xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Instructions.h (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class.  This is meant to be an easy way to get access to all
11 // instruction subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Bitfields.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/OperandTraits.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/AtomicOrdering.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <cassert>
44 #include <cstddef>
45 #include <cstdint>
46 #include <iterator>
47 
48 namespace llvm {
49 
50 class APInt;
51 class ConstantInt;
52 class DataLayout;
53 class LLVMContext;
54 
55 //===----------------------------------------------------------------------===//
56 //                                AllocaInst Class
57 //===----------------------------------------------------------------------===//
58 
59 /// an instruction to allocate memory on the stack
60 class AllocaInst : public UnaryInstruction {
61   Type *AllocatedType;
62 
63   using AlignmentField = AlignmentBitfieldElementT<0>;
64   using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
65   using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
66   static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
67                                         SwiftErrorField>(),
68                 "Bitfields must be contiguous");
69 
70 protected:
71   // Note: Instruction needs to be a friend here to call cloneImpl.
72   friend class Instruction;
73 
74   AllocaInst *cloneImpl() const;
75 
76 public:
77   explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
78                       const Twine &Name, Instruction *InsertBefore);
79   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80              const Twine &Name, BasicBlock *InsertAtEnd);
81 
82   AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
83              Instruction *InsertBefore);
84   AllocaInst(Type *Ty, unsigned AddrSpace,
85              const Twine &Name, BasicBlock *InsertAtEnd);
86 
87   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
88              const Twine &Name = "", Instruction *InsertBefore = nullptr);
89   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90              const Twine &Name, BasicBlock *InsertAtEnd);
91 
92   /// Return true if there is an allocation size parameter to the allocation
93   /// instruction that is not 1.
94   bool isArrayAllocation() const;
95 
96   /// Get the number of elements allocated. For a simple allocation of a single
97   /// element, this will return a constant 1 value.
98   const Value *getArraySize() const { return getOperand(0); }
99   Value *getArraySize() { return getOperand(0); }
100 
101   /// Overload to return most specific pointer type.
102   PointerType *getType() const {
103     return cast<PointerType>(Instruction::getType());
104   }
105 
106   /// Get allocation size in bits. Returns None if size can't be determined,
107   /// e.g. in case of a VLA.
108   Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
109 
110   /// Return the type that is being allocated by the instruction.
111   Type *getAllocatedType() const { return AllocatedType; }
112   /// for use only in special circumstances that need to generically
113   /// transform a whole instruction (eg: IR linking and vectorization).
114   void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
115 
116   /// Return the alignment of the memory that is being allocated by the
117   /// instruction.
118   Align getAlign() const {
119     return Align(1ULL << getSubclassData<AlignmentField>());
120   }
121 
122   void setAlignment(Align Align) {
123     setSubclassData<AlignmentField>(Log2(Align));
124   }
125 
126   // FIXME: Remove this one transition to Align is over.
127   unsigned getAlignment() const { return getAlign().value(); }
128 
129   /// Return true if this alloca is in the entry block of the function and is a
130   /// constant size. If so, the code generator will fold it into the
131   /// prolog/epilog code, so it is basically free.
132   bool isStaticAlloca() const;
133 
134   /// Return true if this alloca is used as an inalloca argument to a call. Such
135   /// allocas are never considered static even if they are in the entry block.
136   bool isUsedWithInAlloca() const {
137     return getSubclassData<UsedWithInAllocaField>();
138   }
139 
140   /// Specify whether this alloca is used to represent the arguments to a call.
141   void setUsedWithInAlloca(bool V) {
142     setSubclassData<UsedWithInAllocaField>(V);
143   }
144 
145   /// Return true if this alloca is used as a swifterror argument to a call.
146   bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
147   /// Specify whether this alloca is used to represent a swifterror.
148   void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
149 
150   // Methods for support type inquiry through isa, cast, and dyn_cast:
151   static bool classof(const Instruction *I) {
152     return (I->getOpcode() == Instruction::Alloca);
153   }
154   static bool classof(const Value *V) {
155     return isa<Instruction>(V) && classof(cast<Instruction>(V));
156   }
157 
158 private:
159   // Shadow Instruction::setInstructionSubclassData with a private forwarding
160   // method so that subclasses cannot accidentally use it.
161   template <typename Bitfield>
162   void setSubclassData(typename Bitfield::Type Value) {
163     Instruction::setSubclassData<Bitfield>(Value);
164   }
165 };
166 
167 //===----------------------------------------------------------------------===//
168 //                                LoadInst Class
169 //===----------------------------------------------------------------------===//
170 
171 /// An instruction for reading from memory. This uses the SubclassData field in
172 /// Value to store whether or not the load is volatile.
173 class LoadInst : public UnaryInstruction {
174   using VolatileField = BoolBitfieldElementT<0>;
175   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
176   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
177   static_assert(
178       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
179       "Bitfields must be contiguous");
180 
181   void AssertOK();
182 
183 protected:
184   // Note: Instruction needs to be a friend here to call cloneImpl.
185   friend class Instruction;
186 
187   LoadInst *cloneImpl() const;
188 
189 public:
190   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
191            Instruction *InsertBefore);
192   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
193   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
194            Instruction *InsertBefore);
195   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196            BasicBlock *InsertAtEnd);
197   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198            Align Align, Instruction *InsertBefore = nullptr);
199   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200            Align Align, BasicBlock *InsertAtEnd);
201   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202            Align Align, AtomicOrdering Order,
203            SyncScope::ID SSID = SyncScope::System,
204            Instruction *InsertBefore = nullptr);
205   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
206            Align Align, AtomicOrdering Order, SyncScope::ID SSID,
207            BasicBlock *InsertAtEnd);
208 
209   /// Return true if this is a load from a volatile memory location.
210   bool isVolatile() const { return getSubclassData<VolatileField>(); }
211 
212   /// Specify whether this is a volatile load or not.
213   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
214 
215   /// Return the alignment of the access that is being performed.
216   /// FIXME: Remove this function once transition to Align is over.
217   /// Use getAlign() instead.
218   unsigned getAlignment() const { return getAlign().value(); }
219 
220   /// Return the alignment of the access that is being performed.
221   Align getAlign() const {
222     return Align(1ULL << (getSubclassData<AlignmentField>()));
223   }
224 
225   void setAlignment(Align Align) {
226     setSubclassData<AlignmentField>(Log2(Align));
227   }
228 
229   /// Returns the ordering constraint of this load instruction.
230   AtomicOrdering getOrdering() const {
231     return getSubclassData<OrderingField>();
232   }
233   /// Sets the ordering constraint of this load instruction.  May not be Release
234   /// or AcquireRelease.
235   void setOrdering(AtomicOrdering Ordering) {
236     setSubclassData<OrderingField>(Ordering);
237   }
238 
239   /// Returns the synchronization scope ID of this load instruction.
240   SyncScope::ID getSyncScopeID() const {
241     return SSID;
242   }
243 
244   /// Sets the synchronization scope ID of this load instruction.
245   void setSyncScopeID(SyncScope::ID SSID) {
246     this->SSID = SSID;
247   }
248 
249   /// Sets the ordering constraint and the synchronization scope ID of this load
250   /// instruction.
251   void setAtomic(AtomicOrdering Ordering,
252                  SyncScope::ID SSID = SyncScope::System) {
253     setOrdering(Ordering);
254     setSyncScopeID(SSID);
255   }
256 
257   bool isSimple() const { return !isAtomic() && !isVolatile(); }
258 
259   bool isUnordered() const {
260     return (getOrdering() == AtomicOrdering::NotAtomic ||
261             getOrdering() == AtomicOrdering::Unordered) &&
262            !isVolatile();
263   }
264 
265   Value *getPointerOperand() { return getOperand(0); }
266   const Value *getPointerOperand() const { return getOperand(0); }
267   static unsigned getPointerOperandIndex() { return 0U; }
268   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
269 
270   /// Returns the address space of the pointer operand.
271   unsigned getPointerAddressSpace() const {
272     return getPointerOperandType()->getPointerAddressSpace();
273   }
274 
275   // Methods for support type inquiry through isa, cast, and dyn_cast:
276   static bool classof(const Instruction *I) {
277     return I->getOpcode() == Instruction::Load;
278   }
279   static bool classof(const Value *V) {
280     return isa<Instruction>(V) && classof(cast<Instruction>(V));
281   }
282 
283 private:
284   // Shadow Instruction::setInstructionSubclassData with a private forwarding
285   // method so that subclasses cannot accidentally use it.
286   template <typename Bitfield>
287   void setSubclassData(typename Bitfield::Type Value) {
288     Instruction::setSubclassData<Bitfield>(Value);
289   }
290 
291   /// The synchronization scope ID of this load instruction.  Not quite enough
292   /// room in SubClassData for everything, so synchronization scope ID gets its
293   /// own field.
294   SyncScope::ID SSID;
295 };
296 
297 //===----------------------------------------------------------------------===//
298 //                                StoreInst Class
299 //===----------------------------------------------------------------------===//
300 
301 /// An instruction for storing to memory.
302 class StoreInst : public Instruction {
303   using VolatileField = BoolBitfieldElementT<0>;
304   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
305   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
306   static_assert(
307       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
308       "Bitfields must be contiguous");
309 
310   void AssertOK();
311 
312 protected:
313   // Note: Instruction needs to be a friend here to call cloneImpl.
314   friend class Instruction;
315 
316   StoreInst *cloneImpl() const;
317 
318 public:
319   StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
320   StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
321   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
322   StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
323   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
324             Instruction *InsertBefore = nullptr);
325   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326             BasicBlock *InsertAtEnd);
327   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328             AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
329             Instruction *InsertBefore = nullptr);
330   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
331             AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
332 
333   // allocate space for exactly two operands
334   void *operator new(size_t s) {
335     return User::operator new(s, 2);
336   }
337 
338   /// Return true if this is a store to a volatile memory location.
339   bool isVolatile() const { return getSubclassData<VolatileField>(); }
340 
341   /// Specify whether this is a volatile store or not.
342   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
343 
344   /// Transparently provide more efficient getOperand methods.
345   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
346 
347   /// Return the alignment of the access that is being performed
348   /// FIXME: Remove this function once transition to Align is over.
349   /// Use getAlign() instead.
350   unsigned getAlignment() const { return getAlign().value(); }
351 
352   Align getAlign() const {
353     return Align(1ULL << (getSubclassData<AlignmentField>()));
354   }
355 
356   void setAlignment(Align Align) {
357     setSubclassData<AlignmentField>(Log2(Align));
358   }
359 
360   /// Returns the ordering constraint of this store instruction.
361   AtomicOrdering getOrdering() const {
362     return getSubclassData<OrderingField>();
363   }
364 
365   /// Sets the ordering constraint of this store instruction.  May not be
366   /// Acquire or AcquireRelease.
367   void setOrdering(AtomicOrdering Ordering) {
368     setSubclassData<OrderingField>(Ordering);
369   }
370 
371   /// Returns the synchronization scope ID of this store instruction.
372   SyncScope::ID getSyncScopeID() const {
373     return SSID;
374   }
375 
376   /// Sets the synchronization scope ID of this store instruction.
377   void setSyncScopeID(SyncScope::ID SSID) {
378     this->SSID = SSID;
379   }
380 
381   /// Sets the ordering constraint and the synchronization scope ID of this
382   /// store instruction.
383   void setAtomic(AtomicOrdering Ordering,
384                  SyncScope::ID SSID = SyncScope::System) {
385     setOrdering(Ordering);
386     setSyncScopeID(SSID);
387   }
388 
389   bool isSimple() const { return !isAtomic() && !isVolatile(); }
390 
391   bool isUnordered() const {
392     return (getOrdering() == AtomicOrdering::NotAtomic ||
393             getOrdering() == AtomicOrdering::Unordered) &&
394            !isVolatile();
395   }
396 
397   Value *getValueOperand() { return getOperand(0); }
398   const Value *getValueOperand() const { return getOperand(0); }
399 
400   Value *getPointerOperand() { return getOperand(1); }
401   const Value *getPointerOperand() const { return getOperand(1); }
402   static unsigned getPointerOperandIndex() { return 1U; }
403   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
404 
405   /// Returns the address space of the pointer operand.
406   unsigned getPointerAddressSpace() const {
407     return getPointerOperandType()->getPointerAddressSpace();
408   }
409 
410   // Methods for support type inquiry through isa, cast, and dyn_cast:
411   static bool classof(const Instruction *I) {
412     return I->getOpcode() == Instruction::Store;
413   }
414   static bool classof(const Value *V) {
415     return isa<Instruction>(V) && classof(cast<Instruction>(V));
416   }
417 
418 private:
419   // Shadow Instruction::setInstructionSubclassData with a private forwarding
420   // method so that subclasses cannot accidentally use it.
421   template <typename Bitfield>
422   void setSubclassData(typename Bitfield::Type Value) {
423     Instruction::setSubclassData<Bitfield>(Value);
424   }
425 
426   /// The synchronization scope ID of this store instruction.  Not quite enough
427   /// room in SubClassData for everything, so synchronization scope ID gets its
428   /// own field.
429   SyncScope::ID SSID;
430 };
431 
432 template <>
433 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
434 };
435 
436 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
437 
438 //===----------------------------------------------------------------------===//
439 //                                FenceInst Class
440 //===----------------------------------------------------------------------===//
441 
442 /// An instruction for ordering other memory operations.
443 class FenceInst : public Instruction {
444   using OrderingField = AtomicOrderingBitfieldElementT<0>;
445 
446   void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
447 
448 protected:
449   // Note: Instruction needs to be a friend here to call cloneImpl.
450   friend class Instruction;
451 
452   FenceInst *cloneImpl() const;
453 
454 public:
455   // Ordering may only be Acquire, Release, AcquireRelease, or
456   // SequentiallyConsistent.
457   FenceInst(LLVMContext &C, AtomicOrdering Ordering,
458             SyncScope::ID SSID = SyncScope::System,
459             Instruction *InsertBefore = nullptr);
460   FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
461             BasicBlock *InsertAtEnd);
462 
463   // allocate space for exactly zero operands
464   void *operator new(size_t s) {
465     return User::operator new(s, 0);
466   }
467 
468   /// Returns the ordering constraint of this fence instruction.
469   AtomicOrdering getOrdering() const {
470     return getSubclassData<OrderingField>();
471   }
472 
473   /// Sets the ordering constraint of this fence instruction.  May only be
474   /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475   void setOrdering(AtomicOrdering Ordering) {
476     setSubclassData<OrderingField>(Ordering);
477   }
478 
479   /// Returns the synchronization scope ID of this fence instruction.
480   SyncScope::ID getSyncScopeID() const {
481     return SSID;
482   }
483 
484   /// Sets the synchronization scope ID of this fence instruction.
485   void setSyncScopeID(SyncScope::ID SSID) {
486     this->SSID = SSID;
487   }
488 
489   // Methods for support type inquiry through isa, cast, and dyn_cast:
490   static bool classof(const Instruction *I) {
491     return I->getOpcode() == Instruction::Fence;
492   }
493   static bool classof(const Value *V) {
494     return isa<Instruction>(V) && classof(cast<Instruction>(V));
495   }
496 
497 private:
498   // Shadow Instruction::setInstructionSubclassData with a private forwarding
499   // method so that subclasses cannot accidentally use it.
500   template <typename Bitfield>
501   void setSubclassData(typename Bitfield::Type Value) {
502     Instruction::setSubclassData<Bitfield>(Value);
503   }
504 
505   /// The synchronization scope ID of this fence instruction.  Not quite enough
506   /// room in SubClassData for everything, so synchronization scope ID gets its
507   /// own field.
508   SyncScope::ID SSID;
509 };
510 
511 //===----------------------------------------------------------------------===//
512 //                                AtomicCmpXchgInst Class
513 //===----------------------------------------------------------------------===//
514 
515 /// An instruction that atomically checks whether a
516 /// specified value is in a memory location, and, if it is, stores a new value
517 /// there. The value returned by this instruction is a pair containing the
518 /// original value as first element, and an i1 indicating success (true) or
519 /// failure (false) as second element.
520 ///
521 class AtomicCmpXchgInst : public Instruction {
522   void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523             AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524             SyncScope::ID SSID);
525 
526   template <unsigned Offset>
527   using AtomicOrderingBitfieldElement =
528       typename Bitfield::Element<AtomicOrdering, Offset, 3,
529                                  AtomicOrdering::LAST>;
530 
531 protected:
532   // Note: Instruction needs to be a friend here to call cloneImpl.
533   friend class Instruction;
534 
535   AtomicCmpXchgInst *cloneImpl() const;
536 
537 public:
538   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539                     AtomicOrdering SuccessOrdering,
540                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541                     Instruction *InsertBefore = nullptr);
542   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543                     AtomicOrdering SuccessOrdering,
544                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545                     BasicBlock *InsertAtEnd);
546 
547   // allocate space for exactly three operands
548   void *operator new(size_t s) {
549     return User::operator new(s, 3);
550   }
551 
552   using VolatileField = BoolBitfieldElementT<0>;
553   using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
554   using SuccessOrderingField =
555       AtomicOrderingBitfieldElementT<WeakField::NextBit>;
556   using FailureOrderingField =
557       AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
558   using AlignmentField =
559       AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
560   static_assert(
561       Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
562                               FailureOrderingField, AlignmentField>(),
563       "Bitfields must be contiguous");
564 
565   /// Return the alignment of the memory that is being allocated by the
566   /// instruction.
567   Align getAlign() const {
568     return Align(1ULL << getSubclassData<AlignmentField>());
569   }
570 
571   void setAlignment(Align Align) {
572     setSubclassData<AlignmentField>(Log2(Align));
573   }
574 
575   /// Return true if this is a cmpxchg from a volatile memory
576   /// location.
577   ///
578   bool isVolatile() const { return getSubclassData<VolatileField>(); }
579 
580   /// Specify whether this is a volatile cmpxchg.
581   ///
582   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
583 
584   /// Return true if this cmpxchg may spuriously fail.
585   bool isWeak() const { return getSubclassData<WeakField>(); }
586 
587   void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
588 
589   /// Transparently provide more efficient getOperand methods.
590   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
591 
592   /// Returns the success ordering constraint of this cmpxchg instruction.
593   AtomicOrdering getSuccessOrdering() const {
594     return getSubclassData<SuccessOrderingField>();
595   }
596 
597   /// Sets the success ordering constraint of this cmpxchg instruction.
598   void setSuccessOrdering(AtomicOrdering Ordering) {
599     assert(Ordering != AtomicOrdering::NotAtomic &&
600            "CmpXchg instructions can only be atomic.");
601     setSubclassData<SuccessOrderingField>(Ordering);
602   }
603 
604   /// Returns the failure ordering constraint of this cmpxchg instruction.
605   AtomicOrdering getFailureOrdering() const {
606     return getSubclassData<FailureOrderingField>();
607   }
608 
609   /// Sets the failure ordering constraint of this cmpxchg instruction.
610   void setFailureOrdering(AtomicOrdering Ordering) {
611     assert(Ordering != AtomicOrdering::NotAtomic &&
612            "CmpXchg instructions can only be atomic.");
613     setSubclassData<FailureOrderingField>(Ordering);
614   }
615 
616   /// Returns the synchronization scope ID of this cmpxchg instruction.
617   SyncScope::ID getSyncScopeID() const {
618     return SSID;
619   }
620 
621   /// Sets the synchronization scope ID of this cmpxchg instruction.
622   void setSyncScopeID(SyncScope::ID SSID) {
623     this->SSID = SSID;
624   }
625 
626   Value *getPointerOperand() { return getOperand(0); }
627   const Value *getPointerOperand() const { return getOperand(0); }
628   static unsigned getPointerOperandIndex() { return 0U; }
629 
630   Value *getCompareOperand() { return getOperand(1); }
631   const Value *getCompareOperand() const { return getOperand(1); }
632 
633   Value *getNewValOperand() { return getOperand(2); }
634   const Value *getNewValOperand() const { return getOperand(2); }
635 
636   /// Returns the address space of the pointer operand.
637   unsigned getPointerAddressSpace() const {
638     return getPointerOperand()->getType()->getPointerAddressSpace();
639   }
640 
641   /// Returns the strongest permitted ordering on failure, given the
642   /// desired ordering on success.
643   ///
644   /// If the comparison in a cmpxchg operation fails, there is no atomic store
645   /// so release semantics cannot be provided. So this function drops explicit
646   /// Release requests from the AtomicOrdering. A SequentiallyConsistent
647   /// operation would remain SequentiallyConsistent.
648   static AtomicOrdering
649   getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
650     switch (SuccessOrdering) {
651     default:
652       llvm_unreachable("invalid cmpxchg success ordering");
653     case AtomicOrdering::Release:
654     case AtomicOrdering::Monotonic:
655       return AtomicOrdering::Monotonic;
656     case AtomicOrdering::AcquireRelease:
657     case AtomicOrdering::Acquire:
658       return AtomicOrdering::Acquire;
659     case AtomicOrdering::SequentiallyConsistent:
660       return AtomicOrdering::SequentiallyConsistent;
661     }
662   }
663 
664   // Methods for support type inquiry through isa, cast, and dyn_cast:
665   static bool classof(const Instruction *I) {
666     return I->getOpcode() == Instruction::AtomicCmpXchg;
667   }
668   static bool classof(const Value *V) {
669     return isa<Instruction>(V) && classof(cast<Instruction>(V));
670   }
671 
672 private:
673   // Shadow Instruction::setInstructionSubclassData with a private forwarding
674   // method so that subclasses cannot accidentally use it.
675   template <typename Bitfield>
676   void setSubclassData(typename Bitfield::Type Value) {
677     Instruction::setSubclassData<Bitfield>(Value);
678   }
679 
680   /// The synchronization scope ID of this cmpxchg instruction.  Not quite
681   /// enough room in SubClassData for everything, so synchronization scope ID
682   /// gets its own field.
