1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file exposes the class definitions of all of the subclasses of the 10 // Instruction class. This is meant to be an easy way to get access to all 11 // instruction subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_IR_INSTRUCTIONS_H 16 #define LLVM_IR_INSTRUCTIONS_H 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/Bitfields.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/InstrTypes.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/OperandTraits.h" 32 #include "llvm/IR/Use.h" 33 #include "llvm/IR/User.h" 34 #include "llvm/Support/AtomicOrdering.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include <cassert> 37 #include <cstddef> 38 #include <cstdint> 39 #include <iterator> 40 #include <optional> 41 42 namespace llvm { 43 44 class APFloat; 45 class APInt; 46 class BasicBlock; 47 class ConstantInt; 48 class DataLayout; 49 class StringRef; 50 class Type; 51 class Value; 52 53 //===----------------------------------------------------------------------===// 54 // AllocaInst Class 55 //===----------------------------------------------------------------------===// 56 57 /// an instruction to allocate memory on the stack 58 class AllocaInst : public UnaryInstruction { 59 Type *AllocatedType; 60 61 using AlignmentField = AlignmentBitfieldElementT<0>; 62 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; 63 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; 64 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, 65 SwiftErrorField>(), 66 "Bitfields must be contiguous"); 67 68 protected: 69 // Note: Instruction needs to be a friend here to call cloneImpl. 70 friend class Instruction; 71 72 AllocaInst *cloneImpl() const; 73 74 public: 75 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 76 const Twine &Name, Instruction *InsertBefore); 77 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, 78 const Twine &Name, BasicBlock *InsertAtEnd); 79 80 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, 81 Instruction *InsertBefore); 82 AllocaInst(Type *Ty, unsigned AddrSpace, 83 const Twine &Name, BasicBlock *InsertAtEnd); 84 85 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, 86 const Twine &Name = "", Instruction *InsertBefore = nullptr); 87 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, 88 const Twine &Name, BasicBlock *InsertAtEnd); 89 90 /// Return true if there is an allocation size parameter to the allocation 91 /// instruction that is not 1. 92 bool isArrayAllocation() const; 93 94 /// Get the number of elements allocated. For a simple allocation of a single 95 /// element, this will return a constant 1 value. 96 const Value *getArraySize() const { return getOperand(0); } 97 Value *getArraySize() { return getOperand(0); } 98 99 /// Overload to return most specific pointer type. 100 PointerType *getType() const { 101 return cast<PointerType>(Instruction::getType()); 102 } 103 104 /// Return the address space for the allocation. 105 unsigned getAddressSpace() const { 106 return getType()->getAddressSpace(); 107 } 108 109 /// Get allocation size in bytes. Returns std::nullopt if size can't be 110 /// determined, e.g. in case of a VLA. 111 std::optional<TypeSize> getAllocationSize(const DataLayout &DL) const; 112 113 /// Get allocation size in bits. Returns std::nullopt if size can't be 114 /// determined, e.g. in case of a VLA. 115 std::optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; 116 117 /// Return the type that is being allocated by the instruction. 118 Type *getAllocatedType() const { return AllocatedType; } 119 /// for use only in special circumstances that need to generically 120 /// transform a whole instruction (eg: IR linking and vectorization). 121 void setAllocatedType(Type *Ty) { AllocatedType = Ty; } 122 123 /// Return the alignment of the memory that is being allocated by the 124 /// instruction. 125 Align getAlign() const { 126 return Align(1ULL << getSubclassData<AlignmentField>()); 127 } 128 129 void setAlignment(Align Align) { 130 setSubclassData<AlignmentField>(Log2(Align)); 131 } 132 133 /// Return true if this alloca is in the entry block of the function and is a 134 /// constant size. If so, the code generator will fold it into the 135 /// prolog/epilog code, so it is basically free. 136 bool isStaticAlloca() const; 137 138 /// Return true if this alloca is used as an inalloca argument to a call. Such 139 /// allocas are never considered static even if they are in the entry block. 