022   return SubPattern;
1023 }
1024 
1025 //===----------------------------------------------------------------------===//
1026 // Matchers for CmpInst classes
1027 //
1028 
1029 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1030           bool Commutable = false>
1031 struct CmpClass_match {
1032   PredicateTy &Predicate;
1033   LHS_t L;
1034   RHS_t R;
1035 
1036   // The evaluation order is always stable, regardless of Commutability.
1037   // The LHS is always matched first.
1038   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1039       : Predicate(Pred), L(LHS), R(RHS) {}
1040 
1041   template <typename OpTy> bool match(OpTy *V) {
1042     if (auto *I = dyn_cast<Class>(V))
1043       if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1044           (Commutable && L.match(I->getOperand(1)) &&
1045            R.match(I->getOperand(0)))) {
1046         Predicate = I->getPredicate();
1047         return true;
1048       }
1049     return false;
1050   }
1051 };
1052 
1053 template <typename LHS, typename RHS>
1054 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1055 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1056   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1057 }
1058 
1059 template <typename LHS, typename RHS>
1060 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1061 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1062   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1063 }
1064 
1065 template <typename LHS, typename RHS>
1066 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1067 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1068   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1069 }
1070 
1071 //===----------------------------------------------------------------------===//
1072 // Matchers for instructions with a given opcode and number of operands.
1073 //
1074 
1075 /// Matches instructions with Opcode and three operands.
1076 template <typename T0, unsigned Opcode> struct OneOps_match {
1077   T0 Op1;
1078 
1079   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1080 
1081   template <typename OpTy> bool match(OpTy *V) {
1082     if (V->getValueID() == Value::InstructionVal + Opcode) {
1083       auto *I = cast<Instruction>(V);
1084       return Op1.match(I->getOperand(0));
1085     }
1086     return false;
1087   }
1088 };
1089 
1090 /// Matches instructions with Opcode and three operands.
1091 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1092   T0 Op1;
1093   T1 Op2;
1094 
1095   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1096 
1097   template <typename OpTy> bool match(OpTy *V) {
1098     if (V->getValueID() == Value::InstructionVal + Opcode) {
1099       auto *I = cast<Instruction>(V);
1100       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1101     }
1102     return false;
1103   }
1104 };
1105 
1106 /// Matches instructions with Opcode and three operands.
1107 template <typename T0, typename T1, typename T2, unsigned Opcode>
1108 struct ThreeOps_match {
1109   T0 Op1;
1110   T1 Op2;
1111   T2 Op3;
1112 
1113   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1114       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1115 
1116   template <typename OpTy> bool match(OpTy *V) {
1117     if (V->getValueID() == Value::InstructionVal + Opcode) {
1118       auto *I = cast<Instruction>(V);
1119       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1120              Op3.match(I->getOperand(2));
1121     }
1122     return false;
1123   }
1124 };
1125 
1126 /// Matches SelectInst.
1127 template <typename Cond, typename LHS, typename RHS>
1128 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1129 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1130   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1131 }
1132 
1133 /// This matches a select of two constants, e.g.:
1134 /// m_SelectCst<-1, 0>(m_Value(V))
1135 template <int64_t L, int64_t R, typename Cond>
1136 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1137                       Instruction::Select>
1138 m_SelectCst(const Cond &C) {
1139   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1140 }
1141 
1142 /// Matches InsertElementInst.
1143 template <typename Val_t, typename Elt_t, typename Idx_t>
1144 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1145 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1146   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1147       Val, Elt, Idx);
1148 }
1149 
1150 /// Matches ExtractElementInst.
1151 template <typename Val_t, typename Idx_t>
1152 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1153 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1154   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1155 }
1156 
1157 /// Matches ShuffleVectorInst.
1158 template <typename V1_t, typename V2_t, typename Mask_t>
1159 inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1160 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1161   return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1162                                                                         m);
1163 }
1164 
1165 /// Matches LoadInst.
1166 template <typename OpTy>
1167 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1168   return OneOps_match<OpTy, Instruction::Load>(Op);
1169 }
1170 
1171 /// Matches StoreInst.
1172 template <typename ValueOpTy, typename PointerOpTy>
1173 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1174 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1175   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1176                                                                   PointerOp);
1177 }
1178 
1179 //===----------------------------------------------------------------------===//
1180 // Matchers for CastInst classes
1181 //
1182 
1183 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1184   Op_t Op;
1185 
1186   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1187 
1188   template <typename OpTy> bool match(OpTy *V) {
1189     if (auto *O = dyn_cast<Operator>(V))
1190       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1191     return false;
1192   }
1193 };
1194 
1195 /// Matches BitCast.