683   SyncScope::ID SSID;
684 };
685 
686 template <>
687 struct OperandTraits<AtomicCmpXchgInst> :
688     public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
689 };
690 
691 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
692 
693 //===----------------------------------------------------------------------===//
694 //                                AtomicRMWInst Class
695 //===----------------------------------------------------------------------===//
696 
697 /// an instruction that atomically reads a memory location,
698 /// combines it with another value, and then stores the result back.  Returns
699 /// the old value.
700 ///
701 class AtomicRMWInst : public Instruction {
702 protected:
703   // Note: Instruction needs to be a friend here to call cloneImpl.
704   friend class Instruction;
705 
706   AtomicRMWInst *cloneImpl() const;
707 
708 public:
709   /// This enumeration lists the possible modifications atomicrmw can make.  In
710   /// the descriptions, 'p' is the pointer to the instruction's memory location,
711   /// 'old' is the initial value of *p, and 'v' is the other value passed to the
712   /// instruction.  These instructions always return 'old'.
713   enum BinOp : unsigned {
714     /// *p = v
715     Xchg,
716     /// *p = old + v
717     Add,
718     /// *p = old - v
719     Sub,
720     /// *p = old & v
721     And,
722     /// *p = ~(old & v)
723     Nand,
724     /// *p = old | v
725     Or,
726     /// *p = old ^ v
727     Xor,
728     /// *p = old >signed v ? old : v
729     Max,
730     /// *p = old <signed v ? old : v
731     Min,
732     /// *p = old >unsigned v ? old : v
733     UMax,
734     /// *p = old <unsigned v ? old : v
735     UMin,
736 
737     /// *p = old + v
738     FAdd,
739 
740     /// *p = old - v
741     FSub,
742 
743     FIRST_BINOP = Xchg,
744     LAST_BINOP = FSub,
745     BAD_BINOP
746   };
747 
748 private:
749   template <unsigned Offset>
750   using AtomicOrderingBitfieldElement =
751       typename Bitfield::Element<AtomicOrdering, Offset, 3,
752                                  AtomicOrdering::LAST>;
753 
754   template <unsigned Offset>
755   using BinOpBitfieldElement =
756       typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
757 
758 public:
759   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
760                 AtomicOrdering Ordering, SyncScope::ID SSID,
761                 Instruction *InsertBefore = nullptr);
762   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
763                 AtomicOrdering Ordering, SyncScope::ID SSID,
764                 BasicBlock *InsertAtEnd);
765 
766   // allocate space for exactly two operands
767   void *operator new(size_t s) {
768     return User::operator new(s, 2);
769   }
770 
771   using VolatileField = BoolBitfieldElementT<0>;
772   using AtomicOrderingField =
773       AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
774   using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
775   using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
776   static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
777                                         OperationField, AlignmentField>(),
778                 "Bitfields must be contiguous");
779 
780   BinOp getOperation() const { return getSubclassData<OperationField>(); }
781 
782   static StringRef getOperationName(BinOp Op);
783 
784   static bool isFPOperation(BinOp Op) {
785     switch (Op) {
786     case AtomicRMWInst::FAdd:
787     case AtomicRMWInst::FSub:
788       return true;
789     default:
790       return false;
791     }
792   }
793 
794   void setOperation(BinOp Operation) {
795     setSubclassData<OperationField>(Operation);
796   }
797 
798   /// Return the alignment of the memory that is being allocated by the
799   /// instruction.
800   Align getAlign() const {
801     return Align(1ULL << getSubclassData<AlignmentField>());
802   }
803 
804   void setAlignment(Align Align) {
805     setSubclassData<AlignmentField>(Log2(Align));
806   }
807 
808   /// Return true if this is a RMW on a volatile memory location.
809   ///
810   bool isVolatile() const { return getSubclassData<VolatileField>(); }
811 
812   /// Specify whether this is a volatile RMW or not.
813   ///
814   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
815 
816   /// Transparently provide more efficient getOperand methods.
817   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
818 
819   /// Returns the ordering constraint of this rmw instruction.
820   AtomicOrdering getOrdering() const {
821     return getSubclassData<AtomicOrderingField>();
822   }
823 
824   /// Sets the ordering constraint of this rmw instruction.
825   void setOrdering(AtomicOrdering Ordering) {
826     assert(Ordering != AtomicOrdering::NotAtomic &&
827            "atomicrmw instructions can only be atomic.");
828     setSubclassData<AtomicOrderingField>(Ordering);
829   }
830 
831   /// Returns the synchronization scope ID of this rmw instruction.
832   SyncScope::ID getSyncScopeID() const {
833     return SSID;
834   }
835 
836   /// Sets the synchronization scope ID of this rmw instruction.
837   void setSyncScopeID(SyncScope::ID SSID) {
838     this->SSID = SSID;
839   }
840 
841   Value *getPointerOperand() { return getOperand(0); }
842   const Value *getPointerOperand() const { return getOperand(0); }
843   static unsigned getPointerOperandIndex() { return 0U; }
844 
845   Value *getValOperand() { return getOperand(1); }
846   const Value *getValOperand() const { return getOperand(1); }
847 
848   /// Returns the address space of the pointer operand.
849   unsigned getPointerAddressSpace() const {
850     return getPointerOperand()->getType()->getPointerAddressSpace();
851   }
852 
853   bool isFloatingPointOperation() const {
854     return isFPOperation(getOperation());
855   }
856 
857   // Methods for support type inquiry through isa, cast, and dyn_cast:
858   static bool classof(const Instruction *I) {
859     return I->getOpcode() == Instruction::AtomicRMW;
860   }
861   static bool classof(const Value *V) {
862     return isa<Instruction>(V) && classof(cast<Instruction>(V));
863   }
864 
865 private:
866   void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
867             AtomicOrdering Ordering, SyncScope::ID SSID);
868 
869   // Shadow Instruction::setInstructionSubclassData with a private forwarding
870   // method so that subclasses cannot accidentally use it.
871   template <typename Bitfield>
872   void setSubclassData(typename Bitfield::Type Value) {
873     Instruction::setSubclassData<Bitfield>(Value);
874   }
875 
876   /// The synchronization scope ID of this rmw instruction.  Not quite enough
877   /// room in SubClassData for everything, so synchronization scope ID gets its
878   /// own field.
879   SyncScope::ID SSID;
880 };
881 
882 template <>
883 struct OperandTraits<AtomicRMWInst>
884     : public FixedNumOperandTraits<AtomicRMWInst,2> {
885 };
886 
887 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
888 
889 //===----------------------------------------------------------------------===//
890 //                             GetElementPtrInst Class
891 //===----------------------------------------------------------------------===//
892 
893 // checkGEPType - Simple wrapper function to give a better assertion failure
894 // message on bad indexes for a gep instruction.
895 //
896 inline Type *checkGEPType(Type *Ty) {
897   assert(Ty && "Invalid GetElementPtrInst indices for type!");
898   return Ty;
899 }
900 
901 /// an instruction for type-safe pointer arithmetic to
902 /// access elements of arrays and structs
903 ///
904 class GetElementPtrInst : public Instruction {
905   Type *SourceElementType;
906   Type *ResultElementType;
907 
908   GetElementPtrInst(const GetElementPtrInst &GEPI);
909 
910   /// Constructors - Create a getelementptr instruction with a base pointer an
911   /// list of indices. The first ctor can optionally insert before an existing
912   /// instruction, the second appends the new instruction to the specified
913   /// BasicBlock.
914   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
915                            ArrayRef<Value *> IdxList, unsigned Values,
916                            const Twine &NameStr, Instruction *InsertBefore);
917   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
918                            ArrayRef<Value *> IdxList, unsigned Values,
919                            const Twine &NameStr, BasicBlock *InsertAtEnd);
920 
921   void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
922 
923 protected:
924   // Note: Instruction needs to be a friend here to call cloneImpl.
925   friend class Instruction;
926 
927   GetElementPtrInst *cloneImpl() const;
928 
929 public:
930   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
931                                    ArrayRef<Value *> IdxList,
932                                    const Twine &NameStr = "",
933                                    Instruction *InsertBefore = nullptr) {
934     unsigned Values = 1 + unsigned(IdxList.size());
935     if (!PointeeType)
936       PointeeType =
937           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
938     else
939       assert(
940           PointeeType ==
941           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
942     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
943                                           NameStr, InsertBefore);
944   }
945 
946   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
947                                    ArrayRef<Value *> IdxList,
948                                    const Twine &NameStr,
949                                    BasicBlock *InsertAtEnd) {
950     unsigned Values = 1 + unsigned(IdxList.size());
951     if (!PointeeType)
952       PointeeType =
953           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
954     else
955       assert(
956           PointeeType ==
957           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
958     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
959                                           NameStr, InsertAtEnd);
960   }
961 
962   /// Create an "inbounds" getelementptr. See the documentation for the
963   /// "inbounds" flag in LangRef.html for details.
964   static GetElementPtrInst *CreateInBounds(Value *Ptr,
965                                            ArrayRef<Value *> IdxList,
966                                            const Twine &NameStr = "",
967                                            Instruction *InsertBefore = nullptr){
968     return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
969   }
970 
971   static GetElementPtrInst *
972   CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
973                  const Twine &NameStr = "",
974                  Instruction *InsertBefore = nullptr) {
975     GetElementPtrInst *GEP =
976         Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
977     GEP->setIsInBounds(true);
978     return GEP;
979   }
980 
981   static GetElementPtrInst *CreateInBounds(Value *Ptr,
982                                            ArrayRef<Value *> IdxList,
983                                            const Twine &NameStr,
984                                            BasicBlock *InsertAtEnd) {
985     return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
986   }
987 
988   static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
989                                            ArrayRef<Value *> IdxList,
990                                            const Twine &NameStr,
991                                            BasicBlock *InsertAtEnd) {
992     GetElementPtrInst *GEP =
993         Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
994     GEP->setIsInBounds(true);
995     return GEP;
996   }
997 
998   /// Transparently provide more efficient getOperand methods.
999   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1000 
1001   Type *getSourceElementType() const { return SourceElementType; }
1002 
1003   void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1004   void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1005 
1006   Type *getResultElementType() const {
1007     assert(ResultElementType ==
1008            cast<PointerType>(getType()->getScalarType())->getElementType());
1009     return ResultElementType;
1010   }
1011 
1012   /// Returns the address space of this instruction's pointer type.
1013   unsigned getAddressSpace() const {
1014     // Note that this is always the same as the pointer operand's address space
1015     // and that is cheaper to compute, so cheat here.
1016     return getPointerAddressSpace();
1017   }
1018 
1019   /// Returns the result type of a getelementptr with the given source
1020   /// element type and indexes.
1021   ///
1022   /// Null is returned if the indices are invalid for the specified
1023   /// source element type.
1024   static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1025   static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1026   static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1027 
1028   /// Return the type of the element at the given index of an indexable
1029   /// type.  This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1030   ///
1031   /// Returns null if the type can't be indexed, or the given index is not
1032   /// legal for the given type.
1033   static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1034   static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1035 
1036   inline op_iterator       idx_begin()       { return op_begin()+1; }
1037   inline const_op_iterator idx_begin() const { return op_begin()+1; }
1038   inline op_iterator       idx_end()         { return op_end(); }
1039   inline const_op_iterator idx_end()   const { return op_end(); }
1040 
1041   inline iterator_range<op_iterator> indices() {
1042     return make_range(idx_begin(), idx_end());
1043   }
1044 
1045   inline iterator_range<const_op_iterator> indices() const {
1046     return make_range(idx_begin(), idx_end());
1047   }
1048 
1049   Value *getPointerOperand() {
1050     return getOperand(0);
1051   }
1052   const Value *getPointerOperand() const {
1053     return getOperand(0);
1054   }
1055   static unsigned getPointerOperandIndex() {
1056     return 0U;    // get index for modifying correct operand.
1057   }
1058 
1059   /// Method to return the pointer operand as a
1060   /// PointerType.
1061   Type *getPointerOperandType() const {
1062     return getPointerOperand()->getType();
1063   }
1064 
1065   /// Returns the address space of the pointer operand.
1066   unsigned getPointerAddressSpace() const {
1067     return getPointerOperandType()->getPointerAddressSpace();
1068   }
1069 
1070   /// Returns the pointer type returned by the GEP
1071   /// instruction, which may be a vector of pointers.
1072   static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1073                                 ArrayRef<Value *> IdxList) {
1074     Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1075                                    Ptr->getType()->getPointerAddressSpace());
1076     // Vector GEP
1077     if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1078       ElementCount EltCount = PtrVTy->getElementCount();
1079       return VectorType::get(PtrTy, EltCount);
1080     }
1081     for (Value *Index : IdxList)
1082       if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1083         ElementCount EltCount = IndexVTy->getElementCount();
1084         return VectorType::get(PtrTy, EltCount);
1085       }
1086     // Scalar GEP
1087     return PtrTy;
1088   }
1089 
1090   unsigned getNumIndices() const {  // Note: always non-negative
1091     return getNumOperands() - 1;
1092   }
1093 
1094   bool hasIndices() const {
1095     return getNumOperands() > 1;
1096   }
1097 
1098   /// Return true if all of the indices of this GEP are
1099   /// zeros.  If so, the result pointer and the first operand have the same
1100   /// value, just potentially different types.
1101   bool hasAllZeroIndices() const;
1102 
1103   /// Return true if all of the indices of this GEP are
1104   /// constant integers.  If so, the result pointer and the first operand have
1105   /// a constant offset between them.
1106   bool hasAllConstantIndices() const;
1107 
1108   /// Set or clear the inbounds flag on this GEP instruction.
1109   /// See LangRef.html for the meaning of inbounds on a getelementptr.
1110   void setIsInBounds(bool b = true);
1111 
1112   /// Determine whether the GEP has the inbounds flag.
1113   bool isInBounds() const;
1114 
1115   /// Accumulate the constant address offset of this GEP if possible.
1116   ///
1117   /// This routine accepts an APInt into which it will accumulate the constant
1118   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1119   /// all-constant, it returns false and the value of the offset APInt is
1120   /// undefined (it is *not* preserved!). The APInt passed into this routine
1121   /// must be at least as wide as the IntPtr type for the address space of
1122   /// the base GEP pointer.
1123   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1124 
1125   // Methods for support type inquiry through isa, cast, and dyn_cast:
1126   static bool classof(const Instruction *I) {
1127     return (I->getOpcode() == Instruction::GetElementPtr);
1128   }
1129   static bool classof(const Value *V) {
1130     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1131   }
1132 };
1133 
1134 template <>
1135 struct OperandTraits<GetElementPtrInst> :
1136   public VariadicOperandTraits<GetElementPtrInst, 1> {
1137 };
1138 
1139 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1140                                      ArrayRef<Value *> IdxList, unsigned Values,
1141                                      const Twine &NameStr,
1142                                      Instruction *InsertBefore)
1143     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1144                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1145                   Values, InsertBefore),
1146       SourceElementType(PointeeType),
1147       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1148   assert(ResultElementType ==
1149          cast<PointerType>(getType()->getScalarType())->getElementType());
1150   init(Ptr, IdxList, NameStr);
1151 }
1152 
1153 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1154                                      ArrayRef<Value *> IdxList, unsigned Values,
1155                                      const Twine &NameStr,
1156                                      BasicBlock *InsertAtEnd)
1157     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1158                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1159                   Values, InsertAtEnd),
1160       SourceElementType(PointeeType),
1161       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1162   assert(ResultElementType ==
1163          cast<PointerType>(getType()->getScalarType())->getElementType());
1164   init(Ptr, IdxList, NameStr);
1165 }
1166 
1167 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1168 
1169 //===----------------------------------------------------------------------===//
1170 //                               ICmpInst Class
1171 //===----------------------------------------------------------------------===//
1172 
1173 /// This instruction compares its operands according to the predicate given
1174 /// to the constructor. It only operates on integers or pointers. The operands
1175 /// must be identical types.
1176 /// Represent an integer comparison operator.
1177 class ICmpInst: public CmpInst {
1178   void AssertOK() {
1179     assert(isIntPredicate() &&
1180            "Invalid ICmp predicate value");
1181     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1182           "Both operands to ICmp instruction are not of the same type!");
1183     // Check that the operands are the right type
1184     assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1185             getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1186            "Invalid operand types for ICmp instruction");
1187   }
1188 
1189 protected:
1190   // Note: Instruction needs to be a friend here to call cloneImpl.
1191   friend class Instruction;
1192 
1193   /// Clone an identical ICmpInst
1194   ICmpInst *cloneImpl() const;
1195 
1196 public:
1197   /// Constructor with insert-before-instruction semantics.
1198   ICmpInst(
1199     Instruction *InsertBefore,  ///< Where to insert
1200     Predicate pred,  ///< The predicate to use for the comparison
1201     Value *LHS,      ///< The left-hand-side of the expression
1202     Value *RHS,      ///< The right-hand-side of the expression
1203     const Twine &NameStr = ""  ///< Name of the instruction
1204   ) : CmpInst(makeCmpResultType(LHS->getType()),
1205               Instruction::ICmp, pred, LHS, RHS, NameStr,
1206               InsertBefore) {
1207 #ifndef NDEBUG
1208   AssertOK();
1209 #endif
1210   }
1211 
1212   /// Constructor with insert-at-end semantics.
1213   ICmpInst(
1214     BasicBlock &InsertAtEnd, ///< Block to insert into.
1215     Predicate pred,  ///< The predicate to use for the comparison
1216     Value *LHS,      ///< The left-hand-side of the expression
1217     Value *RHS,      ///< The right-hand-side of the expression
1218     const Twine &NameStr = ""  ///< Name of the instruction
1219   ) : CmpInst(makeCmpResultType(LHS->getType()),
1220               Instruction::ICmp, pred, LHS, RHS, NameStr,
1221               &InsertAtEnd) {
1222 #ifndef NDEBUG
1223   AssertOK();
1224 #endif
1225   }
1226 
1227   /// Constructor with no-insertion semantics
1228   ICmpInst(
1229     Predicate pred, ///< The predicate to use for the comparison
1230     Value *LHS,     ///< The left-hand-side of the expression
1231     Value *RHS,     ///< The right-hand-side of the expression
1232     const Twine &NameStr = "" ///< Name of the instruction
1233   ) : CmpInst(makeCmpResultType(LHS->getType()),
1234               Instruction::ICmp, pred, LHS, RHS, NameStr) {
1235 #ifndef NDEBUG
1236   AssertOK();
1237 #endif
1238   }
1239 
1240   /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1241   /// @returns the predicate that would be the result if the operand were
1242   /// regarded as signed.
1243   /// Return the signed version of the predicate
1244   Predicate getSignedPredicate() const {
1245     return getSignedPredicate(getPredicate());
1246   }
1247 
1248   /// This is a static version that you can use without an instruction.
1249   /// Return the signed version of the predicate.
1250   static Predicate getSignedPredicate(Predicate pred);
1251 
1252   /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1253   /// @returns the predicate that would be the result if the operand were
1254   /// regarded as unsigned.
1255   /// Return the unsigned version of the predicate
1256   Predicate getUnsignedPredicate() const {
1257     return getUnsignedPredicate(getPredicate());
1258   }
1259 
1260   /// This is a static version that you can use without an instruction.
1261   /// Return the unsigned version of the predicate.
1262   static Predicate getUnsignedPredicate(Predicate pred);
1263 
1264   /// Return true if this predicate is either EQ or NE.  This also
1265   /// tests for commutativity.
1266   static bool isEquality(Predicate P) {
1267     return P == ICMP_EQ || P == ICMP_NE;
1268   }
1269 
1270   /// Return true if this predicate is either EQ or NE.  This also
1271   /// tests for commutativity.
1272   bool isEquality() const {
1273     return isEquality(getPredicate());
1274   }
1275 
1276   /// @returns true if the predicate of this ICmpInst is commutative
1277   /// Determine if this relation is commutative.
1278   bool isCommutative() const { return isEquality(); }
1279 
1280   /// Return true if the predicate is relational (not EQ or NE).
1281   ///
1282   bool isRelational() const {
1283     return !isEquality();
1284   }
1285 
1286   /// Return true if the predicate is relational (not EQ or NE).
1287   ///
1288   static bool isRelational(Predicate P) {
1289     return !isEquality(P);
1290   }
1291 
1292   /// Exchange the two operands to this instruction in such a way that it does
1293   /// not modify the semantics of the instruction. The predicate value may be
1294   /// changed to retain the same result if the predicate is order dependent
1295   /// (e.g. ult).
1296   /// Swap operands and adjust predicate.
1297   void swapOperands() {
1298     setPredicate(getSwappedPredicate());
1299     Op<0>().swap(Op<1>());
1300   }
1301 
1302   // Methods for support type inquiry through isa, cast, and dyn_cast:
1303   static bool classof(const Instruction *I) {
1304     return I->getOpcode() == Instruction::ICmp;
1305   }
1306   static bool classof(const Value *V) {
1307     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1308   }
1309 };
1310 
1311 //===----------------------------------------------------------------------===//
1312 //                               FCmpInst Class
1313 //===----------------------------------------------------------------------===//
1314 
1315 /// This instruction compares its operands according to the predicate given
1316 /// to the constructor. It only operates on floating point values or packed
1317 /// vectors of floating point values. The operands must be identical types.
1318 /// Represents a floating point comparison operator.
1319 class FCmpInst: public CmpInst {
1320   void AssertOK() {
1321     assert(isFPPredicate() && "Invalid FCmp predicate value");
1322     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1323            "Both operands to FCmp instruction are not of the same type!");
1324     // Check that the operands are the right type
1325     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1326            "Invalid operand types for FCmp instruction");
1327   }
1328 
1329 protected:
1330   // Note: Instruction needs to be a friend here to call cloneImpl.
