xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/PatternMatch.h (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
15 //
16 //  Value *Exp = ...
17 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 //    ... Pattern is matched and variables are bound ...
21 //  }
22 //
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
30 
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45 
46 namespace llvm {
47 namespace PatternMatch {
48 
49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50   return const_cast<Pattern &>(P).match(V);
51 }
52 
53 template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54   return const_cast<Pattern &>(P).match(Mask);
55 }
56 
57 template <typename SubPattern_t> struct OneUse_match {
58   SubPattern_t SubPattern;
59 
60   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61 
62   template <typename OpTy> bool match(OpTy *V) {
63     return V->hasOneUse() && SubPattern.match(V);
64   }
65 };
66 
67 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68   return SubPattern;
69 }
70 
71 template <typename Class> struct class_match {
72   template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73 };
74 
75 /// Match an arbitrary value and ignore it.
76 inline class_match<Value> m_Value() { return class_match<Value>(); }
77 
78 /// Match an arbitrary unary operation and ignore it.
79 inline class_match<UnaryOperator> m_UnOp() {
80   return class_match<UnaryOperator>();
81 }
82 
83 /// Match an arbitrary binary operation and ignore it.
84 inline class_match<BinaryOperator> m_BinOp() {
85   return class_match<BinaryOperator>();
86 }
87 
88 /// Matches any compare instruction and ignore it.
89 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90 
91 struct undef_match {
92   static bool check(const Value *V) {
93     if (isa<UndefValue>(V))
94       return true;
95 
96     const auto *CA = dyn_cast<ConstantAggregate>(V);
97     if (!CA)
98       return false;
99 
100     SmallPtrSet<const ConstantAggregate *, 8> Seen;
101     SmallVector<const ConstantAggregate *, 8> Worklist;
102 
103     // Either UndefValue, PoisonValue, or an aggregate that only contains
104     // these is accepted by matcher.
105     // CheckValue returns false if CA cannot satisfy this constraint.
106     auto CheckValue = [&](const ConstantAggregate *CA) {
107       for (const Value *Op : CA->operand_values()) {
108         if (isa<UndefValue>(Op))
109           continue;
110 
111         const auto *CA = dyn_cast<ConstantAggregate>(Op);
112         if (!CA)
113           return false;
114         if (Seen.insert(CA).second)
115           Worklist.emplace_back(CA);
116       }
117 
118       return true;
119     };
120 
121     if (!CheckValue(CA))
122       return false;
123 
124     while (!Worklist.empty()) {
125       if (!CheckValue(Worklist.pop_back_val()))
126         return false;
127     }
128     return true;
129   }
130   template <typename ITy> bool match(ITy *V) { return check(V); }
131 };
132 
133 /// Match an arbitrary undef constant. This matches poison as well.
134 /// If this is an aggregate and contains a non-aggregate element that is
135 /// neither undef nor poison, the aggregate is not matched.
136 inline auto m_Undef() { return undef_match(); }
137 
138 /// Match an arbitrary poison constant.
139 inline class_match<PoisonValue> m_Poison() {
140   return class_match<PoisonValue>();
141 }
142 
143 /// Match an arbitrary Constant and ignore it.
144 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
145 
146 /// Match an arbitrary ConstantInt and ignore it.
147 inline class_match<ConstantInt> m_ConstantInt() {
148   return class_match<ConstantInt>();
149 }
150 
151 /// Match an arbitrary ConstantFP and ignore it.
152 inline class_match<ConstantFP> m_ConstantFP() {
153   return class_match<ConstantFP>();
154 }
155 
156 struct constantexpr_match {
157   template <typename ITy> bool match(ITy *V) {
158     auto *C = dyn_cast<Constant>(V);
159     return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
160   }
161 };
162 
163 /// Match a constant expression or a constant that contains a constant
164 /// expression.
165 inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
166 
167 /// Match an arbitrary basic block value and ignore it.
168 inline class_match<BasicBlock> m_BasicBlock() {
169   return class_match<BasicBlock>();
170 }
171 
172 /// Inverting matcher
173 template <typename Ty> struct match_unless {
174   Ty M;
175 
176   match_unless(const Ty &Matcher) : M(Matcher) {}
177 
178   template <typename ITy> bool match(ITy *V) { return !M.match(V); }
179 };
180 
181 /// Match if the inner matcher does *NOT* match.
182 template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
183   return match_unless<Ty>(M);
184 }
185 
186 /// Matching combinators
187 template <typename LTy, typename RTy> struct match_combine_or {
188   LTy L;
189   RTy R;
190 
191   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
192 
193   template <typename ITy> bool match(ITy *V) {
194     if (L.match(V))
195       return true;
196     if (R.match(V))
197       return true;
198     return false;
199   }
200 };
201 
202 template <typename LTy, typename RTy> struct match_combine_and {
203   LTy L;
204   RTy R;
205 
206   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
207 
208   template <typename ITy> bool match(ITy *V) {
209     if (L.match(V))
210       if (R.match(V))
211         return true;
212     return false;
213   }
214 };
215 
216 /// Combine two pattern matchers matching L || R
217 template <typename LTy, typename RTy>
218 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
219   return match_combine_or<LTy, RTy>(L, R);
220 }
221 
222 /// Combine two pattern matchers matching L && R
223 template <typename LTy, typename RTy>
224 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
225   return match_combine_and<LTy, RTy>(L, R);
226 }
227 
228 struct apint_match {
229   const APInt *&Res;
230   bool AllowUndef;
231 
232   apint_match(const APInt *&Res, bool AllowUndef)
233       : Res(Res), AllowUndef(AllowUndef) {}
234 
235   template <typename ITy> bool match(ITy *V) {
236     if (auto *CI = dyn_cast<ConstantInt>(V)) {
237       Res = &CI->getValue();
238       return true;
239     }
240     if (V->getType()->isVectorTy())
241       if (const auto *C = dyn_cast<Constant>(V))
242         if (auto *CI =
243                 dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
244           Res = &CI->getValue();
245           return true;
246         }
247     return false;
248   }
249 };
250 // Either constexpr if or renaming ConstantFP::getValueAPF to
251 // ConstantFP::getValue is needed to do it via single template
252 // function for both apint/apfloat.
253 struct apfloat_match {
254   const APFloat *&Res;
255   bool AllowUndef;
256 
257   apfloat_match(const APFloat *&Res, bool AllowUndef)
258       : Res(Res), AllowUndef(AllowUndef) {}
259 
260   template <typename ITy> bool match(ITy *V) {
261     if (auto *CI = dyn_cast<ConstantFP>(V)) {
262       Res = &CI->getValueAPF();
263       return true;
264     }
265     if (V->getType()->isVectorTy())
266       if (const auto *C = dyn_cast<Constant>(V))
267         if (auto *CI =
268                 dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
269           Res = &CI->getValueAPF();
270           return true;
271         }
272     return false;
273   }
274 };
275 
276 /// Match a ConstantInt or splatted ConstantVector, binding the
277 /// specified pointer to the contained APInt.
278 inline apint_match m_APInt(const APInt *&Res) {
279   // Forbid undefs by default to maintain previous behavior.
280   return apint_match(Res, /* AllowUndef */ false);
281 }
282 
283 /// Match APInt while allowing undefs in splat vector constants.
284 inline apint_match m_APIntAllowUndef(const APInt *&Res) {
285   return apint_match(Res, /* AllowUndef */ true);
286 }
287 
288 /// Match APInt while forbidding undefs in splat vector constants.
289 inline apint_match m_APIntForbidUndef(const APInt *&Res) {
290   return apint_match(Res, /* AllowUndef */ false);
291 }
292 
293 /// Match a ConstantFP or splatted ConstantVector, binding the
294 /// specified pointer to the contained APFloat.
295 inline apfloat_match m_APFloat(const APFloat *&Res) {
296   // Forbid undefs by default to maintain previous behavior.
297   return apfloat_match(Res, /* AllowUndef */ false);
298 }
299 
300 /// Match APFloat while allowing undefs in splat vector constants.
301 inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
302   return apfloat_match(Res, /* AllowUndef */ true);
303 }
304 
305 /// Match APFloat while forbidding undefs in splat vector constants.
306 inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
307   return apfloat_match(Res, /* AllowUndef */ false);
308 }
309 
310 template <int64_t Val> struct constantint_match {
311   template <typename ITy> bool match(ITy *V) {
312     if (const auto *CI = dyn_cast<ConstantInt>(V)) {
313       const APInt &CIV = CI->getValue();
314       if (Val >= 0)
315         return CIV == static_cast<uint64_t>(Val);
316       // If Val is negative, and CI is shorter than it, truncate to the right
317       // number of bits.  If it is larger, then we have to sign extend.  Just
318       // compare their negated values.
319       return -CIV == -Val;
320     }
321     return false;
322   }
323 };
324 
325 /// Match a ConstantInt with a specific value.
326 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
327   return constantint_match<Val>();
328 }
329 
330 /// This helper class is used to match constant scalars, vector splats,
331 /// and fixed width vectors that satisfy a specified predicate.
332 /// For fixed width vector constants, undefined elements are ignored.
333 template <typename Predicate, typename ConstantVal>
334 struct cstval_pred_ty : public Predicate {
335   template <typename ITy> bool match(ITy *V) {
336     if (const auto *CV = dyn_cast<ConstantVal>(V))
337       return this->isValue(CV->getValue());
338     if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
339       if (const auto *C = dyn_cast<Constant>(V)) {
340         if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
341           return this->isValue(CV->getValue());
342 
343         // Number of elements of a scalable vector unknown at compile time
344         auto *FVTy = dyn_cast<FixedVectorType>(VTy);
345         if (!FVTy)
346           return false;
347 
348         // Non-splat vector constant: check each element for a match.