140 bool isUsedWithInAlloca() const { 141 return getSubclassData<UsedWithInAllocaField>(); 142 } 143 144 /// Specify whether this alloca is used to represent the arguments to a call. 145 void setUsedWithInAlloca(bool V) { 146 setSubclassData<UsedWithInAllocaField>(V); 147 } 148 149 /// Return true if this alloca is used as a swifterror argument to a call. 150 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } 151 /// Specify whether this alloca is used to represent a swifterror. 152 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } 153 154 // Methods for support type inquiry through isa, cast, and dyn_cast: 155 static bool classof(const Instruction *I) { 156 return (I->getOpcode() == Instruction::Alloca); 157 } 158 static bool classof(const Value *V) { 159 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 160 } 161 162 private: 163 // Shadow Instruction::setInstructionSubclassData with a private forwarding 164 // method so that subclasses cannot accidentally use it. 165 template <typename Bitfield> 166 void setSubclassData(typename Bitfield::Type Value) { 167 Instruction::setSubclassData<Bitfield>(Value); 168 } 169 }; 170 171 //===----------------------------------------------------------------------===// 172 // LoadInst Class 173 //===----------------------------------------------------------------------===// 174 175 /// An instruction for reading from memory. This uses the SubclassData field in 176 /// Value to store whether or not the load is volatile. 177 class LoadInst : public UnaryInstruction { 178 using VolatileField = BoolBitfieldElementT<0>; 179 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; 180 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; 181 static_assert( 182 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), 183 "Bitfields must be contiguous"); 184 185 void AssertOK(); 186 187 protected: 188 // Note: Instruction needs to be a friend here to call cloneImpl. 189 friend class Instruction; 190 191 LoadInst *cloneImpl() const; 192 193 public: 194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, 195 Instruction *InsertBefore); 196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); 197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 198 Instruction *InsertBefore); 199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 200 BasicBlock *InsertAtEnd); 201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 202 Align Align, Instruction *InsertBefore = nullptr); 203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 204 Align Align, BasicBlock *InsertAtEnd); 205 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 206 Align Align, AtomicOrdering Order, 207 SyncScope::ID SSID = SyncScope::System, 208 Instruction *InsertBefore = nullptr); 209 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 210 Align Align, AtomicOrdering Order, SyncScope::ID SSID, 211 BasicBlock *InsertAtEnd); 212 213 /// Return true if this is a load from a volatile memory location. 214 bool isVolatile() const { return getSubclassData<VolatileField>(); } 215 216 /// Specify whether this is a volatile load or not. 217 void setVolatile(bool V) { setSubclassData<VolatileField>(V); } 218 219 /// Return the alignment of the access that is being performed. 220 Align getAlign() const { 221 return Align(1ULL << (getSubclassData<AlignmentField>())); 222 } 223 224 void setAlignment(Align Align) { 225 setSubclassData<AlignmentField>(Log2(Align)); 226 } 227 228 /// Returns the ordering constraint of this load instruction. 229 AtomicOrdering getOrdering() const { 230 return getSubclassData<OrderingField>(); 231 } 232 /// Sets the ordering constraint of this load instruction. May not be Release 233 /// or AcquireRelease. 234 void setOrdering(AtomicOrdering Ordering) { 235 setSubclassData<OrderingField>(Ordering); 236 } 237 238 /// Returns the synchronization scope ID of this load instruction. 239 SyncScope::ID getSyncScopeID() const { 240 return SSID; 241 } 242 243 /// Sets the synchronization scope ID of this load instruction. 244 void setSyncScopeID(SyncScope::ID SSID) { 245 this->SSID = SSID; 246 } 247 248 /// Sets the ordering constraint and the synchronization scope ID of this load 249 /// instruction. 