1196 template <typename OpTy>
1197 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1198   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1199 }
1200 
1201 /// Matches PtrToInt.
1202 template <typename OpTy>
1203 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1204   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1205 }
1206 
1207 /// Matches Trunc.
1208 template <typename OpTy>
1209 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1210   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1211 }
1212 
1213 /// Matches SExt.
1214 template <typename OpTy>
1215 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1216   return CastClass_match<OpTy, Instruction::SExt>(Op);
1217 }
1218 
1219 /// Matches ZExt.
1220 template <typename OpTy>
1221 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1222   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1223 }
1224 
1225 template <typename OpTy>
1226 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1227                         CastClass_match<OpTy, Instruction::SExt>>
1228 m_ZExtOrSExt(const OpTy &Op) {
1229   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1230 }
1231 
1232 /// Matches UIToFP.
1233 template <typename OpTy>
1234 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1235   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1236 }
1237 
1238 /// Matches SIToFP.
1239 template <typename OpTy>
1240 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1241   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1242 }
1243 
1244 /// Matches FPTrunc
1245 template <typename OpTy>
1246 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1247   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1248 }
1249 
1250 /// Matches FPExt
1251 template <typename OpTy>
1252 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1253   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1254 }
1255 
1256 //===----------------------------------------------------------------------===//
1257 // Matchers for control flow.
1258 //
1259 
1260 struct br_match {
1261   BasicBlock *&Succ;
1262 
1263   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1264 
1265   template <typename OpTy> bool match(OpTy *V) {
1266     if (auto *BI = dyn_cast<BranchInst>(V))
1267       if (BI->isUnconditional()) {
1268         Succ = BI->getSuccessor(0);
1269         return true;
1270       }
1271     return false;
1272   }
1273 };
1274 
1275 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1276 
1277 template <typename Cond_t> struct brc_match {
1278   Cond_t Cond;
1279   BasicBlock *&T, *&F;
1280 
1281   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1282       : Cond(C), T(t), F(f) {}
1283 
1284   template <typename OpTy> bool match(OpTy *V) {
1285     if (auto *BI = dyn_cast<BranchInst>(V))
1286       if (BI->isConditional() && Cond.match(BI->getCondition())) {
1287         T = BI->getSuccessor(0);
1288         F = BI->getSuccessor(1);
1289         return true;
1290       }
1291     return false;
1292   }
1293 };
1294 
1295 template <typename Cond_t>
1296 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1297   return brc_match<Cond_t>(C, T, F);
1298 }
1299 
1300 //===----------------------------------------------------------------------===//
1301 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1302 //
1303 
1304 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1305           bool Commutable = false>
1306 struct MaxMin_match {
1307   LHS_t L;
1308   RHS_t R;
1309 
1310   // The evaluation order is always stable, regardless of Commutability.
1311   // The LHS is always matched first.
1312   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1313 
1314   template <typename OpTy> bool match(OpTy *V) {
1315     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1316     auto *SI = dyn_cast<SelectInst>(V);
1317     if (!SI)
1318       return false;
1319     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1320     if (!Cmp)
1321       return false;
1322     // At this point we have a select conditioned on a comparison.  Check that
1323     // it is the values returned by the select that are being compared.
1324     Value *TrueVal = SI->getTrueValue();
1325     Value *FalseVal = SI->getFalseValue();
1326     Value *LHS = Cmp->getOperand(0);
1327     Value *RHS = Cmp->getOperand(1);
1328     if ((TrueVal != LHS || FalseVal != RHS) &&
1329         (TrueVal != RHS || FalseVal != LHS))
1330       return false;
1331     typename CmpInst_t::Predicate Pred =
1332         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1333     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1334     if (!Pred_t::match(Pred))
1335       return false;
1336     // It does!  Bind the operands.
1337     return (L.match(LHS) && R.match(RHS)) ||
1338            (Commutable && L.match(RHS) && R.match(LHS));
1339   }
1340 };
1341 
1342 /// Helper class for identifying signed max predicates.
1343 struct smax_pred_ty {
1344   static bool match(ICmpInst::Predicate Pred) {
1345     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1346   }
1347 };
1348 
1349 /// Helper class for identifying signed min predicates.