349         unsigned NumElts = FVTy->getNumElements();
350         assert(NumElts != 0 && "Constant vector with no elements?");
351         bool HasNonUndefElements = false;
352         for (unsigned i = 0; i != NumElts; ++i) {
353           Constant *Elt = C->getAggregateElement(i);
354           if (!Elt)
355             return false;
356           if (isa<UndefValue>(Elt))
357             continue;
358           auto *CV = dyn_cast<ConstantVal>(Elt);
359           if (!CV || !this->isValue(CV->getValue()))
360             return false;
361           HasNonUndefElements = true;
362         }
363         return HasNonUndefElements;
364       }
365     }
366     return false;
367   }
368 };
369 
370 /// specialization of cstval_pred_ty for ConstantInt
371 template <typename Predicate>
372 using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
373 
374 /// specialization of cstval_pred_ty for ConstantFP
375 template <typename Predicate>
376 using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
377 
378 /// This helper class is used to match scalar and vector constants that
379 /// satisfy a specified predicate, and bind them to an APInt.
380 template <typename Predicate> struct api_pred_ty : public Predicate {
381   const APInt *&Res;
382 
383   api_pred_ty(const APInt *&R) : Res(R) {}
384 
385   template <typename ITy> bool match(ITy *V) {
386     if (const auto *CI = dyn_cast<ConstantInt>(V))
387       if (this->isValue(CI->getValue())) {
388         Res = &CI->getValue();
389         return true;
390       }
391     if (V->getType()->isVectorTy())
392       if (const auto *C = dyn_cast<Constant>(V))
393         if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
394           if (this->isValue(CI->getValue())) {
395             Res = &CI->getValue();
396             return true;
397           }
398 
399     return false;
400   }
401 };
402 
403 /// This helper class is used to match scalar and vector constants that
404 /// satisfy a specified predicate, and bind them to an APFloat.
405 /// Undefs are allowed in splat vector constants.
406 template <typename Predicate> struct apf_pred_ty : public Predicate {
407   const APFloat *&Res;
408 
409   apf_pred_ty(const APFloat *&R) : Res(R) {}
410 
411   template <typename ITy> bool match(ITy *V) {
412     if (const auto *CI = dyn_cast<ConstantFP>(V))
413       if (this->isValue(CI->getValue())) {
414         Res = &CI->getValue();
415         return true;
416       }
417     if (V->getType()->isVectorTy())
418       if (const auto *C = dyn_cast<Constant>(V))
419         if (auto *CI = dyn_cast_or_null<ConstantFP>(
420                 C->getSplatValue(/* AllowUndef */ true)))
421           if (this->isValue(CI->getValue())) {
422             Res = &CI->getValue();
423             return true;
424           }
425 
426     return false;
427   }
428 };
429 
430 ///////////////////////////////////////////////////////////////////////////////
431 //
432 // Encapsulate constant value queries for use in templated predicate matchers.
433 // This allows checking if constants match using compound predicates and works
434 // with vector constants, possibly with relaxed constraints. For example, ignore
435 // undef values.
436 //
437 ///////////////////////////////////////////////////////////////////////////////
438 
439 struct is_any_apint {
440   bool isValue(const APInt &C) { return true; }
441 };
442 /// Match an integer or vector with any integral constant.
443 /// For vectors, this includes constants with undefined elements.
444 inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
445   return cst_pred_ty<is_any_apint>();
446 }
447 
448 struct is_all_ones {
449   bool isValue(const APInt &C) { return C.isAllOnes(); }
450 };
451 /// Match an integer or vector with all bits set.
452 /// For vectors, this includes constants with undefined elements.
453 inline cst_pred_ty<is_all_ones> m_AllOnes() {
454   return cst_pred_ty<is_all_ones>();
455 }
456 
457 struct is_maxsignedvalue {
458   bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
459 };
460 /// Match an integer or vector with values having all bits except for the high
461 /// bit set (0x7f...).
462 /// For vectors, this includes constants with undefined elements.
463 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
464   return cst_pred_ty<is_maxsignedvalue>();
465 }
466 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
467   return V;
468 }
469 
470 struct is_negative {
471   bool isValue(const APInt &C) { return C.isNegative(); }
472 };
473 /// Match an integer or vector of negative values.
474 /// For vectors, this includes constants with undefined elements.
475 inline cst_pred_ty<is_negative> m_Negative() {
476   return cst_pred_ty<is_negative>();
477 }
478 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
479 
480 struct is_nonnegative {
481   bool isValue(const APInt &C) { return C.isNonNegative(); }
482 };
483 /// Match an integer or vector of non-negative values.
484 /// For vectors, this includes constants with undefined elements.
485 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
486   return cst_pred_ty<is_nonnegative>();
487 }
488 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
489 
490 struct is_strictlypositive {
491   bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
492 };
493 /// Match an integer or vector of strictly positive values.
494 /// For vectors, this includes constants with undefined elements.
495 inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
496   return cst_pred_ty<is_strictlypositive>();
497 }
498 inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
499   return V;
500 }
501 
502 struct is_nonpositive {
503   bool isValue(const APInt &C) { return C.isNonPositive(); }
504 };
505 /// Match an integer or vector of non-positive values.
506 /// For vectors, this includes constants with undefined elements.
507 inline cst_pred_ty<is_nonpositive> m_NonPositive() {
508   return cst_pred_ty<is_nonpositive>();
509 }
510 inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
511 
512 struct is_one {
513   bool isValue(const APInt &C) { return C.isOne(); }
514 };
515 /// Match an integer 1 or a vector with all elements equal to 1.
516 /// For vectors, this includes constants with undefined elements.
517 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
518 
519 struct is_zero_int {
520   bool isValue(const APInt &C) { return C.isZero(); }
521 };
522 /// Match an integer 0 or a vector with all elements equal to 0.
523 /// For vectors, this includes constants with undefined elements.
524 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
525   return cst_pred_ty<is_zero_int>();
526 }
527 
528 struct is_zero {
529   template <typename ITy> bool match(ITy *V) {
530     auto *C = dyn_cast<Constant>(V);
531     // FIXME: this should be able to do something for scalable vectors
532     return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
533   }
534 };
535 /// Match any null constant or a vector with all elements equal to 0.
536 /// For vectors, this includes constants with undefined elements.
537 inline is_zero m_Zero() { return is_zero(); }
538 
539 struct is_power2 {
540   bool isValue(const APInt &C) { return C.isPowerOf2(); }
541 };
542 /// Match an integer or vector power-of-2.
543 /// For vectors, this includes constants with undefined elements.
544 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
545 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
546 
547 struct is_negated_power2 {
548   bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
549 };
550 /// Match a integer or vector negated power-of-2.
551 /// For vectors, this includes constants with undefined elements.
552 inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
553   return cst_pred_ty<is_negated_power2>();
554 }
555 inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
556   return V;
557 }
558 
559 struct is_power2_or_zero {
560   bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
561 };
562 /// Match an integer or vector of 0 or power-of-2 values.
563 /// For vectors, this includes constants with undefined elements.
564 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
565   return cst_pred_ty<is_power2_or_zero>();
566 }
567 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
568   return V;
569 }
570 
571 struct is_sign_mask {
572   bool isValue(const APInt &C) { return C.isSignMask(); }
573 };
574 /// Match an integer or vector with only the sign bit(s) set.
575 /// For vectors, this includes constants with undefined elements.
576 inline cst_pred_ty<is_sign_mask> m_SignMask() {
577   return cst_pred_ty<is_sign_mask>();
578 }
579 
580 struct is_lowbit_mask {
581   bool isValue(const APInt &C) { return C.isMask(); }
582 };
583 /// Match an integer or vector with only the low bit(s) set.
584 /// For vectors, this includes constants with undefined elements.
585 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
586   return cst_pred_ty<is_lowbit_mask>();
587 }
588 inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
589 
590 struct icmp_pred_with_threshold {
591   ICmpInst::Predicate Pred;
592   const APInt *Thr;
593   bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
594 };
595 /// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
596 /// to Threshold. For vectors, this includes constants with undefined elements.
597 inline cst_pred_ty<icmp_pred_with_threshold>
598 m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
599   cst_pred_ty<icmp_pred_with_threshold> P;
600   P.Pred = Predicate;
601   P.Thr = &Threshold;
602   return P;
603 }
604 
605 struct is_nan {
606   bool isValue(const APFloat &C) { return C.isNaN(); }
607 };
608 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
609 /// For vectors, this includes constants with undefined elements.
610 inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
611 
612 struct is_nonnan {
613   bool isValue(const APFloat &C) { return !C.isNaN(); }
614 };
615 /// Match a non-NaN FP constant.
616 /// For vectors, this includes constants with undefined elements.
617 inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
618   return cstfp_pred_ty<is_nonnan>();
619 }
620 
621 struct is_inf {
622   bool isValue(const APFloat &C) { return C.isInfinity(); }
623 };
624 /// Match a positive or negative infinity FP constant.
625 /// For vectors, this includes constants with undefined elements.
626 inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
627 
628 struct is_noninf {
629   bool isValue(const APFloat &C) { return !C.isInfinity(); }
630 };
631 /// Match a non-infinity FP constant, i.e. finite or NaN.