1331   friend class Instruction;
1332 
1333   /// Clone an identical FCmpInst
1334   FCmpInst *cloneImpl() const;
1335 
1336 public:
1337   /// Constructor with insert-before-instruction semantics.
1338   FCmpInst(
1339     Instruction *InsertBefore, ///< Where to insert
1340     Predicate pred,  ///< The predicate to use for the comparison
1341     Value *LHS,      ///< The left-hand-side of the expression
1342     Value *RHS,      ///< The right-hand-side of the expression
1343     const Twine &NameStr = ""  ///< Name of the instruction
1344   ) : CmpInst(makeCmpResultType(LHS->getType()),
1345               Instruction::FCmp, pred, LHS, RHS, NameStr,
1346               InsertBefore) {
1347     AssertOK();
1348   }
1349 
1350   /// Constructor with insert-at-end semantics.
1351   FCmpInst(
1352     BasicBlock &InsertAtEnd, ///< Block to insert into.
1353     Predicate pred,  ///< The predicate to use for the comparison
1354     Value *LHS,      ///< The left-hand-side of the expression
1355     Value *RHS,      ///< The right-hand-side of the expression
1356     const Twine &NameStr = ""  ///< Name of the instruction
1357   ) : CmpInst(makeCmpResultType(LHS->getType()),
1358               Instruction::FCmp, pred, LHS, RHS, NameStr,
1359               &InsertAtEnd) {
1360     AssertOK();
1361   }
1362 
1363   /// Constructor with no-insertion semantics
1364   FCmpInst(
1365     Predicate Pred, ///< The predicate to use for the comparison
1366     Value *LHS,     ///< The left-hand-side of the expression
1367     Value *RHS,     ///< The right-hand-side of the expression
1368     const Twine &NameStr = "", ///< Name of the instruction
1369     Instruction *FlagsSource = nullptr
1370   ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1371               RHS, NameStr, nullptr, FlagsSource) {
1372     AssertOK();
1373   }
1374 
1375   /// @returns true if the predicate of this instruction is EQ or NE.
1376   /// Determine if this is an equality predicate.
1377   static bool isEquality(Predicate Pred) {
1378     return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1379            Pred == FCMP_UNE;
1380   }
1381 
1382   /// @returns true if the predicate of this instruction is EQ or NE.
1383   /// Determine if this is an equality predicate.
1384   bool isEquality() const { return isEquality(getPredicate()); }
1385 
1386   /// @returns true if the predicate of this instruction is commutative.
1387   /// Determine if this is a commutative predicate.
1388   bool isCommutative() const {
1389     return isEquality() ||
1390            getPredicate() == FCMP_FALSE ||
1391            getPredicate() == FCMP_TRUE ||
1392            getPredicate() == FCMP_ORD ||
1393            getPredicate() == FCMP_UNO;
1394   }
1395 
1396   /// @returns true if the predicate is relational (not EQ or NE).
1397   /// Determine if this a relational predicate.
1398   bool isRelational() const { return !isEquality(); }
1399 
1400   /// Exchange the two operands to this instruction in such a way that it does
1401   /// not modify the semantics of the instruction. The predicate value may be
1402   /// changed to retain the same result if the predicate is order dependent
1403   /// (e.g. ult).
1404   /// Swap operands and adjust predicate.
1405   void swapOperands() {
1406     setPredicate(getSwappedPredicate());
1407     Op<0>().swap(Op<1>());
1408   }
1409 
1410   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1411   static bool classof(const Instruction *I) {
1412     return I->getOpcode() == Instruction::FCmp;
1413   }
1414   static bool classof(const Value *V) {
1415     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1416   }
1417 };
1418 
1419 //===----------------------------------------------------------------------===//
1420 /// This class represents a function call, abstracting a target
1421 /// machine's calling convention.  This class uses low bit of the SubClassData
1422 /// field to indicate whether or not this is a tail call.  The rest of the bits
1423 /// hold the calling convention of the call.
1424 ///
1425 class CallInst : public CallBase {
1426   CallInst(const CallInst &CI);
1427 
1428   /// Construct a CallInst given a range of arguments.
1429   /// Construct a CallInst from a range of arguments
1430   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1431                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1432                   Instruction *InsertBefore);
1433 
1434   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1435                   const Twine &NameStr, Instruction *InsertBefore)
1436       : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1437 
1438   /// Construct a CallInst given a range of arguments.
1439   /// Construct a CallInst from a range of arguments
1440   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1441                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1442                   BasicBlock *InsertAtEnd);
1443 
1444   explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1445                     Instruction *InsertBefore);
1446 
1447   CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1448            BasicBlock *InsertAtEnd);
1449 
1450   void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1451             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1452   void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1453 
1454   /// Compute the number of operands to allocate.
1455   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1456     // We need one operand for the called function, plus the input operand
1457     // counts provided.
1458     return 1 + NumArgs + NumBundleInputs;
1459   }
1460 
1461 protected:
1462   // Note: Instruction needs to be a friend here to call cloneImpl.
1463   friend class Instruction;
1464 
1465   CallInst *cloneImpl() const;
1466 
1467 public:
1468   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1469                           Instruction *InsertBefore = nullptr) {
1470     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1471   }
1472 
1473   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1474                           const Twine &NameStr,
1475                           Instruction *InsertBefore = nullptr) {
1476     return new (ComputeNumOperands(Args.size()))
1477         CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1478   }
1479 
1480   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481                           ArrayRef<OperandBundleDef> Bundles = None,
1482                           const Twine &NameStr = "",
1483                           Instruction *InsertBefore = nullptr) {
1484     const int NumOperands =
1485         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1486     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1487 
1488     return new (NumOperands, DescriptorBytes)
1489         CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1490   }
1491 
1492   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1493                           BasicBlock *InsertAtEnd) {
1494     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1495   }
1496 
1497   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1498                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1499     return new (ComputeNumOperands(Args.size()))
1500         CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1501   }
1502 
1503   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1504                           ArrayRef<OperandBundleDef> Bundles,
1505                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1506     const int NumOperands =
1507         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1508     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1509 
1510     return new (NumOperands, DescriptorBytes)
1511         CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1512   }
1513 
1514   static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1515                           Instruction *InsertBefore = nullptr) {
1516     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1517                   InsertBefore);
1518   }
1519 
1520   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1521                           ArrayRef<OperandBundleDef> Bundles = None,
1522                           const Twine &NameStr = "",
1523                           Instruction *InsertBefore = nullptr) {
1524     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1525                   NameStr, InsertBefore);
1526   }
1527 
1528   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1529                           const Twine &NameStr,
1530                           Instruction *InsertBefore = nullptr) {
1531     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1532                   InsertBefore);
1533   }
1534 
1535   static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1536                           BasicBlock *InsertAtEnd) {
1537     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1538                   InsertAtEnd);
1539   }
1540 
1541   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1542                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1543     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1544                   InsertAtEnd);
1545   }
1546 
1547   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1548                           ArrayRef<OperandBundleDef> Bundles,
1549                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1550     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1551                   NameStr, InsertAtEnd);
1552   }
1553 
1554   /// Create a clone of \p CI with a different set of operand bundles and
1555   /// insert it before \p InsertPt.
1556   ///
1557   /// The returned call instruction is identical \p CI in every way except that
1558   /// the operand bundles for the new instruction are set to the operand bundles
1559   /// in \p Bundles.
1560   static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1561                           Instruction *InsertPt = nullptr);
1562 
1563   /// Generate the IR for a call to malloc:
1564   /// 1. Compute the malloc call's argument as the specified type's size,
1565   ///    possibly multiplied by the array size if the array size is not
1566   ///    constant 1.
1567   /// 2. Call malloc with that argument.
1568   /// 3. Bitcast the result of the malloc call to the specified type.
1569   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1570                                    Type *AllocTy, Value *AllocSize,
1571                                    Value *ArraySize = nullptr,
1572                                    Function *MallocF = nullptr,
1573                                    const Twine &Name = "");
1574   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1575                                    Type *AllocTy, Value *AllocSize,
1576                                    Value *ArraySize = nullptr,
1577                                    Function *MallocF = nullptr,
1578                                    const Twine &Name = "");
1579   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1580                                    Type *AllocTy, Value *AllocSize,
1581                                    Value *ArraySize = nullptr,
1582                                    ArrayRef<OperandBundleDef> Bundles = None,
1583                                    Function *MallocF = nullptr,
1584                                    const Twine &Name = "");
1585   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1586                                    Type *AllocTy, Value *AllocSize,
1587                                    Value *ArraySize = nullptr,
1588                                    ArrayRef<OperandBundleDef> Bundles = None,
1589                                    Function *MallocF = nullptr,
1590                                    const Twine &Name = "");
1591   /// Generate the IR for a call to the builtin free function.
1592   static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1593   static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1594   static Instruction *CreateFree(Value *Source,
1595                                  ArrayRef<OperandBundleDef> Bundles,
1596                                  Instruction *InsertBefore);
1597   static Instruction *CreateFree(Value *Source,
1598                                  ArrayRef<OperandBundleDef> Bundles,
1599                                  BasicBlock *InsertAtEnd);
1600 
1601   // Note that 'musttail' implies 'tail'.
1602   enum TailCallKind : unsigned {
1603     TCK_None = 0,
1604     TCK_Tail = 1,
1605     TCK_MustTail = 2,
1606     TCK_NoTail = 3,
1607     TCK_LAST = TCK_NoTail
1608   };
1609 
1610   using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1611   static_assert(
1612       Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1613       "Bitfields must be contiguous");
1614 
1615   TailCallKind getTailCallKind() const {
1616     return getSubclassData<TailCallKindField>();
1617   }
1618 
1619   bool isTailCall() const {
1620     TailCallKind Kind = getTailCallKind();
1621     return Kind == TCK_Tail || Kind == TCK_MustTail;
1622   }
1623 
1624   bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1625 
1626   bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1627 
1628   void setTailCallKind(TailCallKind TCK) {
1629     setSubclassData<TailCallKindField>(TCK);
1630   }
1631 
1632   void setTailCall(bool IsTc = true) {
1633     setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1634   }
1635 
1636   /// Return true if the call can return twice
1637   bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1638   void setCanReturnTwice() {
1639     addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1640   }
1641 
1642   // Methods for support type inquiry through isa, cast, and dyn_cast:
1643   static bool classof(const Instruction *I) {
1644     return I->getOpcode() == Instruction::Call;
1645   }
1646   static bool classof(const Value *V) {
1647     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1648   }
1649 
1650   /// Updates profile metadata by scaling it by \p S / \p T.
1651   void updateProfWeight(uint64_t S, uint64_t T);
1652 
1653 private:
1654   // Shadow Instruction::setInstructionSubclassData with a private forwarding
1655   // method so that subclasses cannot accidentally use it.
1656   template <typename Bitfield>
1657   void setSubclassData(typename Bitfield::Type Value) {
1658     Instruction::setSubclassData<Bitfield>(Value);
1659   }
1660 };
1661 
1662 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1663                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1664                    BasicBlock *InsertAtEnd)
1665     : CallBase(Ty->getReturnType(), Instruction::Call,
1666                OperandTraits<CallBase>::op_end(this) -
1667                    (Args.size() + CountBundleInputs(Bundles) + 1),
1668                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1669                InsertAtEnd) {
1670   init(Ty, Func, Args, Bundles, NameStr);
1671 }
1672 
1673 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1674                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1675                    Instruction *InsertBefore)
1676     : CallBase(Ty->getReturnType(), Instruction::Call,
1677                OperandTraits<CallBase>::op_end(this) -
1678                    (Args.size() + CountBundleInputs(Bundles) + 1),
1679                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1680                InsertBefore) {
1681   init(Ty, Func, Args, Bundles, NameStr);
1682 }
1683 
1684 //===----------------------------------------------------------------------===//
1685 //                               SelectInst Class
1686 //===----------------------------------------------------------------------===//
1687 
1688 /// This class represents the LLVM 'select' instruction.
1689 ///
1690 class SelectInst : public Instruction {
1691   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1692              Instruction *InsertBefore)
1693     : Instruction(S1->getType(), Instruction::Select,
1694                   &Op<0>(), 3, InsertBefore) {
1695     init(C, S1, S2);
1696     setName(NameStr);
1697   }
1698 
1699   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1700              BasicBlock *InsertAtEnd)
1701     : Instruction(S1->getType(), Instruction::Select,
1702                   &Op<0>(), 3, InsertAtEnd) {
1703     init(C, S1, S2);
1704     setName(NameStr);
1705   }
1706 
1707   void init(Value *C, Value *S1, Value *S2) {
1708     assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1709     Op<0>() = C;
1710     Op<1>() = S1;
1711     Op<2>() = S2;
1712   }
1713 
1714 protected:
1715   // Note: Instruction needs to be a friend here to call cloneImpl.
1716   friend class Instruction;
1717 
1718   SelectInst *cloneImpl() const;
1719 
1720 public:
1721   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1722                             const Twine &NameStr = "",
1723                             Instruction *InsertBefore = nullptr,
1724                             Instruction *MDFrom = nullptr) {
1725     SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1726     if (MDFrom)
1727       Sel->copyMetadata(*MDFrom);
1728     return Sel;
1729   }
1730 
1731   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1732                             const Twine &NameStr,
1733                             BasicBlock *InsertAtEnd) {
1734     return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1735   }
1736 
1737   const Value *getCondition() const { return Op<0>(); }
1738   const Value *getTrueValue() const { return Op<1>(); }
1739   const Value *getFalseValue() const { return Op<2>(); }
1740   Value *getCondition() { return Op<0>(); }
1741   Value *getTrueValue() { return Op<1>(); }
1742   Value *getFalseValue() { return Op<2>(); }
1743 
1744   void setCondition(Value *V) { Op<0>() = V; }
1745   void setTrueValue(Value *V) { Op<1>() = V; }
1746   void setFalseValue(Value *V) { Op<2>() = V; }
1747 
1748   /// Swap the true and false values of the select instruction.
1749   /// This doesn't swap prof metadata.
1750   void swapValues() { Op<1>().swap(Op<2>()); }
1751 
1752   /// Return a string if the specified operands are invalid
1753   /// for a select operation, otherwise return null.
1754   static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1755 
1756   /// Transparently provide more efficient getOperand methods.
1757   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1758 
1759   OtherOps getOpcode() const {
1760     return static_cast<OtherOps>(Instruction::getOpcode());
1761   }
1762 
1763   // Methods for support type inquiry through isa, cast, and dyn_cast:
1764   static bool classof(const Instruction *I) {
1765     return I->getOpcode() == Instruction::Select;
1766   }
1767   static bool classof(const Value *V) {
1768     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1769   }
1770 };
1771 
1772 template <>
1773 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1774 };
1775 
1776 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1777 
1778 //===----------------------------------------------------------------------===//
1779 //                                VAArgInst Class
1780 //===----------------------------------------------------------------------===//
1781 
1782 /// This class represents the va_arg llvm instruction, which returns
1783 /// an argument of the specified type given a va_list and increments that list
1784 ///
1785 class VAArgInst : public UnaryInstruction {
1786 protected:
1787   // Note: Instruction needs to be a friend here to call cloneImpl.
1788   friend class Instruction;
1789 
1790   VAArgInst *cloneImpl() const;
1791 
1792 public:
1793   VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1794              Instruction *InsertBefore = nullptr)
1795     : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1796     setName(NameStr);
1797   }
1798 
1799   VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1800             BasicBlock *InsertAtEnd)
1801     : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1802     setName(NameStr);
1803   }
1804 
1805   Value *getPointerOperand() { return getOperand(0); }
1806   const Value *getPointerOperand() const { return getOperand(0); }
1807   static unsigned getPointerOperandIndex() { return 0U; }
1808 
1809   // Methods for support type inquiry through isa, cast, and dyn_cast:
1810   static bool classof(const Instruction *I) {
1811     return I->getOpcode() == VAArg;
1812   }
1813   static bool classof(const Value *V) {
1814     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1815   }
1816 };
1817 
1818 //===----------------------------------------------------------------------===//
1819 //                                ExtractElementInst Class
1820 //===----------------------------------------------------------------------===//
1821 
1822 /// This instruction extracts a single (scalar)
1823 /// element from a VectorType value
1824 ///
1825 class ExtractElementInst : public Instruction {
1826   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1827                      Instruction *InsertBefore = nullptr);
1828   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1829                      BasicBlock *InsertAtEnd);
1830 
1831 protected:
1832   // Note: Instruction needs to be a friend here to call cloneImpl.
1833   friend class Instruction;
1834 
1835   ExtractElementInst *cloneImpl() const;
1836 
1837 public:
1838   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1839                                    const Twine &NameStr = "",
1840                                    Instruction *InsertBefore = nullptr) {
1841     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1842   }
1843 
1844   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1845                                    const Twine &NameStr,
1846                                    BasicBlock *InsertAtEnd) {
1847     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1848   }
1849 
1850   /// Return true if an extractelement instruction can be
1851   /// formed with the specified operands.
1852   static bool isValidOperands(const Value *Vec, const Value *Idx);
1853 
1854   Value *getVectorOperand() { return Op<0>(); }
1855   Value *getIndexOperand() { return Op<1>(); }
1856   const Value *getVectorOperand() const { return Op<0>(); }
1857   const Value *getIndexOperand() const { return Op<1>(); }
1858 
1859   VectorType *getVectorOperandType() const {
1860     return cast<VectorType>(getVectorOperand()->getType());
1861   }
1862 
1863   /// Transparently provide more efficient getOperand methods.
1864   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1865 
1866   // Methods for support type inquiry through isa, cast, and dyn_cast:
1867   static bool classof(const Instruction *I) {
1868     return I->getOpcode() == Instruction::ExtractElement;
1869   }
1870   static bool classof(const Value *V) {
1871     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1872   }
1873 };
1874 
1875 template <>
1876 struct OperandTraits<ExtractElementInst> :
1877   public FixedNumOperandTraits<ExtractElementInst, 2> {
1878 };
1879 
1880 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1881 
1882 //===----------------------------------------------------------------------===//
1883 //                                InsertElementInst Class
1884 //===----------------------------------------------------------------------===//
1885 
1886 /// This instruction inserts a single (scalar)
1887 /// element into a VectorType value
1888 ///
1889 class InsertElementInst : public Instruction {
1890   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1891                     const Twine &NameStr = "",
1892                     Instruction *InsertBefore = nullptr);
1893   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1894                     BasicBlock *InsertAtEnd);
1895 
1896 protected:
1897   // Note: Instruction needs to be a friend here to call cloneImpl.
1898   friend class Instruction;
1899 
1900   InsertElementInst *cloneImpl() const;
1901 
1902 public:
1903   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1904                                    const Twine &NameStr = "",
1905                                    Instruction *InsertBefore = nullptr) {
1906     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1907   }
1908 
1909   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1910                                    const Twine &NameStr,
1911                                    BasicBlock *InsertAtEnd) {
1912     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1913   }
1914 
1915   /// Return true if an insertelement instruction can be
1916   /// formed with the specified operands.
1917   static bool isValidOperands(const Value *Vec, const Value *NewElt,
1918                               const Value *Idx);
1919 
1920   /// Overload to return most specific vector type.
1921   ///
1922   VectorType *getType() const {
1923     return cast<VectorType>(Instruction::getType());
1924   }
1925 
1926   /// Transparently provide more efficient getOperand methods.
1927   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1928 
1929   // Methods for support type inquiry through isa, cast, and dyn_cast:
1930   static bool classof(const Instruction *I) {
1931     return I->getOpcode() == Instruction::InsertElement;
1932   }
1933   static bool classof(const Value *V) {
1934     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1935   }
1936 };
1937 
1938 template <>
1939 struct OperandTraits<InsertElementInst> :
1940   public FixedNumOperandTraits<InsertElementInst, 3> {
1941 };
1942 
1943 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1944 
1945 //===----------------------------------------------------------------------===//
1946 //                           ShuffleVectorInst Class
1947 //===----------------------------------------------------------------------===//
1948 
1949 constexpr int UndefMaskElem = -1;
1950 
1951 /// This instruction constructs a fixed permutation of two
1952 /// input vectors.
1953 ///
1954 /// For each element of the result vector, the shuffle mask selects an element
1955 /// from one of the input vectors to copy to the result. Non-negative elements
1956 /// in the mask represent an index into the concatenated pair of input vectors.
1957 /// UndefMaskElem (-1) specifies that the result element is undefined.
1958 ///
1959 /// For scalable vectors, all the elements of the mask must be 0 or -1. This
1960 /// requirement may be relaxed in the future.
1961 class ShuffleVectorInst : public Instruction {
1962   SmallVector<int, 4> ShuffleMask;
1963   Constant *ShuffleMaskForBitcode;
1964 
1965 protected:
1966   // Note: Instruction needs to be a friend here to call cloneImpl.
1967   friend class Instruction;
1968 
1969   ShuffleVectorInst *cloneImpl() const;
1970 
1971 public:
1972   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1973                     const Twine &NameStr = "",
1974                     Instruction *InsertBefor = nullptr);
1975   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1976                     const Twine &NameStr, BasicBlock *InsertAtEnd);
1977   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1978                     const Twine &NameStr = "",
1979                     Instruction *InsertBefor = nullptr);
1980   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1981                     const Twine &NameStr, BasicBlock *InsertAtEnd);
1982 
1983   void *operator new(size_t s) { return User::operator new(s, 2); }
1984 
1985   /// Swap the operands and adjust the mask to preserve the semantics
1986   /// of the instruction.
1987   void commute();
1988 
1989   /// Return true if a shufflevector instruction can be
1990   /// formed with the specified operands.
