xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Instructions.h (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class.  This is meant to be an easy way to get access to all
11 // instruction subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Bitfields.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/OperandTraits.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Use.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include <cassert>
46 #include <cstddef>
47 #include <cstdint>
48 #include <iterator>
49 
50 namespace llvm {
51 
52 class APInt;
53 class ConstantInt;
54 class DataLayout;
55 class LLVMContext;
56 
57 //===----------------------------------------------------------------------===//
58 //                                AllocaInst Class
59 //===----------------------------------------------------------------------===//
60 
61 /// an instruction to allocate memory on the stack
62 class AllocaInst : public UnaryInstruction {
63   Type *AllocatedType;
64 
65   using AlignmentField = AlignmentBitfieldElementT<0>;
66   using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67   using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68   static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69                                         SwiftErrorField>(),
70                 "Bitfields must be contiguous");
71 
72 protected:
73   // Note: Instruction needs to be a friend here to call cloneImpl.
74   friend class Instruction;
75 
76   AllocaInst *cloneImpl() const;
77 
78 public:
79   explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80                       const Twine &Name, Instruction *InsertBefore);
81   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82              const Twine &Name, BasicBlock *InsertAtEnd);
83 
84   AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85              Instruction *InsertBefore);
86   AllocaInst(Type *Ty, unsigned AddrSpace,
87              const Twine &Name, BasicBlock *InsertAtEnd);
88 
89   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90              const Twine &Name = "", Instruction *InsertBefore = nullptr);
91   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92              const Twine &Name, BasicBlock *InsertAtEnd);
93 
94   /// Return true if there is an allocation size parameter to the allocation
95   /// instruction that is not 1.
96   bool isArrayAllocation() const;
97 
98   /// Get the number of elements allocated. For a simple allocation of a single
99   /// element, this will return a constant 1 value.
100   const Value *getArraySize() const { return getOperand(0); }
101   Value *getArraySize() { return getOperand(0); }
102 
103   /// Overload to return most specific pointer type.
104   PointerType *getType() const {
105     return cast<PointerType>(Instruction::getType());
106   }
107 
108   /// Get allocation size in bits. Returns None if size can't be determined,
109   /// e.g. in case of a VLA.
110   Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111 
112   /// Return the type that is being allocated by the instruction.
113   Type *getAllocatedType() const { return AllocatedType; }
114   /// for use only in special circumstances that need to generically
115   /// transform a whole instruction (eg: IR linking and vectorization).
116   void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117 
118   /// Return the alignment of the memory that is being allocated by the
119   /// instruction.
120   Align getAlign() const {
121     return Align(1ULL << getSubclassData<AlignmentField>());
122   }
123 
124   void setAlignment(Align Align) {
125     setSubclassData<AlignmentField>(Log2(Align));
126   }
127 
128   // FIXME: Remove this one transition to Align is over.
129   unsigned getAlignment() const { return getAlign().value(); }
130 
131   /// Return true if this alloca is in the entry block of the function and is a
132   /// constant size. If so, the code generator will fold it into the
133   /// prolog/epilog code, so it is basically free.
134   bool isStaticAlloca() const;
135 
136   /// Return true if this alloca is used as an inalloca argument to a call. Such
137   /// allocas are never considered static even if they are in the entry block.
138   bool isUsedWithInAlloca() const {
139     return getSubclassData<UsedWithInAllocaField>();
140   }
141 
142   /// Specify whether this alloca is used to represent the arguments to a call.
143   void setUsedWithInAlloca(bool V) {
144     setSubclassData<UsedWithInAllocaField>(V);
145   }
146 
147   /// Return true if this alloca is used as a swifterror argument to a call.
148   bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149   /// Specify whether this alloca is used to represent a swifterror.
150   void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151 
152   // Methods for support type inquiry through isa, cast, and dyn_cast:
153   static bool classof(const Instruction *I) {
154     return (I->getOpcode() == Instruction::Alloca);
155   }
156   static bool classof(const Value *V) {
157     return isa<Instruction>(V) && classof(cast<Instruction>(V));
158   }
159 
160 private:
161   // Shadow Instruction::setInstructionSubclassData with a private forwarding
162   // method so that subclasses cannot accidentally use it.
163   template <typename Bitfield>
164   void setSubclassData(typename Bitfield::Type Value) {
165     Instruction::setSubclassData<Bitfield>(Value);
166   }
167 };
168 
169 //===----------------------------------------------------------------------===//
170 //                                LoadInst Class
171 //===----------------------------------------------------------------------===//
172 
173 /// An instruction for reading from memory. This uses the SubclassData field in
174 /// Value to store whether or not the load is volatile.
175 class LoadInst : public UnaryInstruction {
176   using VolatileField = BoolBitfieldElementT<0>;
177   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179   static_assert(
180       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181       "Bitfields must be contiguous");
182 
183   void AssertOK();
184 
185 protected:
186   // Note: Instruction needs to be a friend here to call cloneImpl.
187   friend class Instruction;
188 
189   LoadInst *cloneImpl() const;
190 
191 public:
192   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193            Instruction *InsertBefore);
194   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196            Instruction *InsertBefore);
197   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198            BasicBlock *InsertAtEnd);
199   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200            Align Align, Instruction *InsertBefore = nullptr);
201   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202            Align Align, BasicBlock *InsertAtEnd);
203   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204            Align Align, AtomicOrdering Order,
205            SyncScope::ID SSID = SyncScope::System,
206            Instruction *InsertBefore = nullptr);
207   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208            Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209            BasicBlock *InsertAtEnd);
210 
211   /// Return true if this is a load from a volatile memory location.
212   bool isVolatile() const { return getSubclassData<VolatileField>(); }
213 
214   /// Specify whether this is a volatile load or not.
215   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216 
217   /// Return the alignment of the access that is being performed.
218   /// FIXME: Remove this function once transition to Align is over.
219   /// Use getAlign() instead.
220   unsigned getAlignment() const { return getAlign().value(); }
221 
222   /// Return the alignment of the access that is being performed.
223   Align getAlign() const {
224     return Align(1ULL << (getSubclassData<AlignmentField>()));
225   }
226 
227   void setAlignment(Align Align) {
228     setSubclassData<AlignmentField>(Log2(Align));
229   }
230 
231   /// Returns the ordering constraint of this load instruction.
232   AtomicOrdering getOrdering() const {
233     return getSubclassData<OrderingField>();
234   }
235   /// Sets the ordering constraint of this load instruction.  May not be Release
236   /// or AcquireRelease.
237   void setOrdering(AtomicOrdering Ordering) {
238     setSubclassData<OrderingField>(Ordering);
239   }
240 
241   /// Returns the synchronization scope ID of this load instruction.
242   SyncScope::ID getSyncScopeID() const {
243     return SSID;
244   }
245 
246   /// Sets the synchronization scope ID of this load instruction.
247   void setSyncScopeID(SyncScope::ID SSID) {
248     this->SSID = SSID;
249   }
250 
251   /// Sets the ordering constraint and the synchronization scope ID of this load
252   /// instruction.
253   void setAtomic(AtomicOrdering Ordering,
254                  SyncScope::ID SSID = SyncScope::System) {
255     setOrdering(Ordering);
256     setSyncScopeID(SSID);
257   }
258 
259   bool isSimple() const { return !isAtomic() && !isVolatile(); }
260 
261   bool isUnordered() const {
262     return (getOrdering() == AtomicOrdering::NotAtomic ||
263             getOrdering() == AtomicOrdering::Unordered) &&
264            !isVolatile();
265   }
266 
267   Value *getPointerOperand() { return getOperand(0); }
268   const Value *getPointerOperand() const { return getOperand(0); }
269   static unsigned getPointerOperandIndex() { return 0U; }
270   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271 
272   /// Returns the address space of the pointer operand.
273   unsigned getPointerAddressSpace() const {
274     return getPointerOperandType()->getPointerAddressSpace();
275   }
276 
277   // Methods for support type inquiry through isa, cast, and dyn_cast:
278   static bool classof(const Instruction *I) {
279     return I->getOpcode() == Instruction::Load;
280   }
281   static bool classof(const Value *V) {
282     return isa<Instruction>(V) && classof(cast<Instruction>(V));
283   }
284 
285 private:
286   // Shadow Instruction::setInstructionSubclassData with a private forwarding
287   // method so that subclasses cannot accidentally use it.
288   template <typename Bitfield>
289   void setSubclassData(typename Bitfield::Type Value) {
290     Instruction::setSubclassData<Bitfield>(Value);
291   }
292 
293   /// The synchronization scope ID of this load instruction.  Not quite enough
294   /// room in SubClassData for everything, so synchronization scope ID gets its
295   /// own field.
296   SyncScope::ID SSID;
297 };
298 
299 //===----------------------------------------------------------------------===//
300 //                                StoreInst Class
301 //===----------------------------------------------------------------------===//
302 
303 /// An instruction for storing to memory.
304 class StoreInst : public Instruction {
305   using VolatileField = BoolBitfieldElementT<0>;
306   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308   static_assert(
309       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310       "Bitfields must be contiguous");
311 
312   void AssertOK();
313 
314 protected:
315   // Note: Instruction needs to be a friend here to call cloneImpl.
316   friend class Instruction;
317 
318   StoreInst *cloneImpl() const;
319 
320 public:
321   StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322   StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324   StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326             Instruction *InsertBefore = nullptr);
327   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328             BasicBlock *InsertAtEnd);
329   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330             AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331             Instruction *InsertBefore = nullptr);
332   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333             AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334 
335   // allocate space for exactly two operands
336   void *operator new(size_t S) { return User::operator new(S, 2); }
337   void operator delete(void *Ptr) { User::operator delete(Ptr); }
338 
339   /// Return true if this is a store to a volatile memory location.
340   bool isVolatile() const { return getSubclassData<VolatileField>(); }
341 
342   /// Specify whether this is a volatile store or not.
343   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344 
345   /// Transparently provide more efficient getOperand methods.
346   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
347 
348   /// Return the alignment of the access that is being performed
349   /// FIXME: Remove this function once transition to Align is over.
350   /// Use getAlign() instead.
351   unsigned getAlignment() const { return getAlign().value(); }
352 
353   Align getAlign() const {
354     return Align(1ULL << (getSubclassData<AlignmentField>()));
355   }
356 
357   void setAlignment(Align Align) {
358     setSubclassData<AlignmentField>(Log2(Align));
359   }
360 
361   /// Returns the ordering constraint of this store instruction.
362   AtomicOrdering getOrdering() const {
363     return getSubclassData<OrderingField>();
364   }
365 
366   /// Sets the ordering constraint of this store instruction.  May not be
367   /// Acquire or AcquireRelease.
368   void setOrdering(AtomicOrdering Ordering) {
369     setSubclassData<OrderingField>(Ordering);
370   }
371 
372   /// Returns the synchronization scope ID of this store instruction.
373   SyncScope::ID getSyncScopeID() const {
374     return SSID;
375   }
376 
377   /// Sets the synchronization scope ID of this store instruction.
378   void setSyncScopeID(SyncScope::ID SSID) {
379     this->SSID = SSID;
380   }
381 
382   /// Sets the ordering constraint and the synchronization scope ID of this
383   /// store instruction.
384   void setAtomic(AtomicOrdering Ordering,
385                  SyncScope::ID SSID = SyncScope::System) {
386     setOrdering(Ordering);
387     setSyncScopeID(SSID);
388   }
389 
390   bool isSimple() const { return !isAtomic() && !isVolatile(); }
391 
392   bool isUnordered() const {
393     return (getOrdering() == AtomicOrdering::NotAtomic ||
394             getOrdering() == AtomicOrdering::Unordered) &&
395            !isVolatile();
396   }
397 
398   Value *getValueOperand() { return getOperand(0); }
399   const Value *getValueOperand() const { return getOperand(0); }
400 
401   Value *getPointerOperand() { return getOperand(1); }
402   const Value *getPointerOperand() const { return getOperand(1); }
403   static unsigned getPointerOperandIndex() { return 1U; }
404   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405 
406   /// Returns the address space of the pointer operand.
407   unsigned getPointerAddressSpace() const {
408     return getPointerOperandType()->getPointerAddressSpace();
409   }
410 
411   // Methods for support type inquiry through isa, cast, and dyn_cast:
412   static bool classof(const Instruction *I) {
413     return I->getOpcode() == Instruction::Store;
414   }
415   static bool classof(const Value *V) {
416     return isa<Instruction>(V) && classof(cast<Instruction>(V));
417   }
418 
419 private:
420   // Shadow Instruction::setInstructionSubclassData with a private forwarding
421   // method so that subclasses cannot accidentally use it.
422   template <typename Bitfield>
423   void setSubclassData(typename Bitfield::Type Value) {
424     Instruction::setSubclassData<Bitfield>(Value);
425   }
426 
427   /// The synchronization scope ID of this store instruction.  Not quite enough
428   /// room in SubClassData for everything, so synchronization scope ID gets its
429   /// own field.
430   SyncScope::ID SSID;
431 };
432 
433 template <>
434 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435 };
436 
437 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
438 
439 //===----------------------------------------------------------------------===//
440 //                                FenceInst Class
441 //===----------------------------------------------------------------------===//
442 
443 /// An instruction for ordering other memory operations.
444 class FenceInst : public Instruction {
445   using OrderingField = AtomicOrderingBitfieldElementT<0>;
446 
447   void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448 
449 protected:
450   // Note: Instruction needs to be a friend here to call cloneImpl.
451   friend class Instruction;
452 
453   FenceInst *cloneImpl() const;
454 
455 public:
456   // Ordering may only be Acquire, Release, AcquireRelease, or
457   // SequentiallyConsistent.
458   FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459             SyncScope::ID SSID = SyncScope::System,
460             Instruction *InsertBefore = nullptr);
461   FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462             BasicBlock *InsertAtEnd);
463 
464   // allocate space for exactly zero operands
465   void *operator new(size_t S) { return User::operator new(S, 0); }
466   void operator delete(void *Ptr) { User::operator delete(Ptr); }
467 
468   /// Returns the ordering constraint of this fence instruction.
469   AtomicOrdering getOrdering() const {
470     return getSubclassData<OrderingField>();
471   }
472 
473   /// Sets the ordering constraint of this fence instruction.  May only be
474   /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475   void setOrdering(AtomicOrdering Ordering) {
476     setSubclassData<OrderingField>(Ordering);
477   }
478 
479   /// Returns the synchronization scope ID of this fence instruction.
480   SyncScope::ID getSyncScopeID() const {
481     return SSID;
482   }
483 
484   /// Sets the synchronization scope ID of this fence instruction.
485   void setSyncScopeID(SyncScope::ID SSID) {
486     this->SSID = SSID;
487   }
488 
489   // Methods for support type inquiry through isa, cast, and dyn_cast:
490   static bool classof(const Instruction *I) {
491     return I->getOpcode() == Instruction::Fence;
492   }
493   static bool classof(const Value *V) {
494     return isa<Instruction>(V) && classof(cast<Instruction>(V));
495   }
496 
497 private:
498   // Shadow Instruction::setInstructionSubclassData with a private forwarding
499   // method so that subclasses cannot accidentally use it.
500   template <typename Bitfield>
501   void setSubclassData(typename Bitfield::Type Value) {
502     Instruction::setSubclassData<Bitfield>(Value);
503   }
504 
505   /// The synchronization scope ID of this fence instruction.  Not quite enough
506   /// room in SubClassData for everything, so synchronization scope ID gets its
507   /// own field.
508   SyncScope::ID SSID;
509 };
510 
511 //===----------------------------------------------------------------------===//
512 //                                AtomicCmpXchgInst Class
513 //===----------------------------------------------------------------------===//
514 
515 /// An instruction that atomically checks whether a
516 /// specified value is in a memory location, and, if it is, stores a new value
517 /// there. The value returned by this instruction is a pair containing the
518 /// original value as first element, and an i1 indicating success (true) or
519 /// failure (false) as second element.
520 ///
521 class AtomicCmpXchgInst : public Instruction {
522   void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523             AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524             SyncScope::ID SSID);
525 
526   template <unsigned Offset>
527   using AtomicOrderingBitfieldElement =
528       typename Bitfield::Element<AtomicOrdering, Offset, 3,
529                                  AtomicOrdering::LAST>;
530 
531 protected:
532   // Note: Instruction needs to be a friend here to call cloneImpl.
533   friend class Instruction;
534 
535   AtomicCmpXchgInst *cloneImpl() const;
536 
537 public:
538   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539                     AtomicOrdering SuccessOrdering,
540                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541                     Instruction *InsertBefore = nullptr);
542   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543                     AtomicOrdering SuccessOrdering,
544                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545                     BasicBlock *InsertAtEnd);
546 
547   // allocate space for exactly three operands
548   void *operator new(size_t S) { return User::operator new(S, 3); }
549   void operator delete(void *Ptr) { User::operator delete(Ptr); }
550 
551   using VolatileField = BoolBitfieldElementT<0>;
552   using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553   using SuccessOrderingField =
554       AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555   using FailureOrderingField =
556       AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557   using AlignmentField =
558       AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559   static_assert(
560       Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561                               FailureOrderingField, AlignmentField>(),
562       "Bitfields must be contiguous");
563 
564   /// Return the alignment of the memory that is being allocated by the
565   /// instruction.
566   Align getAlign() const {
567     return Align(1ULL << getSubclassData<AlignmentField>());
568   }
569 
570   void setAlignment(Align Align) {
571     setSubclassData<AlignmentField>(Log2(Align));
572   }
573 
574   /// Return true if this is a cmpxchg from a volatile memory
575   /// location.
576   ///
577   bool isVolatile() const { return getSubclassData<VolatileField>(); }
578 
579   /// Specify whether this is a volatile cmpxchg.
580   ///
581   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582 
583   /// Return true if this cmpxchg may spuriously fail.
584   bool isWeak() const { return getSubclassData<WeakField>(); }
585 
586   void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587 
588   /// Transparently provide more efficient getOperand methods.
589   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
590 
591   static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592     return Ordering != AtomicOrdering::NotAtomic &&
593            Ordering != AtomicOrdering::Unordered;
594   }
595 
596   static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597     return Ordering != AtomicOrdering::NotAtomic &&
598            Ordering != AtomicOrdering::Unordered &&
599            Ordering != AtomicOrdering::AcquireRelease &&
600            Ordering != AtomicOrdering::Release;
601   }
602 
603   /// Returns the success ordering constraint of this cmpxchg instruction.
604   AtomicOrdering getSuccessOrdering() const {
605     return getSubclassData<SuccessOrderingField>();
606   }
607 
608   /// Sets the success ordering constraint of this cmpxchg instruction.
609   void setSuccessOrdering(AtomicOrdering Ordering) {
610     assert(isValidSuccessOrdering(Ordering) &&
611            "invalid CmpXchg success ordering");
612     setSubclassData<SuccessOrderingField>(Ordering);
613   }
614 
615   /// Returns the failure ordering constraint of this cmpxchg instruction.
616   AtomicOrdering getFailureOrdering() const {
617     return getSubclassData<FailureOrderingField>();
618   }
619 
620   /// Sets the failure ordering constraint of this cmpxchg instruction.
621   void setFailureOrdering(AtomicOrdering Ordering) {
622     assert(isValidFailureOrdering(Ordering) &&
623            "invalid CmpXchg failure ordering");
624     setSubclassData<FailureOrderingField>(Ordering);
625   }
626 
627   /// Returns a single ordering which is at least as strong as both the
628   /// success and failure orderings for this cmpxchg.
629   AtomicOrdering getMergedOrdering() const {
630     if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631       return AtomicOrdering::SequentiallyConsistent;
632     if (getFailureOrdering() == AtomicOrdering::Acquire) {
633       if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634         return AtomicOrdering::Acquire;
635       if (getSuccessOrdering() == AtomicOrdering::Release)
636         return AtomicOrdering::AcquireRelease;
637     }
638     return getSuccessOrdering();
639   }
640 
641   /// Returns the synchronization scope ID of this cmpxchg instruction.
642   SyncScope::ID getSyncScopeID() const {
643     return SSID;
644   }
645 
646   /// Sets the synchronization scope ID of this cmpxchg instruction.
647   void setSyncScopeID(SyncScope::ID SSID) {
648     this->SSID = SSID;
649   }
650 
651   Value *getPointerOperand() { return getOperand(0); }
652   const Value *getPointerOperand() const { return getOperand(0); }
653   static unsigned getPointerOperandIndex() { return 0U; }
654 
655   Value *getCompareOperand() { return getOperand(1); }
656   const Value *getCompareOperand() const { return getOperand(1); }
657 
658   Value *getNewValOperand() { return getOperand(2); }
659   const Value *getNewValOperand() const { return getOperand(2); }
660 
661   /// Returns the address space of the pointer operand.
662   unsigned getPointerAddressSpace() const {
663     return getPointerOperand()->getType()->getPointerAddressSpace();
664   }
665 
666   /// Returns the strongest permitted ordering on failure, given the
667   /// desired ordering on success.
668   ///
669   /// If the comparison in a cmpxchg operation fails, there is no atomic store
670   /// so release semantics cannot be provided. So this function drops explicit
671   /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672   /// operation would remain SequentiallyConsistent.