632 /// For vectors, this includes constants with undefined elements.
633 inline cstfp_pred_ty<is_noninf> m_NonInf() {
634   return cstfp_pred_ty<is_noninf>();
635 }
636 
637 struct is_finite {
638   bool isValue(const APFloat &C) { return C.isFinite(); }
639 };
640 /// Match a finite FP constant, i.e. not infinity or NaN.
641 /// For vectors, this includes constants with undefined elements.
642 inline cstfp_pred_ty<is_finite> m_Finite() {
643   return cstfp_pred_ty<is_finite>();
644 }
645 inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
646 
647 struct is_finitenonzero {
648   bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
649 };
650 /// Match a finite non-zero FP constant.
651 /// For vectors, this includes constants with undefined elements.
652 inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
653   return cstfp_pred_ty<is_finitenonzero>();
654 }
655 inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
656   return V;
657 }
658 
659 struct is_any_zero_fp {
660   bool isValue(const APFloat &C) { return C.isZero(); }
661 };
662 /// Match a floating-point negative zero or positive zero.
663 /// For vectors, this includes constants with undefined elements.
664 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
665   return cstfp_pred_ty<is_any_zero_fp>();
666 }
667 
668 struct is_pos_zero_fp {
669   bool isValue(const APFloat &C) { return C.isPosZero(); }
670 };
671 /// Match a floating-point positive zero.
672 /// For vectors, this includes constants with undefined elements.
673 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
674   return cstfp_pred_ty<is_pos_zero_fp>();
675 }
676 
677 struct is_neg_zero_fp {
678   bool isValue(const APFloat &C) { return C.isNegZero(); }
679 };
680 /// Match a floating-point negative zero.
681 /// For vectors, this includes constants with undefined elements.
682 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
683   return cstfp_pred_ty<is_neg_zero_fp>();
684 }
685 
686 struct is_non_zero_fp {
687   bool isValue(const APFloat &C) { return C.isNonZero(); }
688 };
689 /// Match a floating-point non-zero.
690 /// For vectors, this includes constants with undefined elements.
691 inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
692   return cstfp_pred_ty<is_non_zero_fp>();
693 }
694 
695 ///////////////////////////////////////////////////////////////////////////////
696 
697 template <typename Class> struct bind_ty {
698   Class *&VR;
699 
700   bind_ty(Class *&V) : VR(V) {}
701 
702   template <typename ITy> bool match(ITy *V) {
703     if (auto *CV = dyn_cast<Class>(V)) {
704       VR = CV;
705       return true;
706     }
707     return false;
708   }
709 };
710 
711 /// Match a value, capturing it if we match.
712 inline bind_ty<Value> m_Value(Value *&V) { return V; }
713 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
714 
715 /// Match an instruction, capturing it if we match.
716 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
717 /// Match a unary operator, capturing it if we match.
718 inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
719 /// Match a binary operator, capturing it if we match.
720 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
721 /// Match a with overflow intrinsic, capturing it if we match.
722 inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
723   return I;
724 }
725 inline bind_ty<const WithOverflowInst>
726 m_WithOverflowInst(const WithOverflowInst *&I) {
727   return I;
728 }
729 
730 /// Match a Constant, capturing the value if we match.
731 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
732 
733 /// Match a ConstantInt, capturing the value if we match.
734 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
735 
736 /// Match a ConstantFP, capturing the value if we match.
737 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
738 
739 /// Match a ConstantExpr, capturing the value if we match.
740 inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
741 
742 /// Match a basic block value, capturing it if we match.
743 inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
744 inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
745   return V;
746 }
747 
748 /// Match an arbitrary immediate Constant and ignore it.
749 inline match_combine_and<class_match<Constant>,
750                          match_unless<constantexpr_match>>
751 m_ImmConstant() {
752   return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
753 }
754 
755 /// Match an immediate Constant, capturing the value if we match.
756 inline match_combine_and<bind_ty<Constant>,
757                          match_unless<constantexpr_match>>
758 m_ImmConstant(Constant *&C) {
759   return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
760 }
761 
762 /// Match a specified Value*.
763 struct specificval_ty {
764   const Value *Val;
765 
766   specificval_ty(const Value *V) : Val(V) {}
767 
768   template <typename ITy> bool match(ITy *V) { return V == Val; }
769 };
770 
771 /// Match if we have a specific specified value.
772 inline specificval_ty m_Specific(const Value *V) { return V; }
773 
774 /// Stores a reference to the Value *, not the Value * itself,
775 /// thus can be used in commutative matchers.
776 template <typename Class> struct deferredval_ty {
777   Class *const &Val;
778 
779   deferredval_ty(Class *const &V) : Val(V) {}
780 
781   template <typename ITy> bool match(ITy *const V) { return V == Val; }
782 };
783 
784 /// Like m_Specific(), but works if the specific value to match is determined
785 /// as part of the same match() expression. For example:
786 /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
787 /// bind X before the pattern match starts.
788 /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
789 /// whichever value m_Value(X) populated.
790 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
791 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
792   return V;
793 }
794 
795 /// Match a specified floating point value or vector of all elements of
796 /// that value.
797 struct specific_fpval {
798   double Val;
799 
800   specific_fpval(double V) : Val(V) {}
801 
802   template <typename ITy> bool match(ITy *V) {
803     if (const auto *CFP = dyn_cast<ConstantFP>(V))
804       return CFP->isExactlyValue(Val);
805     if (V->getType()->isVectorTy())
806       if (const auto *C = dyn_cast<Constant>(V))
807         if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
808           return CFP->isExactlyValue(Val);
809     return false;
810   }
811 };
812 
813 /// Match a specific floating point value or vector with all elements
814 /// equal to the value.
815 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
816 
817 /// Match a float 1.0 or vector with all elements equal to 1.0.
818 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
819 
820 struct bind_const_intval_ty {
821   uint64_t &VR;
822 
823   bind_const_intval_ty(uint64_t &V) : VR(V) {}
824 
825   template <typename ITy> bool match(ITy *V) {
826     if (const auto *CV = dyn_cast<ConstantInt>(V))
827       if (CV->getValue().ule(UINT64_MAX)) {
828         VR = CV->getZExtValue();
829         return true;
830       }
831     return false;
832   }
833 };
834 
835 /// Match a specified integer value or vector of all elements of that
836 /// value.
837 template <bool AllowUndefs> struct specific_intval {
838   APInt Val;
839 
840   specific_intval(APInt V) : Val(std::move(V)) {}
841 
842   template <typename ITy> bool match(ITy *V) {
843     const auto *CI = dyn_cast<ConstantInt>(V);
844     if (!CI && V->getType()->isVectorTy())
845       if (const auto *C = dyn_cast<Constant>(V))
846         CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
847 
848     return CI && APInt::isSameValue(CI->getValue(), Val);
849   }
850 };
851 
852 /// Match a specific integer value or vector with all elements equal to
853 /// the value.
854 inline specific_intval<false> m_SpecificInt(APInt V) {
855   return specific_intval<false>(std::move(V));
856 }
857 
858 inline specific_intval<false> m_SpecificInt(uint64_t V) {
859   return m_SpecificInt(APInt(64, V));
860 }
861 
862 inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
863   return specific_intval<true>(std::move(V));
864 }
865 
866 inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
867   return m_SpecificIntAllowUndef(APInt(64, V));
868 }
869 
870 /// Match a ConstantInt and bind to its value.  This does not match
871 /// ConstantInts wider than 64-bits.
872 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
873 
874 /// Match a specified basic block value.
875 struct specific_bbval {
876   BasicBlock *Val;
877 
878   specific_bbval(BasicBlock *Val) : Val(Val) {}
879 
880   template <typename ITy> bool match(ITy *V) {
881     const auto *BB = dyn_cast<BasicBlock>(V);
882     return BB && BB == Val;
883   }
884 };
885 
886 /// Match a specific basic block value.
887 inline specific_bbval m_SpecificBB(BasicBlock *BB) {
888   return specific_bbval(BB);
889 }
890 
891 /// A commutative-friendly version of m_Specific().
892 inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
893   return BB;
894 }
895 inline deferredval_ty<const BasicBlock>
896 m_Deferred(const BasicBlock *const &BB) {
897   return BB;
898 }
899 
900 //===----------------------------------------------------------------------===//
901 // Matcher for any binary operator.
902 //
903 template <typename LHS_t, typename RHS_t, bool Commutable = false>
904 struct AnyBinaryOp_match {
905   LHS_t L;
906   RHS_t R;
907 
908   // The evaluation order is always stable, regardless of Commutability.
909   // The LHS is always matched first.
910   AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
911 
912   template <typename OpTy> bool match(OpTy *V) {
913     if (auto *I = dyn_cast<BinaryOperator>(V))
914       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
915              (Commutable && L.match(I->getOperand(1)) &&
916               R.match(I->getOperand(0)));
917     return false;
918   }
919 };
920 
921 template <typename LHS, typename RHS>
922 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
923   return AnyBinaryOp_match<LHS, RHS>(L, R);
924 }
925 
926 //===----------------------------------------------------------------------===//
927 // Matcher for any unary operator.
928 // TODO fuse unary, binary matcher into n-ary matcher
929 //
930 template <typename OP_t> struct AnyUnaryOp_match {
931   OP_t X;
932 
933   AnyUnaryOp_match(const OP_t &X) : X(X) {}
934 
935   template <typename OpTy> bool match(OpTy *V) {
936     if (auto *I = dyn_cast<UnaryOperator>(V))
937       return X.match(I->getOperand(0));
938     return false;
939   }
940 };
941 
942 template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
943   return AnyUnaryOp_match<OP_t>(X);
944 }
945 
946 //===----------------------------------------------------------------------===//
947 // Matchers for specific binary operators.