250 void setAtomic(AtomicOrdering Ordering, 251 SyncScope::ID SSID = SyncScope::System) { 252 setOrdering(Ordering); 253 setSyncScopeID(SSID); 254 } 255 256 bool isSimple() const { return !isAtomic() && !isVolatile(); } 257 258 bool isUnordered() const { 259 return (getOrdering() == AtomicOrdering::NotAtomic || 260 getOrdering() == AtomicOrdering::Unordered) && 261 !isVolatile(); 262 } 263 264 Value *getPointerOperand() { return getOperand(0); } 265 const Value *getPointerOperand() const { return getOperand(0); } 266 static unsigned getPointerOperandIndex() { return 0U; } 267 Type *getPointerOperandType() const { return getPointerOperand()->getType(); } 268 269 /// Returns the address space of the pointer operand. 270 unsigned getPointerAddressSpace() const { 271 return getPointerOperandType()->getPointerAddressSpace(); 272 } 273 274 // Methods for support type inquiry through isa, cast, and dyn_cast: 275 static bool classof(const Instruction *I) { 276 return I->getOpcode() == Instruction::Load; 277 } 278 static bool classof(const Value *V) { 279 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 280 } 281 282 private: 283 // Shadow Instruction::setInstructionSubclassData with a private forwarding 284 // method so that subclasses cannot accidentally use it. 285 template <typename Bitfield> 286 void setSubclassData(typename Bitfield::Type Value) { 287 Instruction::setSubclassData<Bitfield>(Value); 288 } 289 290 /// The synchronization scope ID of this load instruction. Not quite enough 291 /// room in SubClassData for everything, so synchronization scope ID gets its 292 /// own field. 293 SyncScope::ID SSID; 294 }; 295 296 //===----------------------------------------------------------------------===// 297 // StoreInst Class 298 //===----------------------------------------------------------------------===// 299 300 /// An instruction for storing to memory. 301 class StoreInst : public Instruction { 302 using VolatileField = BoolBitfieldElementT<0>; 303 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; 304 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; 305 static_assert( 306 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), 307 "Bitfields must be contiguous"); 308 309 void AssertOK(); 310 311 protected: 312 // Note: Instruction needs to be a friend here to call cloneImpl. 313 friend class Instruction; 314 315 StoreInst *cloneImpl() const; 316 317 public: 318 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); 319 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); 320 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); 321 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); 322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, 323 Instruction *InsertBefore = nullptr); 324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, 325 BasicBlock *InsertAtEnd); 326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, 327 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, 328 Instruction *InsertBefore = nullptr); 329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, 330 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); 331 332 // allocate space for exactly two operands 333 void *operator new(size_t S) { return User::operator new(S, 2); } 334 void operator delete(void *Ptr) { User::operator delete(Ptr); } 335 336 /// Return true if this is a store to a volatile memory location. 337 bool isVolatile() const { return getSubclassData<VolatileField>(); } 338 339 /// Specify whether this is a volatile store or not. 340 void setVolatile(bool V) { setSubclassData<VolatileField>(V); } 341 342 /// Transparently provide more efficient getOperand methods. 343 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 344 345 Align getAlign() const { 346 return Align(1ULL << (getSubclassData<AlignmentField>())); 347 } 348 349 void setAlignment(Align Align) { 350 setSubclassData<AlignmentField>(Log2(Align)); 351 } 352 353 /// Returns the ordering constraint of this store instruction. 354 AtomicOrdering getOrdering() const { 355 return getSubclassData<OrderingField>(); 356 } 357 358 /// Sets the ordering constraint of this store instruction. May not be 359 /// Acquire or AcquireRelease. 360 void setOrdering(AtomicOrdering Ordering) { 361 setSubclassData<OrderingField>(Ordering); 362 } 363 364 /// Returns the synchronization scope ID of this store instruction. 365 SyncScope::ID getSyncScopeID() const { 366 return SSID; 367 } 368 369 /// Sets the synchronization scope ID of this store instruction. 