673   static AtomicOrdering
674   getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675     switch (SuccessOrdering) {
676     default:
677       llvm_unreachable("invalid cmpxchg success ordering");
678     case AtomicOrdering::Release:
679     case AtomicOrdering::Monotonic:
680       return AtomicOrdering::Monotonic;
681     case AtomicOrdering::AcquireRelease:
682     case AtomicOrdering::Acquire:
683       return AtomicOrdering::Acquire;
684     case AtomicOrdering::SequentiallyConsistent:
685       return AtomicOrdering::SequentiallyConsistent;
686     }
687   }
688 
689   // Methods for support type inquiry through isa, cast, and dyn_cast:
690   static bool classof(const Instruction *I) {
691     return I->getOpcode() == Instruction::AtomicCmpXchg;
692   }
693   static bool classof(const Value *V) {
694     return isa<Instruction>(V) && classof(cast<Instruction>(V));
695   }
696 
697 private:
698   // Shadow Instruction::setInstructionSubclassData with a private forwarding
699   // method so that subclasses cannot accidentally use it.
700   template <typename Bitfield>
701   void setSubclassData(typename Bitfield::Type Value) {
702     Instruction::setSubclassData<Bitfield>(Value);
703   }
704 
705   /// The synchronization scope ID of this cmpxchg instruction.  Not quite
706   /// enough room in SubClassData for everything, so synchronization scope ID
707   /// gets its own field.
708   SyncScope::ID SSID;
709 };
710 
711 template <>
712 struct OperandTraits<AtomicCmpXchgInst> :
713     public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714 };
715 
716 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
717 
718 //===----------------------------------------------------------------------===//
719 //                                AtomicRMWInst Class
720 //===----------------------------------------------------------------------===//
721 
722 /// an instruction that atomically reads a memory location,
723 /// combines it with another value, and then stores the result back.  Returns
724 /// the old value.
725 ///
726 class AtomicRMWInst : public Instruction {
727 protected:
728   // Note: Instruction needs to be a friend here to call cloneImpl.
729   friend class Instruction;
730 
731   AtomicRMWInst *cloneImpl() const;
732 
733 public:
734   /// This enumeration lists the possible modifications atomicrmw can make.  In
735   /// the descriptions, 'p' is the pointer to the instruction's memory location,
736   /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737   /// instruction.  These instructions always return 'old'.
738   enum BinOp : unsigned {
739     /// *p = v
740     Xchg,
741     /// *p = old + v
742     Add,
743     /// *p = old - v
744     Sub,
745     /// *p = old & v
746     And,
747     /// *p = ~(old & v)
748     Nand,
749     /// *p = old | v
750     Or,
751     /// *p = old ^ v
752     Xor,
753     /// *p = old >signed v ? old : v
754     Max,
755     /// *p = old <signed v ? old : v
756     Min,
757     /// *p = old >unsigned v ? old : v
758     UMax,
759     /// *p = old <unsigned v ? old : v
760     UMin,
761 
762     /// *p = old + v
763     FAdd,
764 
765     /// *p = old - v
766     FSub,
767 
768     FIRST_BINOP = Xchg,
769     LAST_BINOP = FSub,
770     BAD_BINOP
771   };
772 
773 private:
774   template <unsigned Offset>
775   using AtomicOrderingBitfieldElement =
776       typename Bitfield::Element<AtomicOrdering, Offset, 3,
777                                  AtomicOrdering::LAST>;
778 
779   template <unsigned Offset>
780   using BinOpBitfieldElement =
781       typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782 
783 public:
784   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785                 AtomicOrdering Ordering, SyncScope::ID SSID,
786                 Instruction *InsertBefore = nullptr);
787   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788                 AtomicOrdering Ordering, SyncScope::ID SSID,
789                 BasicBlock *InsertAtEnd);
790 
791   // allocate space for exactly two operands
792   void *operator new(size_t S) { return User::operator new(S, 2); }
793   void operator delete(void *Ptr) { User::operator delete(Ptr); }
794 
795   using VolatileField = BoolBitfieldElementT<0>;
796   using AtomicOrderingField =
797       AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798   using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799   using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800   static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801                                         OperationField, AlignmentField>(),
802                 "Bitfields must be contiguous");
803 
804   BinOp getOperation() const { return getSubclassData<OperationField>(); }
805 
806   static StringRef getOperationName(BinOp Op);
807 
808   static bool isFPOperation(BinOp Op) {
809     switch (Op) {
810     case AtomicRMWInst::FAdd:
811     case AtomicRMWInst::FSub:
812       return true;
813     default:
814       return false;
815     }
816   }
817 
818   void setOperation(BinOp Operation) {
819     setSubclassData<OperationField>(Operation);
820   }
821 
822   /// Return the alignment of the memory that is being allocated by the
823   /// instruction.
824   Align getAlign() const {
825     return Align(1ULL << getSubclassData<AlignmentField>());
826   }
827 
828   void setAlignment(Align Align) {
829     setSubclassData<AlignmentField>(Log2(Align));
830   }
831 
832   /// Return true if this is a RMW on a volatile memory location.
833   ///
834   bool isVolatile() const { return getSubclassData<VolatileField>(); }
835 
836   /// Specify whether this is a volatile RMW or not.
837   ///
838   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839 
840   /// Transparently provide more efficient getOperand methods.
841   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
842 
843   /// Returns the ordering constraint of this rmw instruction.
844   AtomicOrdering getOrdering() const {
845     return getSubclassData<AtomicOrderingField>();
846   }
847 
848   /// Sets the ordering constraint of this rmw instruction.
849   void setOrdering(AtomicOrdering Ordering) {
850     assert(Ordering != AtomicOrdering::NotAtomic &&
851            "atomicrmw instructions can only be atomic.");
852     setSubclassData<AtomicOrderingField>(Ordering);
853   }
854 
855   /// Returns the synchronization scope ID of this rmw instruction.
856   SyncScope::ID getSyncScopeID() const {
857     return SSID;
858   }
859 
860   /// Sets the synchronization scope ID of this rmw instruction.
861   void setSyncScopeID(SyncScope::ID SSID) {
862     this->SSID = SSID;
863   }
864 
865   Value *getPointerOperand() { return getOperand(0); }
866   const Value *getPointerOperand() const { return getOperand(0); }
867   static unsigned getPointerOperandIndex() { return 0U; }
868 
869   Value *getValOperand() { return getOperand(1); }
870   const Value *getValOperand() const { return getOperand(1); }
871 
872   /// Returns the address space of the pointer operand.
873   unsigned getPointerAddressSpace() const {
874     return getPointerOperand()->getType()->getPointerAddressSpace();
875   }
876 
877   bool isFloatingPointOperation() const {
878     return isFPOperation(getOperation());
879   }
880 
881   // Methods for support type inquiry through isa, cast, and dyn_cast:
882   static bool classof(const Instruction *I) {
883     return I->getOpcode() == Instruction::AtomicRMW;
884   }
885   static bool classof(const Value *V) {
886     return isa<Instruction>(V) && classof(cast<Instruction>(V));
887   }
888 
889 private:
890   void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891             AtomicOrdering Ordering, SyncScope::ID SSID);
892 
893   // Shadow Instruction::setInstructionSubclassData with a private forwarding
894   // method so that subclasses cannot accidentally use it.
895   template <typename Bitfield>
896   void setSubclassData(typename Bitfield::Type Value) {
897     Instruction::setSubclassData<Bitfield>(Value);
898   }
899 
900   /// The synchronization scope ID of this rmw instruction.  Not quite enough
901   /// room in SubClassData for everything, so synchronization scope ID gets its
902   /// own field.
903   SyncScope::ID SSID;
904 };
905 
906 template <>
907 struct OperandTraits<AtomicRMWInst>
908     : public FixedNumOperandTraits<AtomicRMWInst,2> {
909 };
910 
911 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
912 
913 //===----------------------------------------------------------------------===//
914 //                             GetElementPtrInst Class
915 //===----------------------------------------------------------------------===//
916 
917 // checkGEPType - Simple wrapper function to give a better assertion failure
918 // message on bad indexes for a gep instruction.
919 //
920 inline Type *checkGEPType(Type *Ty) {
921   assert(Ty && "Invalid GetElementPtrInst indices for type!");
922   return Ty;
923 }
924 
925 /// an instruction for type-safe pointer arithmetic to
926 /// access elements of arrays and structs
927 ///
928 class GetElementPtrInst : public Instruction {
929   Type *SourceElementType;
930   Type *ResultElementType;
931 
932   GetElementPtrInst(const GetElementPtrInst &GEPI);
933 
934   /// Constructors - Create a getelementptr instruction with a base pointer an
935   /// list of indices. The first ctor can optionally insert before an existing
936   /// instruction, the second appends the new instruction to the specified
937   /// BasicBlock.
938   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939                            ArrayRef<Value *> IdxList, unsigned Values,
940                            const Twine &NameStr, Instruction *InsertBefore);
941   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942                            ArrayRef<Value *> IdxList, unsigned Values,
943                            const Twine &NameStr, BasicBlock *InsertAtEnd);
944 
945   void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946 
947 protected:
948   // Note: Instruction needs to be a friend here to call cloneImpl.
949   friend class Instruction;
950 
951   GetElementPtrInst *cloneImpl() const;
952 
953 public:
954   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955                                    ArrayRef<Value *> IdxList,
956                                    const Twine &NameStr = "",
957                                    Instruction *InsertBefore = nullptr) {
958     unsigned Values = 1 + unsigned(IdxList.size());
959     assert(PointeeType && "Must specify element type");
960     assert(cast<PointerType>(Ptr->getType()->getScalarType())
961                ->isOpaqueOrPointeeTypeMatches(PointeeType));
962     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963                                           NameStr, InsertBefore);
964   }
965 
966   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967                                    ArrayRef<Value *> IdxList,
968                                    const Twine &NameStr,
969                                    BasicBlock *InsertAtEnd) {
970     unsigned Values = 1 + unsigned(IdxList.size());
971     assert(PointeeType && "Must specify element type");
972     assert(cast<PointerType>(Ptr->getType()->getScalarType())
973                ->isOpaqueOrPointeeTypeMatches(PointeeType));
974     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975                                           NameStr, InsertAtEnd);
976   }
977 
978   LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds(
979         Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",
980         Instruction *InsertBefore = nullptr),
981       "Use the version with explicit element type instead") {
982     return CreateInBounds(
983         Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984         NameStr, InsertBefore);
985   }
986 
987   /// Create an "inbounds" getelementptr. See the documentation for the
988   /// "inbounds" flag in LangRef.html for details.
989   static GetElementPtrInst *
990   CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991                  const Twine &NameStr = "",
992                  Instruction *InsertBefore = nullptr) {
993     GetElementPtrInst *GEP =
994         Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995     GEP->setIsInBounds(true);
996     return GEP;
997   }
998 
999   LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds(
1000         Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,
1001         BasicBlock *InsertAtEnd),
1002       "Use the version with explicit element type instead") {
1003     return CreateInBounds(
1004         Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005         NameStr, InsertAtEnd);
1006   }
1007 
1008   static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009                                            ArrayRef<Value *> IdxList,
1010                                            const Twine &NameStr,
1011                                            BasicBlock *InsertAtEnd) {
1012     GetElementPtrInst *GEP =
1013         Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014     GEP->setIsInBounds(true);
1015     return GEP;
1016   }
1017 
1018   /// Transparently provide more efficient getOperand methods.
1019   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1020 
1021   Type *getSourceElementType() const { return SourceElementType; }
1022 
1023   void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024   void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025 
1026   Type *getResultElementType() const {
1027     assert(cast<PointerType>(getType()->getScalarType())
1028                ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1029     return ResultElementType;
1030   }
1031 
1032   /// Returns the address space of this instruction's pointer type.
1033   unsigned getAddressSpace() const {
1034     // Note that this is always the same as the pointer operand's address space
1035     // and that is cheaper to compute, so cheat here.
1036     return getPointerAddressSpace();
1037   }
1038 
1039   /// Returns the result type of a getelementptr with the given source
1040   /// element type and indexes.
1041   ///
1042   /// Null is returned if the indices are invalid for the specified
1043   /// source element type.
1044   static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045   static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046   static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047 
1048   /// Return the type of the element at the given index of an indexable
1049   /// type.  This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050   ///
1051   /// Returns null if the type can't be indexed, or the given index is not
1052   /// legal for the given type.
1053   static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054   static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055 
1056   inline op_iterator       idx_begin()       { return op_begin()+1; }
1057   inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058   inline op_iterator       idx_end()         { return op_end(); }
1059   inline const_op_iterator idx_end()   const { return op_end(); }
1060 
1061   inline iterator_range<op_iterator> indices() {
1062     return make_range(idx_begin(), idx_end());
1063   }
1064 
1065   inline iterator_range<const_op_iterator> indices() const {
1066     return make_range(idx_begin(), idx_end());
1067   }
1068 
1069   Value *getPointerOperand() {
1070     return getOperand(0);
1071   }
1072   const Value *getPointerOperand() const {
1073     return getOperand(0);
1074   }
1075   static unsigned getPointerOperandIndex() {
1076     return 0U;    // get index for modifying correct operand.
1077   }
1078 
1079   /// Method to return the pointer operand as a
1080   /// PointerType.
1081   Type *getPointerOperandType() const {
1082     return getPointerOperand()->getType();
1083   }
1084 
1085   /// Returns the address space of the pointer operand.
1086   unsigned getPointerAddressSpace() const {
1087     return getPointerOperandType()->getPointerAddressSpace();
1088   }
1089 
1090   /// Returns the pointer type returned by the GEP
1091   /// instruction, which may be a vector of pointers.
1092   static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093                                 ArrayRef<Value *> IdxList) {
1094     PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095     unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096     Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097     Type *PtrTy = OrigPtrTy->isOpaque()
1098       ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099       : PointerType::get(ResultElemTy, AddrSpace);
1100     // Vector GEP
1101     if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102       ElementCount EltCount = PtrVTy->getElementCount();
1103       return VectorType::get(PtrTy, EltCount);
1104     }
1105     for (Value *Index : IdxList)
1106       if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107         ElementCount EltCount = IndexVTy->getElementCount();
1108         return VectorType::get(PtrTy, EltCount);
1109       }
1110     // Scalar GEP
1111     return PtrTy;
1112   }
1113 
1114   unsigned getNumIndices() const {  // Note: always non-negative
1115     return getNumOperands() - 1;
1116   }
1117 
1118   bool hasIndices() const {
1119     return getNumOperands() > 1;
1120   }
1121 
1122   /// Return true if all of the indices of this GEP are
1123   /// zeros.  If so, the result pointer and the first operand have the same
1124   /// value, just potentially different types.
1125   bool hasAllZeroIndices() const;
1126 
1127   /// Return true if all of the indices of this GEP are
1128   /// constant integers.  If so, the result pointer and the first operand have
1129   /// a constant offset between them.
1130   bool hasAllConstantIndices() const;
1131 
1132   /// Set or clear the inbounds flag on this GEP instruction.
1133   /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134   void setIsInBounds(bool b = true);
1135 
1136   /// Determine whether the GEP has the inbounds flag.
1137   bool isInBounds() const;
1138 
1139   /// Accumulate the constant address offset of this GEP if possible.
1140   ///
1141   /// This routine accepts an APInt into which it will accumulate the constant
1142   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143   /// all-constant, it returns false and the value of the offset APInt is
1144   /// undefined (it is *not* preserved!). The APInt passed into this routine
1145   /// must be at least as wide as the IntPtr type for the address space of
1146   /// the base GEP pointer.
1147   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148   bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149                      MapVector<Value *, APInt> &VariableOffsets,
1150                      APInt &ConstantOffset) const;
1151   // Methods for support type inquiry through isa, cast, and dyn_cast:
1152   static bool classof(const Instruction *I) {
1153     return (I->getOpcode() == Instruction::GetElementPtr);
1154   }
1155   static bool classof(const Value *V) {
1156     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157   }
1158 };
1159 
1160 template <>
1161 struct OperandTraits<GetElementPtrInst> :
1162   public VariadicOperandTraits<GetElementPtrInst, 1> {
1163 };
1164 
1165 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166                                      ArrayRef<Value *> IdxList, unsigned Values,
1167                                      const Twine &NameStr,
1168                                      Instruction *InsertBefore)
1169     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171                   Values, InsertBefore),
1172       SourceElementType(PointeeType),
1173       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174   assert(cast<PointerType>(getType()->getScalarType())
1175              ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1176   init(Ptr, IdxList, NameStr);
1177 }
1178 
1179 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180                                      ArrayRef<Value *> IdxList, unsigned Values,
1181                                      const Twine &NameStr,
1182                                      BasicBlock *InsertAtEnd)
1183     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185                   Values, InsertAtEnd),
1186       SourceElementType(PointeeType),
1187       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188   assert(cast<PointerType>(getType()->getScalarType())
1189              ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1190   init(Ptr, IdxList, NameStr);
1191 }
1192 
1193 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1194 
1195 //===----------------------------------------------------------------------===//
1196 //                               ICmpInst Class
1197 //===----------------------------------------------------------------------===//
1198 
1199 /// This instruction compares its operands according to the predicate given
1200 /// to the constructor. It only operates on integers or pointers. The operands
1201 /// must be identical types.
1202 /// Represent an integer comparison operator.
1203 class ICmpInst: public CmpInst {
1204   void AssertOK() {
1205     assert(isIntPredicate() &&
1206            "Invalid ICmp predicate value");
1207     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1208           "Both operands to ICmp instruction are not of the same type!");
1209     // Check that the operands are the right type
1210     assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1211             getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1212            "Invalid operand types for ICmp instruction");
1213   }
1214 
1215 protected:
1216   // Note: Instruction needs to be a friend here to call cloneImpl.
1217   friend class Instruction;
1218 
1219   /// Clone an identical ICmpInst
1220   ICmpInst *cloneImpl() const;
1221 
1222 public:
1223   /// Constructor with insert-before-instruction semantics.
1224   ICmpInst(
1225     Instruction *InsertBefore,  ///< Where to insert
1226     Predicate pred,  ///< The predicate to use for the comparison
1227     Value *LHS,      ///< The left-hand-side of the expression
1228     Value *RHS,      ///< The right-hand-side of the expression
1229     const Twine &NameStr = ""  ///< Name of the instruction
1230   ) : CmpInst(makeCmpResultType(LHS->getType()),
1231               Instruction::ICmp, pred, LHS, RHS, NameStr,
1232               InsertBefore) {
1233 #ifndef NDEBUG
1234   AssertOK();
1235 #endif
1236   }
1237 
1238   /// Constructor with insert-at-end semantics.
1239   ICmpInst(
1240     BasicBlock &InsertAtEnd, ///< Block to insert into.
1241     Predicate pred,  ///< The predicate to use for the comparison
1242     Value *LHS,      ///< The left-hand-side of the expression
1243     Value *RHS,      ///< The right-hand-side of the expression
1244     const Twine &NameStr = ""  ///< Name of the instruction
1245   ) : CmpInst(makeCmpResultType(LHS->getType()),
1246               Instruction::ICmp, pred, LHS, RHS, NameStr,
1247               &InsertAtEnd) {
1248 #ifndef NDEBUG
1249   AssertOK();
1250 #endif
1251   }
1252 
1253   /// Constructor with no-insertion semantics
1254   ICmpInst(
1255     Predicate pred, ///< The predicate to use for the comparison
1256     Value *LHS,     ///< The left-hand-side of the expression
1257     Value *RHS,     ///< The right-hand-side of the expression
1258     const Twine &NameStr = "" ///< Name of the instruction
1259   ) : CmpInst(makeCmpResultType(LHS->getType()),
1260               Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261 #ifndef NDEBUG
1262   AssertOK();
1263 #endif
1264   }
1265 
1266   /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267   /// @returns the predicate that would be the result if the operand were
1268   /// regarded as signed.
1269   /// Return the signed version of the predicate
1270   Predicate getSignedPredicate() const {
1271     return getSignedPredicate(getPredicate());
1272   }
1273 
1274   /// This is a static version that you can use without an instruction.
1275   /// Return the signed version of the predicate.
1276   static Predicate getSignedPredicate(Predicate pred);
1277 
1278   /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279   /// @returns the predicate that would be the result if the operand were
1280   /// regarded as unsigned.
1281   /// Return the unsigned version of the predicate
1282   Predicate getUnsignedPredicate() const {
1283     return getUnsignedPredicate(getPredicate());
1284   }
1285 
1286   /// This is a static version that you can use without an instruction.
1287   /// Return the unsigned version of the predicate.
1288   static Predicate getUnsignedPredicate(Predicate pred);
1289 
1290   /// Return true if this predicate is either EQ or NE.  This also
1291   /// tests for commutativity.
1292   static bool isEquality(Predicate P) {
1293     return P == ICMP_EQ || P == ICMP_NE;
1294   }
1295 
1296   /// Return true if this predicate is either EQ or NE.  This also
1297   /// tests for commutativity.
1298   bool isEquality() const {
1299     return isEquality(getPredicate());
1300   }
1301 
1302   /// @returns true if the predicate of this ICmpInst is commutative
1303   /// Determine if this relation is commutative.
1304   bool isCommutative() const { return isEquality(); }
1305 
1306   /// Return true if the predicate is relational (not EQ or NE).
1307   ///
1308   bool isRelational() const {
1309     return !isEquality();
1310   }
1311 
1312   /// Return true if the predicate is relational (not EQ or NE).
1313   ///
1314   static bool isRelational(Predicate P) {
1315     return !isEquality(P);
1316   }
1317 
1318   /// Return true if the predicate is SGT or UGT.
1319   ///
1320   static bool isGT(Predicate P) {
1321     return P == ICMP_SGT || P == ICMP_UGT;
1322   }
1323 
1324   /// Return true if the predicate is SLT or ULT.
1325   ///
1326   static bool isLT(Predicate P) {
1327     return P == ICMP_SLT || P == ICMP_ULT;
1328   }
1329 
1330   /// Return true if the predicate is SGE or UGE.