948 //
949 
950 template <typename LHS_t, typename RHS_t, unsigned Opcode,
951           bool Commutable = false>
952 struct BinaryOp_match {
953   LHS_t L;
954   RHS_t R;
955 
956   // The evaluation order is always stable, regardless of Commutability.
957   // The LHS is always matched first.
958   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
959 
960   template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
961     if (V->getValueID() == Value::InstructionVal + Opc) {
962       auto *I = cast<BinaryOperator>(V);
963       return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
964              (Commutable && L.match(I->getOperand(1)) &&
965               R.match(I->getOperand(0)));
966     }
967     if (auto *CE = dyn_cast<ConstantExpr>(V))
968       return CE->getOpcode() == Opc &&
969              ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
970               (Commutable && L.match(CE->getOperand(1)) &&
971                R.match(CE->getOperand(0))));
972     return false;
973   }
974 
975   template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
976 };
977 
978 template <typename LHS, typename RHS>
979 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
980                                                         const RHS &R) {
981   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
982 }
983 
984 template <typename LHS, typename RHS>
985 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
986                                                           const RHS &R) {
987   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
988 }
989 
990 template <typename LHS, typename RHS>
991 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
992                                                         const RHS &R) {
993   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
994 }
995 
996 template <typename LHS, typename RHS>
997 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
998                                                           const RHS &R) {
999   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1000 }
1001 
1002 template <typename Op_t> struct FNeg_match {
1003   Op_t X;
1004 
1005   FNeg_match(const Op_t &Op) : X(Op) {}
1006   template <typename OpTy> bool match(OpTy *V) {
1007     auto *FPMO = dyn_cast<FPMathOperator>(V);
1008     if (!FPMO)
1009       return false;
1010 
1011     if (FPMO->getOpcode() == Instruction::FNeg)
1012       return X.match(FPMO->getOperand(0));
1013 
1014     if (FPMO->getOpcode() == Instruction::FSub) {
1015       if (FPMO->hasNoSignedZeros()) {
1016         // With 'nsz', any zero goes.
1017         if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1018           return false;
1019       } else {
1020         // Without 'nsz', we need fsub -0.0, X exactly.
1021         if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1022           return false;
1023       }
1024 
1025       return X.match(FPMO->getOperand(1));
1026     }
1027 
1028     return false;
1029   }
1030 };
1031 
1032 /// Match 'fneg X' as 'fsub -0.0, X'.
1033 template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1034   return FNeg_match<OpTy>(X);
1035 }
1036 
1037 /// Match 'fneg X' as 'fsub +-0.0, X'.
1038 template <typename RHS>
1039 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1040 m_FNegNSZ(const RHS &X) {
1041   return m_FSub(m_AnyZeroFP(), X);
1042 }
1043 
1044 template <typename LHS, typename RHS>
1045 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1046                                                         const RHS &R) {
1047   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1048 }
1049 
1050 template <typename LHS, typename RHS>
1051 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1052                                                           const RHS &R) {
1053   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1054 }
1055 
1056 template <typename LHS, typename RHS>
1057 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1058                                                           const RHS &R) {
1059   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1060 }
1061 
1062 template <typename LHS, typename RHS>
1063 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1064                                                           const RHS &R) {
1065   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1066 }
1067 
1068 template <typename LHS, typename RHS>
1069 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1070                                                           const RHS &R) {
1071   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1072 }
1073 
1074 template <typename LHS, typename RHS>
1075 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1076                                                           const RHS &R) {
1077   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1078 }
1079 
1080 template <typename LHS, typename RHS>
1081 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1082                                                           const RHS &R) {
1083   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1084 }
1085 
1086 template <typename LHS, typename RHS>
1087 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1088                                                           const RHS &R) {
1089   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1090 }
1091 
1092 template <typename LHS, typename RHS>
1093 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1094                                                         const RHS &R) {
1095   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1096 }
1097 
1098 template <typename LHS, typename RHS>
1099 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1100                                                       const RHS &R) {
1101   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1102 }
1103 
1104 template <typename LHS, typename RHS>
1105 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1106                                                         const RHS &R) {
1107   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1108 }
1109 
1110 template <typename LHS, typename RHS>
1111 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1112                                                         const RHS &R) {
1113   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1114 }
1115 
1116 template <typename LHS, typename RHS>
1117 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1118                                                           const RHS &R) {
1119   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1120 }
1121 
1122 template <typename LHS, typename RHS>
1123 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1124                                                           const RHS &R) {
1125   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1126 }
1127 
1128 template <typename LHS_t, typename RHS_t, unsigned Opcode,
1129           unsigned WrapFlags = 0>
1130 struct OverflowingBinaryOp_match {
1131   LHS_t L;
1132   RHS_t R;
1133 
1134   OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1135       : L(LHS), R(RHS) {}
1136 
1137   template <typename OpTy> bool match(OpTy *V) {
1138     if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1139       if (Op->getOpcode() != Opcode)
1140         return false;
1141       if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1142           !Op->hasNoUnsignedWrap())
1143         return false;
1144       if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1145           !Op->hasNoSignedWrap())
1146         return false;
1147       return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1148     }
1149     return false;
1150   }
1151 };
1152 
1153 template <typename LHS, typename RHS>
1154 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1155                                  OverflowingBinaryOperator::NoSignedWrap>
1156 m_NSWAdd(const LHS &L, const RHS &R) {
1157   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1158                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1159                                                                             R);
1160 }
1161 template <typename LHS, typename RHS>
1162 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1163                                  OverflowingBinaryOperator::NoSignedWrap>
1164 m_NSWSub(const LHS &L, const RHS &R) {
1165   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1166                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1167                                                                             R);
1168 }
1169 template <typename LHS, typename RHS>
1170 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1171                                  OverflowingBinaryOperator::NoSignedWrap>
1172 m_NSWMul(const LHS &L, const RHS &R) {
1173   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1174                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1175                                                                             R);
1176 }
1177 template <typename LHS, typename RHS>
1178 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1179                                  OverflowingBinaryOperator::NoSignedWrap>
1180 m_NSWShl(const LHS &L, const RHS &R) {
1181   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1182                                    OverflowingBinaryOperator::NoSignedWrap>(L,
1183                                                                             R);
1184 }
1185 
1186 template <typename LHS, typename RHS>
1187 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1188                                  OverflowingBinaryOperator::NoUnsignedWrap>
1189 m_NUWAdd(const LHS &L, const RHS &R) {
1190   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1191                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1192       L, R);
1193 }
1194 template <typename LHS, typename RHS>
1195 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1196                                  OverflowingBinaryOperator::NoUnsignedWrap>
1197 m_NUWSub(const LHS &L, const RHS &R) {
1198   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1199                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1200       L, R);
1201 }
1202 template <typename LHS, typename RHS>
1203 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1204                                  OverflowingBinaryOperator::NoUnsignedWrap>
1205 m_NUWMul(const LHS &L, const RHS &R) {
1206   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1207                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1208       L, R);
1209 }
1210 template <typename LHS, typename RHS>
1211 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1212                                  OverflowingBinaryOperator::NoUnsignedWrap>
1213 m_NUWShl(const LHS &L, const RHS &R) {
1214   return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1215                                    OverflowingBinaryOperator::NoUnsignedWrap>(
1216       L, R);
1217 }
1218 
1219 template <typename LHS_t, typename RHS_t, bool Commutable = false>
1220 struct SpecificBinaryOp_match
1221     : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1222   unsigned Opcode;
1223 
1224   SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1225       : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1226 
1227   template <typename OpTy> bool match(OpTy *V) {
1228     return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1229   }
1230 };
1231 
1232 /// Matches a specific opcode.
1233 template <typename LHS, typename RHS>
1234 inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1235                                                 const RHS &R) {
1236   return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1237 }
1238 
1239 //===----------------------------------------------------------------------===//
1240 // Class that matches a group of binary opcodes.
1241 //
1242 template <typename LHS_t, typename RHS_t, typename Predicate>
1243 struct BinOpPred_match : Predicate {
1244   LHS_t L;
1245   RHS_t R;
1246 
1247   BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1248 
1249   template <typename OpTy> bool match(OpTy *V) {
1250     if (auto *I = dyn_cast<Instruction>(V))
1251       return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1252              R.match(I->getOperand(1));
1253     if (auto *CE = dyn_cast<ConstantExpr>(V))
1254       return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1255              R.match(CE->getOperand(1));
1256     return false;
1257   }
1258 };
1259 
1260 struct is_shift_op {
1261   bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1262 };
1263 
1264 struct is_right_shift_op {
1265   bool isOpType(unsigned Opcode) {
1266     return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1267   }
1268 };
1269 
1270 struct is_logical_shift_op {
1271   bool isOpType(unsigned Opcode) {
1272     return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1273   }
1274 };
1275 
1276 struct is_bitwiselogic_op {
1277   bool isOpType(unsigned Opcode) {
1278     return Instruction::isBitwiseLogicOp(Opcode);
1279   }
1280 };
1281 
1282 struct is_idiv_op {
1283   bool isOpType(unsigned Opcode) {
1284     return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1285   }
1286 };
1287 
1288 struct is_irem_op {
1289   bool isOpType(unsigned Opcode) {
1290     return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1291   }
1292 };
1293 
1294 /// Matches shift operations.