1350 struct smin_pred_ty {
1351   static bool match(ICmpInst::Predicate Pred) {
1352     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1353   }
1354 };
1355 
1356 /// Helper class for identifying unsigned max predicates.
1357 struct umax_pred_ty {
1358   static bool match(ICmpInst::Predicate Pred) {
1359     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1360   }
1361 };
1362 
1363 /// Helper class for identifying unsigned min predicates.
1364 struct umin_pred_ty {
1365   static bool match(ICmpInst::Predicate Pred) {
1366     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1367   }
1368 };
1369 
1370 /// Helper class for identifying ordered max predicates.
1371 struct ofmax_pred_ty {
1372   static bool match(FCmpInst::Predicate Pred) {
1373     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1374   }
1375 };
1376 
1377 /// Helper class for identifying ordered min predicates.
1378 struct ofmin_pred_ty {
1379   static bool match(FCmpInst::Predicate Pred) {
1380     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1381   }
1382 };
1383 
1384 /// Helper class for identifying unordered max predicates.
1385 struct ufmax_pred_ty {
1386   static bool match(FCmpInst::Predicate Pred) {
1387     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1388   }
1389 };
1390 
1391 /// Helper class for identifying unordered min predicates.
1392 struct ufmin_pred_ty {
1393   static bool match(FCmpInst::Predicate Pred) {
1394     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1395   }
1396 };
1397 
1398 template <typename LHS, typename RHS>
1399 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1400                                                              const RHS &R) {
1401   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1402 }
1403 
1404 template <typename LHS, typename RHS>
1405 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1406                                                              const RHS &R) {
1407   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1408 }
1409 
1410 template <typename LHS, typename RHS>
1411 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1412                                                              const RHS &R) {
1413   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1414 }
1415 
1416 template <typename LHS, typename RHS>
1417 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1418                                                              const RHS &R) {
1419   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1420 }
1421 
1422 /// Match an 'ordered' floating point maximum function.
1423 /// Floating point has one special value 'NaN'. Therefore, there is no total
1424 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1425 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1426 /// semantics. In the presence of 'NaN' we have to preserve the original
1427 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1428 ///
1429 ///                         max(L, R)  iff L and R are not NaN
1430 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1431 template <typename LHS, typename RHS>
1432 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1433                                                                  const RHS &R) {
1434   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1435 }
1436 
1437 /// Match an 'ordered' floating point minimum function.
1438 /// Floating point has one special value 'NaN'. Therefore, there is no total
1439 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1440 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1441 /// semantics. In the presence of 'NaN' we have to preserve the original
1442 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1443 ///
1444 ///                         min(L, R)  iff L and R are not NaN
1445 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1446 template <typename LHS, typename RHS>
1447 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1448                                                                  const RHS &R) {
1449   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1450 }
1451 
1452 /// Match an 'unordered' floating point maximum function.
1453 /// Floating point has one special value 'NaN'. Therefore, there is no total
1454 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1455 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1456 /// semantics. In the presence of 'NaN' we have to preserve the original
1457 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1458 ///
1459 ///                         max(L, R)  iff L and R are not NaN
1460 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1461 template <typename LHS, typename RHS>
1462 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1463 m_UnordFMax(const LHS &L, const RHS &R) {
1464   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1465 }
1466 
1467 /// Match an 'unordered' floating point minimum function.
1468 /// Floating point has one special value 'NaN'. Therefore, there is no total
1469 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1470 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1471 /// semantics. In the presence of 'NaN' we have to preserve the original
1472 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1473 ///
1474 ///                          min(L, R)  iff L and R are not NaN
1475 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1476 template <typename LHS, typename RHS>
1477 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1478 m_UnordFMin(const LHS &L, const RHS &R) {
1479   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 // Matchers for overflow check patterns: e.g. (a + b) u< a
1484 //
1485 
1486 template <typename LHS_t, typename RHS_t, typename Sum_t>
1487 struct UAddWithOverflow_match {
1488   LHS_t L;
1489   RHS_t R;
1490   Sum_t S;
1491 
1492   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1493       : L(L), R(R), S(S) {}
1494 
1495   template <typename OpTy> bool match(OpTy *V) {
1496     Value *ICmpLHS, *ICmpRHS;
1497     ICmpInst::Predicate Pred;
1498     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1499       return false;
1500 
1501     Value *AddLHS, *AddRHS;
1502     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1503 
1504     // (a + b) u< a, (a + b) u< b
1505     if (Pred == ICmpInst::ICMP_ULT)
1506       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1507         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1508 
1509     // a >u (a + b), b >u (a + b)
1510     if (Pred == ICmpInst::ICMP_UGT)
1511       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1512         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1513 
1514     // Match special-case for increment-by-1.