1331   ///
1332   static bool isGE(Predicate P) {
1333     return P == ICMP_SGE || P == ICMP_UGE;
1334   }
1335 
1336   /// Return true if the predicate is SLE or ULE.
1337   ///
1338   static bool isLE(Predicate P) {
1339     return P == ICMP_SLE || P == ICMP_ULE;
1340   }
1341 
1342   /// Exchange the two operands to this instruction in such a way that it does
1343   /// not modify the semantics of the instruction. The predicate value may be
1344   /// changed to retain the same result if the predicate is order dependent
1345   /// (e.g. ult).
1346   /// Swap operands and adjust predicate.
1347   void swapOperands() {
1348     setPredicate(getSwappedPredicate());
1349     Op<0>().swap(Op<1>());
1350   }
1351 
1352   // Methods for support type inquiry through isa, cast, and dyn_cast:
1353   static bool classof(const Instruction *I) {
1354     return I->getOpcode() == Instruction::ICmp;
1355   }
1356   static bool classof(const Value *V) {
1357     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358   }
1359 };
1360 
1361 //===----------------------------------------------------------------------===//
1362 //                               FCmpInst Class
1363 //===----------------------------------------------------------------------===//
1364 
1365 /// This instruction compares its operands according to the predicate given
1366 /// to the constructor. It only operates on floating point values or packed
1367 /// vectors of floating point values. The operands must be identical types.
1368 /// Represents a floating point comparison operator.
1369 class FCmpInst: public CmpInst {
1370   void AssertOK() {
1371     assert(isFPPredicate() && "Invalid FCmp predicate value");
1372     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1373            "Both operands to FCmp instruction are not of the same type!");
1374     // Check that the operands are the right type
1375     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1376            "Invalid operand types for FCmp instruction");
1377   }
1378 
1379 protected:
1380   // Note: Instruction needs to be a friend here to call cloneImpl.
1381   friend class Instruction;
1382 
1383   /// Clone an identical FCmpInst
1384   FCmpInst *cloneImpl() const;
1385 
1386 public:
1387   /// Constructor with insert-before-instruction semantics.
1388   FCmpInst(
1389     Instruction *InsertBefore, ///< Where to insert
1390     Predicate pred,  ///< The predicate to use for the comparison
1391     Value *LHS,      ///< The left-hand-side of the expression
1392     Value *RHS,      ///< The right-hand-side of the expression
1393     const Twine &NameStr = ""  ///< Name of the instruction
1394   ) : CmpInst(makeCmpResultType(LHS->getType()),
1395               Instruction::FCmp, pred, LHS, RHS, NameStr,
1396               InsertBefore) {
1397     AssertOK();
1398   }
1399 
1400   /// Constructor with insert-at-end semantics.
1401   FCmpInst(
1402     BasicBlock &InsertAtEnd, ///< Block to insert into.
1403     Predicate pred,  ///< The predicate to use for the comparison
1404     Value *LHS,      ///< The left-hand-side of the expression
1405     Value *RHS,      ///< The right-hand-side of the expression
1406     const Twine &NameStr = ""  ///< Name of the instruction
1407   ) : CmpInst(makeCmpResultType(LHS->getType()),
1408               Instruction::FCmp, pred, LHS, RHS, NameStr,
1409               &InsertAtEnd) {
1410     AssertOK();
1411   }
1412 
1413   /// Constructor with no-insertion semantics
1414   FCmpInst(
1415     Predicate Pred, ///< The predicate to use for the comparison
1416     Value *LHS,     ///< The left-hand-side of the expression
1417     Value *RHS,     ///< The right-hand-side of the expression
1418     const Twine &NameStr = "", ///< Name of the instruction
1419     Instruction *FlagsSource = nullptr
1420   ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421               RHS, NameStr, nullptr, FlagsSource) {
1422     AssertOK();
1423   }
1424 
1425   /// @returns true if the predicate of this instruction is EQ or NE.
1426   /// Determine if this is an equality predicate.
1427   static bool isEquality(Predicate Pred) {
1428     return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429            Pred == FCMP_UNE;
1430   }
1431 
1432   /// @returns true if the predicate of this instruction is EQ or NE.
1433   /// Determine if this is an equality predicate.
1434   bool isEquality() const { return isEquality(getPredicate()); }
1435 
1436   /// @returns true if the predicate of this instruction is commutative.
1437   /// Determine if this is a commutative predicate.
1438   bool isCommutative() const {
1439     return isEquality() ||
1440            getPredicate() == FCMP_FALSE ||
1441            getPredicate() == FCMP_TRUE ||
1442            getPredicate() == FCMP_ORD ||
1443            getPredicate() == FCMP_UNO;
1444   }
1445 
1446   /// @returns true if the predicate is relational (not EQ or NE).
1447   /// Determine if this a relational predicate.
1448   bool isRelational() const { return !isEquality(); }
1449 
1450   /// Exchange the two operands to this instruction in such a way that it does
1451   /// not modify the semantics of the instruction. The predicate value may be
1452   /// changed to retain the same result if the predicate is order dependent
1453   /// (e.g. ult).
1454   /// Swap operands and adjust predicate.
1455   void swapOperands() {
1456     setPredicate(getSwappedPredicate());
1457     Op<0>().swap(Op<1>());
1458   }
1459 
1460   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461   static bool classof(const Instruction *I) {
1462     return I->getOpcode() == Instruction::FCmp;
1463   }
1464   static bool classof(const Value *V) {
1465     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466   }
1467 };
1468 
1469 //===----------------------------------------------------------------------===//
1470 /// This class represents a function call, abstracting a target
1471 /// machine's calling convention.  This class uses low bit of the SubClassData
1472 /// field to indicate whether or not this is a tail call.  The rest of the bits
1473 /// hold the calling convention of the call.
1474 ///
1475 class CallInst : public CallBase {
1476   CallInst(const CallInst &CI);
1477 
1478   /// Construct a CallInst given a range of arguments.
1479   /// Construct a CallInst from a range of arguments
1480   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482                   Instruction *InsertBefore);
1483 
1484   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485                   const Twine &NameStr, Instruction *InsertBefore)
1486       : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487 
1488   /// Construct a CallInst given a range of arguments.
1489   /// Construct a CallInst from a range of arguments
1490   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492                   BasicBlock *InsertAtEnd);
1493 
1494   explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495                     Instruction *InsertBefore);
1496 
1497   CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498            BasicBlock *InsertAtEnd);
1499 
1500   void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502   void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503 
1504   /// Compute the number of operands to allocate.
1505   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506     // We need one operand for the called function, plus the input operand
1507     // counts provided.
1508     return 1 + NumArgs + NumBundleInputs;
1509   }
1510 
1511 protected:
1512   // Note: Instruction needs to be a friend here to call cloneImpl.
1513   friend class Instruction;
1514 
1515   CallInst *cloneImpl() const;
1516 
1517 public:
1518   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519                           Instruction *InsertBefore = nullptr) {
1520     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521   }
1522 
1523   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524                           const Twine &NameStr,
1525                           Instruction *InsertBefore = nullptr) {
1526     return new (ComputeNumOperands(Args.size()))
1527         CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528   }
1529 
1530   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531                           ArrayRef<OperandBundleDef> Bundles = None,
1532                           const Twine &NameStr = "",
1533                           Instruction *InsertBefore = nullptr) {
1534     const int NumOperands =
1535         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537 
1538     return new (NumOperands, DescriptorBytes)
1539         CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540   }
1541 
1542   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543                           BasicBlock *InsertAtEnd) {
1544     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545   }
1546 
1547   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549     return new (ComputeNumOperands(Args.size()))
1550         CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551   }
1552 
1553   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554                           ArrayRef<OperandBundleDef> Bundles,
1555                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556     const int NumOperands =
1557         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559 
1560     return new (NumOperands, DescriptorBytes)
1561         CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562   }
1563 
1564   static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565                           Instruction *InsertBefore = nullptr) {
1566     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567                   InsertBefore);
1568   }
1569 
1570   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571                           ArrayRef<OperandBundleDef> Bundles = None,
1572                           const Twine &NameStr = "",
1573                           Instruction *InsertBefore = nullptr) {
1574     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575                   NameStr, InsertBefore);
1576   }
1577 
1578   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579                           const Twine &NameStr,
1580                           Instruction *InsertBefore = nullptr) {
1581     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582                   InsertBefore);
1583   }
1584 
1585   static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586                           BasicBlock *InsertAtEnd) {
1587     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588                   InsertAtEnd);
1589   }
1590 
1591   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594                   InsertAtEnd);
1595   }
1596 
1597   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598                           ArrayRef<OperandBundleDef> Bundles,
1599                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601                   NameStr, InsertAtEnd);
1602   }
1603 
1604   /// Create a clone of \p CI with a different set of operand bundles and
1605   /// insert it before \p InsertPt.
1606   ///
1607   /// The returned call instruction is identical \p CI in every way except that
1608   /// the operand bundles for the new instruction are set to the operand bundles
1609   /// in \p Bundles.
1610   static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611                           Instruction *InsertPt = nullptr);
1612 
1613   /// Generate the IR for a call to malloc:
1614   /// 1. Compute the malloc call's argument as the specified type's size,
1615   ///    possibly multiplied by the array size if the array size is not
1616   ///    constant 1.
1617   /// 2. Call malloc with that argument.
1618   /// 3. Bitcast the result of the malloc call to the specified type.
1619   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620                                    Type *AllocTy, Value *AllocSize,
1621                                    Value *ArraySize = nullptr,
1622                                    Function *MallocF = nullptr,
1623                                    const Twine &Name = "");
1624   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625                                    Type *AllocTy, Value *AllocSize,
1626                                    Value *ArraySize = nullptr,
1627                                    Function *MallocF = nullptr,
1628                                    const Twine &Name = "");
1629   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630                                    Type *AllocTy, Value *AllocSize,
1631                                    Value *ArraySize = nullptr,
1632                                    ArrayRef<OperandBundleDef> Bundles = None,
1633                                    Function *MallocF = nullptr,
1634                                    const Twine &Name = "");
1635   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636                                    Type *AllocTy, Value *AllocSize,
1637                                    Value *ArraySize = nullptr,
1638                                    ArrayRef<OperandBundleDef> Bundles = None,
1639                                    Function *MallocF = nullptr,
1640                                    const Twine &Name = "");
1641   /// Generate the IR for a call to the builtin free function.
1642   static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643   static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644   static Instruction *CreateFree(Value *Source,
1645                                  ArrayRef<OperandBundleDef> Bundles,
1646                                  Instruction *InsertBefore);
1647   static Instruction *CreateFree(Value *Source,
1648                                  ArrayRef<OperandBundleDef> Bundles,
1649                                  BasicBlock *InsertAtEnd);
1650 
1651   // Note that 'musttail' implies 'tail'.
1652   enum TailCallKind : unsigned {
1653     TCK_None = 0,
1654     TCK_Tail = 1,
1655     TCK_MustTail = 2,
1656     TCK_NoTail = 3,
1657     TCK_LAST = TCK_NoTail
1658   };
1659 
1660   using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661   static_assert(
1662       Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663       "Bitfields must be contiguous");
1664 
1665   TailCallKind getTailCallKind() const {
1666     return getSubclassData<TailCallKindField>();
1667   }
1668 
1669   bool isTailCall() const {
1670     TailCallKind Kind = getTailCallKind();
1671     return Kind == TCK_Tail || Kind == TCK_MustTail;
1672   }
1673 
1674   bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675 
1676   bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677 
1678   void setTailCallKind(TailCallKind TCK) {
1679     setSubclassData<TailCallKindField>(TCK);
1680   }
1681 
1682   void setTailCall(bool IsTc = true) {
1683     setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684   }
1685 
1686   /// Return true if the call can return twice
1687   bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688   void setCanReturnTwice() {
1689     addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690   }
1691 
1692   // Methods for support type inquiry through isa, cast, and dyn_cast:
1693   static bool classof(const Instruction *I) {
1694     return I->getOpcode() == Instruction::Call;
1695   }
1696   static bool classof(const Value *V) {
1697     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698   }
1699 
1700   /// Updates profile metadata by scaling it by \p S / \p T.
1701   void updateProfWeight(uint64_t S, uint64_t T);
1702 
1703 private:
1704   // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705   // method so that subclasses cannot accidentally use it.
1706   template <typename Bitfield>
1707   void setSubclassData(typename Bitfield::Type Value) {
1708     Instruction::setSubclassData<Bitfield>(Value);
1709   }
1710 };
1711 
1712 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714                    BasicBlock *InsertAtEnd)
1715     : CallBase(Ty->getReturnType(), Instruction::Call,
1716                OperandTraits<CallBase>::op_end(this) -
1717                    (Args.size() + CountBundleInputs(Bundles) + 1),
1718                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719                InsertAtEnd) {
1720   init(Ty, Func, Args, Bundles, NameStr);
1721 }
1722 
1723 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725                    Instruction *InsertBefore)
1726     : CallBase(Ty->getReturnType(), Instruction::Call,
1727                OperandTraits<CallBase>::op_end(this) -
1728                    (Args.size() + CountBundleInputs(Bundles) + 1),
1729                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730                InsertBefore) {
1731   init(Ty, Func, Args, Bundles, NameStr);
1732 }
1733 
1734 //===----------------------------------------------------------------------===//
1735 //                               SelectInst Class
1736 //===----------------------------------------------------------------------===//
1737 
1738 /// This class represents the LLVM 'select' instruction.
1739 ///
1740 class SelectInst : public Instruction {
1741   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742              Instruction *InsertBefore)
1743     : Instruction(S1->getType(), Instruction::Select,
1744                   &Op<0>(), 3, InsertBefore) {
1745     init(C, S1, S2);
1746     setName(NameStr);
1747   }
1748 
1749   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750              BasicBlock *InsertAtEnd)
1751     : Instruction(S1->getType(), Instruction::Select,
1752                   &Op<0>(), 3, InsertAtEnd) {
1753     init(C, S1, S2);
1754     setName(NameStr);
1755   }
1756 
1757   void init(Value *C, Value *S1, Value *S2) {
1758     assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1759     Op<0>() = C;
1760     Op<1>() = S1;
1761     Op<2>() = S2;
1762   }
1763 
1764 protected:
1765   // Note: Instruction needs to be a friend here to call cloneImpl.
1766   friend class Instruction;
1767 
1768   SelectInst *cloneImpl() const;
1769 
1770 public:
1771   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772                             const Twine &NameStr = "",
1773                             Instruction *InsertBefore = nullptr,
1774                             Instruction *MDFrom = nullptr) {
1775     SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776     if (MDFrom)
1777       Sel->copyMetadata(*MDFrom);
1778     return Sel;
1779   }
1780 
1781   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782                             const Twine &NameStr,
1783                             BasicBlock *InsertAtEnd) {
1784     return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785   }
1786 
1787   const Value *getCondition() const { return Op<0>(); }
1788   const Value *getTrueValue() const { return Op<1>(); }
1789   const Value *getFalseValue() const { return Op<2>(); }
1790   Value *getCondition() { return Op<0>(); }
1791   Value *getTrueValue() { return Op<1>(); }
1792   Value *getFalseValue() { return Op<2>(); }
1793 
1794   void setCondition(Value *V) { Op<0>() = V; }
1795   void setTrueValue(Value *V) { Op<1>() = V; }
1796   void setFalseValue(Value *V) { Op<2>() = V; }
1797 
1798   /// Swap the true and false values of the select instruction.
1799   /// This doesn't swap prof metadata.
1800   void swapValues() { Op<1>().swap(Op<2>()); }
1801 
1802   /// Return a string if the specified operands are invalid
1803   /// for a select operation, otherwise return null.
1804   static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805 
1806   /// Transparently provide more efficient getOperand methods.
1807   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1808 
1809   OtherOps getOpcode() const {
1810     return static_cast<OtherOps>(Instruction::getOpcode());
1811   }
1812 
1813   // Methods for support type inquiry through isa, cast, and dyn_cast:
1814   static bool classof(const Instruction *I) {
1815     return I->getOpcode() == Instruction::Select;
1816   }
1817   static bool classof(const Value *V) {
1818     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819   }
1820 };
1821 
1822 template <>
1823 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824 };
1825 
1826 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1827 
1828 //===----------------------------------------------------------------------===//
1829 //                                VAArgInst Class
1830 //===----------------------------------------------------------------------===//
1831 
1832 /// This class represents the va_arg llvm instruction, which returns
1833 /// an argument of the specified type given a va_list and increments that list
1834 ///
1835 class VAArgInst : public UnaryInstruction {
1836 protected:
1837   // Note: Instruction needs to be a friend here to call cloneImpl.
1838   friend class Instruction;
1839 
1840   VAArgInst *cloneImpl() const;
1841 
1842 public:
1843   VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844              Instruction *InsertBefore = nullptr)
1845     : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846     setName(NameStr);
1847   }
1848 
1849   VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850             BasicBlock *InsertAtEnd)
1851     : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852     setName(NameStr);
1853   }
1854 
1855   Value *getPointerOperand() { return getOperand(0); }
1856   const Value *getPointerOperand() const { return getOperand(0); }
1857   static unsigned getPointerOperandIndex() { return 0U; }
1858 
1859   // Methods for support type inquiry through isa, cast, and dyn_cast:
1860   static bool classof(const Instruction *I) {
1861     return I->getOpcode() == VAArg;
1862   }
1863   static bool classof(const Value *V) {
1864     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865   }
1866 };
1867 
1868 //===----------------------------------------------------------------------===//
1869 //                                ExtractElementInst Class
1870 //===----------------------------------------------------------------------===//
1871 
1872 /// This instruction extracts a single (scalar)
1873 /// element from a VectorType value
1874 ///
1875 class ExtractElementInst : public Instruction {
1876   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877                      Instruction *InsertBefore = nullptr);
1878   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879                      BasicBlock *InsertAtEnd);
1880 
1881 protected:
1882   // Note: Instruction needs to be a friend here to call cloneImpl.
1883   friend class Instruction;
1884 
1885   ExtractElementInst *cloneImpl() const;
1886 
1887 public:
1888   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889                                    const Twine &NameStr = "",
1890                                    Instruction *InsertBefore = nullptr) {
1891     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892   }
1893 
1894   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895                                    const Twine &NameStr,
1896                                    BasicBlock *InsertAtEnd) {
1897     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898   }
1899 
1900   /// Return true if an extractelement instruction can be
1901   /// formed with the specified operands.
1902   static bool isValidOperands(const Value *Vec, const Value *Idx);
1903 
1904   Value *getVectorOperand() { return Op<0>(); }
1905   Value *getIndexOperand() { return Op<1>(); }
1906   const Value *getVectorOperand() const { return Op<0>(); }
1907   const Value *getIndexOperand() const { return Op<1>(); }
1908 
1909   VectorType *getVectorOperandType() const {
1910     return cast<VectorType>(getVectorOperand()->getType());
1911   }
1912 
1913   /// Transparently provide more efficient getOperand methods.
1914   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1915 
1916   // Methods for support type inquiry through isa, cast, and dyn_cast:
1917   static bool classof(const Instruction *I) {
1918     return I->getOpcode() == Instruction::ExtractElement;
1919   }
1920   static bool classof(const Value *V) {
1921     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922   }
1923 };
1924 
1925 template <>
1926 struct OperandTraits<ExtractElementInst> :
1927   public FixedNumOperandTraits<ExtractElementInst, 2> {
1928 };
1929 
1930 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1931 
1932 //===----------------------------------------------------------------------===//
1933 //                                InsertElementInst Class
1934 //===----------------------------------------------------------------------===//
1935 
1936 /// This instruction inserts a single (scalar)
1937 /// element into a VectorType value
1938 ///
1939 class InsertElementInst : public Instruction {
1940   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941                     const Twine &NameStr = "",
1942                     Instruction *InsertBefore = nullptr);
1943   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944                     BasicBlock *InsertAtEnd);
1945 
1946 protected:
1947   // Note: Instruction needs to be a friend here to call cloneImpl.
1948   friend class Instruction;
1949 
1950   InsertElementInst *cloneImpl() const;
1951 
1952 public:
1953   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954                                    const Twine &NameStr = "",
1955                                    Instruction *InsertBefore = nullptr) {
1956     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957   }
1958 
1959   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960                                    const Twine &NameStr,
1961                                    BasicBlock *InsertAtEnd) {
1962     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963   }
1964 
1965   /// Return true if an insertelement instruction can be
1966   /// formed with the specified operands.
1967   static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968                               const Value *Idx);
1969 
1970   /// Overload to return most specific vector type.
1971   ///
1972   VectorType *getType() const {
1973     return cast<VectorType>(Instruction::getType());
1974   }
1975 
1976   /// Transparently provide more efficient getOperand methods.
1977   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1978 
1979   // Methods for support type inquiry through isa, cast, and dyn_cast:
1980   static bool classof(const Instruction *I) {
1981     return I->getOpcode() == Instruction::InsertElement;
1982   }
1983   static bool classof(const Value *V) {
1984     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985   }
1986 };
1987 
1988 template <>
1989 struct OperandTraits<InsertElementInst> :
1990   public FixedNumOperandTraits<InsertElementInst, 3> {
1991 };
1992 
1993 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1994 
1995 //===----------------------------------------------------------------------===//
1996 //                           ShuffleVectorInst Class
1997 //===----------------------------------------------------------------------===//
1998 
1999 constexpr int UndefMaskElem = -1;
2000 
2001 /// This instruction constructs a fixed permutation of two
2002 /// input vectors.