1991   static bool isValidOperands(const Value *V1, const Value *V2,
1992                               const Value *Mask);
1993   static bool isValidOperands(const Value *V1, const Value *V2,
1994                               ArrayRef<int> Mask);
1995 
1996   /// Overload to return most specific vector type.
1997   ///
1998   VectorType *getType() const {
1999     return cast<VectorType>(Instruction::getType());
2000   }
2001 
2002   /// Transparently provide more efficient getOperand methods.
2003   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2004 
2005   /// Return the shuffle mask value of this instruction for the given element
2006   /// index. Return UndefMaskElem if the element is undef.
2007   int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2008 
2009   /// Convert the input shuffle mask operand to a vector of integers. Undefined
2010   /// elements of the mask are returned as UndefMaskElem.
2011   static void getShuffleMask(const Constant *Mask,
2012                              SmallVectorImpl<int> &Result);
2013 
2014   /// Return the mask for this instruction as a vector of integers. Undefined
2015   /// elements of the mask are returned as UndefMaskElem.
2016   void getShuffleMask(SmallVectorImpl<int> &Result) const {
2017     Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2018   }
2019 
2020   /// Return the mask for this instruction, for use in bitcode.
2021   ///
2022   /// TODO: This is temporary until we decide a new bitcode encoding for
2023   /// shufflevector.
2024   Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2025 
2026   static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2027                                                 Type *ResultTy);
2028 
2029   void setShuffleMask(ArrayRef<int> Mask);
2030 
2031   ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2032 
2033   /// Return true if this shuffle returns a vector with a different number of
2034   /// elements than its source vectors.
2035   /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2036   ///           shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2037   bool changesLength() const {
2038     unsigned NumSourceElts =
2039         cast<VectorType>(Op<0>()->getType())->getElementCount().Min;
2040     unsigned NumMaskElts = ShuffleMask.size();
2041     return NumSourceElts != NumMaskElts;
2042   }
2043 
2044   /// Return true if this shuffle returns a vector with a greater number of
2045   /// elements than its source vectors.
2046   /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2047   bool increasesLength() const {
2048     unsigned NumSourceElts =
2049         cast<VectorType>(Op<0>()->getType())->getNumElements();
2050     unsigned NumMaskElts = ShuffleMask.size();
2051     return NumSourceElts < NumMaskElts;
2052   }
2053 
2054   /// Return true if this shuffle mask chooses elements from exactly one source
2055   /// vector.
2056   /// Example: <7,5,undef,7>
2057   /// This assumes that vector operands are the same length as the mask.
2058   static bool isSingleSourceMask(ArrayRef<int> Mask);
2059   static bool isSingleSourceMask(const Constant *Mask) {
2060     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2061     SmallVector<int, 16> MaskAsInts;
2062     getShuffleMask(Mask, MaskAsInts);
2063     return isSingleSourceMask(MaskAsInts);
2064   }
2065 
2066   /// Return true if this shuffle chooses elements from exactly one source
2067   /// vector without changing the length of that vector.
2068   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2069   /// TODO: Optionally allow length-changing shuffles.
2070   bool isSingleSource() const {
2071     return !changesLength() && isSingleSourceMask(ShuffleMask);
2072   }
2073 
2074   /// Return true if this shuffle mask chooses elements from exactly one source
2075   /// vector without lane crossings. A shuffle using this mask is not
2076   /// necessarily a no-op because it may change the number of elements from its
2077   /// input vectors or it may provide demanded bits knowledge via undef lanes.
2078   /// Example: <undef,undef,2,3>
2079   static bool isIdentityMask(ArrayRef<int> Mask);
2080   static bool isIdentityMask(const Constant *Mask) {
2081     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2082     SmallVector<int, 16> MaskAsInts;
2083     getShuffleMask(Mask, MaskAsInts);
2084     return isIdentityMask(MaskAsInts);
2085   }
2086 
2087   /// Return true if this shuffle chooses elements from exactly one source
2088   /// vector without lane crossings and does not change the number of elements
2089   /// from its input vectors.
2090   /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2091   bool isIdentity() const {
2092     return !changesLength() && isIdentityMask(ShuffleMask);
2093   }
2094 
2095   /// Return true if this shuffle lengthens exactly one source vector with
2096   /// undefs in the high elements.
2097   bool isIdentityWithPadding() const;
2098 
2099   /// Return true if this shuffle extracts the first N elements of exactly one
2100   /// source vector.
2101   bool isIdentityWithExtract() const;
2102 
2103   /// Return true if this shuffle concatenates its 2 source vectors. This
2104   /// returns false if either input is undefined. In that case, the shuffle is
2105   /// is better classified as an identity with padding operation.
2106   bool isConcat() const;
2107 
2108   /// Return true if this shuffle mask chooses elements from its source vectors
2109   /// without lane crossings. A shuffle using this mask would be
2110   /// equivalent to a vector select with a constant condition operand.
2111   /// Example: <4,1,6,undef>
2112   /// This returns false if the mask does not choose from both input vectors.
2113   /// In that case, the shuffle is better classified as an identity shuffle.
2114   /// This assumes that vector operands are the same length as the mask
2115   /// (a length-changing shuffle can never be equivalent to a vector select).
2116   static bool isSelectMask(ArrayRef<int> Mask);
2117   static bool isSelectMask(const Constant *Mask) {
2118     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2119     SmallVector<int, 16> MaskAsInts;
2120     getShuffleMask(Mask, MaskAsInts);
2121     return isSelectMask(MaskAsInts);
2122   }
2123 
2124   /// Return true if this shuffle chooses elements from its source vectors
2125   /// without lane crossings and all operands have the same number of elements.
2126   /// In other words, this shuffle is equivalent to a vector select with a
2127   /// constant condition operand.
2128   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2129   /// This returns false if the mask does not choose from both input vectors.
2130   /// In that case, the shuffle is better classified as an identity shuffle.
2131   /// TODO: Optionally allow length-changing shuffles.
2132   bool isSelect() const {
2133     return !changesLength() && isSelectMask(ShuffleMask);
2134   }
2135 
2136   /// Return true if this shuffle mask swaps the order of elements from exactly
2137   /// one source vector.
2138   /// Example: <7,6,undef,4>
2139   /// This assumes that vector operands are the same length as the mask.
2140   static bool isReverseMask(ArrayRef<int> Mask);
2141   static bool isReverseMask(const Constant *Mask) {
2142     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2143     SmallVector<int, 16> MaskAsInts;
2144     getShuffleMask(Mask, MaskAsInts);
2145     return isReverseMask(MaskAsInts);
2146   }
2147 
2148   /// Return true if this shuffle swaps the order of elements from exactly
2149   /// one source vector.
2150   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2151   /// TODO: Optionally allow length-changing shuffles.
2152   bool isReverse() const {
2153     return !changesLength() && isReverseMask(ShuffleMask);
2154   }
2155 
2156   /// Return true if this shuffle mask chooses all elements with the same value
2157   /// as the first element of exactly one source vector.
2158   /// Example: <4,undef,undef,4>
2159   /// This assumes that vector operands are the same length as the mask.
2160   static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2161   static bool isZeroEltSplatMask(const Constant *Mask) {
2162     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2163     SmallVector<int, 16> MaskAsInts;
2164     getShuffleMask(Mask, MaskAsInts);
2165     return isZeroEltSplatMask(MaskAsInts);
2166   }
2167 
2168   /// Return true if all elements of this shuffle are the same value as the
2169   /// first element of exactly one source vector without changing the length
2170   /// of that vector.
2171   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2172   /// TODO: Optionally allow length-changing shuffles.
2173   /// TODO: Optionally allow splats from other elements.
2174   bool isZeroEltSplat() const {
2175     return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2176   }
2177 
2178   /// Return true if this shuffle mask is a transpose mask.
2179   /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2180   /// even- or odd-numbered vector elements from two n-dimensional source
2181   /// vectors and write each result into consecutive elements of an
2182   /// n-dimensional destination vector. Two shuffles are necessary to complete
2183   /// the transpose, one for the even elements and another for the odd elements.
2184   /// This description closely follows how the TRN1 and TRN2 AArch64
2185   /// instructions operate.
2186   ///
2187   /// For example, a simple 2x2 matrix can be transposed with:
2188   ///
2189   ///   ; Original matrix
2190   ///   m0 = < a, b >
2191   ///   m1 = < c, d >
2192   ///
2193   ///   ; Transposed matrix
2194   ///   t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2195   ///   t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2196   ///
2197   /// For matrices having greater than n columns, the resulting nx2 transposed
2198   /// matrix is stored in two result vectors such that one vector contains
2199   /// interleaved elements from all the even-numbered rows and the other vector
2200   /// contains interleaved elements from all the odd-numbered rows. For example,
2201   /// a 2x4 matrix can be transposed with:
2202   ///
2203   ///   ; Original matrix
2204   ///   m0 = < a, b, c, d >
2205   ///   m1 = < e, f, g, h >
2206   ///
2207   ///   ; Transposed matrix
2208   ///   t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2209   ///   t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2210   static bool isTransposeMask(ArrayRef<int> Mask);
2211   static bool isTransposeMask(const Constant *Mask) {
2212     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2213     SmallVector<int, 16> MaskAsInts;
2214     getShuffleMask(Mask, MaskAsInts);
2215     return isTransposeMask(MaskAsInts);
2216   }
2217 
2218   /// Return true if this shuffle transposes the elements of its inputs without
2219   /// changing the length of the vectors. This operation may also be known as a
2220   /// merge or interleave. See the description for isTransposeMask() for the
2221   /// exact specification.
2222   /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2223   bool isTranspose() const {
2224     return !changesLength() && isTransposeMask(ShuffleMask);
2225   }
2226 
2227   /// Return true if this shuffle mask is an extract subvector mask.
2228   /// A valid extract subvector mask returns a smaller vector from a single
2229   /// source operand. The base extraction index is returned as well.
2230   static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2231                                      int &Index);
2232   static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2233                                      int &Index) {
2234     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2235     SmallVector<int, 16> MaskAsInts;
2236     getShuffleMask(Mask, MaskAsInts);
2237     return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2238   }
2239 
2240   /// Return true if this shuffle mask is an extract subvector mask.
2241   bool isExtractSubvectorMask(int &Index) const {
2242     int NumSrcElts = cast<VectorType>(Op<0>()->getType())->getNumElements();
2243     return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2244   }
2245 
2246   /// Change values in a shuffle permute mask assuming the two vector operands
2247   /// of length InVecNumElts have swapped position.
2248   static void commuteShuffleMask(MutableArrayRef<int> Mask,
2249                                  unsigned InVecNumElts) {
2250     for (int &Idx : Mask) {
2251       if (Idx == -1)
2252         continue;
2253       Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2254       assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2255              "shufflevector mask index out of range");
2256     }
2257   }
2258 
2259   // Methods for support type inquiry through isa, cast, and dyn_cast:
2260   static bool classof(const Instruction *I) {
2261     return I->getOpcode() == Instruction::ShuffleVector;
2262   }
2263   static bool classof(const Value *V) {
2264     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2265   }
2266 };
2267 
2268 template <>
2269 struct OperandTraits<ShuffleVectorInst>
2270     : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2271 
2272 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2273 
2274 //===----------------------------------------------------------------------===//
2275 //                                ExtractValueInst Class
2276 //===----------------------------------------------------------------------===//
2277 
2278 /// This instruction extracts a struct member or array
2279 /// element value from an aggregate value.
2280 ///
2281 class ExtractValueInst : public UnaryInstruction {
2282   SmallVector<unsigned, 4> Indices;
2283 
2284   ExtractValueInst(const ExtractValueInst &EVI);
2285 
2286   /// Constructors - Create a extractvalue instruction with a base aggregate
2287   /// value and a list of indices.  The first ctor can optionally insert before
2288   /// an existing instruction, the second appends the new instruction to the
2289   /// specified BasicBlock.
2290   inline ExtractValueInst(Value *Agg,
2291                           ArrayRef<unsigned> Idxs,
2292                           const Twine &NameStr,
2293                           Instruction *InsertBefore);
2294   inline ExtractValueInst(Value *Agg,
2295                           ArrayRef<unsigned> Idxs,
2296                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2297 
2298   void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2299 
2300 protected:
2301   // Note: Instruction needs to be a friend here to call cloneImpl.
2302   friend class Instruction;
2303 
2304   ExtractValueInst *cloneImpl() const;
2305 
2306 public:
2307   static ExtractValueInst *Create(Value *Agg,
2308                                   ArrayRef<unsigned> Idxs,
2309                                   const Twine &NameStr = "",
2310                                   Instruction *InsertBefore = nullptr) {
2311     return new
2312       ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2313   }
2314 
2315   static ExtractValueInst *Create(Value *Agg,
2316                                   ArrayRef<unsigned> Idxs,
2317                                   const Twine &NameStr,
2318                                   BasicBlock *InsertAtEnd) {
2319     return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2320   }
2321 
2322   /// Returns the type of the element that would be extracted
2323   /// with an extractvalue instruction with the specified parameters.
2324   ///
2325   /// Null is returned if the indices are invalid for the specified type.
2326   static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2327 
2328   using idx_iterator = const unsigned*;
2329 
2330   inline idx_iterator idx_begin() const { return Indices.begin(); }
2331   inline idx_iterator idx_end()   const { return Indices.end(); }
2332   inline iterator_range<idx_iterator> indices() const {
2333     return make_range(idx_begin(), idx_end());
2334   }
2335 
2336   Value *getAggregateOperand() {
2337     return getOperand(0);
2338   }
2339   const Value *getAggregateOperand() const {
2340     return getOperand(0);
2341   }
2342   static unsigned getAggregateOperandIndex() {
2343     return 0U;                      // get index for modifying correct operand
2344   }
2345 
2346   ArrayRef<unsigned> getIndices() const {
2347     return Indices;
2348   }
2349 
2350   unsigned getNumIndices() const {
2351     return (unsigned)Indices.size();
2352   }
2353 
2354   bool hasIndices() const {
2355     return true;
2356   }
2357 
2358   // Methods for support type inquiry through isa, cast, and dyn_cast:
2359   static bool classof(const Instruction *I) {
2360     return I->getOpcode() == Instruction::ExtractValue;
2361   }
2362   static bool classof(const Value *V) {
2363     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2364   }
2365 };
2366 
2367 ExtractValueInst::ExtractValueInst(Value *Agg,
2368                                    ArrayRef<unsigned> Idxs,
2369                                    const Twine &NameStr,
2370                                    Instruction *InsertBefore)
2371   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2372                      ExtractValue, Agg, InsertBefore) {
2373   init(Idxs, NameStr);
2374 }
2375 
2376 ExtractValueInst::ExtractValueInst(Value *Agg,
2377                                    ArrayRef<unsigned> Idxs,
2378                                    const Twine &NameStr,
2379                                    BasicBlock *InsertAtEnd)
2380   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2381                      ExtractValue, Agg, InsertAtEnd) {
2382   init(Idxs, NameStr);
2383 }
2384 
2385 //===----------------------------------------------------------------------===//
2386 //                                InsertValueInst Class
2387 //===----------------------------------------------------------------------===//
2388 
2389 /// This instruction inserts a struct field of array element
2390 /// value into an aggregate value.
2391 ///
2392 class InsertValueInst : public Instruction {
2393   SmallVector<unsigned, 4> Indices;
2394 
2395   InsertValueInst(const InsertValueInst &IVI);
2396 
2397   /// Constructors - Create a insertvalue instruction with a base aggregate
2398   /// value, a value to insert, and a list of indices.  The first ctor can
2399   /// optionally insert before an existing instruction, the second appends
2400   /// the new instruction to the specified BasicBlock.
2401   inline InsertValueInst(Value *Agg, Value *Val,
2402                          ArrayRef<unsigned> Idxs,
2403                          const Twine &NameStr,
2404                          Instruction *InsertBefore);
2405   inline InsertValueInst(Value *Agg, Value *Val,
2406                          ArrayRef<unsigned> Idxs,
2407                          const Twine &NameStr, BasicBlock *InsertAtEnd);
2408 
2409   /// Constructors - These two constructors are convenience methods because one
2410   /// and two index insertvalue instructions are so common.
2411   InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2412                   const Twine &NameStr = "",
2413                   Instruction *InsertBefore = nullptr);
2414   InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2415                   BasicBlock *InsertAtEnd);
2416 
2417   void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2418             const Twine &NameStr);
2419 
2420 protected:
2421   // Note: Instruction needs to be a friend here to call cloneImpl.
2422   friend class Instruction;
2423 
2424   InsertValueInst *cloneImpl() const;
2425 
2426 public:
2427   // allocate space for exactly two operands
2428   void *operator new(size_t s) {
2429     return User::operator new(s, 2);
2430   }
2431 
2432   static InsertValueInst *Create(Value *Agg, Value *Val,
2433                                  ArrayRef<unsigned> Idxs,
2434                                  const Twine &NameStr = "",
2435                                  Instruction *InsertBefore = nullptr) {
2436     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2437   }
2438 
2439   static InsertValueInst *Create(Value *Agg, Value *Val,
2440                                  ArrayRef<unsigned> Idxs,
2441                                  const Twine &NameStr,
2442                                  BasicBlock *InsertAtEnd) {
2443     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2444   }
2445 
2446   /// Transparently provide more efficient getOperand methods.
2447   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2448 
2449   using idx_iterator = const unsigned*;
2450 
2451   inline idx_iterator idx_begin() const { return Indices.begin(); }
2452   inline idx_iterator idx_end()   const { return Indices.end(); }
2453   inline iterator_range<idx_iterator> indices() const {
2454     return make_range(idx_begin(), idx_end());
2455   }
2456 
2457   Value *getAggregateOperand() {
2458     return getOperand(0);
2459   }
2460   const Value *getAggregateOperand() const {
2461     return getOperand(0);
2462   }
2463   static unsigned getAggregateOperandIndex() {
2464     return 0U;                      // get index for modifying correct operand
2465   }
2466 
2467   Value *getInsertedValueOperand() {
2468     return getOperand(1);
2469   }
2470   const Value *getInsertedValueOperand() const {
2471     return getOperand(1);
2472   }
2473   static unsigned getInsertedValueOperandIndex() {
2474     return 1U;                      // get index for modifying correct operand
2475   }
2476 
2477   ArrayRef<unsigned> getIndices() const {
2478     return Indices;
2479   }
2480 
2481   unsigned getNumIndices() const {
2482     return (unsigned)Indices.size();
2483   }
2484 
2485   bool hasIndices() const {
2486     return true;
2487   }
2488 
2489   // Methods for support type inquiry through isa, cast, and dyn_cast:
2490   static bool classof(const Instruction *I) {
2491     return I->getOpcode() == Instruction::InsertValue;
2492   }
2493   static bool classof(const Value *V) {
2494     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2495   }
2496 };
2497 
2498 template <>
2499 struct OperandTraits<InsertValueInst> :
2500   public FixedNumOperandTraits<InsertValueInst, 2> {
2501 };
2502 
2503 InsertValueInst::InsertValueInst(Value *Agg,
2504                                  Value *Val,
2505                                  ArrayRef<unsigned> Idxs,
2506                                  const Twine &NameStr,
2507                                  Instruction *InsertBefore)
2508   : Instruction(Agg->getType(), InsertValue,
2509                 OperandTraits<InsertValueInst>::op_begin(this),
2510                 2, InsertBefore) {
2511   init(Agg, Val, Idxs, NameStr);
2512 }
2513 
2514 InsertValueInst::InsertValueInst(Value *Agg,
2515                                  Value *Val,
2516                                  ArrayRef<unsigned> Idxs,
2517                                  const Twine &NameStr,
2518                                  BasicBlock *InsertAtEnd)
2519   : Instruction(Agg->getType(), InsertValue,
2520                 OperandTraits<InsertValueInst>::op_begin(this),
2521                 2, InsertAtEnd) {
2522   init(Agg, Val, Idxs, NameStr);
2523 }
2524 
2525 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2526 
2527 //===----------------------------------------------------------------------===//
2528 //                               PHINode Class
2529 //===----------------------------------------------------------------------===//
2530 
2531 // PHINode - The PHINode class is used to represent the magical mystical PHI
2532 // node, that can not exist in nature, but can be synthesized in a computer
2533 // scientist's overactive imagination.
2534 //
2535 class PHINode : public Instruction {
2536   /// The number of operands actually allocated.  NumOperands is
2537   /// the number actually in use.
2538   unsigned ReservedSpace;
2539 
2540   PHINode(const PHINode &PN);
2541 
2542   explicit PHINode(Type *Ty, unsigned NumReservedValues,
2543                    const Twine &NameStr = "",
2544                    Instruction *InsertBefore = nullptr)
2545     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2546       ReservedSpace(NumReservedValues) {
2547     setName(NameStr);
2548     allocHungoffUses(ReservedSpace);
2549   }
2550 
2551   PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2552           BasicBlock *InsertAtEnd)
2553     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2554       ReservedSpace(NumReservedValues) {
2555     setName(NameStr);
2556     allocHungoffUses(ReservedSpace);
2557   }
2558 
2559 protected:
2560   // Note: Instruction needs to be a friend here to call cloneImpl.
2561   friend class Instruction;
2562 
2563   PHINode *cloneImpl() const;
2564 
2565   // allocHungoffUses - this is more complicated than the generic
2566   // User::allocHungoffUses, because we have to allocate Uses for the incoming
2567   // values and pointers to the incoming blocks, all in one allocation.
2568   void allocHungoffUses(unsigned N) {
2569     User::allocHungoffUses(N, /* IsPhi */ true);
2570   }
2571 
2572 public:
2573   /// Constructors - NumReservedValues is a hint for the number of incoming
2574   /// edges that this phi node will have (use 0 if you really have no idea).