1295 template <typename LHS, typename RHS>
1296 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1297                                                       const RHS &R) {
1298   return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1299 }
1300 
1301 /// Matches logical shift operations.
1302 template <typename LHS, typename RHS>
1303 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1304                                                           const RHS &R) {
1305   return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1306 }
1307 
1308 /// Matches logical shift operations.
1309 template <typename LHS, typename RHS>
1310 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1311 m_LogicalShift(const LHS &L, const RHS &R) {
1312   return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1313 }
1314 
1315 /// Matches bitwise logic operations.
1316 template <typename LHS, typename RHS>
1317 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1318 m_BitwiseLogic(const LHS &L, const RHS &R) {
1319   return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1320 }
1321 
1322 /// Matches integer division operations.
1323 template <typename LHS, typename RHS>
1324 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1325                                                     const RHS &R) {
1326   return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1327 }
1328 
1329 /// Matches integer remainder operations.
1330 template <typename LHS, typename RHS>
1331 inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1332                                                     const RHS &R) {
1333   return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1334 }
1335 
1336 //===----------------------------------------------------------------------===//
1337 // Class that matches exact binary ops.
1338 //
1339 template <typename SubPattern_t> struct Exact_match {
1340   SubPattern_t SubPattern;
1341 
1342   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1343 
1344   template <typename OpTy> bool match(OpTy *V) {
1345     if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1346       return PEO->isExact() && SubPattern.match(V);
1347     return false;
1348   }
1349 };
1350 
1351 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1352   return SubPattern;
1353 }
1354 
1355 //===----------------------------------------------------------------------===//
1356 // Matchers for CmpInst classes
1357 //
1358 
1359 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1360           bool Commutable = false>
1361 struct CmpClass_match {
1362   PredicateTy &Predicate;
1363   LHS_t L;
1364   RHS_t R;
1365 
1366   // The evaluation order is always stable, regardless of Commutability.
1367   // The LHS is always matched first.
1368   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1369       : Predicate(Pred), L(LHS), R(RHS) {}
1370 
1371   template <typename OpTy> bool match(OpTy *V) {
1372     if (auto *I = dyn_cast<Class>(V)) {
1373       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1374         Predicate = I->getPredicate();
1375         return true;
1376       } else if (Commutable && L.match(I->getOperand(1)) &&
1377                  R.match(I->getOperand(0))) {
1378         Predicate = I->getSwappedPredicate();
1379         return true;
1380       }
1381     }
1382     return false;
1383   }
1384 };
1385 
1386 template <typename LHS, typename RHS>
1387 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1388 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1389   return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1390 }
1391 
1392 template <typename LHS, typename RHS>
1393 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1394 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1395   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1396 }
1397 
1398 template <typename LHS, typename RHS>
1399 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1400 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1401   return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1402 }
1403 
1404 //===----------------------------------------------------------------------===//
1405 // Matchers for instructions with a given opcode and number of operands.
1406 //
1407 
1408 /// Matches instructions with Opcode and three operands.
1409 template <typename T0, unsigned Opcode> struct OneOps_match {
1410   T0 Op1;
1411 
1412   OneOps_match(const T0 &Op1) : Op1(Op1) {}
1413 
1414   template <typename OpTy> bool match(OpTy *V) {
1415     if (V->getValueID() == Value::InstructionVal + Opcode) {
1416       auto *I = cast<Instruction>(V);
1417       return Op1.match(I->getOperand(0));
1418     }
1419     return false;
1420   }
1421 };
1422 
1423 /// Matches instructions with Opcode and three operands.
1424 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1425   T0 Op1;
1426   T1 Op2;
1427 
1428   TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1429 
1430   template <typename OpTy> bool match(OpTy *V) {
1431     if (V->getValueID() == Value::InstructionVal + Opcode) {
1432       auto *I = cast<Instruction>(V);
1433       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1434     }
1435     return false;
1436   }
1437 };
1438 
1439 /// Matches instructions with Opcode and three operands.
1440 template <typename T0, typename T1, typename T2, unsigned Opcode>
1441 struct ThreeOps_match {
1442   T0 Op1;
1443   T1 Op2;
1444   T2 Op3;
1445 
1446   ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1447       : Op1(Op1), Op2(Op2), Op3(Op3) {}
1448 
1449   template <typename OpTy> bool match(OpTy *V) {
1450     if (V->getValueID() == Value::InstructionVal + Opcode) {
1451       auto *I = cast<Instruction>(V);
1452       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1453              Op3.match(I->getOperand(2));
1454     }
1455     return false;
1456   }
1457 };
1458 
1459 /// Matches SelectInst.
1460 template <typename Cond, typename LHS, typename RHS>
1461 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1462 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1463   return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1464 }
1465 
1466 /// This matches a select of two constants, e.g.:
1467 /// m_SelectCst<-1, 0>(m_Value(V))
1468 template <int64_t L, int64_t R, typename Cond>
1469 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1470                       Instruction::Select>
1471 m_SelectCst(const Cond &C) {
1472   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1473 }
1474 
1475 /// Matches FreezeInst.
1476 template <typename OpTy>
1477 inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1478   return OneOps_match<OpTy, Instruction::Freeze>(Op);
1479 }
1480 
1481 /// Matches InsertElementInst.
1482 template <typename Val_t, typename Elt_t, typename Idx_t>
1483 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1484 m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1485   return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1486       Val, Elt, Idx);
1487 }
1488 
1489 /// Matches ExtractElementInst.
1490 template <typename Val_t, typename Idx_t>
1491 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1492 m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1493   return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1494 }
1495 
1496 /// Matches shuffle.
1497 template <typename T0, typename T1, typename T2> struct Shuffle_match {
1498   T0 Op1;
1499   T1 Op2;
1500   T2 Mask;
1501 
1502   Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1503       : Op1(Op1), Op2(Op2), Mask(Mask) {}
1504 
1505   template <typename OpTy> bool match(OpTy *V) {
1506     if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1507       return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1508              Mask.match(I->getShuffleMask());
1509     }
1510     return false;
1511   }
1512 };
1513 
1514 struct m_Mask {
1515   ArrayRef<int> &MaskRef;
1516   m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1517   bool match(ArrayRef<int> Mask) {
1518     MaskRef = Mask;
1519     return true;
1520   }
1521 };
1522 
1523 struct m_ZeroMask {
1524   bool match(ArrayRef<int> Mask) {
1525     return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1526   }
1527 };
1528 
1529 struct m_SpecificMask {
1530   ArrayRef<int> &MaskRef;
1531   m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1532   bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1533 };
1534 
1535 struct m_SplatOrUndefMask {
1536   int &SplatIndex;
1537   m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1538   bool match(ArrayRef<int> Mask) {
1539     auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1540     if (First == Mask.end())
1541       return false;
1542     SplatIndex = *First;
1543     return all_of(Mask,
1544                   [First](int Elem) { return Elem == *First || Elem == -1; });
1545   }
1546 };
1547 
1548 /// Matches ShuffleVectorInst independently of mask value.
1549 template <typename V1_t, typename V2_t>
1550 inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1551 m_Shuffle(const V1_t &v1, const V2_t &v2) {
1552   return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1553 }
1554 
1555 template <typename V1_t, typename V2_t, typename Mask_t>
1556 inline Shuffle_match<V1_t, V2_t, Mask_t>
1557 m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1558   return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1559 }
1560 
1561 /// Matches LoadInst.
1562 template <typename OpTy>
1563 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1564   return OneOps_match<OpTy, Instruction::Load>(Op);
1565 }
1566 
1567 /// Matches StoreInst.
1568 template <typename ValueOpTy, typename PointerOpTy>
1569 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1570 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1571   return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1572                                                                   PointerOp);
1573 }
1574 
1575 //===----------------------------------------------------------------------===//
1576 // Matchers for CastInst classes
1577 //
1578 
1579 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1580   Op_t Op;
1581 
1582   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1583 
1584   template <typename OpTy> bool match(OpTy *V) {
1585     if (auto *O = dyn_cast<Operator>(V))
1586       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1587     return false;
1588   }
1589 };
1590 
1591 /// Matches BitCast.
1592 template <typename OpTy>
1593 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1594   return CastClass_match<OpTy, Instruction::BitCast>(Op);
1595 }
1596 
1597 /// Matches PtrToInt.
1598 template <typename OpTy>
1599 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1600   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1601 }
1602 
1603 /// Matches IntToPtr.
1604 template <typename OpTy>
1605 inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1606   return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1607 }
1608 
1609 /// Matches Trunc.
1610 template <typename OpTy>
1611 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1612   return CastClass_match<OpTy, Instruction::Trunc>(Op);
1613 }
1614 
1615 template <typename OpTy>
1616 inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1617 m_TruncOrSelf(const OpTy &Op) {
1618   return m_CombineOr(m_Trunc(Op), Op);
1619 }
1620 
1621 /// Matches SExt.
1622 template <typename OpTy>
1623 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1624   return CastClass_match<OpTy, Instruction::SExt>(Op);
1625 }
1626 
1627 /// Matches ZExt.