2003 ///
2004 /// For each element of the result vector, the shuffle mask selects an element
2005 /// from one of the input vectors to copy to the result. Non-negative elements
2006 /// in the mask represent an index into the concatenated pair of input vectors.
2007 /// UndefMaskElem (-1) specifies that the result element is undefined.
2008 ///
2009 /// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010 /// requirement may be relaxed in the future.
2011 class ShuffleVectorInst : public Instruction {
2012   SmallVector<int, 4> ShuffleMask;
2013   Constant *ShuffleMaskForBitcode;
2014 
2015 protected:
2016   // Note: Instruction needs to be a friend here to call cloneImpl.
2017   friend class Instruction;
2018 
2019   ShuffleVectorInst *cloneImpl() const;
2020 
2021 public:
2022   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023                     const Twine &NameStr = "",
2024                     Instruction *InsertBefor = nullptr);
2025   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026                     const Twine &NameStr, BasicBlock *InsertAtEnd);
2027   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028                     const Twine &NameStr = "",
2029                     Instruction *InsertBefor = nullptr);
2030   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031                     const Twine &NameStr, BasicBlock *InsertAtEnd);
2032 
2033   void *operator new(size_t S) { return User::operator new(S, 2); }
2034   void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035 
2036   /// Swap the operands and adjust the mask to preserve the semantics
2037   /// of the instruction.
2038   void commute();
2039 
2040   /// Return true if a shufflevector instruction can be
2041   /// formed with the specified operands.
2042   static bool isValidOperands(const Value *V1, const Value *V2,
2043                               const Value *Mask);
2044   static bool isValidOperands(const Value *V1, const Value *V2,
2045                               ArrayRef<int> Mask);
2046 
2047   /// Overload to return most specific vector type.
2048   ///
2049   VectorType *getType() const {
2050     return cast<VectorType>(Instruction::getType());
2051   }
2052 
2053   /// Transparently provide more efficient getOperand methods.
2054   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2055 
2056   /// Return the shuffle mask value of this instruction for the given element
2057   /// index. Return UndefMaskElem if the element is undef.
2058   int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059 
2060   /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061   /// elements of the mask are returned as UndefMaskElem.
2062   static void getShuffleMask(const Constant *Mask,
2063                              SmallVectorImpl<int> &Result);
2064 
2065   /// Return the mask for this instruction as a vector of integers. Undefined
2066   /// elements of the mask are returned as UndefMaskElem.
2067   void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068     Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069   }
2070 
2071   /// Return the mask for this instruction, for use in bitcode.
2072   ///
2073   /// TODO: This is temporary until we decide a new bitcode encoding for
2074   /// shufflevector.
2075   Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076 
2077   static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078                                                 Type *ResultTy);
2079 
2080   void setShuffleMask(ArrayRef<int> Mask);
2081 
2082   ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083 
2084   /// Return true if this shuffle returns a vector with a different number of
2085   /// elements than its source vectors.
2086   /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087   ///           shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088   bool changesLength() const {
2089     unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090                                  ->getElementCount()
2091                                  .getKnownMinValue();
2092     unsigned NumMaskElts = ShuffleMask.size();
2093     return NumSourceElts != NumMaskElts;
2094   }
2095 
2096   /// Return true if this shuffle returns a vector with a greater number of
2097   /// elements than its source vectors.
2098   /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099   bool increasesLength() const {
2100     unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101                                  ->getElementCount()
2102                                  .getKnownMinValue();
2103     unsigned NumMaskElts = ShuffleMask.size();
2104     return NumSourceElts < NumMaskElts;
2105   }
2106 
2107   /// Return true if this shuffle mask chooses elements from exactly one source
2108   /// vector.
2109   /// Example: <7,5,undef,7>
2110   /// This assumes that vector operands are the same length as the mask.
2111   static bool isSingleSourceMask(ArrayRef<int> Mask);
2112   static bool isSingleSourceMask(const Constant *Mask) {
2113     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2114     SmallVector<int, 16> MaskAsInts;
2115     getShuffleMask(Mask, MaskAsInts);
2116     return isSingleSourceMask(MaskAsInts);
2117   }
2118 
2119   /// Return true if this shuffle chooses elements from exactly one source
2120   /// vector without changing the length of that vector.
2121   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122   /// TODO: Optionally allow length-changing shuffles.
2123   bool isSingleSource() const {
2124     return !changesLength() && isSingleSourceMask(ShuffleMask);
2125   }
2126 
2127   /// Return true if this shuffle mask chooses elements from exactly one source
2128   /// vector without lane crossings. A shuffle using this mask is not
2129   /// necessarily a no-op because it may change the number of elements from its
2130   /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131   /// Example: <undef,undef,2,3>
2132   static bool isIdentityMask(ArrayRef<int> Mask);
2133   static bool isIdentityMask(const Constant *Mask) {
2134     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2135     SmallVector<int, 16> MaskAsInts;
2136     getShuffleMask(Mask, MaskAsInts);
2137     return isIdentityMask(MaskAsInts);
2138   }
2139 
2140   /// Return true if this shuffle chooses elements from exactly one source
2141   /// vector without lane crossings and does not change the number of elements
2142   /// from its input vectors.
2143   /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144   bool isIdentity() const {
2145     return !changesLength() && isIdentityMask(ShuffleMask);
2146   }
2147 
2148   /// Return true if this shuffle lengthens exactly one source vector with
2149   /// undefs in the high elements.
2150   bool isIdentityWithPadding() const;
2151 
2152   /// Return true if this shuffle extracts the first N elements of exactly one
2153   /// source vector.
2154   bool isIdentityWithExtract() const;
2155 
2156   /// Return true if this shuffle concatenates its 2 source vectors. This
2157   /// returns false if either input is undefined. In that case, the shuffle is
2158   /// is better classified as an identity with padding operation.
2159   bool isConcat() const;
2160 
2161   /// Return true if this shuffle mask chooses elements from its source vectors
2162   /// without lane crossings. A shuffle using this mask would be
2163   /// equivalent to a vector select with a constant condition operand.
2164   /// Example: <4,1,6,undef>
2165   /// This returns false if the mask does not choose from both input vectors.
2166   /// In that case, the shuffle is better classified as an identity shuffle.
2167   /// This assumes that vector operands are the same length as the mask
2168   /// (a length-changing shuffle can never be equivalent to a vector select).
2169   static bool isSelectMask(ArrayRef<int> Mask);
2170   static bool isSelectMask(const Constant *Mask) {
2171     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2172     SmallVector<int, 16> MaskAsInts;
2173     getShuffleMask(Mask, MaskAsInts);
2174     return isSelectMask(MaskAsInts);
2175   }
2176 
2177   /// Return true if this shuffle chooses elements from its source vectors
2178   /// without lane crossings and all operands have the same number of elements.
2179   /// In other words, this shuffle is equivalent to a vector select with a
2180   /// constant condition operand.
2181   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182   /// This returns false if the mask does not choose from both input vectors.
2183   /// In that case, the shuffle is better classified as an identity shuffle.
2184   /// TODO: Optionally allow length-changing shuffles.
2185   bool isSelect() const {
2186     return !changesLength() && isSelectMask(ShuffleMask);
2187   }
2188 
2189   /// Return true if this shuffle mask swaps the order of elements from exactly
2190   /// one source vector.
2191   /// Example: <7,6,undef,4>
2192   /// This assumes that vector operands are the same length as the mask.
2193   static bool isReverseMask(ArrayRef<int> Mask);
2194   static bool isReverseMask(const Constant *Mask) {
2195     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2196     SmallVector<int, 16> MaskAsInts;
2197     getShuffleMask(Mask, MaskAsInts);
2198     return isReverseMask(MaskAsInts);
2199   }
2200 
2201   /// Return true if this shuffle swaps the order of elements from exactly
2202   /// one source vector.
2203   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204   /// TODO: Optionally allow length-changing shuffles.
2205   bool isReverse() const {
2206     return !changesLength() && isReverseMask(ShuffleMask);
2207   }
2208 
2209   /// Return true if this shuffle mask chooses all elements with the same value
2210   /// as the first element of exactly one source vector.
2211   /// Example: <4,undef,undef,4>
2212   /// This assumes that vector operands are the same length as the mask.
2213   static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214   static bool isZeroEltSplatMask(const Constant *Mask) {
2215     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2216     SmallVector<int, 16> MaskAsInts;
2217     getShuffleMask(Mask, MaskAsInts);
2218     return isZeroEltSplatMask(MaskAsInts);
2219   }
2220 
2221   /// Return true if all elements of this shuffle are the same value as the
2222   /// first element of exactly one source vector without changing the length
2223   /// of that vector.
2224   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225   /// TODO: Optionally allow length-changing shuffles.
2226   /// TODO: Optionally allow splats from other elements.
2227   bool isZeroEltSplat() const {
2228     return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229   }
2230 
2231   /// Return true if this shuffle mask is a transpose mask.
2232   /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233   /// even- or odd-numbered vector elements from two n-dimensional source
2234   /// vectors and write each result into consecutive elements of an
2235   /// n-dimensional destination vector. Two shuffles are necessary to complete
2236   /// the transpose, one for the even elements and another for the odd elements.
2237   /// This description closely follows how the TRN1 and TRN2 AArch64
2238   /// instructions operate.
2239   ///
2240   /// For example, a simple 2x2 matrix can be transposed with:
2241   ///
2242   ///   ; Original matrix
2243   ///   m0 = < a, b >
2244   ///   m1 = < c, d >
2245   ///
2246   ///   ; Transposed matrix
2247   ///   t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248   ///   t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249   ///
2250   /// For matrices having greater than n columns, the resulting nx2 transposed
2251   /// matrix is stored in two result vectors such that one vector contains
2252   /// interleaved elements from all the even-numbered rows and the other vector
2253   /// contains interleaved elements from all the odd-numbered rows. For example,
2254   /// a 2x4 matrix can be transposed with:
2255   ///
2256   ///   ; Original matrix
2257   ///   m0 = < a, b, c, d >
2258   ///   m1 = < e, f, g, h >
2259   ///
2260   ///   ; Transposed matrix
2261   ///   t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262   ///   t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263   static bool isTransposeMask(ArrayRef<int> Mask);
2264   static bool isTransposeMask(const Constant *Mask) {
2265     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2266     SmallVector<int, 16> MaskAsInts;
2267     getShuffleMask(Mask, MaskAsInts);
2268     return isTransposeMask(MaskAsInts);
2269   }
2270 
2271   /// Return true if this shuffle transposes the elements of its inputs without
2272   /// changing the length of the vectors. This operation may also be known as a
2273   /// merge or interleave. See the description for isTransposeMask() for the
2274   /// exact specification.
2275   /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276   bool isTranspose() const {
2277     return !changesLength() && isTransposeMask(ShuffleMask);
2278   }
2279 
2280   /// Return true if this shuffle mask is an extract subvector mask.
2281   /// A valid extract subvector mask returns a smaller vector from a single
2282   /// source operand. The base extraction index is returned as well.
2283   static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284                                      int &Index);
2285   static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286                                      int &Index) {
2287     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2288     // Not possible to express a shuffle mask for a scalable vector for this
2289     // case.
2290     if (isa<ScalableVectorType>(Mask->getType()))
2291       return false;
2292     SmallVector<int, 16> MaskAsInts;
2293     getShuffleMask(Mask, MaskAsInts);
2294     return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295   }
2296 
2297   /// Return true if this shuffle mask is an extract subvector mask.
2298   bool isExtractSubvectorMask(int &Index) const {
2299     // Not possible to express a shuffle mask for a scalable vector for this
2300     // case.
2301     if (isa<ScalableVectorType>(getType()))
2302       return false;
2303 
2304     int NumSrcElts =
2305         cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306     return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307   }
2308 
2309   /// Change values in a shuffle permute mask assuming the two vector operands
2310   /// of length InVecNumElts have swapped position.
2311   static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312                                  unsigned InVecNumElts) {
2313     for (int &Idx : Mask) {
2314       if (Idx == -1)
2315         continue;
2316       Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317       assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2318              "shufflevector mask index out of range");
2319     }
2320   }
2321 
2322   // Methods for support type inquiry through isa, cast, and dyn_cast:
2323   static bool classof(const Instruction *I) {
2324     return I->getOpcode() == Instruction::ShuffleVector;
2325   }
2326   static bool classof(const Value *V) {
2327     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328   }
2329 };
2330 
2331 template <>
2332 struct OperandTraits<ShuffleVectorInst>
2333     : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334 
2335 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2336 
2337 //===----------------------------------------------------------------------===//
2338 //                                ExtractValueInst Class
2339 //===----------------------------------------------------------------------===//
2340 
2341 /// This instruction extracts a struct member or array
2342 /// element value from an aggregate value.
2343 ///
2344 class ExtractValueInst : public UnaryInstruction {
2345   SmallVector<unsigned, 4> Indices;
2346 
2347   ExtractValueInst(const ExtractValueInst &EVI);
2348 
2349   /// Constructors - Create a extractvalue instruction with a base aggregate
2350   /// value and a list of indices.  The first ctor can optionally insert before
2351   /// an existing instruction, the second appends the new instruction to the
2352   /// specified BasicBlock.
2353   inline ExtractValueInst(Value *Agg,
2354                           ArrayRef<unsigned> Idxs,
2355                           const Twine &NameStr,
2356                           Instruction *InsertBefore);
2357   inline ExtractValueInst(Value *Agg,
2358                           ArrayRef<unsigned> Idxs,
2359                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2360 
2361   void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362 
2363 protected:
2364   // Note: Instruction needs to be a friend here to call cloneImpl.
2365   friend class Instruction;
2366 
2367   ExtractValueInst *cloneImpl() const;
2368 
2369 public:
2370   static ExtractValueInst *Create(Value *Agg,
2371                                   ArrayRef<unsigned> Idxs,
2372                                   const Twine &NameStr = "",
2373                                   Instruction *InsertBefore = nullptr) {
2374     return new
2375       ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376   }
2377 
2378   static ExtractValueInst *Create(Value *Agg,
2379                                   ArrayRef<unsigned> Idxs,
2380                                   const Twine &NameStr,
2381                                   BasicBlock *InsertAtEnd) {
2382     return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383   }
2384 
2385   /// Returns the type of the element that would be extracted
2386   /// with an extractvalue instruction with the specified parameters.
2387   ///
2388   /// Null is returned if the indices are invalid for the specified type.
2389   static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390 
2391   using idx_iterator = const unsigned*;
2392 
2393   inline idx_iterator idx_begin() const { return Indices.begin(); }
2394   inline idx_iterator idx_end()   const { return Indices.end(); }
2395   inline iterator_range<idx_iterator> indices() const {
2396     return make_range(idx_begin(), idx_end());
2397   }
2398 
2399   Value *getAggregateOperand() {
2400     return getOperand(0);
2401   }
2402   const Value *getAggregateOperand() const {
2403     return getOperand(0);
2404   }
2405   static unsigned getAggregateOperandIndex() {
2406     return 0U;                      // get index for modifying correct operand
2407   }
2408 
2409   ArrayRef<unsigned> getIndices() const {
2410     return Indices;
2411   }
2412 
2413   unsigned getNumIndices() const {
2414     return (unsigned)Indices.size();
2415   }
2416 
2417   bool hasIndices() const {
2418     return true;
2419   }
2420 
2421   // Methods for support type inquiry through isa, cast, and dyn_cast:
2422   static bool classof(const Instruction *I) {
2423     return I->getOpcode() == Instruction::ExtractValue;
2424   }
2425   static bool classof(const Value *V) {
2426     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427   }
2428 };
2429 
2430 ExtractValueInst::ExtractValueInst(Value *Agg,
2431                                    ArrayRef<unsigned> Idxs,
2432                                    const Twine &NameStr,
2433                                    Instruction *InsertBefore)
2434   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435                      ExtractValue, Agg, InsertBefore) {
2436   init(Idxs, NameStr);
2437 }
2438 
2439 ExtractValueInst::ExtractValueInst(Value *Agg,
2440                                    ArrayRef<unsigned> Idxs,
2441                                    const Twine &NameStr,
2442                                    BasicBlock *InsertAtEnd)
2443   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444                      ExtractValue, Agg, InsertAtEnd) {
2445   init(Idxs, NameStr);
2446 }
2447 
2448 //===----------------------------------------------------------------------===//
2449 //                                InsertValueInst Class
2450 //===----------------------------------------------------------------------===//
2451 
2452 /// This instruction inserts a struct field of array element
2453 /// value into an aggregate value.
2454 ///
2455 class InsertValueInst : public Instruction {
2456   SmallVector<unsigned, 4> Indices;
2457 
2458   InsertValueInst(const InsertValueInst &IVI);
2459 
2460   /// Constructors - Create a insertvalue instruction with a base aggregate
2461   /// value, a value to insert, and a list of indices.  The first ctor can
2462   /// optionally insert before an existing instruction, the second appends
2463   /// the new instruction to the specified BasicBlock.
2464   inline InsertValueInst(Value *Agg, Value *Val,
2465                          ArrayRef<unsigned> Idxs,
2466                          const Twine &NameStr,
2467                          Instruction *InsertBefore);
2468   inline InsertValueInst(Value *Agg, Value *Val,
2469                          ArrayRef<unsigned> Idxs,
2470                          const Twine &NameStr, BasicBlock *InsertAtEnd);
2471 
2472   /// Constructors - These two constructors are convenience methods because one
2473   /// and two index insertvalue instructions are so common.
2474   InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475                   const Twine &NameStr = "",
2476                   Instruction *InsertBefore = nullptr);
2477   InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478                   BasicBlock *InsertAtEnd);
2479 
2480   void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481             const Twine &NameStr);
2482 
2483 protected:
2484   // Note: Instruction needs to be a friend here to call cloneImpl.
2485   friend class Instruction;
2486 
2487   InsertValueInst *cloneImpl() const;
2488 
2489 public:
2490   // allocate space for exactly two operands
2491   void *operator new(size_t S) { return User::operator new(S, 2); }
2492   void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493 
2494   static InsertValueInst *Create(Value *Agg, Value *Val,
2495                                  ArrayRef<unsigned> Idxs,
2496                                  const Twine &NameStr = "",
2497                                  Instruction *InsertBefore = nullptr) {
2498     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499   }
2500 
2501   static InsertValueInst *Create(Value *Agg, Value *Val,
2502                                  ArrayRef<unsigned> Idxs,
2503                                  const Twine &NameStr,
2504                                  BasicBlock *InsertAtEnd) {
2505     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506   }
2507 
2508   /// Transparently provide more efficient getOperand methods.
2509   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2510 
2511   using idx_iterator = const unsigned*;
2512 
2513   inline idx_iterator idx_begin() const { return Indices.begin(); }
2514   inline idx_iterator idx_end()   const { return Indices.end(); }
2515   inline iterator_range<idx_iterator> indices() const {
2516     return make_range(idx_begin(), idx_end());
2517   }
2518 
2519   Value *getAggregateOperand() {
2520     return getOperand(0);
2521   }
2522   const Value *getAggregateOperand() const {
2523     return getOperand(0);
2524   }
2525   static unsigned getAggregateOperandIndex() {
2526     return 0U;                      // get index for modifying correct operand
2527   }
2528 
2529   Value *getInsertedValueOperand() {
2530     return getOperand(1);
2531   }
2532   const Value *getInsertedValueOperand() const {
2533     return getOperand(1);
2534   }
2535   static unsigned getInsertedValueOperandIndex() {
2536     return 1U;                      // get index for modifying correct operand
2537   }
2538 
2539   ArrayRef<unsigned> getIndices() const {
2540     return Indices;
2541   }
2542 
2543   unsigned getNumIndices() const {
2544     return (unsigned)Indices.size();
2545   }
2546 
2547   bool hasIndices() const {
2548     return true;
2549   }
2550 
2551   // Methods for support type inquiry through isa, cast, and dyn_cast:
2552   static bool classof(const Instruction *I) {
2553     return I->getOpcode() == Instruction::InsertValue;
2554   }
2555   static bool classof(const Value *V) {
2556     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557   }
2558 };
2559 
2560 template <>
2561 struct OperandTraits<InsertValueInst> :
2562   public FixedNumOperandTraits<InsertValueInst, 2> {
2563 };
2564 
2565 InsertValueInst::InsertValueInst(Value *Agg,
2566                                  Value *Val,
2567                                  ArrayRef<unsigned> Idxs,
2568                                  const Twine &NameStr,
2569                                  Instruction *InsertBefore)
2570   : Instruction(Agg->getType(), InsertValue,
2571                 OperandTraits<InsertValueInst>::op_begin(this),
2572                 2, InsertBefore) {
2573   init(Agg, Val, Idxs, NameStr);
2574 }
2575 
2576 InsertValueInst::InsertValueInst(Value *Agg,
2577                                  Value *Val,
2578                                  ArrayRef<unsigned> Idxs,
2579                                  const Twine &NameStr,
2580                                  BasicBlock *InsertAtEnd)
2581   : Instruction(Agg->getType(), InsertValue,
2582                 OperandTraits<InsertValueInst>::op_begin(this),
2583                 2, InsertAtEnd) {
2584   init(Agg, Val, Idxs, NameStr);
2585 }
2586 
2587 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2588 
2589 //===----------------------------------------------------------------------===//
2590 //                               PHINode Class
2591 //===----------------------------------------------------------------------===//
2592 
2593 // PHINode - The PHINode class is used to represent the magical mystical PHI
2594 // node, that can not exist in nature, but can be synthesized in a computer
2595 // scientist's overactive imagination.