2575   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2576                          const Twine &NameStr = "",
2577                          Instruction *InsertBefore = nullptr) {
2578     return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2579   }
2580 
2581   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2582                          const Twine &NameStr, BasicBlock *InsertAtEnd) {
2583     return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2584   }
2585 
2586   /// Provide fast operand accessors
2587   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2588 
2589   // Block iterator interface. This provides access to the list of incoming
2590   // basic blocks, which parallels the list of incoming values.
2591 
2592   using block_iterator = BasicBlock **;
2593   using const_block_iterator = BasicBlock * const *;
2594 
2595   block_iterator block_begin() {
2596     return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2597   }
2598 
2599   const_block_iterator block_begin() const {
2600     return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2601   }
2602 
2603   block_iterator block_end() {
2604     return block_begin() + getNumOperands();
2605   }
2606 
2607   const_block_iterator block_end() const {
2608     return block_begin() + getNumOperands();
2609   }
2610 
2611   iterator_range<block_iterator> blocks() {
2612     return make_range(block_begin(), block_end());
2613   }
2614 
2615   iterator_range<const_block_iterator> blocks() const {
2616     return make_range(block_begin(), block_end());
2617   }
2618 
2619   op_range incoming_values() { return operands(); }
2620 
2621   const_op_range incoming_values() const { return operands(); }
2622 
2623   /// Return the number of incoming edges
2624   ///
2625   unsigned getNumIncomingValues() const { return getNumOperands(); }
2626 
2627   /// Return incoming value number x
2628   ///
2629   Value *getIncomingValue(unsigned i) const {
2630     return getOperand(i);
2631   }
2632   void setIncomingValue(unsigned i, Value *V) {
2633     assert(V && "PHI node got a null value!");
2634     assert(getType() == V->getType() &&
2635            "All operands to PHI node must be the same type as the PHI node!");
2636     setOperand(i, V);
2637   }
2638 
2639   static unsigned getOperandNumForIncomingValue(unsigned i) {
2640     return i;
2641   }
2642 
2643   static unsigned getIncomingValueNumForOperand(unsigned i) {
2644     return i;
2645   }
2646 
2647   /// Return incoming basic block number @p i.
2648   ///
2649   BasicBlock *getIncomingBlock(unsigned i) const {
2650     return block_begin()[i];
2651   }
2652 
2653   /// Return incoming basic block corresponding
2654   /// to an operand of the PHI.
2655   ///
2656   BasicBlock *getIncomingBlock(const Use &U) const {
2657     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2658     return getIncomingBlock(unsigned(&U - op_begin()));
2659   }
2660 
2661   /// Return incoming basic block corresponding
2662   /// to value use iterator.
2663   ///
2664   BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2665     return getIncomingBlock(I.getUse());
2666   }
2667 
2668   void setIncomingBlock(unsigned i, BasicBlock *BB) {
2669     assert(BB && "PHI node got a null basic block!");
2670     block_begin()[i] = BB;
2671   }
2672 
2673   /// Replace every incoming basic block \p Old to basic block \p New.
2674   void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2675     assert(New && Old && "PHI node got a null basic block!");
2676     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2677       if (getIncomingBlock(Op) == Old)
2678         setIncomingBlock(Op, New);
2679   }
2680 
2681   /// Add an incoming value to the end of the PHI list
2682   ///
2683   void addIncoming(Value *V, BasicBlock *BB) {
2684     if (getNumOperands() == ReservedSpace)
2685       growOperands();  // Get more space!
2686     // Initialize some new operands.
2687     setNumHungOffUseOperands(getNumOperands() + 1);
2688     setIncomingValue(getNumOperands() - 1, V);
2689     setIncomingBlock(getNumOperands() - 1, BB);
2690   }
2691 
2692   /// Remove an incoming value.  This is useful if a
2693   /// predecessor basic block is deleted.  The value removed is returned.
2694   ///
2695   /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2696   /// is true), the PHI node is destroyed and any uses of it are replaced with
2697   /// dummy values.  The only time there should be zero incoming values to a PHI
2698   /// node is when the block is dead, so this strategy is sound.
2699   ///
2700   Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2701 
2702   Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2703     int Idx = getBasicBlockIndex(BB);
2704     assert(Idx >= 0 && "Invalid basic block argument to remove!");
2705     return removeIncomingValue(Idx, DeletePHIIfEmpty);
2706   }
2707 
2708   /// Return the first index of the specified basic
2709   /// block in the value list for this PHI.  Returns -1 if no instance.
2710   ///
2711   int getBasicBlockIndex(const BasicBlock *BB) const {
2712     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2713       if (block_begin()[i] == BB)
2714         return i;
2715     return -1;
2716   }
2717 
2718   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2719     int Idx = getBasicBlockIndex(BB);
2720     assert(Idx >= 0 && "Invalid basic block argument!");
2721     return getIncomingValue(Idx);
2722   }
2723 
2724   /// Set every incoming value(s) for block \p BB to \p V.
2725   void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2726     assert(BB && "PHI node got a null basic block!");
2727     bool Found = false;
2728     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2729       if (getIncomingBlock(Op) == BB) {
2730         Found = true;
2731         setIncomingValue(Op, V);
2732       }
2733     (void)Found;
2734     assert(Found && "Invalid basic block argument to set!");
2735   }
2736 
2737   /// If the specified PHI node always merges together the
2738   /// same value, return the value, otherwise return null.
2739   Value *hasConstantValue() const;
2740 
2741   /// Whether the specified PHI node always merges
2742   /// together the same value, assuming undefs are equal to a unique
2743   /// non-undef value.
2744   bool hasConstantOrUndefValue() const;
2745 
2746   /// Methods for support type inquiry through isa, cast, and dyn_cast:
2747   static bool classof(const Instruction *I) {
2748     return I->getOpcode() == Instruction::PHI;
2749   }
2750   static bool classof(const Value *V) {
2751     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2752   }
2753 
2754 private:
2755   void growOperands();
2756 };
2757 
2758 template <>
2759 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2760 };
2761 
2762 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2763 
2764 //===----------------------------------------------------------------------===//
2765 //                           LandingPadInst Class
2766 //===----------------------------------------------------------------------===//
2767 
2768 //===---------------------------------------------------------------------------
2769 /// The landingpad instruction holds all of the information
2770 /// necessary to generate correct exception handling. The landingpad instruction
2771 /// cannot be moved from the top of a landing pad block, which itself is
2772 /// accessible only from the 'unwind' edge of an invoke. This uses the
2773 /// SubclassData field in Value to store whether or not the landingpad is a
2774 /// cleanup.
2775 ///
2776 class LandingPadInst : public Instruction {
2777   using CleanupField = BoolBitfieldElementT<0>;
2778 
2779   /// The number of operands actually allocated.  NumOperands is
2780   /// the number actually in use.
2781   unsigned ReservedSpace;
2782 
2783   LandingPadInst(const LandingPadInst &LP);
2784 
2785 public:
2786   enum ClauseType { Catch, Filter };
2787 
2788 private:
2789   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2790                           const Twine &NameStr, Instruction *InsertBefore);
2791   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2792                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2793 
2794   // Allocate space for exactly zero operands.
2795   void *operator new(size_t s) {
2796     return User::operator new(s);
2797   }
2798 
2799   void growOperands(unsigned Size);
2800   void init(unsigned NumReservedValues, const Twine &NameStr);
2801 
2802 protected:
2803   // Note: Instruction needs to be a friend here to call cloneImpl.
2804   friend class Instruction;
2805 
2806   LandingPadInst *cloneImpl() const;
2807 
2808 public:
2809   /// Constructors - NumReservedClauses is a hint for the number of incoming
2810   /// clauses that this landingpad will have (use 0 if you really have no idea).
2811   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2812                                 const Twine &NameStr = "",
2813                                 Instruction *InsertBefore = nullptr);
2814   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2815                                 const Twine &NameStr, BasicBlock *InsertAtEnd);
2816 
2817   /// Provide fast operand accessors
2818   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2819 
2820   /// Return 'true' if this landingpad instruction is a
2821   /// cleanup. I.e., it should be run when unwinding even if its landing pad
2822   /// doesn't catch the exception.
2823   bool isCleanup() const { return getSubclassData<CleanupField>(); }
2824 
2825   /// Indicate that this landingpad instruction is a cleanup.
2826   void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2827 
2828   /// Add a catch or filter clause to the landing pad.
2829   void addClause(Constant *ClauseVal);
2830 
2831   /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2832   /// determine what type of clause this is.
2833   Constant *getClause(unsigned Idx) const {
2834     return cast<Constant>(getOperandList()[Idx]);
2835   }
2836 
2837   /// Return 'true' if the clause and index Idx is a catch clause.
2838   bool isCatch(unsigned Idx) const {
2839     return !isa<ArrayType>(getOperandList()[Idx]->getType());
2840   }
2841 
2842   /// Return 'true' if the clause and index Idx is a filter clause.
2843   bool isFilter(unsigned Idx) const {
2844     return isa<ArrayType>(getOperandList()[Idx]->getType());
2845   }
2846 
2847   /// Get the number of clauses for this landing pad.
2848   unsigned getNumClauses() const { return getNumOperands(); }
2849 
2850   /// Grow the size of the operand list to accommodate the new
2851   /// number of clauses.
2852   void reserveClauses(unsigned Size) { growOperands(Size); }
2853 
2854   // Methods for support type inquiry through isa, cast, and dyn_cast:
2855   static bool classof(const Instruction *I) {
2856     return I->getOpcode() == Instruction::LandingPad;
2857   }
2858   static bool classof(const Value *V) {
2859     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2860   }
2861 };
2862 
2863 template <>
2864 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2865 };
2866 
2867 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2868 
2869 //===----------------------------------------------------------------------===//
2870 //                               ReturnInst Class
2871 //===----------------------------------------------------------------------===//
2872 
2873 //===---------------------------------------------------------------------------
2874 /// Return a value (possibly void), from a function.  Execution
2875 /// does not continue in this function any longer.
2876 ///
2877 class ReturnInst : public Instruction {
2878   ReturnInst(const ReturnInst &RI);
2879 
2880 private:
2881   // ReturnInst constructors:
2882   // ReturnInst()                  - 'ret void' instruction
2883   // ReturnInst(    null)          - 'ret void' instruction
2884   // ReturnInst(Value* X)          - 'ret X'    instruction
2885   // ReturnInst(    null, Inst *I) - 'ret void' instruction, insert before I
2886   // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
2887   // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of B
2888   // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of B
2889   //
2890   // NOTE: If the Value* passed is of type void then the constructor behaves as
2891   // if it was passed NULL.
2892   explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2893                       Instruction *InsertBefore = nullptr);
2894   ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2895   explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2896 
2897 protected:
2898   // Note: Instruction needs to be a friend here to call cloneImpl.
2899   friend class Instruction;
2900 
2901   ReturnInst *cloneImpl() const;
2902 
2903 public:
2904   static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2905                             Instruction *InsertBefore = nullptr) {
2906     return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2907   }
2908 
2909   static ReturnInst* Create(LLVMContext &C, Value *retVal,
2910                             BasicBlock *InsertAtEnd) {
2911     return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2912   }
2913 
2914   static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2915     return new(0) ReturnInst(C, InsertAtEnd);
2916   }
2917 
2918   /// Provide fast operand accessors
2919   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2920 
2921   /// Convenience accessor. Returns null if there is no return value.
2922   Value *getReturnValue() const {
2923     return getNumOperands() != 0 ? getOperand(0) : nullptr;
2924   }
2925 
2926   unsigned getNumSuccessors() const { return 0; }
2927 
2928   // Methods for support type inquiry through isa, cast, and dyn_cast:
2929   static bool classof(const Instruction *I) {
2930     return (I->getOpcode() == Instruction::Ret);
2931   }
2932   static bool classof(const Value *V) {
2933     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2934   }
2935 
2936 private:
2937   BasicBlock *getSuccessor(unsigned idx) const {
2938     llvm_unreachable("ReturnInst has no successors!");
2939   }
2940 
2941   void setSuccessor(unsigned idx, BasicBlock *B) {
2942     llvm_unreachable("ReturnInst has no successors!");
2943   }
2944 };
2945 
2946 template <>
2947 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2948 };
2949 
2950 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
2951 
2952 //===----------------------------------------------------------------------===//
2953 //                               BranchInst Class
2954 //===----------------------------------------------------------------------===//
2955 
2956 //===---------------------------------------------------------------------------
2957 /// Conditional or Unconditional Branch instruction.
2958 ///
2959 class BranchInst : public Instruction {
2960   /// Ops list - Branches are strange.  The operands are ordered:
2961   ///  [Cond, FalseDest,] TrueDest.  This makes some accessors faster because
2962   /// they don't have to check for cond/uncond branchness. These are mostly
2963   /// accessed relative from op_end().
2964   BranchInst(const BranchInst &BI);
2965   // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2966   // BranchInst(BB *B)                           - 'br B'
2967   // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
2968   // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
2969   // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2970   // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
2971   // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
2972   explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2973   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2974              Instruction *InsertBefore = nullptr);
2975   BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2976   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2977              BasicBlock *InsertAtEnd);
2978 
2979   void AssertOK();
2980 
2981 protected:
2982   // Note: Instruction needs to be a friend here to call cloneImpl.
2983   friend class Instruction;
2984 
2985   BranchInst *cloneImpl() const;
2986 
2987 public:
2988   /// Iterator type that casts an operand to a basic block.
2989   ///
2990   /// This only makes sense because the successors are stored as adjacent
2991   /// operands for branch instructions.
2992   struct succ_op_iterator
2993       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
2994                               std::random_access_iterator_tag, BasicBlock *,
2995                               ptrdiff_t, BasicBlock *, BasicBlock *> {
2996     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
2997 
2998     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
2999     BasicBlock *operator->() const { return operator*(); }
3000   };
3001 
3002   /// The const version of `succ_op_iterator`.
3003   struct const_succ_op_iterator
3004       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3005                               std::random_access_iterator_tag,
3006                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3007                               const BasicBlock *> {
3008     explicit const_succ_op_iterator(const_value_op_iterator I)
3009         : iterator_adaptor_base(I) {}
3010 
3011     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3012     const BasicBlock *operator->() const { return operator*(); }
3013   };
3014 
3015   static BranchInst *Create(BasicBlock *IfTrue,
3016                             Instruction *InsertBefore = nullptr) {
3017     return new(1) BranchInst(IfTrue, InsertBefore);
3018   }
3019 
3020   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3021                             Value *Cond, Instruction *InsertBefore = nullptr) {
3022     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3023   }
3024 
3025   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3026     return new(1) BranchInst(IfTrue, InsertAtEnd);
3027   }
3028 
3029   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3030                             Value *Cond, BasicBlock *InsertAtEnd) {
3031     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3032   }
3033 
3034   /// Transparently provide more efficient getOperand methods.
3035   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3036 
3037   bool isUnconditional() const { return getNumOperands() == 1; }
3038   bool isConditional()   const { return getNumOperands() == 3; }
3039 
3040   Value *getCondition() const {
3041     assert(isConditional() && "Cannot get condition of an uncond branch!");
3042     return Op<-3>();
3043   }
3044 
3045   void setCondition(Value *V) {
3046     assert(isConditional() && "Cannot set condition of unconditional branch!");
3047     Op<-3>() = V;
3048   }
3049 
3050   unsigned getNumSuccessors() const { return 1+isConditional(); }
3051 
3052   BasicBlock *getSuccessor(unsigned i) const {
3053     assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3054     return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3055   }
3056 
3057   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3058     assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3059     *(&Op<-1>() - idx) = NewSucc;
3060   }
3061 
3062   /// Swap the successors of this branch instruction.
3063   ///
3064   /// Swaps the successors of the branch instruction. This also swaps any
3065   /// branch weight metadata associated with the instruction so that it
3066   /// continues to map correctly to each operand.
3067   void swapSuccessors();
3068 
3069   iterator_range<succ_op_iterator> successors() {
3070     return make_range(
3071         succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3072         succ_op_iterator(value_op_end()));
3073   }
3074 
3075   iterator_range<const_succ_op_iterator> successors() const {
3076     return make_range(const_succ_op_iterator(
3077                           std::next(value_op_begin(), isConditional() ? 1 : 0)),
3078                       const_succ_op_iterator(value_op_end()));
3079   }
3080 
3081   // Methods for support type inquiry through isa, cast, and dyn_cast:
3082   static bool classof(const Instruction *I) {
3083     return (I->getOpcode() == Instruction::Br);
3084   }
3085   static bool classof(const Value *V) {
3086     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3087   }
3088 };
3089 
3090 template <>
3091 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3092 };
3093 
3094 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
3095 
3096 //===----------------------------------------------------------------------===//
3097 //                               SwitchInst Class
3098 //===----------------------------------------------------------------------===//
3099 
3100 //===---------------------------------------------------------------------------
3101 /// Multiway switch
3102 ///
3103 class SwitchInst : public Instruction {
3104   unsigned ReservedSpace;
3105 
3106   // Operand[0]    = Value to switch on
3107   // Operand[1]    = Default basic block destination
3108   // Operand[2n  ] = Value to match
3109   // Operand[2n+1] = BasicBlock to go to on match
3110   SwitchInst(const SwitchInst &SI);
3111 
3112   /// Create a new switch instruction, specifying a value to switch on and a
3113   /// default destination. The number of additional cases can be specified here
3114   /// to make memory allocation more efficient. This constructor can also
3115   /// auto-insert before another instruction.
3116   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3117              Instruction *InsertBefore);
3118 
3119   /// Create a new switch instruction, specifying a value to switch on and a
3120   /// default destination. The number of additional cases can be specified here
3121   /// to make memory allocation more efficient. This constructor also
3122   /// auto-inserts at the end of the specified BasicBlock.
3123   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3124              BasicBlock *InsertAtEnd);
3125 
3126   // allocate space for exactly zero operands
3127   void *operator new(size_t s) {
3128     return User::operator new(s);
3129   }
3130 
3131   void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3132   void growOperands();
3133 
3134 protected:
3135   // Note: Instruction needs to be a friend here to call cloneImpl.
3136   friend class Instruction;
3137 
3138   SwitchInst *cloneImpl() const;
3139 
3140 public:
3141   // -2
3142   static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3143 
3144   template <typename CaseHandleT> class CaseIteratorImpl;
3145 
3146   /// A handle to a particular switch case. It exposes a convenient interface
3147   /// to both the case value and the successor block.
3148   ///
3149   /// We define this as a template and instantiate it to form both a const and
3150   /// non-const handle.
3151   template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3152   class CaseHandleImpl {
3153     // Directly befriend both const and non-const iterators.
3154     friend class SwitchInst::CaseIteratorImpl<
3155         CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3156 
3157   protected:
3158     // Expose the switch type we're parameterized with to the iterator.
3159     using SwitchInstType = SwitchInstT;
3160 
3161     SwitchInstT *SI;
3162     ptrdiff_t Index;
3163 
3164     CaseHandleImpl() = default;
3165     CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3166 
3167   public:
3168     /// Resolves case value for current case.
3169     ConstantIntT *getCaseValue() const {
3170       assert((unsigned)Index < SI->getNumCases() &&
3171              "Index out the number of cases.");
3172       return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3173     }
3174 
3175     /// Resolves successor for current case.
3176     BasicBlockT *getCaseSuccessor() const {
3177       assert(((unsigned)Index < SI->getNumCases() ||
3178               (unsigned)Index == DefaultPseudoIndex) &&
3179              "Index out the number of cases.");
3180       return SI->getSuccessor(getSuccessorIndex());
3181     }
3182 
3183     /// Returns number of current case.
3184     unsigned getCaseIndex() const { return Index; }
3185 
3186     /// Returns successor index for current case successor.
3187     unsigned getSuccessorIndex() const {
3188       assert(((unsigned)Index == DefaultPseudoIndex ||
3189               (unsigned)Index < SI->getNumCases()) &&
3190              "Index out the number of cases.");
3191       return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3192     }
3193 
3194     bool operator==(const CaseHandleImpl &RHS) const {
3195       assert(SI == RHS.SI && "Incompatible operators.");
3196       return Index == RHS.Index;
3197     }
3198   };
3199 
3200   using ConstCaseHandle =
3201       CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3202 
3203   class CaseHandle
3204       : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3205     friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3206 
3207   public:
3208     CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3209 
3210     /// Sets the new value for current case.
3211     void setValue(ConstantInt *V) {
3212       assert((unsigned)Index < SI->getNumCases() &&
3213              "Index out the number of cases.");
3214       SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3215     }
3216 
3217     /// Sets the new successor for current case.
3218     void setSuccessor(BasicBlock *S) {
3219       SI->setSuccessor(getSuccessorIndex(), S);
3220     }
3221   };
3222 
3223   template <typename CaseHandleT>
3224   class CaseIteratorImpl
3225       : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3226                                     std::random_access_iterator_tag,
3227                                     CaseHandleT> {
3228     using SwitchInstT = typename CaseHandleT::SwitchInstType;
3229 
3230     CaseHandleT Case;
3231 
3232   public:
3233     /// Default constructed iterator is in an invalid state until assigned to
3234     /// a case for a particular switch.
3235     CaseIteratorImpl() = default;
3236 
3237     /// Initializes case iterator for given SwitchInst and for given
3238     /// case number.
3239     CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3240 
3241     /// Initializes case iterator for given SwitchInst and for given
3242     /// successor index.
3243     static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3244                                                unsigned SuccessorIndex) {
3245       assert(SuccessorIndex < SI->getNumSuccessors() &&
3246              "Successor index # out of range!");
3247       return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3248                                  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3249     }
3250 
3251     /// Support converting to the const variant. This will be a no-op for const
3252     /// variant.