1628 template <typename OpTy>
1629 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1630   return CastClass_match<OpTy, Instruction::ZExt>(Op);
1631 }
1632 
1633 template <typename OpTy>
1634 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1635 m_ZExtOrSelf(const OpTy &Op) {
1636   return m_CombineOr(m_ZExt(Op), Op);
1637 }
1638 
1639 template <typename OpTy>
1640 inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1641 m_SExtOrSelf(const OpTy &Op) {
1642   return m_CombineOr(m_SExt(Op), Op);
1643 }
1644 
1645 template <typename OpTy>
1646 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1647                         CastClass_match<OpTy, Instruction::SExt>>
1648 m_ZExtOrSExt(const OpTy &Op) {
1649   return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1650 }
1651 
1652 template <typename OpTy>
1653 inline match_combine_or<
1654     match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1655                      CastClass_match<OpTy, Instruction::SExt>>,
1656     OpTy>
1657 m_ZExtOrSExtOrSelf(const OpTy &Op) {
1658   return m_CombineOr(m_ZExtOrSExt(Op), Op);
1659 }
1660 
1661 template <typename OpTy>
1662 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1663   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1664 }
1665 
1666 template <typename OpTy>
1667 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1668   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1669 }
1670 
1671 template <typename OpTy>
1672 inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1673   return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1674 }
1675 
1676 template <typename OpTy>
1677 inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1678   return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1679 }
1680 
1681 template <typename OpTy>
1682 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1683   return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1684 }
1685 
1686 template <typename OpTy>
1687 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1688   return CastClass_match<OpTy, Instruction::FPExt>(Op);
1689 }
1690 
1691 //===----------------------------------------------------------------------===//
1692 // Matchers for control flow.
1693 //
1694 
1695 struct br_match {
1696   BasicBlock *&Succ;
1697 
1698   br_match(BasicBlock *&Succ) : Succ(Succ) {}
1699 
1700   template <typename OpTy> bool match(OpTy *V) {
1701     if (auto *BI = dyn_cast<BranchInst>(V))
1702       if (BI->isUnconditional()) {
1703         Succ = BI->getSuccessor(0);
1704         return true;
1705       }
1706     return false;
1707   }
1708 };
1709 
1710 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1711 
1712 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1713 struct brc_match {
1714   Cond_t Cond;
1715   TrueBlock_t T;
1716   FalseBlock_t F;
1717 
1718   brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1719       : Cond(C), T(t), F(f) {}
1720 
1721   template <typename OpTy> bool match(OpTy *V) {
1722     if (auto *BI = dyn_cast<BranchInst>(V))
1723       if (BI->isConditional() && Cond.match(BI->getCondition()))
1724         return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1725     return false;
1726   }
1727 };
1728 
1729 template <typename Cond_t>
1730 inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1731 m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1732   return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1733       C, m_BasicBlock(T), m_BasicBlock(F));
1734 }
1735 
1736 template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1737 inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1738 m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1739   return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1740 }
1741 
1742 //===----------------------------------------------------------------------===//
1743 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1744 //
1745 
1746 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1747           bool Commutable = false>
1748 struct MaxMin_match {
1749   using PredType = Pred_t;
1750   LHS_t L;
1751   RHS_t R;
1752 
1753   // The evaluation order is always stable, regardless of Commutability.
1754   // The LHS is always matched first.
1755   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1756 
1757   template <typename OpTy> bool match(OpTy *V) {
1758     if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1759       Intrinsic::ID IID = II->getIntrinsicID();
1760       if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1761           (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1762           (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1763           (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1764         Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1765         return (L.match(LHS) && R.match(RHS)) ||
1766                (Commutable && L.match(RHS) && R.match(LHS));
1767       }
1768     }
1769     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1770     auto *SI = dyn_cast<SelectInst>(V);
1771     if (!SI)
1772       return false;
1773     auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1774     if (!Cmp)
1775       return false;
1776     // At this point we have a select conditioned on a comparison.  Check that
1777     // it is the values returned by the select that are being compared.
1778     auto *TrueVal = SI->getTrueValue();
1779     auto *FalseVal = SI->getFalseValue();
1780     auto *LHS = Cmp->getOperand(0);
1781     auto *RHS = Cmp->getOperand(1);
1782     if ((TrueVal != LHS || FalseVal != RHS) &&
1783         (TrueVal != RHS || FalseVal != LHS))
1784       return false;
1785     typename CmpInst_t::Predicate Pred =
1786         LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1787     // Does "(x pred y) ? x : y" represent the desired max/min operation?
1788     if (!Pred_t::match(Pred))
1789       return false;
1790     // It does!  Bind the operands.
1791     return (L.match(LHS) && R.match(RHS)) ||
1792            (Commutable && L.match(RHS) && R.match(LHS));
1793   }
1794 };
1795 
1796 /// Helper class for identifying signed max predicates.
1797 struct smax_pred_ty {
1798   static bool match(ICmpInst::Predicate Pred) {
1799     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1800   }
1801 };
1802 
1803 /// Helper class for identifying signed min predicates.
1804 struct smin_pred_ty {
1805   static bool match(ICmpInst::Predicate Pred) {
1806     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1807   }
1808 };
1809 
1810 /// Helper class for identifying unsigned max predicates.
1811 struct umax_pred_ty {
1812   static bool match(ICmpInst::Predicate Pred) {
1813     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1814   }
1815 };
1816 
1817 /// Helper class for identifying unsigned min predicates.
1818 struct umin_pred_ty {
1819   static bool match(ICmpInst::Predicate Pred) {
1820     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1821   }
1822 };
1823 
1824 /// Helper class for identifying ordered max predicates.
1825 struct ofmax_pred_ty {
1826   static bool match(FCmpInst::Predicate Pred) {
1827     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1828   }
1829 };
1830 
1831 /// Helper class for identifying ordered min predicates.
1832 struct ofmin_pred_ty {
1833   static bool match(FCmpInst::Predicate Pred) {
1834     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1835   }
1836 };
1837 
1838 /// Helper class for identifying unordered max predicates.
1839 struct ufmax_pred_ty {
1840   static bool match(FCmpInst::Predicate Pred) {
1841     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1842   }
1843 };
1844 
1845 /// Helper class for identifying unordered min predicates.
1846 struct ufmin_pred_ty {
1847   static bool match(FCmpInst::Predicate Pred) {
1848     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1849   }
1850 };
1851 
1852 template <typename LHS, typename RHS>
1853 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1854                                                              const RHS &R) {
1855   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1856 }
1857 
1858 template <typename LHS, typename RHS>
1859 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1860                                                              const RHS &R) {
1861   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1862 }
1863 
1864 template <typename LHS, typename RHS>
1865 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1866                                                              const RHS &R) {
1867   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1868 }
1869 
1870 template <typename LHS, typename RHS>
1871 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1872                                                              const RHS &R) {
1873   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1874 }
1875 
1876 template <typename LHS, typename RHS>
1877 inline match_combine_or<
1878     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1879                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1880     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1881                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1882 m_MaxOrMin(const LHS &L, const RHS &R) {
1883   return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1884                      m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1885 }
1886 
1887 /// Match an 'ordered' floating point maximum function.
1888 /// Floating point has one special value 'NaN'. Therefore, there is no total
1889 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1890 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1891 /// semantics. In the presence of 'NaN' we have to preserve the original
1892 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1893 ///
1894 ///                         max(L, R)  iff L and R are not NaN
1895 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1896 template <typename LHS, typename RHS>
1897 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1898                                                                  const RHS &R) {
1899   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1900 }
1901 
1902 /// Match an 'ordered' floating point minimum function.
1903 /// Floating point has one special value 'NaN'. Therefore, there is no total
1904 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1905 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1906 /// semantics. In the presence of 'NaN' we have to preserve the original
1907 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1908 ///
1909 ///                         min(L, R)  iff L and R are not NaN
1910 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1911 template <typename LHS, typename RHS>
1912 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1913                                                                  const RHS &R) {
1914   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1915 }
1916 
1917 /// Match an 'unordered' floating point maximum function.
1918 /// Floating point has one special value 'NaN'. Therefore, there is no total
1919 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1920 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1921 /// semantics. In the presence of 'NaN' we have to preserve the original
1922 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1923 ///
1924 ///                         max(L, R)  iff L and R are not NaN
1925 ///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1926 template <typename LHS, typename RHS>
1927 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1928 m_UnordFMax(const LHS &L, const RHS &R) {
1929   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1930 }
1931 
1932 /// Match an 'unordered' floating point minimum function.
1933 /// Floating point has one special value 'NaN'. Therefore, there is no total
1934 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1935 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1936 /// semantics. In the presence of 'NaN' we have to preserve the original
1937 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1938 ///
1939 ///                          min(L, R)  iff L and R are not NaN
1940 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1941 template <typename LHS, typename RHS>
1942 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1943 m_UnordFMin(const LHS &L, const RHS &R) {
1944   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1945 }
1946 
1947 //===----------------------------------------------------------------------===//
1948 // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1949 // Note that S might be matched to other instructions than AddInst.
1950 //
1951 
1952 template <typename LHS_t, typename RHS_t, typename Sum_t>
1953 struct UAddWithOverflow_match {
1954   LHS_t L;
1955   RHS_t R;
1956   Sum_t S;
1957 
1958   UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1959       : L(L), R(R), S(S) {}
1960 
1961   template <typename OpTy> bool match(OpTy *V) {
1962     Value *ICmpLHS, *ICmpRHS;
1963     ICmpInst::Predicate Pred;
1964     if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1965       return false;
1966 
1967     Value *AddLHS, *AddRHS;
1968     auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1969 
1970     // (a + b) u< a, (a + b) u< b
1971     if (Pred == ICmpInst::ICMP_ULT)
1972       if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1973         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1974 
1975     // a >u (a + b), b >u (a + b)
1976     if (Pred == ICmpInst::ICMP_UGT)
1977       if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1978         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1979 
1980     Value *Op1;
1981     auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1982     // (a ^ -1) <u b
1983     if (Pred == ICmpInst::ICMP_ULT) {
1984       if (XorExpr.match(ICmpLHS))
1985         return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1986     }
1987     //  b > u (a ^ -1)
1988     if (Pred == ICmpInst::ICMP_UGT) {
1989       if (XorExpr.match(ICmpRHS))
1990         return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1991     }
1992 
1993     // Match special-case for increment-by-1.