2596 //
2597 class PHINode : public Instruction {
2598   /// The number of operands actually allocated.  NumOperands is
2599   /// the number actually in use.
2600   unsigned ReservedSpace;
2601 
2602   PHINode(const PHINode &PN);
2603 
2604   explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605                    const Twine &NameStr = "",
2606                    Instruction *InsertBefore = nullptr)
2607     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608       ReservedSpace(NumReservedValues) {
2609     assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2610     setName(NameStr);
2611     allocHungoffUses(ReservedSpace);
2612   }
2613 
2614   PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615           BasicBlock *InsertAtEnd)
2616     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617       ReservedSpace(NumReservedValues) {
2618     assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2619     setName(NameStr);
2620     allocHungoffUses(ReservedSpace);
2621   }
2622 
2623 protected:
2624   // Note: Instruction needs to be a friend here to call cloneImpl.
2625   friend class Instruction;
2626 
2627   PHINode *cloneImpl() const;
2628 
2629   // allocHungoffUses - this is more complicated than the generic
2630   // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631   // values and pointers to the incoming blocks, all in one allocation.
2632   void allocHungoffUses(unsigned N) {
2633     User::allocHungoffUses(N, /* IsPhi */ true);
2634   }
2635 
2636 public:
2637   /// Constructors - NumReservedValues is a hint for the number of incoming
2638   /// edges that this phi node will have (use 0 if you really have no idea).
2639   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640                          const Twine &NameStr = "",
2641                          Instruction *InsertBefore = nullptr) {
2642     return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643   }
2644 
2645   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646                          const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647     return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648   }
2649 
2650   /// Provide fast operand accessors
2651   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2652 
2653   // Block iterator interface. This provides access to the list of incoming
2654   // basic blocks, which parallels the list of incoming values.
2655 
2656   using block_iterator = BasicBlock **;
2657   using const_block_iterator = BasicBlock * const *;
2658 
2659   block_iterator block_begin() {
2660     return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661   }
2662 
2663   const_block_iterator block_begin() const {
2664     return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665   }
2666 
2667   block_iterator block_end() {
2668     return block_begin() + getNumOperands();
2669   }
2670 
2671   const_block_iterator block_end() const {
2672     return block_begin() + getNumOperands();
2673   }
2674 
2675   iterator_range<block_iterator> blocks() {
2676     return make_range(block_begin(), block_end());
2677   }
2678 
2679   iterator_range<const_block_iterator> blocks() const {
2680     return make_range(block_begin(), block_end());
2681   }
2682 
2683   op_range incoming_values() { return operands(); }
2684 
2685   const_op_range incoming_values() const { return operands(); }
2686 
2687   /// Return the number of incoming edges
2688   ///
2689   unsigned getNumIncomingValues() const { return getNumOperands(); }
2690 
2691   /// Return incoming value number x
2692   ///
2693   Value *getIncomingValue(unsigned i) const {
2694     return getOperand(i);
2695   }
2696   void setIncomingValue(unsigned i, Value *V) {
2697     assert(V && "PHI node got a null value!");
2698     assert(getType() == V->getType() &&
2699            "All operands to PHI node must be the same type as the PHI node!");
2700     setOperand(i, V);
2701   }
2702 
2703   static unsigned getOperandNumForIncomingValue(unsigned i) {
2704     return i;
2705   }
2706 
2707   static unsigned getIncomingValueNumForOperand(unsigned i) {
2708     return i;
2709   }
2710 
2711   /// Return incoming basic block number @p i.
2712   ///
2713   BasicBlock *getIncomingBlock(unsigned i) const {
2714     return block_begin()[i];
2715   }
2716 
2717   /// Return incoming basic block corresponding
2718   /// to an operand of the PHI.
2719   ///
2720   BasicBlock *getIncomingBlock(const Use &U) const {
2721     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2722     return getIncomingBlock(unsigned(&U - op_begin()));
2723   }
2724 
2725   /// Return incoming basic block corresponding
2726   /// to value use iterator.
2727   ///
2728   BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729     return getIncomingBlock(I.getUse());
2730   }
2731 
2732   void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733     assert(BB && "PHI node got a null basic block!");
2734     block_begin()[i] = BB;
2735   }
2736 
2737   /// Replace every incoming basic block \p Old to basic block \p New.
2738   void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739     assert(New && Old && "PHI node got a null basic block!");
2740     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741       if (getIncomingBlock(Op) == Old)
2742         setIncomingBlock(Op, New);
2743   }
2744 
2745   /// Add an incoming value to the end of the PHI list
2746   ///
2747   void addIncoming(Value *V, BasicBlock *BB) {
2748     if (getNumOperands() == ReservedSpace)
2749       growOperands();  // Get more space!
2750     // Initialize some new operands.
2751     setNumHungOffUseOperands(getNumOperands() + 1);
2752     setIncomingValue(getNumOperands() - 1, V);
2753     setIncomingBlock(getNumOperands() - 1, BB);
2754   }
2755 
2756   /// Remove an incoming value.  This is useful if a
2757   /// predecessor basic block is deleted.  The value removed is returned.
2758   ///
2759   /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760   /// is true), the PHI node is destroyed and any uses of it are replaced with
2761   /// dummy values.  The only time there should be zero incoming values to a PHI
2762   /// node is when the block is dead, so this strategy is sound.
2763   ///
2764   Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765 
2766   Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767     int Idx = getBasicBlockIndex(BB);
2768     assert(Idx >= 0 && "Invalid basic block argument to remove!");
2769     return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770   }
2771 
2772   /// Return the first index of the specified basic
2773   /// block in the value list for this PHI.  Returns -1 if no instance.
2774   ///
2775   int getBasicBlockIndex(const BasicBlock *BB) const {
2776     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777       if (block_begin()[i] == BB)
2778         return i;
2779     return -1;
2780   }
2781 
2782   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783     int Idx = getBasicBlockIndex(BB);
2784     assert(Idx >= 0 && "Invalid basic block argument!");
2785     return getIncomingValue(Idx);
2786   }
2787 
2788   /// Set every incoming value(s) for block \p BB to \p V.
2789   void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790     assert(BB && "PHI node got a null basic block!");
2791     bool Found = false;
2792     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793       if (getIncomingBlock(Op) == BB) {
2794         Found = true;
2795         setIncomingValue(Op, V);
2796       }
2797     (void)Found;
2798     assert(Found && "Invalid basic block argument to set!");
2799   }
2800 
2801   /// If the specified PHI node always merges together the
2802   /// same value, return the value, otherwise return null.
2803   Value *hasConstantValue() const;
2804 
2805   /// Whether the specified PHI node always merges
2806   /// together the same value, assuming undefs are equal to a unique
2807   /// non-undef value.
2808   bool hasConstantOrUndefValue() const;
2809 
2810   /// If the PHI node is complete which means all of its parent's predecessors
2811   /// have incoming value in this PHI, return true, otherwise return false.
2812   bool isComplete() const {
2813     return llvm::all_of(predecessors(getParent()),
2814                         [this](const BasicBlock *Pred) {
2815                           return getBasicBlockIndex(Pred) >= 0;
2816                         });
2817   }
2818 
2819   /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820   static bool classof(const Instruction *I) {
2821     return I->getOpcode() == Instruction::PHI;
2822   }
2823   static bool classof(const Value *V) {
2824     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825   }
2826 
2827 private:
2828   void growOperands();
2829 };
2830 
2831 template <>
2832 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833 };
2834 
2835 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2836 
2837 //===----------------------------------------------------------------------===//
2838 //                           LandingPadInst Class
2839 //===----------------------------------------------------------------------===//
2840 
2841 //===---------------------------------------------------------------------------
2842 /// The landingpad instruction holds all of the information
2843 /// necessary to generate correct exception handling. The landingpad instruction
2844 /// cannot be moved from the top of a landing pad block, which itself is
2845 /// accessible only from the 'unwind' edge of an invoke. This uses the
2846 /// SubclassData field in Value to store whether or not the landingpad is a
2847 /// cleanup.
2848 ///
2849 class LandingPadInst : public Instruction {
2850   using CleanupField = BoolBitfieldElementT<0>;
2851 
2852   /// The number of operands actually allocated.  NumOperands is
2853   /// the number actually in use.
2854   unsigned ReservedSpace;
2855 
2856   LandingPadInst(const LandingPadInst &LP);
2857 
2858 public:
2859   enum ClauseType { Catch, Filter };
2860 
2861 private:
2862   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863                           const Twine &NameStr, Instruction *InsertBefore);
2864   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2866 
2867   // Allocate space for exactly zero operands.
2868   void *operator new(size_t S) { return User::operator new(S); }
2869 
2870   void growOperands(unsigned Size);
2871   void init(unsigned NumReservedValues, const Twine &NameStr);
2872 
2873 protected:
2874   // Note: Instruction needs to be a friend here to call cloneImpl.
2875   friend class Instruction;
2876 
2877   LandingPadInst *cloneImpl() const;
2878 
2879 public:
2880   void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881 
2882   /// Constructors - NumReservedClauses is a hint for the number of incoming
2883   /// clauses that this landingpad will have (use 0 if you really have no idea).
2884   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885                                 const Twine &NameStr = "",
2886                                 Instruction *InsertBefore = nullptr);
2887   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888                                 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889 
2890   /// Provide fast operand accessors
2891   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2892 
2893   /// Return 'true' if this landingpad instruction is a
2894   /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895   /// doesn't catch the exception.
2896   bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897 
2898   /// Indicate that this landingpad instruction is a cleanup.
2899   void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900 
2901   /// Add a catch or filter clause to the landing pad.
2902   void addClause(Constant *ClauseVal);
2903 
2904   /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905   /// determine what type of clause this is.
2906   Constant *getClause(unsigned Idx) const {
2907     return cast<Constant>(getOperandList()[Idx]);
2908   }
2909 
2910   /// Return 'true' if the clause and index Idx is a catch clause.
2911   bool isCatch(unsigned Idx) const {
2912     return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913   }
2914 
2915   /// Return 'true' if the clause and index Idx is a filter clause.
2916   bool isFilter(unsigned Idx) const {
2917     return isa<ArrayType>(getOperandList()[Idx]->getType());
2918   }
2919 
2920   /// Get the number of clauses for this landing pad.
2921   unsigned getNumClauses() const { return getNumOperands(); }
2922 
2923   /// Grow the size of the operand list to accommodate the new
2924   /// number of clauses.
2925   void reserveClauses(unsigned Size) { growOperands(Size); }
2926 
2927   // Methods for support type inquiry through isa, cast, and dyn_cast:
2928   static bool classof(const Instruction *I) {
2929     return I->getOpcode() == Instruction::LandingPad;
2930   }
2931   static bool classof(const Value *V) {
2932     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933   }
2934 };
2935 
2936 template <>
2937 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938 };
2939 
2940 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2941 
2942 //===----------------------------------------------------------------------===//
2943 //                               ReturnInst Class
2944 //===----------------------------------------------------------------------===//
2945 
2946 //===---------------------------------------------------------------------------
2947 /// Return a value (possibly void), from a function.  Execution
2948 /// does not continue in this function any longer.
2949 ///
2950 class ReturnInst : public Instruction {
2951   ReturnInst(const ReturnInst &RI);
2952 
2953 private:
2954   // ReturnInst constructors:
2955   // ReturnInst()                  - 'ret void' instruction
2956   // ReturnInst(    null)          - 'ret void' instruction
2957   // ReturnInst(Value* X)          - 'ret X'    instruction
2958   // ReturnInst(    null, Inst *I) - 'ret void' instruction, insert before I
2959   // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
2960   // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of B
2961   // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of B
2962   //
2963   // NOTE: If the Value* passed is of type void then the constructor behaves as
2964   // if it was passed NULL.
2965   explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966                       Instruction *InsertBefore = nullptr);
2967   ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968   explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969 
2970 protected:
2971   // Note: Instruction needs to be a friend here to call cloneImpl.
2972   friend class Instruction;
2973 
2974   ReturnInst *cloneImpl() const;
2975 
2976 public:
2977   static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978                             Instruction *InsertBefore = nullptr) {
2979     return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980   }
2981 
2982   static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983                             BasicBlock *InsertAtEnd) {
2984     return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985   }
2986 
2987   static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988     return new(0) ReturnInst(C, InsertAtEnd);
2989   }
2990 
2991   /// Provide fast operand accessors
2992   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2993 
2994   /// Convenience accessor. Returns null if there is no return value.
2995   Value *getReturnValue() const {
2996     return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997   }
2998 
2999   unsigned getNumSuccessors() const { return 0; }
3000 
3001   // Methods for support type inquiry through isa, cast, and dyn_cast:
3002   static bool classof(const Instruction *I) {
3003     return (I->getOpcode() == Instruction::Ret);
3004   }
3005   static bool classof(const Value *V) {
3006     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007   }
3008 
3009 private:
3010   BasicBlock *getSuccessor(unsigned idx) const {
3011     llvm_unreachable("ReturnInst has no successors!");
3012   }
3013 
3014   void setSuccessor(unsigned idx, BasicBlock *B) {
3015     llvm_unreachable("ReturnInst has no successors!");
3016   }
3017 };
3018 
3019 template <>
3020 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021 };
3022 
3023 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
3024 
3025 //===----------------------------------------------------------------------===//
3026 //                               BranchInst Class
3027 //===----------------------------------------------------------------------===//
3028 
3029 //===---------------------------------------------------------------------------
3030 /// Conditional or Unconditional Branch instruction.
3031 ///
3032 class BranchInst : public Instruction {
3033   /// Ops list - Branches are strange.  The operands are ordered:
3034   ///  [Cond, FalseDest,] TrueDest.  This makes some accessors faster because
3035   /// they don't have to check for cond/uncond branchness. These are mostly
3036   /// accessed relative from op_end().
3037   BranchInst(const BranchInst &BI);
3038   // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039   // BranchInst(BB *B)                           - 'br B'
3040   // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
3041   // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
3042   // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043   // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
3044   // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
3045   explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047              Instruction *InsertBefore = nullptr);
3048   BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050              BasicBlock *InsertAtEnd);
3051 
3052   void AssertOK();
3053 
3054 protected:
3055   // Note: Instruction needs to be a friend here to call cloneImpl.
3056   friend class Instruction;
3057 
3058   BranchInst *cloneImpl() const;
3059 
3060 public:
3061   /// Iterator type that casts an operand to a basic block.
3062   ///
3063   /// This only makes sense because the successors are stored as adjacent
3064   /// operands for branch instructions.
3065   struct succ_op_iterator
3066       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067                               std::random_access_iterator_tag, BasicBlock *,
3068                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3069     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070 
3071     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072     BasicBlock *operator->() const { return operator*(); }
3073   };
3074 
3075   /// The const version of `succ_op_iterator`.
3076   struct const_succ_op_iterator
3077       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078                               std::random_access_iterator_tag,
3079                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080                               const BasicBlock *> {
3081     explicit const_succ_op_iterator(const_value_op_iterator I)
3082         : iterator_adaptor_base(I) {}
3083 
3084     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085     const BasicBlock *operator->() const { return operator*(); }
3086   };
3087 
3088   static BranchInst *Create(BasicBlock *IfTrue,
3089                             Instruction *InsertBefore = nullptr) {
3090     return new(1) BranchInst(IfTrue, InsertBefore);
3091   }
3092 
3093   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094                             Value *Cond, Instruction *InsertBefore = nullptr) {
3095     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096   }
3097 
3098   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099     return new(1) BranchInst(IfTrue, InsertAtEnd);
3100   }
3101 
3102   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103                             Value *Cond, BasicBlock *InsertAtEnd) {
3104     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105   }
3106 
3107   /// Transparently provide more efficient getOperand methods.
3108   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3109 
3110   bool isUnconditional() const { return getNumOperands() == 1; }
3111   bool isConditional()   const { return getNumOperands() == 3; }
3112 
3113   Value *getCondition() const {
3114     assert(isConditional() && "Cannot get condition of an uncond branch!");
3115     return Op<-3>();
3116   }
3117 
3118   void setCondition(Value *V) {
3119     assert(isConditional() && "Cannot set condition of unconditional branch!");
3120     Op<-3>() = V;
3121   }
3122 
3123   unsigned getNumSuccessors() const { return 1+isConditional(); }
3124 
3125   BasicBlock *getSuccessor(unsigned i) const {
3126     assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3127     return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128   }
3129 
3130   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131     assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3132     *(&Op<-1>() - idx) = NewSucc;
3133   }
3134 
3135   /// Swap the successors of this branch instruction.
3136   ///
3137   /// Swaps the successors of the branch instruction. This also swaps any
3138   /// branch weight metadata associated with the instruction so that it
3139   /// continues to map correctly to each operand.
3140   void swapSuccessors();
3141 
3142   iterator_range<succ_op_iterator> successors() {
3143     return make_range(
3144         succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145         succ_op_iterator(value_op_end()));
3146   }
3147 
3148   iterator_range<const_succ_op_iterator> successors() const {
3149     return make_range(const_succ_op_iterator(
3150                           std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151                       const_succ_op_iterator(value_op_end()));
3152   }
3153 
3154   // Methods for support type inquiry through isa, cast, and dyn_cast:
3155   static bool classof(const Instruction *I) {
3156     return (I->getOpcode() == Instruction::Br);
3157   }
3158   static bool classof(const Value *V) {
3159     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160   }
3161 };
3162 
3163 template <>
3164 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165 };
3166 
3167 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
3168 
3169 //===----------------------------------------------------------------------===//
3170 //                               SwitchInst Class
3171 //===----------------------------------------------------------------------===//
3172 
3173 //===---------------------------------------------------------------------------
3174 /// Multiway switch
3175 ///
3176 class SwitchInst : public Instruction {
3177   unsigned ReservedSpace;
3178 
3179   // Operand[0]    = Value to switch on
3180   // Operand[1]    = Default basic block destination
3181   // Operand[2n  ] = Value to match
3182   // Operand[2n+1] = BasicBlock to go to on match
3183   SwitchInst(const SwitchInst &SI);
3184 
3185   /// Create a new switch instruction, specifying a value to switch on and a
3186   /// default destination. The number of additional cases can be specified here
3187   /// to make memory allocation more efficient. This constructor can also
3188   /// auto-insert before another instruction.
3189   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190              Instruction *InsertBefore);
3191 
3192   /// Create a new switch instruction, specifying a value to switch on and a
3193   /// default destination. The number of additional cases can be specified here
3194   /// to make memory allocation more efficient. This constructor also
3195   /// auto-inserts at the end of the specified BasicBlock.
3196   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197              BasicBlock *InsertAtEnd);
3198 
3199   // allocate space for exactly zero operands
3200   void *operator new(size_t S) { return User::operator new(S); }
3201 
3202   void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203   void growOperands();
3204 
3205 protected:
3206   // Note: Instruction needs to be a friend here to call cloneImpl.
3207   friend class Instruction;
3208 
3209   SwitchInst *cloneImpl() const;
3210 
3211 public:
3212   void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213 
3214   // -2
3215   static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216 
3217   template <typename CaseHandleT> class CaseIteratorImpl;
3218 
3219   /// A handle to a particular switch case. It exposes a convenient interface
3220   /// to both the case value and the successor block.
3221   ///
3222   /// We define this as a template and instantiate it to form both a const and
3223   /// non-const handle.
3224   template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225   class CaseHandleImpl {
3226     // Directly befriend both const and non-const iterators.
3227     friend class SwitchInst::CaseIteratorImpl<
3228         CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229 
3230   protected:
3231     // Expose the switch type we're parameterized with to the iterator.
3232     using SwitchInstType = SwitchInstT;
3233 
3234     SwitchInstT *SI;
3235     ptrdiff_t Index;
3236 
3237     CaseHandleImpl() = default;
3238     CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239 
3240   public:
3241     /// Resolves case value for current case.
3242     ConstantIntT *getCaseValue() const {
3243       assert((unsigned)Index < SI->getNumCases() &&
3244              "Index out the number of cases.");
3245       return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246     }
3247 
3248     /// Resolves successor for current case.
3249     BasicBlockT *getCaseSuccessor() const {
3250       assert(((unsigned)Index < SI->getNumCases() ||
3251               (unsigned)Index == DefaultPseudoIndex) &&
3252              "Index out the number of cases.");
3253       return SI->getSuccessor(getSuccessorIndex());
3254     }
3255 
3256     /// Returns number of current case.
3257     unsigned getCaseIndex() const { return Index; }
3258 
3259     /// Returns successor index for current case successor.
3260     unsigned getSuccessorIndex() const {
3261       assert(((unsigned)Index == DefaultPseudoIndex ||
3262               (unsigned)Index < SI->getNumCases()) &&
3263              "Index out the number of cases.");
3264       return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265     }
3266 
3267     bool operator==(const CaseHandleImpl &RHS) const {
3268       assert(SI == RHS.SI && "Incompatible operators.");
3269       return Index == RHS.Index;
3270     }
3271   };
3272 
3273   using ConstCaseHandle =
3274       CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275 
3276   class CaseHandle
3277       : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278     friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279 
3280   public:
3281     CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282 
3283     /// Sets the new value for current case.
3284     void setValue(ConstantInt *V) {
3285       assert((unsigned)Index < SI->getNumCases() &&
3286              "Index out the number of cases.");
3287       SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288     }
3289 
3290     /// Sets the new successor for current case.
3291     void setSuccessor(BasicBlock *S) {
3292       SI->setSuccessor(getSuccessorIndex(), S);
3293     }
3294   };
3295 
3296   template <typename CaseHandleT>
3297   class CaseIteratorImpl
3298       : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299                                     std::random_access_iterator_tag,
3300                                     CaseHandleT> {
3301     using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302 
3303     CaseHandleT Case;
3304 
3305   public:
3306     /// Default constructed iterator is in an invalid state until assigned to
3307     /// a case for a particular switch.