3253     operator CaseIteratorImpl<ConstCaseHandle>() const {
3254       return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3255     }
3256 
3257     CaseIteratorImpl &operator+=(ptrdiff_t N) {
3258       // Check index correctness after addition.
3259       // Note: Index == getNumCases() means end().
3260       assert(Case.Index + N >= 0 &&
3261              (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3262              "Case.Index out the number of cases.");
3263       Case.Index += N;
3264       return *this;
3265     }
3266     CaseIteratorImpl &operator-=(ptrdiff_t N) {
3267       // Check index correctness after subtraction.
3268       // Note: Case.Index == getNumCases() means end().
3269       assert(Case.Index - N >= 0 &&
3270              (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3271              "Case.Index out the number of cases.");
3272       Case.Index -= N;
3273       return *this;
3274     }
3275     ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3276       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3277       return Case.Index - RHS.Case.Index;
3278     }
3279     bool operator==(const CaseIteratorImpl &RHS) const {
3280       return Case == RHS.Case;
3281     }
3282     bool operator<(const CaseIteratorImpl &RHS) const {
3283       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3284       return Case.Index < RHS.Case.Index;
3285     }
3286     CaseHandleT &operator*() { return Case; }
3287     const CaseHandleT &operator*() const { return Case; }
3288   };
3289 
3290   using CaseIt = CaseIteratorImpl<CaseHandle>;
3291   using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3292 
3293   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3294                             unsigned NumCases,
3295                             Instruction *InsertBefore = nullptr) {
3296     return new SwitchInst(Value, Default, NumCases, InsertBefore);
3297   }
3298 
3299   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3300                             unsigned NumCases, BasicBlock *InsertAtEnd) {
3301     return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3302   }
3303 
3304   /// Provide fast operand accessors
3305   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3306 
3307   // Accessor Methods for Switch stmt
3308   Value *getCondition() const { return getOperand(0); }
3309   void setCondition(Value *V) { setOperand(0, V); }
3310 
3311   BasicBlock *getDefaultDest() const {
3312     return cast<BasicBlock>(getOperand(1));
3313   }
3314 
3315   void setDefaultDest(BasicBlock *DefaultCase) {
3316     setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3317   }
3318 
3319   /// Return the number of 'cases' in this switch instruction, excluding the
3320   /// default case.
3321   unsigned getNumCases() const {
3322     return getNumOperands()/2 - 1;
3323   }
3324 
3325   /// Returns a read/write iterator that points to the first case in the
3326   /// SwitchInst.
3327   CaseIt case_begin() {
3328     return CaseIt(this, 0);
3329   }
3330 
3331   /// Returns a read-only iterator that points to the first case in the
3332   /// SwitchInst.
3333   ConstCaseIt case_begin() const {
3334     return ConstCaseIt(this, 0);
3335   }
3336 
3337   /// Returns a read/write iterator that points one past the last in the
3338   /// SwitchInst.
3339   CaseIt case_end() {
3340     return CaseIt(this, getNumCases());
3341   }
3342 
3343   /// Returns a read-only iterator that points one past the last in the
3344   /// SwitchInst.
3345   ConstCaseIt case_end() const {
3346     return ConstCaseIt(this, getNumCases());
3347   }
3348 
3349   /// Iteration adapter for range-for loops.
3350   iterator_range<CaseIt> cases() {
3351     return make_range(case_begin(), case_end());
3352   }
3353 
3354   /// Constant iteration adapter for range-for loops.
3355   iterator_range<ConstCaseIt> cases() const {
3356     return make_range(case_begin(), case_end());
3357   }
3358 
3359   /// Returns an iterator that points to the default case.
3360   /// Note: this iterator allows to resolve successor only. Attempt
3361   /// to resolve case value causes an assertion.
3362   /// Also note, that increment and decrement also causes an assertion and
3363   /// makes iterator invalid.
3364   CaseIt case_default() {
3365     return CaseIt(this, DefaultPseudoIndex);
3366   }
3367   ConstCaseIt case_default() const {
3368     return ConstCaseIt(this, DefaultPseudoIndex);
3369   }
3370 
3371   /// Search all of the case values for the specified constant. If it is
3372   /// explicitly handled, return the case iterator of it, otherwise return
3373   /// default case iterator to indicate that it is handled by the default
3374   /// handler.
3375   CaseIt findCaseValue(const ConstantInt *C) {
3376     CaseIt I = llvm::find_if(
3377         cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3378     if (I != case_end())
3379       return I;
3380 
3381     return case_default();
3382   }
3383   ConstCaseIt findCaseValue(const ConstantInt *C) const {
3384     ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3385       return Case.getCaseValue() == C;
3386     });
3387     if (I != case_end())
3388       return I;
3389 
3390     return case_default();
3391   }
3392 
3393   /// Finds the unique case value for a given successor. Returns null if the
3394   /// successor is not found, not unique, or is the default case.
3395   ConstantInt *findCaseDest(BasicBlock *BB) {
3396     if (BB == getDefaultDest())
3397       return nullptr;
3398 
3399     ConstantInt *CI = nullptr;
3400     for (auto Case : cases()) {
3401       if (Case.getCaseSuccessor() != BB)
3402         continue;
3403 
3404       if (CI)
3405         return nullptr; // Multiple cases lead to BB.
3406 
3407       CI = Case.getCaseValue();
3408     }
3409 
3410     return CI;
3411   }
3412 
3413   /// Add an entry to the switch instruction.
3414   /// Note:
3415   /// This action invalidates case_end(). Old case_end() iterator will
3416   /// point to the added case.
3417   void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3418 
3419   /// This method removes the specified case and its successor from the switch
3420   /// instruction. Note that this operation may reorder the remaining cases at
3421   /// index idx and above.
3422   /// Note:
3423   /// This action invalidates iterators for all cases following the one removed,
3424   /// including the case_end() iterator. It returns an iterator for the next
3425   /// case.
3426   CaseIt removeCase(CaseIt I);
3427 
3428   unsigned getNumSuccessors() const { return getNumOperands()/2; }
3429   BasicBlock *getSuccessor(unsigned idx) const {
3430     assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3431     return cast<BasicBlock>(getOperand(idx*2+1));
3432   }
3433   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3434     assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3435     setOperand(idx * 2 + 1, NewSucc);
3436   }
3437 
3438   // Methods for support type inquiry through isa, cast, and dyn_cast:
3439   static bool classof(const Instruction *I) {
3440     return I->getOpcode() == Instruction::Switch;
3441   }
3442   static bool classof(const Value *V) {
3443     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3444   }
3445 };
3446 
3447 /// A wrapper class to simplify modification of SwitchInst cases along with
3448 /// their prof branch_weights metadata.
3449 class SwitchInstProfUpdateWrapper {
3450   SwitchInst &SI;
3451   Optional<SmallVector<uint32_t, 8> > Weights = None;
3452   bool Changed = false;
3453 
3454 protected:
3455   static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3456 
3457   MDNode *buildProfBranchWeightsMD();
3458 
3459   void init();
3460 
3461 public:
3462   using CaseWeightOpt = Optional<uint32_t>;
3463   SwitchInst *operator->() { return &SI; }
3464   SwitchInst &operator*() { return SI; }
3465   operator SwitchInst *() { return &SI; }
3466 
3467   SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3468 
3469   ~SwitchInstProfUpdateWrapper() {
3470     if (Changed)
3471       SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3472   }
3473 
3474   /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3475   /// correspondent branch weight.
3476   SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3477 
3478   /// Delegate the call to the underlying SwitchInst::addCase() and set the
3479   /// specified branch weight for the added case.
3480   void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3481 
3482   /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3483   /// this object to not touch the underlying SwitchInst in destructor.
3484   SymbolTableList<Instruction>::iterator eraseFromParent();
3485 
3486   void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3487   CaseWeightOpt getSuccessorWeight(unsigned idx);
3488 
3489   static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3490 };
3491 
3492 template <>
3493 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3494 };
3495 
3496 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3497 
3498 //===----------------------------------------------------------------------===//
3499 //                             IndirectBrInst Class
3500 //===----------------------------------------------------------------------===//
3501 
3502 //===---------------------------------------------------------------------------
3503 /// Indirect Branch Instruction.
3504 ///
3505 class IndirectBrInst : public Instruction {
3506   unsigned ReservedSpace;
3507 
3508   // Operand[0]   = Address to jump to
3509   // Operand[n+1] = n-th destination
3510   IndirectBrInst(const IndirectBrInst &IBI);
3511 
3512   /// Create a new indirectbr instruction, specifying an
3513   /// Address to jump to.  The number of expected destinations can be specified
3514   /// here to make memory allocation more efficient.  This constructor can also
3515   /// autoinsert before another instruction.
3516   IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3517 
3518   /// Create a new indirectbr instruction, specifying an
3519   /// Address to jump to.  The number of expected destinations can be specified
3520   /// here to make memory allocation more efficient.  This constructor also
3521   /// autoinserts at the end of the specified BasicBlock.
3522   IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3523 
3524   // allocate space for exactly zero operands
3525   void *operator new(size_t s) {
3526     return User::operator new(s);
3527   }
3528 
3529   void init(Value *Address, unsigned NumDests);
3530   void growOperands();
3531 
3532 protected:
3533   // Note: Instruction needs to be a friend here to call cloneImpl.
3534   friend class Instruction;
3535 
3536   IndirectBrInst *cloneImpl() const;
3537 
3538 public:
3539   /// Iterator type that casts an operand to a basic block.
3540   ///
3541   /// This only makes sense because the successors are stored as adjacent
3542   /// operands for indirectbr instructions.
3543   struct succ_op_iterator
3544       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3545                               std::random_access_iterator_tag, BasicBlock *,
3546                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3547     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3548 
3549     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3550     BasicBlock *operator->() const { return operator*(); }
3551   };
3552 
3553   /// The const version of `succ_op_iterator`.
3554   struct const_succ_op_iterator
3555       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3556                               std::random_access_iterator_tag,
3557                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3558                               const BasicBlock *> {
3559     explicit const_succ_op_iterator(const_value_op_iterator I)
3560         : iterator_adaptor_base(I) {}
3561 
3562     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3563     const BasicBlock *operator->() const { return operator*(); }
3564   };
3565 
3566   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3567                                 Instruction *InsertBefore = nullptr) {
3568     return new IndirectBrInst(Address, NumDests, InsertBefore);
3569   }
3570 
3571   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3572                                 BasicBlock *InsertAtEnd) {
3573     return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3574   }
3575 
3576   /// Provide fast operand accessors.
3577   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3578 
3579   // Accessor Methods for IndirectBrInst instruction.
3580   Value *getAddress() { return getOperand(0); }
3581   const Value *getAddress() const { return getOperand(0); }
3582   void setAddress(Value *V) { setOperand(0, V); }
3583 
3584   /// return the number of possible destinations in this
3585   /// indirectbr instruction.
3586   unsigned getNumDestinations() const { return getNumOperands()-1; }
3587 
3588   /// Return the specified destination.
3589   BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3590   const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3591 
3592   /// Add a destination.
3593   ///
3594   void addDestination(BasicBlock *Dest);
3595 
3596   /// This method removes the specified successor from the
3597   /// indirectbr instruction.
3598   void removeDestination(unsigned i);
3599 
3600   unsigned getNumSuccessors() const { return getNumOperands()-1; }
3601   BasicBlock *getSuccessor(unsigned i) const {
3602     return cast<BasicBlock>(getOperand(i+1));
3603   }
3604   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3605     setOperand(i + 1, NewSucc);
3606   }
3607 
3608   iterator_range<succ_op_iterator> successors() {
3609     return make_range(succ_op_iterator(std::next(value_op_begin())),
3610                       succ_op_iterator(value_op_end()));
3611   }
3612 
3613   iterator_range<const_succ_op_iterator> successors() const {
3614     return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3615                       const_succ_op_iterator(value_op_end()));
3616   }
3617 
3618   // Methods for support type inquiry through isa, cast, and dyn_cast:
3619   static bool classof(const Instruction *I) {
3620     return I->getOpcode() == Instruction::IndirectBr;
3621   }
3622   static bool classof(const Value *V) {
3623     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3624   }
3625 };
3626 
3627 template <>
3628 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3629 };
3630 
3631 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3632 
3633 //===----------------------------------------------------------------------===//
3634 //                               InvokeInst Class
3635 //===----------------------------------------------------------------------===//
3636 
3637 /// Invoke instruction.  The SubclassData field is used to hold the
3638 /// calling convention of the call.
3639 ///
3640 class InvokeInst : public CallBase {
3641   /// The number of operands for this call beyond the called function,
3642   /// arguments, and operand bundles.
3643   static constexpr int NumExtraOperands = 2;
3644 
3645   /// The index from the end of the operand array to the normal destination.
3646   static constexpr int NormalDestOpEndIdx = -3;
3647 
3648   /// The index from the end of the operand array to the unwind destination.
3649   static constexpr int UnwindDestOpEndIdx = -2;
3650 
3651   InvokeInst(const InvokeInst &BI);
3652 
3653   /// Construct an InvokeInst given a range of arguments.
3654   ///
3655   /// Construct an InvokeInst from a range of arguments
3656   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3657                     BasicBlock *IfException, ArrayRef<Value *> Args,
3658                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3659                     const Twine &NameStr, Instruction *InsertBefore);
3660 
3661   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3662                     BasicBlock *IfException, ArrayRef<Value *> Args,
3663                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3664                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3665 
3666   void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3667             BasicBlock *IfException, ArrayRef<Value *> Args,
3668             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3669 
3670   /// Compute the number of operands to allocate.
3671   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3672     // We need one operand for the called function, plus our extra operands and
3673     // the input operand counts provided.
3674     return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3675   }
3676 
3677 protected:
3678   // Note: Instruction needs to be a friend here to call cloneImpl.
3679   friend class Instruction;
3680 
3681   InvokeInst *cloneImpl() const;
3682 
3683 public:
3684   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3685                             BasicBlock *IfException, ArrayRef<Value *> Args,
3686                             const Twine &NameStr,
3687                             Instruction *InsertBefore = nullptr) {
3688     int NumOperands = ComputeNumOperands(Args.size());
3689     return new (NumOperands)
3690         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3691                    NameStr, InsertBefore);
3692   }
3693 
3694   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3695                             BasicBlock *IfException, ArrayRef<Value *> Args,
3696                             ArrayRef<OperandBundleDef> Bundles = None,
3697                             const Twine &NameStr = "",
3698                             Instruction *InsertBefore = nullptr) {
3699     int NumOperands =
3700         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3701     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3702 
3703     return new (NumOperands, DescriptorBytes)
3704         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3705                    NameStr, InsertBefore);
3706   }
3707 
3708   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3709                             BasicBlock *IfException, ArrayRef<Value *> Args,
3710                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3711     int NumOperands = ComputeNumOperands(Args.size());
3712     return new (NumOperands)
3713         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3714                    NameStr, InsertAtEnd);
3715   }
3716 
3717   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3718                             BasicBlock *IfException, ArrayRef<Value *> Args,
3719                             ArrayRef<OperandBundleDef> Bundles,
3720                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3721     int NumOperands =
3722         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3723     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3724 
3725     return new (NumOperands, DescriptorBytes)
3726         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3727                    NameStr, InsertAtEnd);
3728   }
3729 
3730   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3731                             BasicBlock *IfException, ArrayRef<Value *> Args,
3732                             const Twine &NameStr,
3733                             Instruction *InsertBefore = nullptr) {
3734     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3735                   IfException, Args, None, NameStr, InsertBefore);
3736   }
3737 
3738   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3739                             BasicBlock *IfException, ArrayRef<Value *> Args,
3740                             ArrayRef<OperandBundleDef> Bundles = None,
3741                             const Twine &NameStr = "",
3742                             Instruction *InsertBefore = nullptr) {
3743     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3744                   IfException, Args, Bundles, NameStr, InsertBefore);
3745   }
3746 
3747   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3748                             BasicBlock *IfException, ArrayRef<Value *> Args,
3749                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3750     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3751                   IfException, Args, NameStr, InsertAtEnd);
3752   }
3753 
3754   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3755                             BasicBlock *IfException, ArrayRef<Value *> Args,
3756                             ArrayRef<OperandBundleDef> Bundles,
3757                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3758     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3759                   IfException, Args, Bundles, NameStr, InsertAtEnd);
3760   }
3761 
3762   /// Create a clone of \p II with a different set of operand bundles and
3763   /// insert it before \p InsertPt.
3764   ///
3765   /// The returned invoke instruction is identical to \p II in every way except
3766   /// that the operand bundles for the new instruction are set to the operand
3767   /// bundles in \p Bundles.
3768   static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3769                             Instruction *InsertPt = nullptr);
3770 
3771   // get*Dest - Return the destination basic blocks...
3772   BasicBlock *getNormalDest() const {
3773     return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3774   }
3775   BasicBlock *getUnwindDest() const {
3776     return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3777   }
3778   void setNormalDest(BasicBlock *B) {
3779     Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3780   }
3781   void setUnwindDest(BasicBlock *B) {
3782     Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3783   }
3784 
3785   /// Get the landingpad instruction from the landing pad
3786   /// block (the unwind destination).
3787   LandingPadInst *getLandingPadInst() const;
3788 
3789   BasicBlock *getSuccessor(unsigned i) const {
3790     assert(i < 2 && "Successor # out of range for invoke!");
3791     return i == 0 ? getNormalDest() : getUnwindDest();
3792   }
3793 
3794   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3795     assert(i < 2 && "Successor # out of range for invoke!");
3796     if (i == 0)
3797       setNormalDest(NewSucc);
3798     else
3799       setUnwindDest(NewSucc);
3800   }
3801 
3802   unsigned getNumSuccessors() const { return 2; }
3803 
3804   // Methods for support type inquiry through isa, cast, and dyn_cast:
3805   static bool classof(const Instruction *I) {
3806     return (I->getOpcode() == Instruction::Invoke);
3807   }
3808   static bool classof(const Value *V) {
3809     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3810   }
3811 
3812 private:
3813   // Shadow Instruction::setInstructionSubclassData with a private forwarding
3814   // method so that subclasses cannot accidentally use it.
3815   template <typename Bitfield>
3816   void setSubclassData(typename Bitfield::Type Value) {
3817     Instruction::setSubclassData<Bitfield>(Value);
3818   }
3819 };
3820 
3821 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3822                        BasicBlock *IfException, ArrayRef<Value *> Args,
3823                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3824                        const Twine &NameStr, Instruction *InsertBefore)
3825     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3826                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3827                InsertBefore) {
3828   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3829 }
3830 
3831 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3832                        BasicBlock *IfException, ArrayRef<Value *> Args,
3833                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3834                        const Twine &NameStr, BasicBlock *InsertAtEnd)
3835     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3836                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3837                InsertAtEnd) {
3838   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3839 }
3840 
3841 //===----------------------------------------------------------------------===//
3842 //                              CallBrInst Class
3843 //===----------------------------------------------------------------------===//
3844 
3845 /// CallBr instruction, tracking function calls that may not return control but
3846 /// instead transfer it to a third location. The SubclassData field is used to
3847 /// hold the calling convention of the call.
3848 ///
3849 class CallBrInst : public CallBase {
3850 
3851   unsigned NumIndirectDests;
3852 
3853   CallBrInst(const CallBrInst &BI);
3854 
3855   /// Construct a CallBrInst given a range of arguments.
3856   ///
3857   /// Construct a CallBrInst from a range of arguments
3858   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3859                     ArrayRef<BasicBlock *> IndirectDests,
3860                     ArrayRef<Value *> Args,
3861                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3862                     const Twine &NameStr, Instruction *InsertBefore);
3863 
3864   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3865                     ArrayRef<BasicBlock *> IndirectDests,
3866                     ArrayRef<Value *> Args,
3867                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3868                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3869 
3870   void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3871             ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3872             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3873 
3874   /// Should the Indirect Destinations change, scan + update the Arg list.
3875   void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3876 
3877   /// Compute the number of operands to allocate.
3878   static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3879                                 int NumBundleInputs = 0) {
3880     // We need one operand for the called function, plus our extra operands and
3881     // the input operand counts provided.
3882     return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3883   }
3884 
3885 protected:
3886   // Note: Instruction needs to be a friend here to call cloneImpl.