1515     if (Pred == ICmpInst::ICMP_EQ) {
1516       // (a + 1) == 0
1517       // (1 + a) == 0
1518       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1519           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1520         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1521       // 0 == (a + 1)
1522       // 0 == (1 + a)
1523       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1524           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1525         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1526     }
1527 
1528     return false;
1529   }
1530 };
1531 
1532 /// Match an icmp instruction checking for unsigned overflow on addition.
1533 ///
1534 /// S is matched to the addition whose result is being checked for overflow, and
1535 /// L and R are matched to the LHS and RHS of S.
1536 template <typename LHS_t, typename RHS_t, typename Sum_t>
1537 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1538 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1539   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1540 }
1541 
1542 template <typename Opnd_t> struct Argument_match {
1543   unsigned OpI;
1544   Opnd_t Val;
1545 
1546   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1547 
1548   template <typename OpTy> bool match(OpTy *V) {
1549     // FIXME: Should likely be switched to use `CallBase`.
1550     if (const auto *CI = dyn_cast<CallInst>(V))
1551       return Val.match(CI->getArgOperand(OpI));
1552     return false;
1553   }
1554 };
1555 
1556 /// Match an argument.
1557 template <unsigned OpI, typename Opnd_t>
1558 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1559   return Argument_match<Opnd_t>(OpI, Op);
1560 }
1561 
1562 /// Intrinsic matchers.
1563 struct IntrinsicID_match {
1564   unsigned ID;
1565 
1566   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1567 
1568   template <typename OpTy> bool match(OpTy *V) {
1569     if (const auto *CI = dyn_cast<CallInst>(V))
1570       if (const auto *F = CI->getCalledFunction())
1571         return F->getIntrinsicID() == ID;
1572     return false;
1573   }
1574 };
1575 
1576 /// Intrinsic matches are combinations of ID matchers, and argument
1577 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1578 /// them with lower arity matchers. Here's some convenient typedefs for up to
1579 /// several arguments, and more can be added as needed
1580 template <typename T0 = void, typename T1 = void, typename T2 = void,
1581           typename T3 = void, typename T4 = void, typename T5 = void,
1582           typename T6 = void, typename T7 = void, typename T8 = void,
1583           typename T9 = void, typename T10 = void>
1584 struct m_Intrinsic_Ty;
1585 template <typename T0> struct m_Intrinsic_Ty<T0> {
1586   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1587 };
1588 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1589   using Ty =
1590       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1591 };
1592 template <typename T0, typename T1, typename T2>
1593 struct m_Intrinsic_Ty<T0, T1, T2> {
1594   using Ty =
1595       match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1596                         Argument_match<T2>>;
1597 };
1598 template <typename T0, typename T1, typename T2, typename T3>
1599 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1600   using Ty =
1601       match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1602                         Argument_match<T3>>;
1603 };
1604 
1605 /// Match intrinsic calls like this:
1606 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1607 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1608   return IntrinsicID_match(IntrID);
1609 }
1610 
1611 template <Intrinsic::ID IntrID, typename T0>
1612 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1613   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1614 }
1615 
1616 template <Intrinsic::ID IntrID, typename T0, typename T1>
1617 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1618                                                        const T1 &Op1) {
1619   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1620 }
1621 
1622 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1623 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1624 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1625   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1626 }
1627 
1628 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1629           typename T3>
1630 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1631 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1632   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1633 }
1634 
1635 // Helper intrinsic matching specializations.
1636 template <typename Opnd0>
1637 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1638   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1639 }
1640 
1641 template <typename Opnd0>
1642 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1643   return m_Intrinsic<Intrinsic::bswap>(Op0);
1644 }
1645 
1646 template <typename Opnd0>
1647 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1648   return m_Intrinsic<Intrinsic::fabs>(Op0);
1649 }
1650 
1651 template <typename Opnd0>
1652 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1653   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1654 }
1655 
1656 template <typename Opnd0, typename Opnd1>
1657 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1658                                                         const Opnd1 &Op1) {
1659   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1660 }
1661 
1662 template <typename Opnd0, typename Opnd1>
1663 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1664                                                         const Opnd1 &Op1) {
1665   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1666 }
1667 
1668 //===----------------------------------------------------------------------===//
1669 // Matchers for two-operands operators with the operators in either order
1670 //
1671 
1672 /// Matches a BinaryOperator with LHS and RHS in either order.