3308     CaseIteratorImpl() = default;
3309 
3310     /// Initializes case iterator for given SwitchInst and for given
3311     /// case number.
3312     CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313 
3314     /// Initializes case iterator for given SwitchInst and for given
3315     /// successor index.
3316     static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317                                                unsigned SuccessorIndex) {
3318       assert(SuccessorIndex < SI->getNumSuccessors() &&
3319              "Successor index # out of range!");
3320       return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321                                  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322     }
3323 
3324     /// Support converting to the const variant. This will be a no-op for const
3325     /// variant.
3326     operator CaseIteratorImpl<ConstCaseHandle>() const {
3327       return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328     }
3329 
3330     CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331       // Check index correctness after addition.
3332       // Note: Index == getNumCases() means end().
3333       assert(Case.Index + N >= 0 &&
3334              (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3335              "Case.Index out the number of cases.");
3336       Case.Index += N;
3337       return *this;
3338     }
3339     CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340       // Check index correctness after subtraction.
3341       // Note: Case.Index == getNumCases() means end().
3342       assert(Case.Index - N >= 0 &&
3343              (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3344              "Case.Index out the number of cases.");
3345       Case.Index -= N;
3346       return *this;
3347     }
3348     ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3350       return Case.Index - RHS.Case.Index;
3351     }
3352     bool operator==(const CaseIteratorImpl &RHS) const {
3353       return Case == RHS.Case;
3354     }
3355     bool operator<(const CaseIteratorImpl &RHS) const {
3356       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3357       return Case.Index < RHS.Case.Index;
3358     }
3359     CaseHandleT &operator*() { return Case; }
3360     const CaseHandleT &operator*() const { return Case; }
3361   };
3362 
3363   using CaseIt = CaseIteratorImpl<CaseHandle>;
3364   using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365 
3366   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367                             unsigned NumCases,
3368                             Instruction *InsertBefore = nullptr) {
3369     return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370   }
3371 
3372   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373                             unsigned NumCases, BasicBlock *InsertAtEnd) {
3374     return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375   }
3376 
3377   /// Provide fast operand accessors
3378   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3379 
3380   // Accessor Methods for Switch stmt
3381   Value *getCondition() const { return getOperand(0); }
3382   void setCondition(Value *V) { setOperand(0, V); }
3383 
3384   BasicBlock *getDefaultDest() const {
3385     return cast<BasicBlock>(getOperand(1));
3386   }
3387 
3388   void setDefaultDest(BasicBlock *DefaultCase) {
3389     setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390   }
3391 
3392   /// Return the number of 'cases' in this switch instruction, excluding the
3393   /// default case.
3394   unsigned getNumCases() const {
3395     return getNumOperands()/2 - 1;
3396   }
3397 
3398   /// Returns a read/write iterator that points to the first case in the
3399   /// SwitchInst.
3400   CaseIt case_begin() {
3401     return CaseIt(this, 0);
3402   }
3403 
3404   /// Returns a read-only iterator that points to the first case in the
3405   /// SwitchInst.
3406   ConstCaseIt case_begin() const {
3407     return ConstCaseIt(this, 0);
3408   }
3409 
3410   /// Returns a read/write iterator that points one past the last in the
3411   /// SwitchInst.
3412   CaseIt case_end() {
3413     return CaseIt(this, getNumCases());
3414   }
3415 
3416   /// Returns a read-only iterator that points one past the last in the
3417   /// SwitchInst.
3418   ConstCaseIt case_end() const {
3419     return ConstCaseIt(this, getNumCases());
3420   }
3421 
3422   /// Iteration adapter for range-for loops.
3423   iterator_range<CaseIt> cases() {
3424     return make_range(case_begin(), case_end());
3425   }
3426 
3427   /// Constant iteration adapter for range-for loops.
3428   iterator_range<ConstCaseIt> cases() const {
3429     return make_range(case_begin(), case_end());
3430   }
3431 
3432   /// Returns an iterator that points to the default case.
3433   /// Note: this iterator allows to resolve successor only. Attempt
3434   /// to resolve case value causes an assertion.
3435   /// Also note, that increment and decrement also causes an assertion and
3436   /// makes iterator invalid.
3437   CaseIt case_default() {
3438     return CaseIt(this, DefaultPseudoIndex);
3439   }
3440   ConstCaseIt case_default() const {
3441     return ConstCaseIt(this, DefaultPseudoIndex);
3442   }
3443 
3444   /// Search all of the case values for the specified constant. If it is
3445   /// explicitly handled, return the case iterator of it, otherwise return
3446   /// default case iterator to indicate that it is handled by the default
3447   /// handler.
3448   CaseIt findCaseValue(const ConstantInt *C) {
3449     CaseIt I = llvm::find_if(
3450         cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451     if (I != case_end())
3452       return I;
3453 
3454     return case_default();
3455   }
3456   ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457     ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458       return Case.getCaseValue() == C;
3459     });
3460     if (I != case_end())
3461       return I;
3462 
3463     return case_default();
3464   }
3465 
3466   /// Finds the unique case value for a given successor. Returns null if the
3467   /// successor is not found, not unique, or is the default case.
3468   ConstantInt *findCaseDest(BasicBlock *BB) {
3469     if (BB == getDefaultDest())
3470       return nullptr;
3471 
3472     ConstantInt *CI = nullptr;
3473     for (auto Case : cases()) {
3474       if (Case.getCaseSuccessor() != BB)
3475         continue;
3476 
3477       if (CI)
3478         return nullptr; // Multiple cases lead to BB.
3479 
3480       CI = Case.getCaseValue();
3481     }
3482 
3483     return CI;
3484   }
3485 
3486   /// Add an entry to the switch instruction.
3487   /// Note:
3488   /// This action invalidates case_end(). Old case_end() iterator will
3489   /// point to the added case.
3490   void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491 
3492   /// This method removes the specified case and its successor from the switch
3493   /// instruction. Note that this operation may reorder the remaining cases at
3494   /// index idx and above.
3495   /// Note:
3496   /// This action invalidates iterators for all cases following the one removed,
3497   /// including the case_end() iterator. It returns an iterator for the next
3498   /// case.
3499   CaseIt removeCase(CaseIt I);
3500 
3501   unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502   BasicBlock *getSuccessor(unsigned idx) const {
3503     assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3504     return cast<BasicBlock>(getOperand(idx*2+1));
3505   }
3506   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507     assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3508     setOperand(idx * 2 + 1, NewSucc);
3509   }
3510 
3511   // Methods for support type inquiry through isa, cast, and dyn_cast:
3512   static bool classof(const Instruction *I) {
3513     return I->getOpcode() == Instruction::Switch;
3514   }
3515   static bool classof(const Value *V) {
3516     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517   }
3518 };
3519 
3520 /// A wrapper class to simplify modification of SwitchInst cases along with
3521 /// their prof branch_weights metadata.
3522 class SwitchInstProfUpdateWrapper {
3523   SwitchInst &SI;
3524   Optional<SmallVector<uint32_t, 8> > Weights = None;
3525   bool Changed = false;
3526 
3527 protected:
3528   static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529 
3530   MDNode *buildProfBranchWeightsMD();
3531 
3532   void init();
3533 
3534 public:
3535   using CaseWeightOpt = Optional<uint32_t>;
3536   SwitchInst *operator->() { return &SI; }
3537   SwitchInst &operator*() { return SI; }
3538   operator SwitchInst *() { return &SI; }
3539 
3540   SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541 
3542   ~SwitchInstProfUpdateWrapper() {
3543     if (Changed)
3544       SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545   }
3546 
3547   /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548   /// correspondent branch weight.
3549   SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550 
3551   /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552   /// specified branch weight for the added case.
3553   void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554 
3555   /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556   /// this object to not touch the underlying SwitchInst in destructor.
3557   SymbolTableList<Instruction>::iterator eraseFromParent();
3558 
3559   void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560   CaseWeightOpt getSuccessorWeight(unsigned idx);
3561 
3562   static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563 };
3564 
3565 template <>
3566 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567 };
3568 
3569 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3570 
3571 //===----------------------------------------------------------------------===//
3572 //                             IndirectBrInst Class
3573 //===----------------------------------------------------------------------===//
3574 
3575 //===---------------------------------------------------------------------------
3576 /// Indirect Branch Instruction.
3577 ///
3578 class IndirectBrInst : public Instruction {
3579   unsigned ReservedSpace;
3580 
3581   // Operand[0]   = Address to jump to
3582   // Operand[n+1] = n-th destination
3583   IndirectBrInst(const IndirectBrInst &IBI);
3584 
3585   /// Create a new indirectbr instruction, specifying an
3586   /// Address to jump to.  The number of expected destinations can be specified
3587   /// here to make memory allocation more efficient.  This constructor can also
3588   /// autoinsert before another instruction.
3589   IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590 
3591   /// Create a new indirectbr instruction, specifying an
3592   /// Address to jump to.  The number of expected destinations can be specified
3593   /// here to make memory allocation more efficient.  This constructor also
3594   /// autoinserts at the end of the specified BasicBlock.
3595   IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596 
3597   // allocate space for exactly zero operands
3598   void *operator new(size_t S) { return User::operator new(S); }
3599 
3600   void init(Value *Address, unsigned NumDests);
3601   void growOperands();
3602 
3603 protected:
3604   // Note: Instruction needs to be a friend here to call cloneImpl.
3605   friend class Instruction;
3606 
3607   IndirectBrInst *cloneImpl() const;
3608 
3609 public:
3610   void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611 
3612   /// Iterator type that casts an operand to a basic block.
3613   ///
3614   /// This only makes sense because the successors are stored as adjacent
3615   /// operands for indirectbr instructions.
3616   struct succ_op_iterator
3617       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618                               std::random_access_iterator_tag, BasicBlock *,
3619                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3620     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621 
3622     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623     BasicBlock *operator->() const { return operator*(); }
3624   };
3625 
3626   /// The const version of `succ_op_iterator`.
3627   struct const_succ_op_iterator
3628       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629                               std::random_access_iterator_tag,
3630                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631                               const BasicBlock *> {
3632     explicit const_succ_op_iterator(const_value_op_iterator I)
3633         : iterator_adaptor_base(I) {}
3634 
3635     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636     const BasicBlock *operator->() const { return operator*(); }
3637   };
3638 
3639   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640                                 Instruction *InsertBefore = nullptr) {
3641     return new IndirectBrInst(Address, NumDests, InsertBefore);
3642   }
3643 
3644   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645                                 BasicBlock *InsertAtEnd) {
3646     return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647   }
3648 
3649   /// Provide fast operand accessors.
3650   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3651 
3652   // Accessor Methods for IndirectBrInst instruction.
3653   Value *getAddress() { return getOperand(0); }
3654   const Value *getAddress() const { return getOperand(0); }
3655   void setAddress(Value *V) { setOperand(0, V); }
3656 
3657   /// return the number of possible destinations in this
3658   /// indirectbr instruction.
3659   unsigned getNumDestinations() const { return getNumOperands()-1; }
3660 
3661   /// Return the specified destination.
3662   BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663   const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664 
3665   /// Add a destination.
3666   ///
3667   void addDestination(BasicBlock *Dest);
3668 
3669   /// This method removes the specified successor from the
3670   /// indirectbr instruction.
3671   void removeDestination(unsigned i);
3672 
3673   unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674   BasicBlock *getSuccessor(unsigned i) const {
3675     return cast<BasicBlock>(getOperand(i+1));
3676   }
3677   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678     setOperand(i + 1, NewSucc);
3679   }
3680 
3681   iterator_range<succ_op_iterator> successors() {
3682     return make_range(succ_op_iterator(std::next(value_op_begin())),
3683                       succ_op_iterator(value_op_end()));
3684   }
3685 
3686   iterator_range<const_succ_op_iterator> successors() const {
3687     return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688                       const_succ_op_iterator(value_op_end()));
3689   }
3690 
3691   // Methods for support type inquiry through isa, cast, and dyn_cast:
3692   static bool classof(const Instruction *I) {
3693     return I->getOpcode() == Instruction::IndirectBr;
3694   }
3695   static bool classof(const Value *V) {
3696     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697   }
3698 };
3699 
3700 template <>
3701 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702 };
3703 
3704 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3705 
3706 //===----------------------------------------------------------------------===//
3707 //                               InvokeInst Class
3708 //===----------------------------------------------------------------------===//
3709 
3710 /// Invoke instruction.  The SubclassData field is used to hold the
3711 /// calling convention of the call.
3712 ///
3713 class InvokeInst : public CallBase {
3714   /// The number of operands for this call beyond the called function,
3715   /// arguments, and operand bundles.
3716   static constexpr int NumExtraOperands = 2;
3717 
3718   /// The index from the end of the operand array to the normal destination.
3719   static constexpr int NormalDestOpEndIdx = -3;
3720 
3721   /// The index from the end of the operand array to the unwind destination.
3722   static constexpr int UnwindDestOpEndIdx = -2;
3723 
3724   InvokeInst(const InvokeInst &BI);
3725 
3726   /// Construct an InvokeInst given a range of arguments.
3727   ///
3728   /// Construct an InvokeInst from a range of arguments
3729   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730                     BasicBlock *IfException, ArrayRef<Value *> Args,
3731                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732                     const Twine &NameStr, Instruction *InsertBefore);
3733 
3734   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735                     BasicBlock *IfException, ArrayRef<Value *> Args,
3736                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3738 
3739   void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740             BasicBlock *IfException, ArrayRef<Value *> Args,
3741             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742 
3743   /// Compute the number of operands to allocate.
3744   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745     // We need one operand for the called function, plus our extra operands and
3746     // the input operand counts provided.
3747     return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748   }
3749 
3750 protected:
3751   // Note: Instruction needs to be a friend here to call cloneImpl.
3752   friend class Instruction;
3753 
3754   InvokeInst *cloneImpl() const;
3755 
3756 public:
3757   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758                             BasicBlock *IfException, ArrayRef<Value *> Args,
3759                             const Twine &NameStr,
3760                             Instruction *InsertBefore = nullptr) {
3761     int NumOperands = ComputeNumOperands(Args.size());
3762     return new (NumOperands)
3763         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764                    NameStr, InsertBefore);
3765   }
3766 
3767   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768                             BasicBlock *IfException, ArrayRef<Value *> Args,
3769                             ArrayRef<OperandBundleDef> Bundles = None,
3770                             const Twine &NameStr = "",
3771                             Instruction *InsertBefore = nullptr) {
3772     int NumOperands =
3773         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775 
3776     return new (NumOperands, DescriptorBytes)
3777         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778                    NameStr, InsertBefore);
3779   }
3780 
3781   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782                             BasicBlock *IfException, ArrayRef<Value *> Args,
3783                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784     int NumOperands = ComputeNumOperands(Args.size());
3785     return new (NumOperands)
3786         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787                    NameStr, InsertAtEnd);
3788   }
3789 
3790   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791                             BasicBlock *IfException, ArrayRef<Value *> Args,
3792                             ArrayRef<OperandBundleDef> Bundles,
3793                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794     int NumOperands =
3795         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797 
3798     return new (NumOperands, DescriptorBytes)
3799         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800                    NameStr, InsertAtEnd);
3801   }
3802 
3803   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804                             BasicBlock *IfException, ArrayRef<Value *> Args,
3805                             const Twine &NameStr,
3806                             Instruction *InsertBefore = nullptr) {
3807     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808                   IfException, Args, None, NameStr, InsertBefore);
3809   }
3810 
3811   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812                             BasicBlock *IfException, ArrayRef<Value *> Args,
3813                             ArrayRef<OperandBundleDef> Bundles = None,
3814                             const Twine &NameStr = "",
3815                             Instruction *InsertBefore = nullptr) {
3816     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817                   IfException, Args, Bundles, NameStr, InsertBefore);
3818   }
3819 
3820   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821                             BasicBlock *IfException, ArrayRef<Value *> Args,
3822                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824                   IfException, Args, NameStr, InsertAtEnd);
3825   }
3826 
3827   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828                             BasicBlock *IfException, ArrayRef<Value *> Args,
3829                             ArrayRef<OperandBundleDef> Bundles,
3830                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832                   IfException, Args, Bundles, NameStr, InsertAtEnd);
3833   }
3834 
3835   /// Create a clone of \p II with a different set of operand bundles and
3836   /// insert it before \p InsertPt.
3837   ///
3838   /// The returned invoke instruction is identical to \p II in every way except
3839   /// that the operand bundles for the new instruction are set to the operand
3840   /// bundles in \p Bundles.
3841   static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842                             Instruction *InsertPt = nullptr);
3843 
3844   // get*Dest - Return the destination basic blocks...
3845   BasicBlock *getNormalDest() const {
3846     return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847   }
3848   BasicBlock *getUnwindDest() const {
3849     return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850   }
3851   void setNormalDest(BasicBlock *B) {
3852     Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853   }
3854   void setUnwindDest(BasicBlock *B) {
3855     Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856   }
3857 
3858   /// Get the landingpad instruction from the landing pad
3859   /// block (the unwind destination).
3860   LandingPadInst *getLandingPadInst() const;
3861 
3862   BasicBlock *getSuccessor(unsigned i) const {
3863     assert(i < 2 && "Successor # out of range for invoke!");
3864     return i == 0 ? getNormalDest() : getUnwindDest();
3865   }
3866 
3867   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868     assert(i < 2 && "Successor # out of range for invoke!");
3869     if (i == 0)
3870       setNormalDest(NewSucc);
3871     else
3872       setUnwindDest(NewSucc);
3873   }
3874 
3875   unsigned getNumSuccessors() const { return 2; }
3876 
3877   // Methods for support type inquiry through isa, cast, and dyn_cast:
3878   static bool classof(const Instruction *I) {
3879     return (I->getOpcode() == Instruction::Invoke);
3880   }
3881   static bool classof(const Value *V) {
3882     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883   }
3884 
3885 private:
3886   // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887   // method so that subclasses cannot accidentally use it.
3888   template <typename Bitfield>
3889   void setSubclassData(typename Bitfield::Type Value) {
3890     Instruction::setSubclassData<Bitfield>(Value);
3891   }
3892 };
3893 
3894 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895                        BasicBlock *IfException, ArrayRef<Value *> Args,
3896                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897                        const Twine &NameStr, Instruction *InsertBefore)
3898     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900                InsertBefore) {
3901   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902 }
3903 
3904 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905                        BasicBlock *IfException, ArrayRef<Value *> Args,
3906                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907                        const Twine &NameStr, BasicBlock *InsertAtEnd)
3908     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910                InsertAtEnd) {
3911   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912 }
3913 
3914 //===----------------------------------------------------------------------===//
3915 //                              CallBrInst Class
3916 //===----------------------------------------------------------------------===//
3917 
3918 /// CallBr instruction, tracking function calls that may not return control but
3919 /// instead transfer it to a third location. The SubclassData field is used to
3920 /// hold the calling convention of the call.
3921 ///
3922 class CallBrInst : public CallBase {
3923 
3924   unsigned NumIndirectDests;
3925 
3926   CallBrInst(const CallBrInst &BI);
3927 
3928   /// Construct a CallBrInst given a range of arguments.
3929   ///
3930   /// Construct a CallBrInst from a range of arguments
3931   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932                     ArrayRef<BasicBlock *> IndirectDests,
3933                     ArrayRef<Value *> Args,
3934                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935                     const Twine &NameStr, Instruction *InsertBefore);
3936 
3937   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938                     ArrayRef<BasicBlock *> IndirectDests,
3939                     ArrayRef<Value *> Args,
3940                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3942 
3943   void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944             ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946 
3947   /// Should the Indirect Destinations change, scan + update the Arg list.
3948   void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949 
3950   /// Compute the number of operands to allocate.
3951   static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952                                 int NumBundleInputs = 0) {
3953     // We need one operand for the called function, plus our extra operands and
3954     // the input operand counts provided.
3955     return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956   }
3957 
3958 protected:
3959   // Note: Instruction needs to be a friend here to call cloneImpl.