1994     if (Pred == ICmpInst::ICMP_EQ) {
1995       // (a + 1) == 0
1996       // (1 + a) == 0
1997       if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1998           (m_One().match(AddLHS) || m_One().match(AddRHS)))
1999         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2000       // 0 == (a + 1)
2001       // 0 == (1 + a)
2002       if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2003           (m_One().match(AddLHS) || m_One().match(AddRHS)))
2004         return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2005     }
2006 
2007     return false;
2008   }
2009 };
2010 
2011 /// Match an icmp instruction checking for unsigned overflow on addition.
2012 ///
2013 /// S is matched to the addition whose result is being checked for overflow, and
2014 /// L and R are matched to the LHS and RHS of S.
2015 template <typename LHS_t, typename RHS_t, typename Sum_t>
2016 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2017 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2018   return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2019 }
2020 
2021 template <typename Opnd_t> struct Argument_match {
2022   unsigned OpI;
2023   Opnd_t Val;
2024 
2025   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2026 
2027   template <typename OpTy> bool match(OpTy *V) {
2028     // FIXME: Should likely be switched to use `CallBase`.
2029     if (const auto *CI = dyn_cast<CallInst>(V))
2030       return Val.match(CI->getArgOperand(OpI));
2031     return false;
2032   }
2033 };
2034 
2035 /// Match an argument.
2036 template <unsigned OpI, typename Opnd_t>
2037 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2038   return Argument_match<Opnd_t>(OpI, Op);
2039 }
2040 
2041 /// Intrinsic matchers.
2042 struct IntrinsicID_match {
2043   unsigned ID;
2044 
2045   IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2046 
2047   template <typename OpTy> bool match(OpTy *V) {
2048     if (const auto *CI = dyn_cast<CallInst>(V))
2049       if (const auto *F = CI->getCalledFunction())
2050         return F->getIntrinsicID() == ID;
2051     return false;
2052   }
2053 };
2054 
2055 /// Intrinsic matches are combinations of ID matchers, and argument
2056 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
2057 /// them with lower arity matchers. Here's some convenient typedefs for up to
2058 /// several arguments, and more can be added as needed
2059 template <typename T0 = void, typename T1 = void, typename T2 = void,
2060           typename T3 = void, typename T4 = void, typename T5 = void,
2061           typename T6 = void, typename T7 = void, typename T8 = void,
2062           typename T9 = void, typename T10 = void>
2063 struct m_Intrinsic_Ty;
2064 template <typename T0> struct m_Intrinsic_Ty<T0> {
2065   using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2066 };
2067 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2068   using Ty =
2069       match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2070 };
2071 template <typename T0, typename T1, typename T2>
2072 struct m_Intrinsic_Ty<T0, T1, T2> {
2073   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2074                                Argument_match<T2>>;
2075 };
2076 template <typename T0, typename T1, typename T2, typename T3>
2077 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2078   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2079                                Argument_match<T3>>;
2080 };
2081 
2082 template <typename T0, typename T1, typename T2, typename T3, typename T4>
2083 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2084   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2085                                Argument_match<T4>>;
2086 };
2087 
2088 template <typename T0, typename T1, typename T2, typename T3, typename T4,
2089           typename T5>
2090 struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2091   using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2092                                Argument_match<T5>>;
2093 };
2094 
2095 /// Match intrinsic calls like this:
2096 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2097 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2098   return IntrinsicID_match(IntrID);
2099 }
2100 
2101 /// Matches MaskedLoad Intrinsic.
2102 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2103 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2104 m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2105              const Opnd3 &Op3) {
2106   return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2107 }
2108 
2109 /// Matches MaskedGather Intrinsic.
2110 template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2111 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2112 m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2113                const Opnd3 &Op3) {
2114   return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2115 }
2116 
2117 template <Intrinsic::ID IntrID, typename T0>
2118 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2119   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2120 }
2121 
2122 template <Intrinsic::ID IntrID, typename T0, typename T1>
2123 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2124                                                        const T1 &Op1) {
2125   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2126 }
2127 
2128 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2129 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2130 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2131   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2132 }
2133 
2134 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2135           typename T3>
2136 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2137 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2138   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2139 }
2140 
2141 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2142           typename T3, typename T4>
2143 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2144 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2145             const T4 &Op4) {
2146   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2147                       m_Argument<4>(Op4));
2148 }
2149 
2150 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2151           typename T3, typename T4, typename T5>
2152 inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2153 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2154             const T4 &Op4, const T5 &Op5) {
2155   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2156                       m_Argument<5>(Op5));
2157 }
2158 
2159 // Helper intrinsic matching specializations.
2160 template <typename Opnd0>
2161 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2162   return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2163 }
2164 
2165 template <typename Opnd0>
2166 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2167   return m_Intrinsic<Intrinsic::bswap>(Op0);
2168 }
2169 
2170 template <typename Opnd0>
2171 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2172   return m_Intrinsic<Intrinsic::fabs>(Op0);
2173 }
2174 
2175 template <typename Opnd0>
2176 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2177   return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2178 }
2179 
2180 template <typename Opnd0, typename Opnd1>
2181 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2182                                                         const Opnd1 &Op1) {
2183   return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2184 }
2185 
2186 template <typename Opnd0, typename Opnd1>
2187 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2188                                                         const Opnd1 &Op1) {
2189   return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2190 }
2191 
2192 template <typename Opnd0, typename Opnd1, typename Opnd2>
2193 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2194 m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2195   return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2196 }
2197 
2198 template <typename Opnd0, typename Opnd1, typename Opnd2>
2199 inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2200 m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2201   return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2202 }
2203 
2204 template <typename Opnd0>
2205 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2206   return m_Intrinsic<Intrinsic::sqrt>(Op0);
2207 }
2208 
2209 template <typename Opnd0, typename Opnd1>
2210 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2211                                                             const Opnd1 &Op1) {
2212   return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2213 }
2214 
2215 template <typename Opnd0>
2216 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2217   return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2218 }
2219 
2220 //===----------------------------------------------------------------------===//
2221 // Matchers for two-operands operators with the operators in either order
2222 //
2223 
2224 /// Matches a BinaryOperator with LHS and RHS in either order.
2225 template <typename LHS, typename RHS>
2226 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2227   return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2228 }
2229 
2230 /// Matches an ICmp with a predicate over LHS and RHS in either order.
2231 /// Swaps the predicate if operands are commuted.
2232 template <typename LHS, typename RHS>
2233 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2234 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2235   return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2236                                                                        R);
2237 }
2238 
2239 /// Matches a specific opcode with LHS and RHS in either order.
2240 template <typename LHS, typename RHS>
2241 inline SpecificBinaryOp_match<LHS, RHS, true>
2242 m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2243   return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2244 }
2245 
2246 /// Matches a Add with LHS and RHS in either order.
2247 template <typename LHS, typename RHS>
2248 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2249                                                                 const RHS &R) {
2250   return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2251 }
2252 
2253 /// Matches a Mul with LHS and RHS in either order.
2254 template <typename LHS, typename RHS>
2255 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2256                                                                 const RHS &R) {
2257   return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2258 }
2259 
2260 /// Matches an And with LHS and RHS in either order.
2261 template <typename LHS, typename RHS>
2262 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2263                                                                 const RHS &R) {
2264   return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2265 }
2266 
2267 /// Matches an Or with LHS and RHS in either order.
2268 template <typename LHS, typename RHS>
2269 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2270                                                               const RHS &R) {
2271   return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2272 }
2273 
2274 /// Matches an Xor with LHS and RHS in either order.
2275 template <typename LHS, typename RHS>
2276 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2277                                                                 const RHS &R) {
2278   return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2279 }
2280 
2281 /// Matches a 'Neg' as 'sub 0, V'.
2282 template <typename ValTy>
2283 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2284 m_Neg(const ValTy &V) {
2285   return m_Sub(m_ZeroInt(), V);
2286 }
2287 
2288 /// Matches a 'Neg' as 'sub nsw 0, V'.
2289 template <typename ValTy>
2290 inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2291                                  Instruction::Sub,
2292                                  OverflowingBinaryOperator::NoSignedWrap>
2293 m_NSWNeg(const ValTy &V) {
2294   return m_NSWSub(m_ZeroInt(), V);
2295 }
2296 
2297 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2298 /// NOTE: we first match the 'Not' (by matching '-1'),
2299 /// and only then match the inner matcher!
2300 template <typename ValTy>
2301 inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2302 m_Not(const ValTy &V) {
2303   return m_c_Xor(m_AllOnes(), V);
2304 }
2305 
2306 template <typename ValTy> struct NotForbidUndef_match {
2307   ValTy Val;
2308   NotForbidUndef_match(const ValTy &V) : Val(V) {}
2309 
2310   template <typename OpTy> bool match(OpTy *V) {
2311     // We do not use m_c_Xor because that could match an arbitrary APInt that is
2312     // not -1 as C and then fail to match the other operand if it is -1.