1673 template <typename LHS, typename RHS>
1674 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1675   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1676 }
1677 
1678 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1679 /// Does not swap the predicate.
1680 template <typename LHS, typename RHS>
1681 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1682 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1683   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1684                                                                        R);
1685 }
1686 
1687 /// Matches a Add with LHS and RHS in either order.
1688 template <typename LHS, typename RHS>
1689 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1690                                                                 const RHS &R) {
1691   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1692 }
1693 
1694 /// Matches a Mul with LHS and RHS in either order.
1695 template <typename LHS, typename RHS>
1696 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1697                                                                 const RHS &R) {
1698   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1699 }
1700 
1701 /// Matches an And with LHS and RHS in either order.
1702 template <typename LHS, typename RHS>
1703 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1704                                                                 const RHS &R) {
1705   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1706 }
1707 
1708 /// Matches an Or with LHS and RHS in either order.
1709 template <typename LHS, typename RHS>
1710 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1711                                                               const RHS &R) {
1712   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1713 }
1714 
1715 /// Matches an Xor with LHS and RHS in either order.
1716 template <typename LHS, typename RHS>
1717 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1718                                                                 const RHS &R) {
1719   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1720 }
1721 
1722 /// Matches a 'Neg' as 'sub 0, V'.
1723 template <typename ValTy>
1724 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1725 m_Neg(const ValTy &V) {
1726   return m_Sub(m_ZeroInt(), V);
1727 }
1728 
1729 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1730 template <typename ValTy>
1731 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1732 m_Not(const ValTy &V) {
1733   return m_c_Xor(V, m_AllOnes());
1734 }
1735 
1736 /// Matches an SMin with LHS and RHS in either order.
1737 template <typename LHS, typename RHS>
1738 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1739 m_c_SMin(const LHS &L, const RHS &R) {
1740   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1741 }
1742 /// Matches an SMax with LHS and RHS in either order.
1743 template <typename LHS, typename RHS>
1744 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1745 m_c_SMax(const LHS &L, const RHS &R) {
1746   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1747 }
1748 /// Matches a UMin with LHS and RHS in either order.
1749 template <typename LHS, typename RHS>
1750 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1751 m_c_UMin(const LHS &L, const RHS &R) {
1752   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1753 }
1754 /// Matches a UMax with LHS and RHS in either order.
1755 template <typename LHS, typename RHS>
1756 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1757 m_c_UMax(const LHS &L, const RHS &R) {
1758   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1759 }
1760 
1761 /// Matches FAdd with LHS and RHS in either order.
1762 template <typename LHS, typename RHS>
1763 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1764 m_c_FAdd(const LHS &L, const RHS &R) {
1765   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1766 }
1767 
1768 /// Matches FMul with LHS and RHS in either order.
1769 template <typename LHS, typename RHS>
1770 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1771 m_c_FMul(const LHS &L, const RHS &R) {
1772   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1773 }
1774 
1775 template <typename Opnd_t> struct Signum_match {
1776   Opnd_t Val;
1777   Signum_match(const Opnd_t &V) : Val(V) {}
1778 
1779   template <typename OpTy> bool match(OpTy *V) {
1780     unsigned TypeSize = V->getType()->getScalarSizeInBits();
1781     if (TypeSize == 0)
1782       return false;
1783 
1784     unsigned ShiftWidth = TypeSize - 1;
1785     Value *OpL = nullptr, *OpR = nullptr;
1786 
1787     // This is the representation of signum we match:
1788     //
1789     //  signum(x) == (x >> 63) | (-x >>u 63)
1790     //
1791     // An i1 value is its own signum, so it's correct to match
1792     //
1793     //  signum(x) == (x >> 0)  | (-x >>u 0)
1794     //
1795     // for i1 values.
1796 
1797     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1798     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1799     auto Signum = m_Or(LHS, RHS);
1800 
1801     return Signum.match(V) && OpL == OpR && Val.match(OpL);
1802   }
1803 };
1804 
1805 /// Matches a signum pattern.
1806 ///
1807 /// signum(x) =
1808 ///      x >  0  ->  1
1809 ///      x == 0  ->  0
1810 ///      x <  0  -> -1
1811 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1812   return Signum_match<Val_t>(V);
1813 }
1814 
1815 } // end namespace PatternMatch
1816 } // end namespace llvm
1817 
1818 #endif // LLVM_IR_PATTERNMATCH_H
1819