3960   friend class Instruction;
3961 
3962   CallBrInst *cloneImpl() const;
3963 
3964 public:
3965   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966                             BasicBlock *DefaultDest,
3967                             ArrayRef<BasicBlock *> IndirectDests,
3968                             ArrayRef<Value *> Args, const Twine &NameStr,
3969                             Instruction *InsertBefore = nullptr) {
3970     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971     return new (NumOperands)
3972         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973                    NumOperands, NameStr, InsertBefore);
3974   }
3975 
3976   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977                             BasicBlock *DefaultDest,
3978                             ArrayRef<BasicBlock *> IndirectDests,
3979                             ArrayRef<Value *> Args,
3980                             ArrayRef<OperandBundleDef> Bundles = None,
3981                             const Twine &NameStr = "",
3982                             Instruction *InsertBefore = nullptr) {
3983     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984                                          CountBundleInputs(Bundles));
3985     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986 
3987     return new (NumOperands, DescriptorBytes)
3988         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989                    NumOperands, NameStr, InsertBefore);
3990   }
3991 
3992   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993                             BasicBlock *DefaultDest,
3994                             ArrayRef<BasicBlock *> IndirectDests,
3995                             ArrayRef<Value *> Args, const Twine &NameStr,
3996                             BasicBlock *InsertAtEnd) {
3997     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998     return new (NumOperands)
3999         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000                    NumOperands, NameStr, InsertAtEnd);
4001   }
4002 
4003   static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004                             BasicBlock *DefaultDest,
4005                             ArrayRef<BasicBlock *> IndirectDests,
4006                             ArrayRef<Value *> Args,
4007                             ArrayRef<OperandBundleDef> Bundles,
4008                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010                                          CountBundleInputs(Bundles));
4011     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012 
4013     return new (NumOperands, DescriptorBytes)
4014         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015                    NumOperands, NameStr, InsertAtEnd);
4016   }
4017 
4018   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019                             ArrayRef<BasicBlock *> IndirectDests,
4020                             ArrayRef<Value *> Args, const Twine &NameStr,
4021                             Instruction *InsertBefore = nullptr) {
4022     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023                   IndirectDests, Args, NameStr, InsertBefore);
4024   }
4025 
4026   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027                             ArrayRef<BasicBlock *> IndirectDests,
4028                             ArrayRef<Value *> Args,
4029                             ArrayRef<OperandBundleDef> Bundles = None,
4030                             const Twine &NameStr = "",
4031                             Instruction *InsertBefore = nullptr) {
4032     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033                   IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034   }
4035 
4036   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037                             ArrayRef<BasicBlock *> IndirectDests,
4038                             ArrayRef<Value *> Args, const Twine &NameStr,
4039                             BasicBlock *InsertAtEnd) {
4040     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041                   IndirectDests, Args, NameStr, InsertAtEnd);
4042   }
4043 
4044   static CallBrInst *Create(FunctionCallee Func,
4045                             BasicBlock *DefaultDest,
4046                             ArrayRef<BasicBlock *> IndirectDests,
4047                             ArrayRef<Value *> Args,
4048                             ArrayRef<OperandBundleDef> Bundles,
4049                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051                   IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052   }
4053 
4054   /// Create a clone of \p CBI with a different set of operand bundles and
4055   /// insert it before \p InsertPt.
4056   ///
4057   /// The returned callbr instruction is identical to \p CBI in every way
4058   /// except that the operand bundles for the new instruction are set to the
4059   /// operand bundles in \p Bundles.
4060   static CallBrInst *Create(CallBrInst *CBI,
4061                             ArrayRef<OperandBundleDef> Bundles,
4062                             Instruction *InsertPt = nullptr);
4063 
4064   /// Return the number of callbr indirect dest labels.
4065   ///
4066   unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067 
4068   /// getIndirectDestLabel - Return the i-th indirect dest label.
4069   ///
4070   Value *getIndirectDestLabel(unsigned i) const {
4071     assert(i < getNumIndirectDests() && "Out of bounds!");
4072     return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073                       1);
4074   }
4075 
4076   Value *getIndirectDestLabelUse(unsigned i) const {
4077     assert(i < getNumIndirectDests() && "Out of bounds!");
4078     return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079                          1);
4080   }
4081 
4082   // Return the destination basic blocks...
4083   BasicBlock *getDefaultDest() const {
4084     return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085   }
4086   BasicBlock *getIndirectDest(unsigned i) const {
4087     return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088   }
4089   SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090     SmallVector<BasicBlock *, 16> IndirectDests;
4091     for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092       IndirectDests.push_back(getIndirectDest(i));
4093     return IndirectDests;
4094   }
4095   void setDefaultDest(BasicBlock *B) {
4096     *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097   }
4098   void setIndirectDest(unsigned i, BasicBlock *B) {
4099     updateArgBlockAddresses(i, B);
4100     *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101   }
4102 
4103   BasicBlock *getSuccessor(unsigned i) const {
4104     assert(i < getNumSuccessors() + 1 &&
4105            "Successor # out of range for callbr!");
4106     return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107   }
4108 
4109   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110     assert(i < getNumIndirectDests() + 1 &&
4111            "Successor # out of range for callbr!");
4112     return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113   }
4114 
4115   unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116 
4117   // Methods for support type inquiry through isa, cast, and dyn_cast:
4118   static bool classof(const Instruction *I) {
4119     return (I->getOpcode() == Instruction::CallBr);
4120   }
4121   static bool classof(const Value *V) {
4122     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123   }
4124 
4125 private:
4126   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127   // method so that subclasses cannot accidentally use it.
4128   template <typename Bitfield>
4129   void setSubclassData(typename Bitfield::Type Value) {
4130     Instruction::setSubclassData<Bitfield>(Value);
4131   }
4132 };
4133 
4134 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135                        ArrayRef<BasicBlock *> IndirectDests,
4136                        ArrayRef<Value *> Args,
4137                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138                        const Twine &NameStr, Instruction *InsertBefore)
4139     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141                InsertBefore) {
4142   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143 }
4144 
4145 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146                        ArrayRef<BasicBlock *> IndirectDests,
4147                        ArrayRef<Value *> Args,
4148                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149                        const Twine &NameStr, BasicBlock *InsertAtEnd)
4150     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152                InsertAtEnd) {
4153   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154 }
4155 
4156 //===----------------------------------------------------------------------===//
4157 //                              ResumeInst Class
4158 //===----------------------------------------------------------------------===//
4159 
4160 //===---------------------------------------------------------------------------
4161 /// Resume the propagation of an exception.
4162 ///
4163 class ResumeInst : public Instruction {
4164   ResumeInst(const ResumeInst &RI);
4165 
4166   explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167   ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168 
4169 protected:
4170   // Note: Instruction needs to be a friend here to call cloneImpl.
4171   friend class Instruction;
4172 
4173   ResumeInst *cloneImpl() const;
4174 
4175 public:
4176   static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177     return new(1) ResumeInst(Exn, InsertBefore);
4178   }
4179 
4180   static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181     return new(1) ResumeInst(Exn, InsertAtEnd);
4182   }
4183 
4184   /// Provide fast operand accessors
4185   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4186 
4187   /// Convenience accessor.
4188   Value *getValue() const { return Op<0>(); }
4189 
4190   unsigned getNumSuccessors() const { return 0; }
4191 
4192   // Methods for support type inquiry through isa, cast, and dyn_cast:
4193   static bool classof(const Instruction *I) {
4194     return I->getOpcode() == Instruction::Resume;
4195   }
4196   static bool classof(const Value *V) {
4197     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198   }
4199 
4200 private:
4201   BasicBlock *getSuccessor(unsigned idx) const {
4202     llvm_unreachable("ResumeInst has no successors!");
4203   }
4204 
4205   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206     llvm_unreachable("ResumeInst has no successors!");
4207   }
4208 };
4209 
4210 template <>
4211 struct OperandTraits<ResumeInst> :
4212     public FixedNumOperandTraits<ResumeInst, 1> {
4213 };
4214 
4215 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4216 
4217 //===----------------------------------------------------------------------===//
4218 //                         CatchSwitchInst Class
4219 //===----------------------------------------------------------------------===//
4220 class CatchSwitchInst : public Instruction {
4221   using UnwindDestField = BoolBitfieldElementT<0>;
4222 
4223   /// The number of operands actually allocated.  NumOperands is
4224   /// the number actually in use.
4225   unsigned ReservedSpace;
4226 
4227   // Operand[0] = Outer scope
4228   // Operand[1] = Unwind block destination
4229   // Operand[n] = BasicBlock to go to on match
4230   CatchSwitchInst(const CatchSwitchInst &CSI);
4231 
4232   /// Create a new switch instruction, specifying a
4233   /// default destination.  The number of additional handlers can be specified
4234   /// here to make memory allocation more efficient.
4235   /// This constructor can also autoinsert before another instruction.
4236   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237                   unsigned NumHandlers, const Twine &NameStr,
4238                   Instruction *InsertBefore);
4239 
4240   /// Create a new switch instruction, specifying a
4241   /// default destination.  The number of additional handlers can be specified
4242   /// here to make memory allocation more efficient.
4243   /// This constructor also autoinserts at the end of the specified BasicBlock.
4244   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245                   unsigned NumHandlers, const Twine &NameStr,
4246                   BasicBlock *InsertAtEnd);
4247 
4248   // allocate space for exactly zero operands
4249   void *operator new(size_t S) { return User::operator new(S); }
4250 
4251   void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252   void growOperands(unsigned Size);
4253 
4254 protected:
4255   // Note: Instruction needs to be a friend here to call cloneImpl.
4256   friend class Instruction;
4257 
4258   CatchSwitchInst *cloneImpl() const;
4259 
4260 public:
4261   void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262 
4263   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264                                  unsigned NumHandlers,
4265                                  const Twine &NameStr = "",
4266                                  Instruction *InsertBefore = nullptr) {
4267     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268                                InsertBefore);
4269   }
4270 
4271   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272                                  unsigned NumHandlers, const Twine &NameStr,
4273                                  BasicBlock *InsertAtEnd) {
4274     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275                                InsertAtEnd);
4276   }
4277 
4278   /// Provide fast operand accessors
4279   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4280 
4281   // Accessor Methods for CatchSwitch stmt
4282   Value *getParentPad() const { return getOperand(0); }
4283   void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284 
4285   // Accessor Methods for CatchSwitch stmt
4286   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287   bool unwindsToCaller() const { return !hasUnwindDest(); }
4288   BasicBlock *getUnwindDest() const {
4289     if (hasUnwindDest())
4290       return cast<BasicBlock>(getOperand(1));
4291     return nullptr;
4292   }
4293   void setUnwindDest(BasicBlock *UnwindDest) {
4294     assert(UnwindDest);
4295     assert(hasUnwindDest());
4296     setOperand(1, UnwindDest);
4297   }
4298 
4299   /// return the number of 'handlers' in this catchswitch
4300   /// instruction, except the default handler
4301   unsigned getNumHandlers() const {
4302     if (hasUnwindDest())
4303       return getNumOperands() - 2;
4304     return getNumOperands() - 1;
4305   }
4306 
4307 private:
4308   static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309   static const BasicBlock *handler_helper(const Value *V) {
4310     return cast<BasicBlock>(V);
4311   }
4312 
4313 public:
4314   using DerefFnTy = BasicBlock *(*)(Value *);
4315   using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316   using handler_range = iterator_range<handler_iterator>;
4317   using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318   using const_handler_iterator =
4319       mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320   using const_handler_range = iterator_range<const_handler_iterator>;
4321 
4322   /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323   handler_iterator handler_begin() {
4324     op_iterator It = op_begin() + 1;
4325     if (hasUnwindDest())
4326       ++It;
4327     return handler_iterator(It, DerefFnTy(handler_helper));
4328   }
4329 
4330   /// Returns an iterator that points to the first handler in the
4331   /// CatchSwitchInst.
4332   const_handler_iterator handler_begin() const {
4333     const_op_iterator It = op_begin() + 1;
4334     if (hasUnwindDest())
4335       ++It;
4336     return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337   }
4338 
4339   /// Returns a read-only iterator that points one past the last
4340   /// handler in the CatchSwitchInst.
4341   handler_iterator handler_end() {
4342     return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343   }
4344 
4345   /// Returns an iterator that points one past the last handler in the
4346   /// CatchSwitchInst.
4347   const_handler_iterator handler_end() const {
4348     return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349   }
4350 
4351   /// iteration adapter for range-for loops.
4352   handler_range handlers() {
4353     return make_range(handler_begin(), handler_end());
4354   }
4355 
4356   /// iteration adapter for range-for loops.
4357   const_handler_range handlers() const {
4358     return make_range(handler_begin(), handler_end());
4359   }
4360 
4361   /// Add an entry to the switch instruction...
4362   /// Note:
4363   /// This action invalidates handler_end(). Old handler_end() iterator will
4364   /// point to the added handler.
4365   void addHandler(BasicBlock *Dest);
4366 
4367   void removeHandler(handler_iterator HI);
4368 
4369   unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370   BasicBlock *getSuccessor(unsigned Idx) const {
4371     assert(Idx < getNumSuccessors() &&
4372            "Successor # out of range for catchswitch!");
4373     return cast<BasicBlock>(getOperand(Idx + 1));
4374   }
4375   void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376     assert(Idx < getNumSuccessors() &&
4377            "Successor # out of range for catchswitch!");
4378     setOperand(Idx + 1, NewSucc);
4379   }
4380 
4381   // Methods for support type inquiry through isa, cast, and dyn_cast:
4382   static bool classof(const Instruction *I) {
4383     return I->getOpcode() == Instruction::CatchSwitch;
4384   }
4385   static bool classof(const Value *V) {
4386     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387   }
4388 };
4389 
4390 template <>
4391 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392 
4393 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4394 
4395 //===----------------------------------------------------------------------===//
4396 //                               CleanupPadInst Class
4397 //===----------------------------------------------------------------------===//
4398 class CleanupPadInst : public FuncletPadInst {
4399 private:
4400   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401                           unsigned Values, const Twine &NameStr,
4402                           Instruction *InsertBefore)
4403       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404                        NameStr, InsertBefore) {}
4405   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406                           unsigned Values, const Twine &NameStr,
4407                           BasicBlock *InsertAtEnd)
4408       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409                        NameStr, InsertAtEnd) {}
4410 
4411 public:
4412   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413                                 const Twine &NameStr = "",
4414                                 Instruction *InsertBefore = nullptr) {
4415     unsigned Values = 1 + Args.size();
4416     return new (Values)
4417         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418   }
4419 
4420   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421                                 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422     unsigned Values = 1 + Args.size();
4423     return new (Values)
4424         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425   }
4426 
4427   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428   static bool classof(const Instruction *I) {
4429     return I->getOpcode() == Instruction::CleanupPad;
4430   }
4431   static bool classof(const Value *V) {
4432     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433   }
4434 };
4435 
4436 //===----------------------------------------------------------------------===//
4437 //                               CatchPadInst Class
4438 //===----------------------------------------------------------------------===//
4439 class CatchPadInst : public FuncletPadInst {
4440 private:
4441   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442                         unsigned Values, const Twine &NameStr,
4443                         Instruction *InsertBefore)
4444       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445                        NameStr, InsertBefore) {}
4446   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447                         unsigned Values, const Twine &NameStr,
4448                         BasicBlock *InsertAtEnd)
4449       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450                        NameStr, InsertAtEnd) {}
4451 
4452 public:
4453   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454                               const Twine &NameStr = "",
4455                               Instruction *InsertBefore = nullptr) {
4456     unsigned Values = 1 + Args.size();
4457     return new (Values)
4458         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459   }
4460 
4461   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462                               const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463     unsigned Values = 1 + Args.size();
4464     return new (Values)
4465         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466   }
4467 
4468   /// Convenience accessors
4469   CatchSwitchInst *getCatchSwitch() const {
4470     return cast<CatchSwitchInst>(Op<-1>());
4471   }
4472   void setCatchSwitch(Value *CatchSwitch) {
4473     assert(CatchSwitch);
4474     Op<-1>() = CatchSwitch;
4475   }
4476 
4477   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478   static bool classof(const Instruction *I) {
4479     return I->getOpcode() == Instruction::CatchPad;
4480   }
4481   static bool classof(const Value *V) {
4482     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483   }
4484 };
4485 
4486 //===----------------------------------------------------------------------===//
4487 //                               CatchReturnInst Class
4488 //===----------------------------------------------------------------------===//
4489 
4490 class CatchReturnInst : public Instruction {
4491   CatchReturnInst(const CatchReturnInst &RI);
4492   CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493   CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494 
4495   void init(Value *CatchPad, BasicBlock *BB);
4496 
4497 protected:
4498   // Note: Instruction needs to be a friend here to call cloneImpl.
4499   friend class Instruction;
4500 
4501   CatchReturnInst *cloneImpl() const;
4502 
4503 public:
4504   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505                                  Instruction *InsertBefore = nullptr) {
4506     assert(CatchPad);
4507     assert(BB);
4508     return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509   }
4510 
4511   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512                                  BasicBlock *InsertAtEnd) {
4513     assert(CatchPad);
4514     assert(BB);
4515     return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516   }
4517 
4518   /// Provide fast operand accessors
4519   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4520 
4521   /// Convenience accessors.
4522   CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523   void setCatchPad(CatchPadInst *CatchPad) {
4524     assert(CatchPad);
4525     Op<0>() = CatchPad;
4526   }
4527 
4528   BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529   void setSuccessor(BasicBlock *NewSucc) {
4530     assert(NewSucc);
4531     Op<1>() = NewSucc;
4532   }
4533   unsigned getNumSuccessors() const { return 1; }
4534 
4535   /// Get the parentPad of this catchret's catchpad's catchswitch.
4536   /// The successor block is implicitly a member of this funclet.
4537   Value *getCatchSwitchParentPad() const {
4538     return getCatchPad()->getCatchSwitch()->getParentPad();
4539   }
4540 
4541   // Methods for support type inquiry through isa, cast, and dyn_cast:
4542   static bool classof(const Instruction *I) {
4543     return (I->getOpcode() == Instruction::CatchRet);
4544   }
4545   static bool classof(const Value *V) {
4546     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547   }
4548 
4549 private:
4550   BasicBlock *getSuccessor(unsigned Idx) const {
4551     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4552     return getSuccessor();
4553   }
4554 
4555   void setSuccessor(unsigned Idx, BasicBlock *B) {
4556     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4557     setSuccessor(B);
4558   }
4559 };
4560 
4561 template <>
4562 struct OperandTraits<CatchReturnInst>
4563     : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564 
4565 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4566 
4567 //===----------------------------------------------------------------------===//
4568 //                               CleanupReturnInst Class
4569 //===----------------------------------------------------------------------===//
4570 
4571 class CleanupReturnInst : public Instruction {
4572   using UnwindDestField = BoolBitfieldElementT<0>;
4573 
4574 private:
4575   CleanupReturnInst(const CleanupReturnInst &RI);
4576   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577                     Instruction *InsertBefore = nullptr);
4578   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579                     BasicBlock *InsertAtEnd);
4580 
4581   void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582 
4583 protected:
4584   // Note: Instruction needs to be a friend here to call cloneImpl.
4585   friend class Instruction;
4586 
4587   CleanupReturnInst *cloneImpl() const;
4588 
4589 public:
4590   static CleanupReturnInst *Create(Value *CleanupPad,
4591                                    BasicBlock *UnwindBB = nullptr,
4592                                    Instruction *InsertBefore = nullptr) {
4593     assert(CleanupPad);
4594     unsigned Values = 1;
4595     if (UnwindBB)
4596       ++Values;
4597     return new (Values)
4598         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599   }
4600 
4601   static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602                                    BasicBlock *InsertAtEnd) {
4603     assert(CleanupPad);
4604     unsigned Values = 1;
4605     if (UnwindBB)
4606       ++Values;
4607     return new (Values)
4608         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609   }
4610 
4611   /// Provide fast operand accessors
4612   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4613 
4614   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615   bool unwindsToCaller() const { return !hasUnwindDest(); }
4616 
4617   /// Convenience accessor.
4618   CleanupPadInst *getCleanupPad() const {
4619     return cast<CleanupPadInst>(Op<0>());
4620   }
4621   void setCleanupPad(CleanupPadInst *CleanupPad) {
4622     assert(CleanupPad);
4623     Op<0>() = CleanupPad;
4624   }
4625 
4626   unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627 
4628   BasicBlock *getUnwindDest() const {
4629     return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630   }
4631   void setUnwindDest(BasicBlock *NewDest) {
4632     assert(NewDest);
4633     assert(hasUnwindDest());
4634     Op<1>() = NewDest;
4635   }
4636 
4637   // Methods for support type inquiry through isa, cast, and dyn_cast:
4638   static bool classof(const Instruction *I) {
4639     return (I->getOpcode() == Instruction::CleanupRet);
4640   }
4641   static bool classof(const Value *V) {
4642     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643   }
4644 
4645 private:
4646   BasicBlock *getSuccessor(unsigned Idx) const {
4647     assert(Idx == 0);
4648     return getUnwindDest();
4649   }
4650 
4651   void setSuccessor(unsigned Idx, BasicBlock *B) {
4652     assert(Idx == 0);
4653     setUnwindDest(B);
4654   }
4655 
4656   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657   // method so that subclasses cannot accidentally use it.
4658   template <typename Bitfield>
4659   void setSubclassData(typename Bitfield::Type Value) {
4660     Instruction::setSubclassData<Bitfield>(Value);
4661   }
4662 };
4663 
4664 template <>
4665 struct OperandTraits<CleanupReturnInst>
4666     : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667 
4668 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4669 
4670 //===----------------------------------------------------------------------===//
4671 //                           UnreachableInst Class
4672 //===----------------------------------------------------------------------===//
4673 
4674 //===---------------------------------------------------------------------------
4675 /// This function has undefined behavior.  In particular, the
4676 /// presence of this instruction indicates some higher level knowledge that the
4677 /// end of the block cannot be reached.
4678 ///
4679 class UnreachableInst : public Instruction {
4680 protected:
4681   // Note: Instruction needs to be a friend here to call cloneImpl.
4682   friend class Instruction;
4683 
4684   UnreachableInst *cloneImpl() const;
4685 
4686 public:
4687   explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688   explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689 
4690   // allocate space for exactly zero operands
4691   void *operator new(size_t S) { return User::operator new(S, 0); }
4692   void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693 
4694   unsigned getNumSuccessors() const { return 0; }
4695 
4696   // Methods for support type inquiry through isa, cast, and dyn_cast:
4697   static bool classof(const Instruction *I) {
4698     return I->getOpcode() == Instruction::Unreachable;
4699   }
4700   static bool classof(const Value *V) {
4701     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702   }
4703 
4704 private:
4705   BasicBlock *getSuccessor(unsigned idx) const {
4706     llvm_unreachable("UnreachableInst has no successors!");
4707   }
4708 
4709   void setSuccessor(unsigned idx, BasicBlock *B) {
4710     llvm_unreachable("UnreachableInst has no successors!");
4711   }
4712 };
4713 
4714 //===----------------------------------------------------------------------===//
4715 //                                 TruncInst Class
4716 //===----------------------------------------------------------------------===//
4717 
4718 /// This class represents a truncation of integer types.