3887   friend class Instruction;
3888 
3889   CallBrInst *cloneImpl() const;
3890 
3891 public:
3892   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3893                             BasicBlock *DefaultDest,
3894                             ArrayRef<BasicBlock *> IndirectDests,
3895                             ArrayRef<Value *> Args, const Twine &NameStr,
3896                             Instruction *InsertBefore = nullptr) {
3897     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3898     return new (NumOperands)
3899         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3900                    NumOperands, NameStr, InsertBefore);
3901   }
3902 
3903   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3904                             BasicBlock *DefaultDest,
3905                             ArrayRef<BasicBlock *> IndirectDests,
3906                             ArrayRef<Value *> Args,
3907                             ArrayRef<OperandBundleDef> Bundles = None,
3908                             const Twine &NameStr = "",
3909                             Instruction *InsertBefore = nullptr) {
3910     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3911                                          CountBundleInputs(Bundles));
3912     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3913 
3914     return new (NumOperands, DescriptorBytes)
3915         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3916                    NumOperands, NameStr, InsertBefore);
3917   }
3918 
3919   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3920                             BasicBlock *DefaultDest,
3921                             ArrayRef<BasicBlock *> IndirectDests,
3922                             ArrayRef<Value *> Args, const Twine &NameStr,
3923                             BasicBlock *InsertAtEnd) {
3924     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3925     return new (NumOperands)
3926         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3927                    NumOperands, NameStr, InsertAtEnd);
3928   }
3929 
3930   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3931                             BasicBlock *DefaultDest,
3932                             ArrayRef<BasicBlock *> IndirectDests,
3933                             ArrayRef<Value *> Args,
3934                             ArrayRef<OperandBundleDef> Bundles,
3935                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3936     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3937                                          CountBundleInputs(Bundles));
3938     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3939 
3940     return new (NumOperands, DescriptorBytes)
3941         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3942                    NumOperands, NameStr, InsertAtEnd);
3943   }
3944 
3945   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3946                             ArrayRef<BasicBlock *> IndirectDests,
3947                             ArrayRef<Value *> Args, const Twine &NameStr,
3948                             Instruction *InsertBefore = nullptr) {
3949     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3950                   IndirectDests, Args, NameStr, InsertBefore);
3951   }
3952 
3953   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3954                             ArrayRef<BasicBlock *> IndirectDests,
3955                             ArrayRef<Value *> Args,
3956                             ArrayRef<OperandBundleDef> Bundles = None,
3957                             const Twine &NameStr = "",
3958                             Instruction *InsertBefore = nullptr) {
3959     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3960                   IndirectDests, Args, Bundles, NameStr, InsertBefore);
3961   }
3962 
3963   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3964                             ArrayRef<BasicBlock *> IndirectDests,
3965                             ArrayRef<Value *> Args, const Twine &NameStr,
3966                             BasicBlock *InsertAtEnd) {
3967     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3968                   IndirectDests, Args, NameStr, InsertAtEnd);
3969   }
3970 
3971   static CallBrInst *Create(FunctionCallee Func,
3972                             BasicBlock *DefaultDest,
3973                             ArrayRef<BasicBlock *> IndirectDests,
3974                             ArrayRef<Value *> Args,
3975                             ArrayRef<OperandBundleDef> Bundles,
3976                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3977     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3978                   IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
3979   }
3980 
3981   /// Create a clone of \p CBI with a different set of operand bundles and
3982   /// insert it before \p InsertPt.
3983   ///
3984   /// The returned callbr instruction is identical to \p CBI in every way
3985   /// except that the operand bundles for the new instruction are set to the
3986   /// operand bundles in \p Bundles.
3987   static CallBrInst *Create(CallBrInst *CBI,
3988                             ArrayRef<OperandBundleDef> Bundles,
3989                             Instruction *InsertPt = nullptr);
3990 
3991   /// Return the number of callbr indirect dest labels.
3992   ///
3993   unsigned getNumIndirectDests() const { return NumIndirectDests; }
3994 
3995   /// getIndirectDestLabel - Return the i-th indirect dest label.
3996   ///
3997   Value *getIndirectDestLabel(unsigned i) const {
3998     assert(i < getNumIndirectDests() && "Out of bounds!");
3999     return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4000                       1);
4001   }
4002 
4003   Value *getIndirectDestLabelUse(unsigned i) const {
4004     assert(i < getNumIndirectDests() && "Out of bounds!");
4005     return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4006                          1);
4007   }
4008 
4009   // Return the destination basic blocks...
4010   BasicBlock *getDefaultDest() const {
4011     return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4012   }
4013   BasicBlock *getIndirectDest(unsigned i) const {
4014     return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4015   }
4016   SmallVector<BasicBlock *, 16> getIndirectDests() const {
4017     SmallVector<BasicBlock *, 16> IndirectDests;
4018     for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4019       IndirectDests.push_back(getIndirectDest(i));
4020     return IndirectDests;
4021   }
4022   void setDefaultDest(BasicBlock *B) {
4023     *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4024   }
4025   void setIndirectDest(unsigned i, BasicBlock *B) {
4026     updateArgBlockAddresses(i, B);
4027     *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4028   }
4029 
4030   BasicBlock *getSuccessor(unsigned i) const {
4031     assert(i < getNumSuccessors() + 1 &&
4032            "Successor # out of range for callbr!");
4033     return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4034   }
4035 
4036   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4037     assert(i < getNumIndirectDests() + 1 &&
4038            "Successor # out of range for callbr!");
4039     return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4040   }
4041 
4042   unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4043 
4044   // Methods for support type inquiry through isa, cast, and dyn_cast:
4045   static bool classof(const Instruction *I) {
4046     return (I->getOpcode() == Instruction::CallBr);
4047   }
4048   static bool classof(const Value *V) {
4049     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4050   }
4051 
4052 private:
4053   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4054   // method so that subclasses cannot accidentally use it.
4055   template <typename Bitfield>
4056   void setSubclassData(typename Bitfield::Type Value) {
4057     Instruction::setSubclassData<Bitfield>(Value);
4058   }
4059 };
4060 
4061 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4062                        ArrayRef<BasicBlock *> IndirectDests,
4063                        ArrayRef<Value *> Args,
4064                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4065                        const Twine &NameStr, Instruction *InsertBefore)
4066     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4067                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4068                InsertBefore) {
4069   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4070 }
4071 
4072 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4073                        ArrayRef<BasicBlock *> IndirectDests,
4074                        ArrayRef<Value *> Args,
4075                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4076                        const Twine &NameStr, BasicBlock *InsertAtEnd)
4077     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4078                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4079                InsertAtEnd) {
4080   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4081 }
4082 
4083 //===----------------------------------------------------------------------===//
4084 //                              ResumeInst Class
4085 //===----------------------------------------------------------------------===//
4086 
4087 //===---------------------------------------------------------------------------
4088 /// Resume the propagation of an exception.
4089 ///
4090 class ResumeInst : public Instruction {
4091   ResumeInst(const ResumeInst &RI);
4092 
4093   explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4094   ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4095 
4096 protected:
4097   // Note: Instruction needs to be a friend here to call cloneImpl.
4098   friend class Instruction;
4099 
4100   ResumeInst *cloneImpl() const;
4101 
4102 public:
4103   static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4104     return new(1) ResumeInst(Exn, InsertBefore);
4105   }
4106 
4107   static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4108     return new(1) ResumeInst(Exn, InsertAtEnd);
4109   }
4110 
4111   /// Provide fast operand accessors
4112   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4113 
4114   /// Convenience accessor.
4115   Value *getValue() const { return Op<0>(); }
4116 
4117   unsigned getNumSuccessors() const { return 0; }
4118 
4119   // Methods for support type inquiry through isa, cast, and dyn_cast:
4120   static bool classof(const Instruction *I) {
4121     return I->getOpcode() == Instruction::Resume;
4122   }
4123   static bool classof(const Value *V) {
4124     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4125   }
4126 
4127 private:
4128   BasicBlock *getSuccessor(unsigned idx) const {
4129     llvm_unreachable("ResumeInst has no successors!");
4130   }
4131 
4132   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4133     llvm_unreachable("ResumeInst has no successors!");
4134   }
4135 };
4136 
4137 template <>
4138 struct OperandTraits<ResumeInst> :
4139     public FixedNumOperandTraits<ResumeInst, 1> {
4140 };
4141 
4142 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4143 
4144 //===----------------------------------------------------------------------===//
4145 //                         CatchSwitchInst Class
4146 //===----------------------------------------------------------------------===//
4147 class CatchSwitchInst : public Instruction {
4148   using UnwindDestField = BoolBitfieldElementT<0>;
4149 
4150   /// The number of operands actually allocated.  NumOperands is
4151   /// the number actually in use.
4152   unsigned ReservedSpace;
4153 
4154   // Operand[0] = Outer scope
4155   // Operand[1] = Unwind block destination
4156   // Operand[n] = BasicBlock to go to on match
4157   CatchSwitchInst(const CatchSwitchInst &CSI);
4158 
4159   /// Create a new switch instruction, specifying a
4160   /// default destination.  The number of additional handlers can be specified
4161   /// here to make memory allocation more efficient.
4162   /// This constructor can also autoinsert before another instruction.
4163   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4164                   unsigned NumHandlers, const Twine &NameStr,
4165                   Instruction *InsertBefore);
4166 
4167   /// Create a new switch instruction, specifying a
4168   /// default destination.  The number of additional handlers can be specified
4169   /// here to make memory allocation more efficient.
4170   /// This constructor also autoinserts at the end of the specified BasicBlock.
4171   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4172                   unsigned NumHandlers, const Twine &NameStr,
4173                   BasicBlock *InsertAtEnd);
4174 
4175   // allocate space for exactly zero operands
4176   void *operator new(size_t s) { return User::operator new(s); }
4177 
4178   void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4179   void growOperands(unsigned Size);
4180 
4181 protected:
4182   // Note: Instruction needs to be a friend here to call cloneImpl.
4183   friend class Instruction;
4184 
4185   CatchSwitchInst *cloneImpl() const;
4186 
4187 public:
4188   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4189                                  unsigned NumHandlers,
4190                                  const Twine &NameStr = "",
4191                                  Instruction *InsertBefore = nullptr) {
4192     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4193                                InsertBefore);
4194   }
4195 
4196   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4197                                  unsigned NumHandlers, const Twine &NameStr,
4198                                  BasicBlock *InsertAtEnd) {
4199     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4200                                InsertAtEnd);
4201   }
4202 
4203   /// Provide fast operand accessors
4204   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4205 
4206   // Accessor Methods for CatchSwitch stmt
4207   Value *getParentPad() const { return getOperand(0); }
4208   void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4209 
4210   // Accessor Methods for CatchSwitch stmt
4211   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4212   bool unwindsToCaller() const { return !hasUnwindDest(); }
4213   BasicBlock *getUnwindDest() const {
4214     if (hasUnwindDest())
4215       return cast<BasicBlock>(getOperand(1));
4216     return nullptr;
4217   }
4218   void setUnwindDest(BasicBlock *UnwindDest) {
4219     assert(UnwindDest);
4220     assert(hasUnwindDest());
4221     setOperand(1, UnwindDest);
4222   }
4223 
4224   /// return the number of 'handlers' in this catchswitch
4225   /// instruction, except the default handler
4226   unsigned getNumHandlers() const {
4227     if (hasUnwindDest())
4228       return getNumOperands() - 2;
4229     return getNumOperands() - 1;
4230   }
4231 
4232 private:
4233   static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4234   static const BasicBlock *handler_helper(const Value *V) {
4235     return cast<BasicBlock>(V);
4236   }
4237 
4238 public:
4239   using DerefFnTy = BasicBlock *(*)(Value *);
4240   using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4241   using handler_range = iterator_range<handler_iterator>;
4242   using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4243   using const_handler_iterator =
4244       mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4245   using const_handler_range = iterator_range<const_handler_iterator>;
4246 
4247   /// Returns an iterator that points to the first handler in CatchSwitchInst.
4248   handler_iterator handler_begin() {
4249     op_iterator It = op_begin() + 1;
4250     if (hasUnwindDest())
4251       ++It;
4252     return handler_iterator(It, DerefFnTy(handler_helper));
4253   }
4254 
4255   /// Returns an iterator that points to the first handler in the
4256   /// CatchSwitchInst.
4257   const_handler_iterator handler_begin() const {
4258     const_op_iterator It = op_begin() + 1;
4259     if (hasUnwindDest())
4260       ++It;
4261     return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4262   }
4263 
4264   /// Returns a read-only iterator that points one past the last
4265   /// handler in the CatchSwitchInst.
4266   handler_iterator handler_end() {
4267     return handler_iterator(op_end(), DerefFnTy(handler_helper));
4268   }
4269 
4270   /// Returns an iterator that points one past the last handler in the
4271   /// CatchSwitchInst.
4272   const_handler_iterator handler_end() const {
4273     return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4274   }
4275 
4276   /// iteration adapter for range-for loops.
4277   handler_range handlers() {
4278     return make_range(handler_begin(), handler_end());
4279   }
4280 
4281   /// iteration adapter for range-for loops.
4282   const_handler_range handlers() const {
4283     return make_range(handler_begin(), handler_end());
4284   }
4285 
4286   /// Add an entry to the switch instruction...
4287   /// Note:
4288   /// This action invalidates handler_end(). Old handler_end() iterator will
4289   /// point to the added handler.
4290   void addHandler(BasicBlock *Dest);
4291 
4292   void removeHandler(handler_iterator HI);
4293 
4294   unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4295   BasicBlock *getSuccessor(unsigned Idx) const {
4296     assert(Idx < getNumSuccessors() &&
4297            "Successor # out of range for catchswitch!");
4298     return cast<BasicBlock>(getOperand(Idx + 1));
4299   }
4300   void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4301     assert(Idx < getNumSuccessors() &&
4302            "Successor # out of range for catchswitch!");
4303     setOperand(Idx + 1, NewSucc);
4304   }
4305 
4306   // Methods for support type inquiry through isa, cast, and dyn_cast:
4307   static bool classof(const Instruction *I) {
4308     return I->getOpcode() == Instruction::CatchSwitch;
4309   }
4310   static bool classof(const Value *V) {
4311     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4312   }
4313 };
4314 
4315 template <>
4316 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4317 
4318 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4319 
4320 //===----------------------------------------------------------------------===//
4321 //                               CleanupPadInst Class
4322 //===----------------------------------------------------------------------===//
4323 class CleanupPadInst : public FuncletPadInst {
4324 private:
4325   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4326                           unsigned Values, const Twine &NameStr,
4327                           Instruction *InsertBefore)
4328       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4329                        NameStr, InsertBefore) {}
4330   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4331                           unsigned Values, const Twine &NameStr,
4332                           BasicBlock *InsertAtEnd)
4333       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4334                        NameStr, InsertAtEnd) {}
4335 
4336 public:
4337   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4338                                 const Twine &NameStr = "",
4339                                 Instruction *InsertBefore = nullptr) {
4340     unsigned Values = 1 + Args.size();
4341     return new (Values)
4342         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4343   }
4344 
4345   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4346                                 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4347     unsigned Values = 1 + Args.size();
4348     return new (Values)
4349         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4350   }
4351 
4352   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4353   static bool classof(const Instruction *I) {
4354     return I->getOpcode() == Instruction::CleanupPad;
4355   }
4356   static bool classof(const Value *V) {
4357     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4358   }
4359 };
4360 
4361 //===----------------------------------------------------------------------===//
4362 //                               CatchPadInst Class
4363 //===----------------------------------------------------------------------===//
4364 class CatchPadInst : public FuncletPadInst {
4365 private:
4366   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4367                         unsigned Values, const Twine &NameStr,
4368                         Instruction *InsertBefore)
4369       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4370                        NameStr, InsertBefore) {}
4371   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4372                         unsigned Values, const Twine &NameStr,
4373                         BasicBlock *InsertAtEnd)
4374       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4375                        NameStr, InsertAtEnd) {}
4376 
4377 public:
4378   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4379                               const Twine &NameStr = "",
4380                               Instruction *InsertBefore = nullptr) {
4381     unsigned Values = 1 + Args.size();
4382     return new (Values)
4383         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4384   }
4385 
4386   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4387                               const Twine &NameStr, BasicBlock *InsertAtEnd) {
4388     unsigned Values = 1 + Args.size();
4389     return new (Values)
4390         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4391   }
4392 
4393   /// Convenience accessors
4394   CatchSwitchInst *getCatchSwitch() const {
4395     return cast<CatchSwitchInst>(Op<-1>());
4396   }
4397   void setCatchSwitch(Value *CatchSwitch) {
4398     assert(CatchSwitch);
4399     Op<-1>() = CatchSwitch;
4400   }
4401 
4402   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4403   static bool classof(const Instruction *I) {
4404     return I->getOpcode() == Instruction::CatchPad;
4405   }
4406   static bool classof(const Value *V) {
4407     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4408   }
4409 };
4410 
4411 //===----------------------------------------------------------------------===//
4412 //                               CatchReturnInst Class
4413 //===----------------------------------------------------------------------===//
4414 
4415 class CatchReturnInst : public Instruction {
4416   CatchReturnInst(const CatchReturnInst &RI);
4417   CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4418   CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4419 
4420   void init(Value *CatchPad, BasicBlock *BB);
4421 
4422 protected:
4423   // Note: Instruction needs to be a friend here to call cloneImpl.
4424   friend class Instruction;
4425 
4426   CatchReturnInst *cloneImpl() const;
4427 
4428 public:
4429   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4430                                  Instruction *InsertBefore = nullptr) {
4431     assert(CatchPad);
4432     assert(BB);
4433     return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4434   }
4435 
4436   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4437                                  BasicBlock *InsertAtEnd) {
4438     assert(CatchPad);
4439     assert(BB);
4440     return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4441   }
4442 
4443   /// Provide fast operand accessors
4444   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4445 
4446   /// Convenience accessors.
4447   CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4448   void setCatchPad(CatchPadInst *CatchPad) {
4449     assert(CatchPad);
4450     Op<0>() = CatchPad;
4451   }
4452 
4453   BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4454   void setSuccessor(BasicBlock *NewSucc) {
4455     assert(NewSucc);
4456     Op<1>() = NewSucc;
4457   }
4458   unsigned getNumSuccessors() const { return 1; }
4459 
4460   /// Get the parentPad of this catchret's catchpad's catchswitch.
4461   /// The successor block is implicitly a member of this funclet.
4462   Value *getCatchSwitchParentPad() const {
4463     return getCatchPad()->getCatchSwitch()->getParentPad();
4464   }
4465 
4466   // Methods for support type inquiry through isa, cast, and dyn_cast:
4467   static bool classof(const Instruction *I) {
4468     return (I->getOpcode() == Instruction::CatchRet);
4469   }
4470   static bool classof(const Value *V) {
4471     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4472   }
4473 
4474 private:
4475   BasicBlock *getSuccessor(unsigned Idx) const {
4476     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4477     return getSuccessor();
4478   }
4479 
4480   void setSuccessor(unsigned Idx, BasicBlock *B) {
4481     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4482     setSuccessor(B);
4483   }
4484 };
4485 
4486 template <>
4487 struct OperandTraits<CatchReturnInst>
4488     : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4489 
4490 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4491 
4492 //===----------------------------------------------------------------------===//
4493 //                               CleanupReturnInst Class
4494 //===----------------------------------------------------------------------===//
4495 
4496 class CleanupReturnInst : public Instruction {
4497   using UnwindDestField = BoolBitfieldElementT<0>;
4498 
4499 private:
4500   CleanupReturnInst(const CleanupReturnInst &RI);
4501   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4502                     Instruction *InsertBefore = nullptr);
4503   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4504                     BasicBlock *InsertAtEnd);
4505 
4506   void init(Value *CleanupPad, BasicBlock *UnwindBB);
4507 
4508 protected:
4509   // Note: Instruction needs to be a friend here to call cloneImpl.
4510   friend class Instruction;
4511 
4512   CleanupReturnInst *cloneImpl() const;
4513 
4514 public:
4515   static CleanupReturnInst *Create(Value *CleanupPad,
4516                                    BasicBlock *UnwindBB = nullptr,
4517                                    Instruction *InsertBefore = nullptr) {
4518     assert(CleanupPad);
4519     unsigned Values = 1;
4520     if (UnwindBB)
4521       ++Values;
4522     return new (Values)
4523         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4524   }
4525 
4526   static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4527                                    BasicBlock *InsertAtEnd) {
4528     assert(CleanupPad);
4529     unsigned Values = 1;
4530     if (UnwindBB)
4531       ++Values;
4532     return new (Values)
4533         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4534   }
4535 
4536   /// Provide fast operand accessors
4537   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4538 
4539   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4540   bool unwindsToCaller() const { return !hasUnwindDest(); }
4541 
4542   /// Convenience accessor.
4543   CleanupPadInst *getCleanupPad() const {
4544     return cast<CleanupPadInst>(Op<0>());
4545   }
4546   void setCleanupPad(CleanupPadInst *CleanupPad) {
4547     assert(CleanupPad);
4548     Op<0>() = CleanupPad;
4549   }
4550 
4551   unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4552 
4553   BasicBlock *getUnwindDest() const {
4554     return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4555   }
4556   void setUnwindDest(BasicBlock *NewDest) {
4557     assert(NewDest);
4558     assert(hasUnwindDest());
4559     Op<1>() = NewDest;
4560   }
4561 
4562   // Methods for support type inquiry through isa, cast, and dyn_cast:
4563   static bool classof(const Instruction *I) {
4564     return (I->getOpcode() == Instruction::CleanupRet);
4565   }
4566   static bool classof(const Value *V) {
4567     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4568   }
4569 
4570 private:
4571   BasicBlock *getSuccessor(unsigned Idx) const {
4572     assert(Idx == 0);
4573     return getUnwindDest();
4574   }
4575 
4576   void setSuccessor(unsigned Idx, BasicBlock *B) {
4577     assert(Idx == 0);
4578     setUnwindDest(B);
4579   }
4580 
4581   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4582   // method so that subclasses cannot accidentally use it.
4583   template <typename Bitfield>
4584   void setSubclassData(typename Bitfield::Type Value) {
4585     Instruction::setSubclassData<Bitfield>(Value);
4586   }
4587 };
4588 
4589 template <>
4590 struct OperandTraits<CleanupReturnInst>
4591     : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4592 
4593 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4594 
4595 //===----------------------------------------------------------------------===//
4596 //                           UnreachableInst Class
4597 //===----------------------------------------------------------------------===//
4598 
4599 //===---------------------------------------------------------------------------
4600 /// This function has undefined behavior.  In particular, the
4601 /// presence of this instruction indicates some higher level knowledge that the
4602 /// end of the block cannot be reached.
4603 ///
4604 class UnreachableInst : public Instruction {
4605 protected:
4606   // Note: Instruction needs to be a friend here to call cloneImpl.