2313     // This code should still work even when both operands are constants.
2314     Value *X;
2315     const APInt *C;
2316     if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2317       return Val.match(X);
2318     if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2319       return Val.match(X);
2320     return false;
2321   }
2322 };
2323 
2324 /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2325 /// constant value must be composed of only -1 scalar elements.
2326 template <typename ValTy>
2327 inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2328   return NotForbidUndef_match<ValTy>(V);
2329 }
2330 
2331 /// Matches an SMin with LHS and RHS in either order.
2332 template <typename LHS, typename RHS>
2333 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2334 m_c_SMin(const LHS &L, const RHS &R) {
2335   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2336 }
2337 /// Matches an SMax with LHS and RHS in either order.
2338 template <typename LHS, typename RHS>
2339 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2340 m_c_SMax(const LHS &L, const RHS &R) {
2341   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2342 }
2343 /// Matches a UMin with LHS and RHS in either order.
2344 template <typename LHS, typename RHS>
2345 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2346 m_c_UMin(const LHS &L, const RHS &R) {
2347   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2348 }
2349 /// Matches a UMax with LHS and RHS in either order.
2350 template <typename LHS, typename RHS>
2351 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2352 m_c_UMax(const LHS &L, const RHS &R) {
2353   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2354 }
2355 
2356 template <typename LHS, typename RHS>
2357 inline match_combine_or<
2358     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2359                      MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2360     match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2361                      MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2362 m_c_MaxOrMin(const LHS &L, const RHS &R) {
2363   return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2364                      m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2365 }
2366 
2367 /// Matches FAdd with LHS and RHS in either order.
2368 template <typename LHS, typename RHS>
2369 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2370 m_c_FAdd(const LHS &L, const RHS &R) {
2371   return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2372 }
2373 
2374 /// Matches FMul with LHS and RHS in either order.
2375 template <typename LHS, typename RHS>
2376 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2377 m_c_FMul(const LHS &L, const RHS &R) {
2378   return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2379 }
2380 
2381 template <typename Opnd_t> struct Signum_match {
2382   Opnd_t Val;
2383   Signum_match(const Opnd_t &V) : Val(V) {}
2384 
2385   template <typename OpTy> bool match(OpTy *V) {
2386     unsigned TypeSize = V->getType()->getScalarSizeInBits();
2387     if (TypeSize == 0)
2388       return false;
2389 
2390     unsigned ShiftWidth = TypeSize - 1;
2391     Value *OpL = nullptr, *OpR = nullptr;
2392 
2393     // This is the representation of signum we match:
2394     //
2395     //  signum(x) == (x >> 63) | (-x >>u 63)
2396     //
2397     // An i1 value is its own signum, so it's correct to match
2398     //
2399     //  signum(x) == (x >> 0)  | (-x >>u 0)
2400     //
2401     // for i1 values.
2402 
2403     auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2404     auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2405     auto Signum = m_Or(LHS, RHS);
2406 
2407     return Signum.match(V) && OpL == OpR && Val.match(OpL);
2408   }
2409 };
2410 
2411 /// Matches a signum pattern.
2412 ///
2413 /// signum(x) =
2414 ///      x >  0  ->  1
2415 ///      x == 0  ->  0
2416 ///      x <  0  -> -1
2417 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2418   return Signum_match<Val_t>(V);
2419 }
2420 
2421 template <int Ind, typename Opnd_t> struct ExtractValue_match {
2422   Opnd_t Val;
2423   ExtractValue_match(const Opnd_t &V) : Val(V) {}
2424 
2425   template <typename OpTy> bool match(OpTy *V) {
2426     if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2427       // If Ind is -1, don't inspect indices
2428       if (Ind != -1 &&
2429           !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2430         return false;
2431       return Val.match(I->getAggregateOperand());
2432     }
2433     return false;
2434   }
2435 };
2436 
2437 /// Match a single index ExtractValue instruction.
2438 /// For example m_ExtractValue<1>(...)
2439 template <int Ind, typename Val_t>
2440 inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2441   return ExtractValue_match<Ind, Val_t>(V);
2442 }
2443 
2444 /// Match an ExtractValue instruction with any index.
2445 /// For example m_ExtractValue(...)
2446 template <typename Val_t>
2447 inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2448   return ExtractValue_match<-1, Val_t>(V);
2449 }
2450 
2451 /// Matcher for a single index InsertValue instruction.
2452 template <int Ind, typename T0, typename T1> struct InsertValue_match {
2453   T0 Op0;
2454   T1 Op1;
2455 
2456   InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2457 
2458   template <typename OpTy> bool match(OpTy *V) {
2459     if (auto *I = dyn_cast<InsertValueInst>(V)) {
2460       return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2461              I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2462     }
2463     return false;
2464   }
2465 };
2466 
2467 /// Matches a single index InsertValue instruction.
2468 template <int Ind, typename Val_t, typename Elt_t>
2469 inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2470                                                           const Elt_t &Elt) {
2471   return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2472 }
2473 
2474 /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2475 /// the constant expression
2476 ///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2477 /// under the right conditions determined by DataLayout.
2478 struct VScaleVal_match {
2479   const DataLayout &DL;
2480   VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2481 
2482   template <typename ITy> bool match(ITy *V) {
2483     if (m_Intrinsic<Intrinsic::vscale>().match(V))
2484       return true;
2485 
2486     Value *Ptr;
2487     if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2488       if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2489         auto *DerefTy = GEP->getSourceElementType();
2490         if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2491             m_Zero().match(GEP->getPointerOperand()) &&
2492             m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2493             DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8)
2494           return true;
2495       }
2496     }
2497 
2498     return false;
2499   }
2500 };
2501 
2502 inline VScaleVal_match m_VScale(const DataLayout &DL) {
2503   return VScaleVal_match(DL);
2504 }
2505 
2506 template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2507 struct LogicalOp_match {
2508   LHS L;
2509   RHS R;
2510 
2511   LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2512 
2513   template <typename T> bool match(T *V) {
2514     auto *I = dyn_cast<Instruction>(V);
2515     if (!I || !I->getType()->isIntOrIntVectorTy(1))
2516       return false;
2517 
2518     if (I->getOpcode() == Opcode) {
2519       auto *Op0 = I->getOperand(0);
2520       auto *Op1 = I->getOperand(1);
2521       return (L.match(Op0) && R.match(Op1)) ||
2522              (Commutable && L.match(Op1) && R.match(Op0));
2523     }
2524 
2525     if (auto *Select = dyn_cast<SelectInst>(I)) {
2526       auto *Cond = Select->getCondition();
2527       auto *TVal = Select->getTrueValue();
2528       auto *FVal = Select->getFalseValue();
2529 
2530       // Don't match a scalar select of bool vectors.
2531       // Transforms expect a single type for operands if this matches.
2532       if (Cond->getType() != Select->getType())
2533         return false;
2534 
2535       if (Opcode == Instruction::And) {
2536         auto *C = dyn_cast<Constant>(FVal);
2537         if (C && C->isNullValue())
2538           return (L.match(Cond) && R.match(TVal)) ||
2539                  (Commutable && L.match(TVal) && R.match(Cond));
2540       } else {
2541         assert(Opcode == Instruction::Or);
2542         auto *C = dyn_cast<Constant>(TVal);
2543         if (C && C->isOneValue())
2544           return (L.match(Cond) && R.match(FVal)) ||
2545                  (Commutable && L.match(FVal) && R.match(Cond));
2546       }
2547     }
2548 
2549     return false;
2550   }
2551 };
2552 
2553 /// Matches L && R either in the form of L & R or L ? R : false.
2554 /// Note that the latter form is poison-blocking.
2555 template <typename LHS, typename RHS>
2556 inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2557                                                                 const RHS &R) {
2558   return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2559 }
2560 
2561 /// Matches L && R where L and R are arbitrary values.
2562 inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2563 
2564 /// Matches L && R with LHS and RHS in either order.
2565 template <typename LHS, typename RHS>
2566 inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2567 m_c_LogicalAnd(const LHS &L, const RHS &R) {
2568   return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2569 }
2570 
2571 /// Matches L || R either in the form of L | R or L ? true : R.
2572 /// Note that the latter form is poison-blocking.
2573 template <typename LHS, typename RHS>
2574 inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2575                                                               const RHS &R) {
2576   return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2577 }
2578 
2579 /// Matches L || R where L and R are arbitrary values.
2580 inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2581 
2582 /// Matches L || R with LHS and RHS in either order.
2583 template <typename LHS, typename RHS>
2584 inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2585 m_c_LogicalOr(const LHS &L, const RHS &R) {
2586   return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2587 }
2588 
2589 /// Matches either L && R or L || R,
2590 /// either one being in the either binary or logical form.
2591 /// Note that the latter form is poison-blocking.
2592 template <typename LHS, typename RHS, bool Commutable = false>
2593 inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2594   return m_CombineOr(
2595       LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2596       LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2597 }
2598 
2599 /// Matches either L && R or L || R where L and R are arbitrary values.
2600 inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
2601 
2602 /// Matches either L && R or L || R with LHS and RHS in either order.
2603 template <typename LHS, typename RHS>
2604 inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2605   return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2606 }
2607 
2608 } // end namespace PatternMatch
2609 } // end namespace llvm
2610 
2611 #endif // LLVM_IR_PATTERNMATCH_H
2612