4719 class TruncInst : public CastInst {
4720 protected:
4721   // Note: Instruction needs to be a friend here to call cloneImpl.
4722   friend class Instruction;
4723 
4724   /// Clone an identical TruncInst
4725   TruncInst *cloneImpl() const;
4726 
4727 public:
4728   /// Constructor with insert-before-instruction semantics
4729   TruncInst(
4730     Value *S,                           ///< The value to be truncated
4731     Type *Ty,                           ///< The (smaller) type to truncate to
4732     const Twine &NameStr = "",          ///< A name for the new instruction
4733     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734   );
4735 
4736   /// Constructor with insert-at-end-of-block semantics
4737   TruncInst(
4738     Value *S,                     ///< The value to be truncated
4739     Type *Ty,                     ///< The (smaller) type to truncate to
4740     const Twine &NameStr,         ///< A name for the new instruction
4741     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4742   );
4743 
4744   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745   static bool classof(const Instruction *I) {
4746     return I->getOpcode() == Trunc;
4747   }
4748   static bool classof(const Value *V) {
4749     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750   }
4751 };
4752 
4753 //===----------------------------------------------------------------------===//
4754 //                                 ZExtInst Class
4755 //===----------------------------------------------------------------------===//
4756 
4757 /// This class represents zero extension of integer types.
4758 class ZExtInst : public CastInst {
4759 protected:
4760   // Note: Instruction needs to be a friend here to call cloneImpl.
4761   friend class Instruction;
4762 
4763   /// Clone an identical ZExtInst
4764   ZExtInst *cloneImpl() const;
4765 
4766 public:
4767   /// Constructor with insert-before-instruction semantics
4768   ZExtInst(
4769     Value *S,                           ///< The value to be zero extended
4770     Type *Ty,                           ///< The type to zero extend to
4771     const Twine &NameStr = "",          ///< A name for the new instruction
4772     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773   );
4774 
4775   /// Constructor with insert-at-end semantics.
4776   ZExtInst(
4777     Value *S,                     ///< The value to be zero extended
4778     Type *Ty,                     ///< The type to zero extend to
4779     const Twine &NameStr,         ///< A name for the new instruction
4780     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4781   );
4782 
4783   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784   static bool classof(const Instruction *I) {
4785     return I->getOpcode() == ZExt;
4786   }
4787   static bool classof(const Value *V) {
4788     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789   }
4790 };
4791 
4792 //===----------------------------------------------------------------------===//
4793 //                                 SExtInst Class
4794 //===----------------------------------------------------------------------===//
4795 
4796 /// This class represents a sign extension of integer types.
4797 class SExtInst : public CastInst {
4798 protected:
4799   // Note: Instruction needs to be a friend here to call cloneImpl.
4800   friend class Instruction;
4801 
4802   /// Clone an identical SExtInst
4803   SExtInst *cloneImpl() const;
4804 
4805 public:
4806   /// Constructor with insert-before-instruction semantics
4807   SExtInst(
4808     Value *S,                           ///< The value to be sign extended
4809     Type *Ty,                           ///< The type to sign extend to
4810     const Twine &NameStr = "",          ///< A name for the new instruction
4811     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812   );
4813 
4814   /// Constructor with insert-at-end-of-block semantics
4815   SExtInst(
4816     Value *S,                     ///< The value to be sign extended
4817     Type *Ty,                     ///< The type to sign extend to
4818     const Twine &NameStr,         ///< A name for the new instruction
4819     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4820   );
4821 
4822   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823   static bool classof(const Instruction *I) {
4824     return I->getOpcode() == SExt;
4825   }
4826   static bool classof(const Value *V) {
4827     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828   }
4829 };
4830 
4831 //===----------------------------------------------------------------------===//
4832 //                                 FPTruncInst Class
4833 //===----------------------------------------------------------------------===//
4834 
4835 /// This class represents a truncation of floating point types.
4836 class FPTruncInst : public CastInst {
4837 protected:
4838   // Note: Instruction needs to be a friend here to call cloneImpl.
4839   friend class Instruction;
4840 
4841   /// Clone an identical FPTruncInst
4842   FPTruncInst *cloneImpl() const;
4843 
4844 public:
4845   /// Constructor with insert-before-instruction semantics
4846   FPTruncInst(
4847     Value *S,                           ///< The value to be truncated
4848     Type *Ty,                           ///< The type to truncate to
4849     const Twine &NameStr = "",          ///< A name for the new instruction
4850     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851   );
4852 
4853   /// Constructor with insert-before-instruction semantics
4854   FPTruncInst(
4855     Value *S,                     ///< The value to be truncated
4856     Type *Ty,                     ///< The type to truncate to
4857     const Twine &NameStr,         ///< A name for the new instruction
4858     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4859   );
4860 
4861   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862   static bool classof(const Instruction *I) {
4863     return I->getOpcode() == FPTrunc;
4864   }
4865   static bool classof(const Value *V) {
4866     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867   }
4868 };
4869 
4870 //===----------------------------------------------------------------------===//
4871 //                                 FPExtInst Class
4872 //===----------------------------------------------------------------------===//
4873 
4874 /// This class represents an extension of floating point types.
4875 class FPExtInst : public CastInst {
4876 protected:
4877   // Note: Instruction needs to be a friend here to call cloneImpl.
4878   friend class Instruction;
4879 
4880   /// Clone an identical FPExtInst
4881   FPExtInst *cloneImpl() const;
4882 
4883 public:
4884   /// Constructor with insert-before-instruction semantics
4885   FPExtInst(
4886     Value *S,                           ///< The value to be extended
4887     Type *Ty,                           ///< The type to extend to
4888     const Twine &NameStr = "",          ///< A name for the new instruction
4889     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890   );
4891 
4892   /// Constructor with insert-at-end-of-block semantics
4893   FPExtInst(
4894     Value *S,                     ///< The value to be extended
4895     Type *Ty,                     ///< The type to extend to
4896     const Twine &NameStr,         ///< A name for the new instruction
4897     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4898   );
4899 
4900   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901   static bool classof(const Instruction *I) {
4902     return I->getOpcode() == FPExt;
4903   }
4904   static bool classof(const Value *V) {
4905     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906   }
4907 };
4908 
4909 //===----------------------------------------------------------------------===//
4910 //                                 UIToFPInst Class
4911 //===----------------------------------------------------------------------===//
4912 
4913 /// This class represents a cast unsigned integer to floating point.
4914 class UIToFPInst : public CastInst {
4915 protected:
4916   // Note: Instruction needs to be a friend here to call cloneImpl.
4917   friend class Instruction;
4918 
4919   /// Clone an identical UIToFPInst
4920   UIToFPInst *cloneImpl() const;
4921 
4922 public:
4923   /// Constructor with insert-before-instruction semantics
4924   UIToFPInst(
4925     Value *S,                           ///< The value to be converted
4926     Type *Ty,                           ///< The type to convert to
4927     const Twine &NameStr = "",          ///< A name for the new instruction
4928     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929   );
4930 
4931   /// Constructor with insert-at-end-of-block semantics
4932   UIToFPInst(
4933     Value *S,                     ///< The value to be converted
4934     Type *Ty,                     ///< The type to convert to
4935     const Twine &NameStr,         ///< A name for the new instruction
4936     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4937   );
4938 
4939   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940   static bool classof(const Instruction *I) {
4941     return I->getOpcode() == UIToFP;
4942   }
4943   static bool classof(const Value *V) {
4944     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945   }
4946 };
4947 
4948 //===----------------------------------------------------------------------===//
4949 //                                 SIToFPInst Class
4950 //===----------------------------------------------------------------------===//
4951 
4952 /// This class represents a cast from signed integer to floating point.
4953 class SIToFPInst : public CastInst {
4954 protected:
4955   // Note: Instruction needs to be a friend here to call cloneImpl.
4956   friend class Instruction;
4957 
4958   /// Clone an identical SIToFPInst
4959   SIToFPInst *cloneImpl() const;
4960 
4961 public:
4962   /// Constructor with insert-before-instruction semantics
4963   SIToFPInst(
4964     Value *S,                           ///< The value to be converted
4965     Type *Ty,                           ///< The type to convert to
4966     const Twine &NameStr = "",          ///< A name for the new instruction
4967     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968   );
4969 
4970   /// Constructor with insert-at-end-of-block semantics
4971   SIToFPInst(
4972     Value *S,                     ///< The value to be converted
4973     Type *Ty,                     ///< The type to convert to
4974     const Twine &NameStr,         ///< A name for the new instruction
4975     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4976   );
4977 
4978   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979   static bool classof(const Instruction *I) {
4980     return I->getOpcode() == SIToFP;
4981   }
4982   static bool classof(const Value *V) {
4983     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984   }
4985 };
4986 
4987 //===----------------------------------------------------------------------===//
4988 //                                 FPToUIInst Class
4989 //===----------------------------------------------------------------------===//
4990 
4991 /// This class represents a cast from floating point to unsigned integer
4992 class FPToUIInst  : public CastInst {
4993 protected:
4994   // Note: Instruction needs to be a friend here to call cloneImpl.
4995   friend class Instruction;
4996 
4997   /// Clone an identical FPToUIInst
4998   FPToUIInst *cloneImpl() const;
4999 
5000 public:
5001   /// Constructor with insert-before-instruction semantics
5002   FPToUIInst(
5003     Value *S,                           ///< The value to be converted
5004     Type *Ty,                           ///< The type to convert to
5005     const Twine &NameStr = "",          ///< A name for the new instruction
5006     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007   );
5008 
5009   /// Constructor with insert-at-end-of-block semantics
5010   FPToUIInst(
5011     Value *S,                     ///< The value to be converted
5012     Type *Ty,                     ///< The type to convert to
5013     const Twine &NameStr,         ///< A name for the new instruction
5014     BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
5015   );
5016 
5017   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018   static bool classof(const Instruction *I) {
5019     return I->getOpcode() == FPToUI;
5020   }
5021   static bool classof(const Value *V) {
5022     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023   }
5024 };
5025 
5026 //===----------------------------------------------------------------------===//
5027 //                                 FPToSIInst Class
5028 //===----------------------------------------------------------------------===//
5029 
5030 /// This class represents a cast from floating point to signed integer.
5031 class FPToSIInst  : public CastInst {
5032 protected:
5033   // Note: Instruction needs to be a friend here to call cloneImpl.
5034   friend class Instruction;
5035 
5036   /// Clone an identical FPToSIInst
5037   FPToSIInst *cloneImpl() const;
5038 
5039 public:
5040   /// Constructor with insert-before-instruction semantics
5041   FPToSIInst(
5042     Value *S,                           ///< The value to be converted
5043     Type *Ty,                           ///< The type to convert to
5044     const Twine &NameStr = "",          ///< A name for the new instruction
5045     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046   );
5047 
5048   /// Constructor with insert-at-end-of-block semantics
5049   FPToSIInst(
5050     Value *S,                     ///< The value to be converted
5051     Type *Ty,                     ///< The type to convert to
5052     const Twine &NameStr,         ///< A name for the new instruction
5053     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5054   );
5055 
5056   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057   static bool classof(const Instruction *I) {
5058     return I->getOpcode() == FPToSI;
5059   }
5060   static bool classof(const Value *V) {
5061     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062   }
5063 };
5064 
5065 //===----------------------------------------------------------------------===//
5066 //                                 IntToPtrInst Class
5067 //===----------------------------------------------------------------------===//
5068 
5069 /// This class represents a cast from an integer to a pointer.
5070 class IntToPtrInst : public CastInst {
5071 public:
5072   // Note: Instruction needs to be a friend here to call cloneImpl.
5073   friend class Instruction;
5074 
5075   /// Constructor with insert-before-instruction semantics
5076   IntToPtrInst(
5077     Value *S,                           ///< The value to be converted
5078     Type *Ty,                           ///< The type to convert to
5079     const Twine &NameStr = "",          ///< A name for the new instruction
5080     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081   );
5082 
5083   /// Constructor with insert-at-end-of-block semantics
5084   IntToPtrInst(
5085     Value *S,                     ///< The value to be converted
5086     Type *Ty,                     ///< The type to convert to
5087     const Twine &NameStr,         ///< A name for the new instruction
5088     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5089   );
5090 
5091   /// Clone an identical IntToPtrInst.
5092   IntToPtrInst *cloneImpl() const;
5093 
5094   /// Returns the address space of this instruction's pointer type.
5095   unsigned getAddressSpace() const {
5096     return getType()->getPointerAddressSpace();
5097   }
5098 
5099   // Methods for support type inquiry through isa, cast, and dyn_cast:
5100   static bool classof(const Instruction *I) {
5101     return I->getOpcode() == IntToPtr;
5102   }
5103   static bool classof(const Value *V) {
5104     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105   }
5106 };
5107 
5108 //===----------------------------------------------------------------------===//
5109 //                                 PtrToIntInst Class
5110 //===----------------------------------------------------------------------===//
5111 
5112 /// This class represents a cast from a pointer to an integer.
5113 class PtrToIntInst : public CastInst {
5114 protected:
5115   // Note: Instruction needs to be a friend here to call cloneImpl.
5116   friend class Instruction;
5117 
5118   /// Clone an identical PtrToIntInst.
5119   PtrToIntInst *cloneImpl() const;
5120 
5121 public:
5122   /// Constructor with insert-before-instruction semantics
5123   PtrToIntInst(
5124     Value *S,                           ///< The value to be converted
5125     Type *Ty,                           ///< The type to convert to
5126     const Twine &NameStr = "",          ///< A name for the new instruction
5127     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128   );
5129 
5130   /// Constructor with insert-at-end-of-block semantics
5131   PtrToIntInst(
5132     Value *S,                     ///< The value to be converted
5133     Type *Ty,                     ///< The type to convert to
5134     const Twine &NameStr,         ///< A name for the new instruction
5135     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5136   );
5137 
5138   /// Gets the pointer operand.
5139   Value *getPointerOperand() { return getOperand(0); }
5140   /// Gets the pointer operand.
5141   const Value *getPointerOperand() const { return getOperand(0); }
5142   /// Gets the operand index of the pointer operand.
5143   static unsigned getPointerOperandIndex() { return 0U; }
5144 
5145   /// Returns the address space of the pointer operand.
5146   unsigned getPointerAddressSpace() const {
5147     return getPointerOperand()->getType()->getPointerAddressSpace();
5148   }
5149 
5150   // Methods for support type inquiry through isa, cast, and dyn_cast:
5151   static bool classof(const Instruction *I) {
5152     return I->getOpcode() == PtrToInt;
5153   }
5154   static bool classof(const Value *V) {
5155     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156   }
5157 };
5158 
5159 //===----------------------------------------------------------------------===//
5160 //                             BitCastInst Class
5161 //===----------------------------------------------------------------------===//
5162 
5163 /// This class represents a no-op cast from one type to another.
5164 class BitCastInst : public CastInst {
5165 protected:
5166   // Note: Instruction needs to be a friend here to call cloneImpl.
5167   friend class Instruction;
5168 
5169   /// Clone an identical BitCastInst.
5170   BitCastInst *cloneImpl() const;
5171 
5172 public:
5173   /// Constructor with insert-before-instruction semantics
5174   BitCastInst(
5175     Value *S,                           ///< The value to be casted
5176     Type *Ty,                           ///< The type to casted to
5177     const Twine &NameStr = "",          ///< A name for the new instruction
5178     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179   );
5180 
5181   /// Constructor with insert-at-end-of-block semantics
5182   BitCastInst(
5183     Value *S,                     ///< The value to be casted
5184     Type *Ty,                     ///< The type to casted to
5185     const Twine &NameStr,         ///< A name for the new instruction
5186     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5187   );
5188 
5189   // Methods for support type inquiry through isa, cast, and dyn_cast:
5190   static bool classof(const Instruction *I) {
5191     return I->getOpcode() == BitCast;
5192   }
5193   static bool classof(const Value *V) {
5194     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195   }
5196 };
5197 
5198 //===----------------------------------------------------------------------===//
5199 //                          AddrSpaceCastInst Class
5200 //===----------------------------------------------------------------------===//
5201 
5202 /// This class represents a conversion between pointers from one address space
5203 /// to another.
5204 class AddrSpaceCastInst : public CastInst {
5205 protected:
5206   // Note: Instruction needs to be a friend here to call cloneImpl.
5207   friend class Instruction;
5208 
5209   /// Clone an identical AddrSpaceCastInst.
5210   AddrSpaceCastInst *cloneImpl() const;
5211 
5212 public:
5213   /// Constructor with insert-before-instruction semantics
5214   AddrSpaceCastInst(
5215     Value *S,                           ///< The value to be casted
5216     Type *Ty,                           ///< The type to casted to
5217     const Twine &NameStr = "",          ///< A name for the new instruction
5218     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219   );
5220 
5221   /// Constructor with insert-at-end-of-block semantics
5222   AddrSpaceCastInst(
5223     Value *S,                     ///< The value to be casted
5224     Type *Ty,                     ///< The type to casted to
5225     const Twine &NameStr,         ///< A name for the new instruction
5226     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5227   );
5228 
5229   // Methods for support type inquiry through isa, cast, and dyn_cast:
5230   static bool classof(const Instruction *I) {
5231     return I->getOpcode() == AddrSpaceCast;
5232   }
5233   static bool classof(const Value *V) {
5234     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235   }
5236 
5237   /// Gets the pointer operand.
5238   Value *getPointerOperand() {
5239     return getOperand(0);
5240   }
5241 
5242   /// Gets the pointer operand.
5243   const Value *getPointerOperand() const {
5244     return getOperand(0);
5245   }
5246 
5247   /// Gets the operand index of the pointer operand.
5248   static unsigned getPointerOperandIndex() {
5249     return 0U;
5250   }
5251 
5252   /// Returns the address space of the pointer operand.
5253   unsigned getSrcAddressSpace() const {
5254     return getPointerOperand()->getType()->getPointerAddressSpace();
5255   }
5256 
5257   /// Returns the address space of the result.
5258   unsigned getDestAddressSpace() const {
5259     return getType()->getPointerAddressSpace();
5260   }
5261 };
5262 
5263 /// A helper function that returns the pointer operand of a load or store
5264 /// instruction. Returns nullptr if not load or store.
5265 inline const Value *getLoadStorePointerOperand(const Value *V) {
5266   if (auto *Load = dyn_cast<LoadInst>(V))
5267     return Load->getPointerOperand();
5268   if (auto *Store = dyn_cast<StoreInst>(V))
5269     return Store->getPointerOperand();
5270   return nullptr;
5271 }
5272 inline Value *getLoadStorePointerOperand(Value *V) {
5273   return const_cast<Value *>(
5274       getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275 }
5276 
5277 /// A helper function that returns the pointer operand of a load, store
5278 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279 inline const Value *getPointerOperand(const Value *V) {
5280   if (auto *Ptr = getLoadStorePointerOperand(V))
5281     return Ptr;
5282   if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283     return Gep->getPointerOperand();
5284   return nullptr;
5285 }
5286 inline Value *getPointerOperand(Value *V) {
5287   return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288 }
5289 
5290 /// A helper function that returns the alignment of load or store instruction.
5291 inline Align getLoadStoreAlignment(Value *I) {
5292   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5293          "Expected Load or Store instruction");
5294   if (auto *LI = dyn_cast<LoadInst>(I))
5295     return LI->getAlign();
5296   return cast<StoreInst>(I)->getAlign();
5297 }
5298 
5299 /// A helper function that returns the address space of the pointer operand of
5300 /// load or store instruction.
5301 inline unsigned getLoadStoreAddressSpace(Value *I) {
5302   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5303          "Expected Load or Store instruction");
5304   if (auto *LI = dyn_cast<LoadInst>(I))
5305     return LI->getPointerAddressSpace();
5306   return cast<StoreInst>(I)->getPointerAddressSpace();
5307 }
5308 
5309 /// A helper function that returns the type of a load or store instruction.
5310 inline Type *getLoadStoreType(Value *I) {
5311   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5312          "Expected Load or Store instruction");
5313   if (auto *LI = dyn_cast<LoadInst>(I))
5314     return LI->getType();
5315   return cast<StoreInst>(I)->getValueOperand()->getType();
5316 }
5317 
5318 //===----------------------------------------------------------------------===//
5319 //                              FreezeInst Class
5320 //===----------------------------------------------------------------------===//
5321 
5322 /// This class represents a freeze function that returns random concrete
5323 /// value if an operand is either a poison value or an undef value
5324 class FreezeInst : public UnaryInstruction {
5325 protected:
5326   // Note: Instruction needs to be a friend here to call cloneImpl.
5327   friend class Instruction;
5328 
5329   /// Clone an identical FreezeInst
5330   FreezeInst *cloneImpl() const;
5331 
5332 public:
5333   explicit FreezeInst(Value *S,
5334                       const Twine &NameStr = "",
5335                       Instruction *InsertBefore = nullptr);
5336   FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337 
5338   // Methods for support type inquiry through isa, cast, and dyn_cast:
5339   static inline bool classof(const Instruction *I) {
5340     return I->getOpcode() == Freeze;
5341   }
5342   static inline bool classof(const Value *V) {
5343     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344   }
5345 };
5346 
5347 } // end namespace llvm
5348 
5349 #endif // LLVM_IR_INSTRUCTIONS_H
5350