4607   friend class Instruction;
4608 
4609   UnreachableInst *cloneImpl() const;
4610 
4611 public:
4612   explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4613   explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4614 
4615   // allocate space for exactly zero operands
4616   void *operator new(size_t s) {
4617     return User::operator new(s, 0);
4618   }
4619 
4620   unsigned getNumSuccessors() const { return 0; }
4621 
4622   // Methods for support type inquiry through isa, cast, and dyn_cast:
4623   static bool classof(const Instruction *I) {
4624     return I->getOpcode() == Instruction::Unreachable;
4625   }
4626   static bool classof(const Value *V) {
4627     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4628   }
4629 
4630 private:
4631   BasicBlock *getSuccessor(unsigned idx) const {
4632     llvm_unreachable("UnreachableInst has no successors!");
4633   }
4634 
4635   void setSuccessor(unsigned idx, BasicBlock *B) {
4636     llvm_unreachable("UnreachableInst has no successors!");
4637   }
4638 };
4639 
4640 //===----------------------------------------------------------------------===//
4641 //                                 TruncInst Class
4642 //===----------------------------------------------------------------------===//
4643 
4644 /// This class represents a truncation of integer types.
4645 class TruncInst : public CastInst {
4646 protected:
4647   // Note: Instruction needs to be a friend here to call cloneImpl.
4648   friend class Instruction;
4649 
4650   /// Clone an identical TruncInst
4651   TruncInst *cloneImpl() const;
4652 
4653 public:
4654   /// Constructor with insert-before-instruction semantics
4655   TruncInst(
4656     Value *S,                           ///< The value to be truncated
4657     Type *Ty,                           ///< The (smaller) type to truncate to
4658     const Twine &NameStr = "",          ///< A name for the new instruction
4659     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4660   );
4661 
4662   /// Constructor with insert-at-end-of-block semantics
4663   TruncInst(
4664     Value *S,                     ///< The value to be truncated
4665     Type *Ty,                     ///< The (smaller) type to truncate to
4666     const Twine &NameStr,         ///< A name for the new instruction
4667     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4668   );
4669 
4670   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4671   static bool classof(const Instruction *I) {
4672     return I->getOpcode() == Trunc;
4673   }
4674   static bool classof(const Value *V) {
4675     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4676   }
4677 };
4678 
4679 //===----------------------------------------------------------------------===//
4680 //                                 ZExtInst Class
4681 //===----------------------------------------------------------------------===//
4682 
4683 /// This class represents zero extension of integer types.
4684 class ZExtInst : public CastInst {
4685 protected:
4686   // Note: Instruction needs to be a friend here to call cloneImpl.
4687   friend class Instruction;
4688 
4689   /// Clone an identical ZExtInst
4690   ZExtInst *cloneImpl() const;
4691 
4692 public:
4693   /// Constructor with insert-before-instruction semantics
4694   ZExtInst(
4695     Value *S,                           ///< The value to be zero extended
4696     Type *Ty,                           ///< The type to zero extend to
4697     const Twine &NameStr = "",          ///< A name for the new instruction
4698     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4699   );
4700 
4701   /// Constructor with insert-at-end semantics.
4702   ZExtInst(
4703     Value *S,                     ///< The value to be zero extended
4704     Type *Ty,                     ///< The type to zero extend to
4705     const Twine &NameStr,         ///< A name for the new instruction
4706     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4707   );
4708 
4709   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4710   static bool classof(const Instruction *I) {
4711     return I->getOpcode() == ZExt;
4712   }
4713   static bool classof(const Value *V) {
4714     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4715   }
4716 };
4717 
4718 //===----------------------------------------------------------------------===//
4719 //                                 SExtInst Class
4720 //===----------------------------------------------------------------------===//
4721 
4722 /// This class represents a sign extension of integer types.
4723 class SExtInst : public CastInst {
4724 protected:
4725   // Note: Instruction needs to be a friend here to call cloneImpl.
4726   friend class Instruction;
4727 
4728   /// Clone an identical SExtInst
4729   SExtInst *cloneImpl() const;
4730 
4731 public:
4732   /// Constructor with insert-before-instruction semantics
4733   SExtInst(
4734     Value *S,                           ///< The value to be sign extended
4735     Type *Ty,                           ///< The type to sign extend to
4736     const Twine &NameStr = "",          ///< A name for the new instruction
4737     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4738   );
4739 
4740   /// Constructor with insert-at-end-of-block semantics
4741   SExtInst(
4742     Value *S,                     ///< The value to be sign extended
4743     Type *Ty,                     ///< The type to sign extend to
4744     const Twine &NameStr,         ///< A name for the new instruction
4745     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4746   );
4747 
4748   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4749   static bool classof(const Instruction *I) {
4750     return I->getOpcode() == SExt;
4751   }
4752   static bool classof(const Value *V) {
4753     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4754   }
4755 };
4756 
4757 //===----------------------------------------------------------------------===//
4758 //                                 FPTruncInst Class
4759 //===----------------------------------------------------------------------===//
4760 
4761 /// This class represents a truncation of floating point types.
4762 class FPTruncInst : public CastInst {
4763 protected:
4764   // Note: Instruction needs to be a friend here to call cloneImpl.
4765   friend class Instruction;
4766 
4767   /// Clone an identical FPTruncInst
4768   FPTruncInst *cloneImpl() const;
4769 
4770 public:
4771   /// Constructor with insert-before-instruction semantics
4772   FPTruncInst(
4773     Value *S,                           ///< The value to be truncated
4774     Type *Ty,                           ///< The type to truncate to
4775     const Twine &NameStr = "",          ///< A name for the new instruction
4776     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4777   );
4778 
4779   /// Constructor with insert-before-instruction semantics
4780   FPTruncInst(
4781     Value *S,                     ///< The value to be truncated
4782     Type *Ty,                     ///< The type to truncate to
4783     const Twine &NameStr,         ///< A name for the new instruction
4784     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4785   );
4786 
4787   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4788   static bool classof(const Instruction *I) {
4789     return I->getOpcode() == FPTrunc;
4790   }
4791   static bool classof(const Value *V) {
4792     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4793   }
4794 };
4795 
4796 //===----------------------------------------------------------------------===//
4797 //                                 FPExtInst Class
4798 //===----------------------------------------------------------------------===//
4799 
4800 /// This class represents an extension of floating point types.
4801 class FPExtInst : public CastInst {
4802 protected:
4803   // Note: Instruction needs to be a friend here to call cloneImpl.
4804   friend class Instruction;
4805 
4806   /// Clone an identical FPExtInst
4807   FPExtInst *cloneImpl() const;
4808 
4809 public:
4810   /// Constructor with insert-before-instruction semantics
4811   FPExtInst(
4812     Value *S,                           ///< The value to be extended
4813     Type *Ty,                           ///< The type to extend to
4814     const Twine &NameStr = "",          ///< A name for the new instruction
4815     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4816   );
4817 
4818   /// Constructor with insert-at-end-of-block semantics
4819   FPExtInst(
4820     Value *S,                     ///< The value to be extended
4821     Type *Ty,                     ///< The type to extend to
4822     const Twine &NameStr,         ///< A name for the new instruction
4823     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4824   );
4825 
4826   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4827   static bool classof(const Instruction *I) {
4828     return I->getOpcode() == FPExt;
4829   }
4830   static bool classof(const Value *V) {
4831     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4832   }
4833 };
4834 
4835 //===----------------------------------------------------------------------===//
4836 //                                 UIToFPInst Class
4837 //===----------------------------------------------------------------------===//
4838 
4839 /// This class represents a cast unsigned integer to floating point.
4840 class UIToFPInst : public CastInst {
4841 protected:
4842   // Note: Instruction needs to be a friend here to call cloneImpl.
4843   friend class Instruction;
4844 
4845   /// Clone an identical UIToFPInst
4846   UIToFPInst *cloneImpl() const;
4847 
4848 public:
4849   /// Constructor with insert-before-instruction semantics
4850   UIToFPInst(
4851     Value *S,                           ///< The value to be converted
4852     Type *Ty,                           ///< The type to convert to
4853     const Twine &NameStr = "",          ///< A name for the new instruction
4854     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4855   );
4856 
4857   /// Constructor with insert-at-end-of-block semantics
4858   UIToFPInst(
4859     Value *S,                     ///< The value to be converted
4860     Type *Ty,                     ///< The type to convert to
4861     const Twine &NameStr,         ///< A name for the new instruction
4862     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4863   );
4864 
4865   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4866   static bool classof(const Instruction *I) {
4867     return I->getOpcode() == UIToFP;
4868   }
4869   static bool classof(const Value *V) {
4870     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4871   }
4872 };
4873 
4874 //===----------------------------------------------------------------------===//
4875 //                                 SIToFPInst Class
4876 //===----------------------------------------------------------------------===//
4877 
4878 /// This class represents a cast from signed integer to floating point.
4879 class SIToFPInst : public CastInst {
4880 protected:
4881   // Note: Instruction needs to be a friend here to call cloneImpl.
4882   friend class Instruction;
4883 
4884   /// Clone an identical SIToFPInst
4885   SIToFPInst *cloneImpl() const;
4886 
4887 public:
4888   /// Constructor with insert-before-instruction semantics
4889   SIToFPInst(
4890     Value *S,                           ///< The value to be converted
4891     Type *Ty,                           ///< The type to convert to
4892     const Twine &NameStr = "",          ///< A name for the new instruction
4893     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4894   );
4895 
4896   /// Constructor with insert-at-end-of-block semantics
4897   SIToFPInst(
4898     Value *S,                     ///< The value to be converted
4899     Type *Ty,                     ///< The type to convert to
4900     const Twine &NameStr,         ///< A name for the new instruction
4901     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4902   );
4903 
4904   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4905   static bool classof(const Instruction *I) {
4906     return I->getOpcode() == SIToFP;
4907   }
4908   static bool classof(const Value *V) {
4909     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4910   }
4911 };
4912 
4913 //===----------------------------------------------------------------------===//
4914 //                                 FPToUIInst Class
4915 //===----------------------------------------------------------------------===//
4916 
4917 /// This class represents a cast from floating point to unsigned integer
4918 class FPToUIInst  : public CastInst {
4919 protected:
4920   // Note: Instruction needs to be a friend here to call cloneImpl.
4921   friend class Instruction;
4922 
4923   /// Clone an identical FPToUIInst
4924   FPToUIInst *cloneImpl() const;
4925 
4926 public:
4927   /// Constructor with insert-before-instruction semantics
4928   FPToUIInst(
4929     Value *S,                           ///< The value to be converted
4930     Type *Ty,                           ///< The type to convert to
4931     const Twine &NameStr = "",          ///< A name for the new instruction
4932     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4933   );
4934 
4935   /// Constructor with insert-at-end-of-block semantics
4936   FPToUIInst(
4937     Value *S,                     ///< The value to be converted
4938     Type *Ty,                     ///< The type to convert to
4939     const Twine &NameStr,         ///< A name for the new instruction
4940     BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
4941   );
4942 
4943   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4944   static bool classof(const Instruction *I) {
4945     return I->getOpcode() == FPToUI;
4946   }
4947   static bool classof(const Value *V) {
4948     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4949   }
4950 };
4951 
4952 //===----------------------------------------------------------------------===//
4953 //                                 FPToSIInst Class
4954 //===----------------------------------------------------------------------===//
4955 
4956 /// This class represents a cast from floating point to signed integer.
4957 class FPToSIInst  : public CastInst {
4958 protected:
4959   // Note: Instruction needs to be a friend here to call cloneImpl.
4960   friend class Instruction;
4961 
4962   /// Clone an identical FPToSIInst
4963   FPToSIInst *cloneImpl() const;
4964 
4965 public:
4966   /// Constructor with insert-before-instruction semantics
4967   FPToSIInst(
4968     Value *S,                           ///< The value to be converted
4969     Type *Ty,                           ///< The type to convert to
4970     const Twine &NameStr = "",          ///< A name for the new instruction
4971     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4972   );
4973 
4974   /// Constructor with insert-at-end-of-block semantics
4975   FPToSIInst(
4976     Value *S,                     ///< The value to be converted
4977     Type *Ty,                     ///< The type to convert to
4978     const Twine &NameStr,         ///< A name for the new instruction
4979     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4980   );
4981 
4982   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4983   static bool classof(const Instruction *I) {
4984     return I->getOpcode() == FPToSI;
4985   }
4986   static bool classof(const Value *V) {
4987     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4988   }
4989 };
4990 
4991 //===----------------------------------------------------------------------===//
4992 //                                 IntToPtrInst Class
4993 //===----------------------------------------------------------------------===//
4994 
4995 /// This class represents a cast from an integer to a pointer.
4996 class IntToPtrInst : public CastInst {
4997 public:
4998   // Note: Instruction needs to be a friend here to call cloneImpl.
4999   friend class Instruction;
5000 
5001   /// Constructor with insert-before-instruction semantics
5002   IntToPtrInst(
5003     Value *S,                           ///< The value to be converted
5004     Type *Ty,                           ///< The type to convert to
5005     const Twine &NameStr = "",          ///< A name for the new instruction
5006     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007   );
5008 
5009   /// Constructor with insert-at-end-of-block semantics
5010   IntToPtrInst(
5011     Value *S,                     ///< The value to be converted
5012     Type *Ty,                     ///< The type to convert to
5013     const Twine &NameStr,         ///< A name for the new instruction
5014     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5015   );
5016 
5017   /// Clone an identical IntToPtrInst.
5018   IntToPtrInst *cloneImpl() const;
5019 
5020   /// Returns the address space of this instruction's pointer type.
5021   unsigned getAddressSpace() const {
5022     return getType()->getPointerAddressSpace();
5023   }
5024 
5025   // Methods for support type inquiry through isa, cast, and dyn_cast:
5026   static bool classof(const Instruction *I) {
5027     return I->getOpcode() == IntToPtr;
5028   }
5029   static bool classof(const Value *V) {
5030     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5031   }
5032 };
5033 
5034 //===----------------------------------------------------------------------===//
5035 //                                 PtrToIntInst Class
5036 //===----------------------------------------------------------------------===//
5037 
5038 /// This class represents a cast from a pointer to an integer.
5039 class PtrToIntInst : public CastInst {
5040 protected:
5041   // Note: Instruction needs to be a friend here to call cloneImpl.
5042   friend class Instruction;
5043 
5044   /// Clone an identical PtrToIntInst.
5045   PtrToIntInst *cloneImpl() const;
5046 
5047 public:
5048   /// Constructor with insert-before-instruction semantics
5049   PtrToIntInst(
5050     Value *S,                           ///< The value to be converted
5051     Type *Ty,                           ///< The type to convert to
5052     const Twine &NameStr = "",          ///< A name for the new instruction
5053     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5054   );
5055 
5056   /// Constructor with insert-at-end-of-block semantics
5057   PtrToIntInst(
5058     Value *S,                     ///< The value to be converted
5059     Type *Ty,                     ///< The type to convert to
5060     const Twine &NameStr,         ///< A name for the new instruction
5061     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5062   );
5063 
5064   /// Gets the pointer operand.
5065   Value *getPointerOperand() { return getOperand(0); }
5066   /// Gets the pointer operand.
5067   const Value *getPointerOperand() const { return getOperand(0); }
5068   /// Gets the operand index of the pointer operand.
5069   static unsigned getPointerOperandIndex() { return 0U; }
5070 
5071   /// Returns the address space of the pointer operand.
5072   unsigned getPointerAddressSpace() const {
5073     return getPointerOperand()->getType()->getPointerAddressSpace();
5074   }
5075 
5076   // Methods for support type inquiry through isa, cast, and dyn_cast:
5077   static bool classof(const Instruction *I) {
5078     return I->getOpcode() == PtrToInt;
5079   }
5080   static bool classof(const Value *V) {
5081     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5082   }
5083 };
5084 
5085 //===----------------------------------------------------------------------===//
5086 //                             BitCastInst Class
5087 //===----------------------------------------------------------------------===//
5088 
5089 /// This class represents a no-op cast from one type to another.
5090 class BitCastInst : public CastInst {
5091 protected:
5092   // Note: Instruction needs to be a friend here to call cloneImpl.
5093   friend class Instruction;
5094 
5095   /// Clone an identical BitCastInst.
5096   BitCastInst *cloneImpl() const;
5097 
5098 public:
5099   /// Constructor with insert-before-instruction semantics
5100   BitCastInst(
5101     Value *S,                           ///< The value to be casted
5102     Type *Ty,                           ///< The type to casted to
5103     const Twine &NameStr = "",          ///< A name for the new instruction
5104     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5105   );
5106 
5107   /// Constructor with insert-at-end-of-block semantics
5108   BitCastInst(
5109     Value *S,                     ///< The value to be casted
5110     Type *Ty,                     ///< The type to casted to
5111     const Twine &NameStr,         ///< A name for the new instruction
5112     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5113   );
5114 
5115   // Methods for support type inquiry through isa, cast, and dyn_cast:
5116   static bool classof(const Instruction *I) {
5117     return I->getOpcode() == BitCast;
5118   }
5119   static bool classof(const Value *V) {
5120     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5121   }
5122 };
5123 
5124 //===----------------------------------------------------------------------===//
5125 //                          AddrSpaceCastInst Class
5126 //===----------------------------------------------------------------------===//
5127 
5128 /// This class represents a conversion between pointers from one address space
5129 /// to another.
5130 class AddrSpaceCastInst : public CastInst {
5131 protected:
5132   // Note: Instruction needs to be a friend here to call cloneImpl.
5133   friend class Instruction;
5134 
5135   /// Clone an identical AddrSpaceCastInst.
5136   AddrSpaceCastInst *cloneImpl() const;
5137 
5138 public:
5139   /// Constructor with insert-before-instruction semantics
5140   AddrSpaceCastInst(
5141     Value *S,                           ///< The value to be casted
5142     Type *Ty,                           ///< The type to casted to
5143     const Twine &NameStr = "",          ///< A name for the new instruction
5144     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5145   );
5146 
5147   /// Constructor with insert-at-end-of-block semantics
5148   AddrSpaceCastInst(
5149     Value *S,                     ///< The value to be casted
5150     Type *Ty,                     ///< The type to casted to
5151     const Twine &NameStr,         ///< A name for the new instruction
5152     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5153   );
5154 
5155   // Methods for support type inquiry through isa, cast, and dyn_cast:
5156   static bool classof(const Instruction *I) {
5157     return I->getOpcode() == AddrSpaceCast;
5158   }
5159   static bool classof(const Value *V) {
5160     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5161   }
5162 
5163   /// Gets the pointer operand.
5164   Value *getPointerOperand() {
5165     return getOperand(0);
5166   }
5167 
5168   /// Gets the pointer operand.
5169   const Value *getPointerOperand() const {
5170     return getOperand(0);
5171   }
5172 
5173   /// Gets the operand index of the pointer operand.
5174   static unsigned getPointerOperandIndex() {
5175     return 0U;
5176   }
5177 
5178   /// Returns the address space of the pointer operand.
5179   unsigned getSrcAddressSpace() const {
5180     return getPointerOperand()->getType()->getPointerAddressSpace();
5181   }
5182 
5183   /// Returns the address space of the result.
5184   unsigned getDestAddressSpace() const {
5185     return getType()->getPointerAddressSpace();
5186   }
5187 };
5188 
5189 /// A helper function that returns the pointer operand of a load or store
5190 /// instruction. Returns nullptr if not load or store.
5191 inline const Value *getLoadStorePointerOperand(const Value *V) {
5192   if (auto *Load = dyn_cast<LoadInst>(V))
5193     return Load->getPointerOperand();
5194   if (auto *Store = dyn_cast<StoreInst>(V))
5195     return Store->getPointerOperand();
5196   return nullptr;
5197 }
5198 inline Value *getLoadStorePointerOperand(Value *V) {
5199   return const_cast<Value *>(
5200       getLoadStorePointerOperand(static_cast<const Value *>(V)));
5201 }
5202 
5203 /// A helper function that returns the pointer operand of a load, store
5204 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5205 inline const Value *getPointerOperand(const Value *V) {
5206   if (auto *Ptr = getLoadStorePointerOperand(V))
5207     return Ptr;
5208   if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5209     return Gep->getPointerOperand();
5210   return nullptr;
5211 }
5212 inline Value *getPointerOperand(Value *V) {
5213   return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5214 }
5215 
5216 /// A helper function that returns the alignment of load or store instruction.
5217 inline Align getLoadStoreAlignment(Value *I) {
5218   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5219          "Expected Load or Store instruction");
5220   if (auto *LI = dyn_cast<LoadInst>(I))
5221     return LI->getAlign();
5222   return cast<StoreInst>(I)->getAlign();
5223 }
5224 
5225 /// A helper function that returns the address space of the pointer operand of
5226 /// load or store instruction.
5227 inline unsigned getLoadStoreAddressSpace(Value *I) {
5228   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5229          "Expected Load or Store instruction");
5230   if (auto *LI = dyn_cast<LoadInst>(I))
5231     return LI->getPointerAddressSpace();
5232   return cast<StoreInst>(I)->getPointerAddressSpace();
5233 }
5234 
5235 //===----------------------------------------------------------------------===//
5236 //                              FreezeInst Class
5237 //===----------------------------------------------------------------------===//
5238 
5239 /// This class represents a freeze function that returns random concrete
5240 /// value if an operand is either a poison value or an undef value
5241 class FreezeInst : public UnaryInstruction {
5242 protected:
5243   // Note: Instruction needs to be a friend here to call cloneImpl.
5244   friend class Instruction;
5245 
5246   /// Clone an identical FreezeInst
5247   FreezeInst *cloneImpl() const;
5248 
5249 public:
5250   explicit FreezeInst(Value *S,
5251                       const Twine &NameStr = "",
5252                       Instruction *InsertBefore = nullptr);
5253   FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5254 
5255   // Methods for support type inquiry through isa, cast, and dyn_cast:
5256   static inline bool classof(const Instruction *I) {
5257     return I->getOpcode() == Freeze;
5258   }
5259   static inline bool classof(const Value *V) {
5260     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5261   }
5262 };
5263 
5264 } // end namespace llvm
5265 
5266 #endif // LLVM_IR_INSTRUCTIONS_H
5267