370 void setSyncScopeID(SyncScope::ID SSID) { 371 this->SSID = SSID; 372 } 373 374 /// Sets the ordering constraint and the synchronization scope ID of this 375 /// store instruction. 376 void setAtomic(AtomicOrdering Ordering, 377 SyncScope::ID SSID = SyncScope::System) { 378 setOrdering(Ordering); 379 setSyncScopeID(SSID); 380 } 381 382 bool isSimple() const { return !isAtomic() && !isVolatile(); } 383 384 bool isUnordered() const { 385 return (getOrdering() == AtomicOrdering::NotAtomic || 386 getOrdering() == AtomicOrdering::Unordered) && 387 !isVolatile(); 388 } 389 390 Value *getValueOperand() { return getOperand(0); } 391 const Value *getValueOperand() const { return getOperand(0); } 392 393 Value *getPointerOperand() { return getOperand(1); } 394 const Value *getPointerOperand() const { return getOperand(1); } 395 static unsigned getPointerOperandIndex() { return 1U; } 396 Type *getPointerOperandType() const { return getPointerOperand()->getType(); } 397 398 /// Returns the address space of the pointer operand. 399 unsigned getPointerAddressSpace() const { 400 return getPointerOperandType()->getPointerAddressSpace(); 401 } 402 403 // Methods for support type inquiry through isa, cast, and dyn_cast: 404 static bool classof(const Instruction *I) { 405 return I->getOpcode() == Instruction::Store; 406 } 407 static bool classof(const Value *V) { 408 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 409 } 410 411 private: 412 // Shadow Instruction::setInstructionSubclassData with a private forwarding 413 // method so that subclasses cannot accidentally use it. 414 template <typename Bitfield> 415 void setSubclassData(typename Bitfield::Type Value) { 416 Instruction::setSubclassData<Bitfield>(Value); 417 } 418 419 /// The synchronization scope ID of this store instruction. Not quite enough 420 /// room in SubClassData for everything, so synchronization scope ID gets its 421 /// own field. 422 SyncScope::ID SSID; 423 }; 424 425 template <> 426 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { 427 }; 428 429 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) 430 431 //===----------------------------------------------------------------------===// 432 // FenceInst Class 433 //===----------------------------------------------------------------------===// 434 435 /// An instruction for ordering other memory operations. 436 class FenceInst : public Instruction { 437 using OrderingField = AtomicOrderingBitfieldElementT<0>; 438 439 void Init(AtomicOrdering Ordering, SyncScope::ID SSID); 440 441 protected: 442 // Note: Instruction needs to be a friend here to call cloneImpl. 443 friend class Instruction; 444 445 FenceInst *cloneImpl() const; 446 447 public: 448 // Ordering may only be Acquire, Release, AcquireRelease, or 449 // SequentiallyConsistent. 450 FenceInst(LLVMContext &C, AtomicOrdering Ordering, 451 SyncScope::ID SSID = SyncScope::System, 452 Instruction *InsertBefore = nullptr); 453 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, 454 BasicBlock *InsertAtEnd); 455 456 // allocate space for exactly zero operands 457 void *operator new(size_t S) { return User::operator new(S, 0); } 458 void operator delete(void *Ptr) { User::operator delete(Ptr); } 459 460 /// Returns the ordering constraint of this fence instruction. 461 AtomicOrdering getOrdering() const { 462 return getSubclassData<OrderingField>(); 463 } 464 465 /// Sets the ordering constraint of this fence instruction. May only be 466 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. 467 void setOrdering(AtomicOrdering Ordering) { 468 setSubclassData<OrderingField>(Ordering); 469 } 470 471 /// Returns the synchronization scope ID of this fence instruction. 472 SyncScope::ID getSyncScopeID() const { 473 return SSID; 474 } 475 476 /// Sets the synchronization scope ID of this fence instruction. 477 void setSyncScopeID(SyncScope::ID SSID) { 478 this->SSID = SSID; 479 } 480 481 // Methods for support type inquiry through isa, cast, and dyn_cast: 482 static bool classof(const Instruction *I) { 483 return I->getOpcode() == Instruction::Fence; 484 } 485 static bool classof(const Value *V) { 486 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 487 } 488 489 private: 490 // Shadow Instruction::setInstructionSubclassData with a private forwarding 491 // method so that subclasses cannot accidentally use it. 492 template <typename Bitfield> 493 void setSubclassData(typename Bitfield::Type Value) { 494 Instruction::setSubclassData<Bitfield>(Value); 495 } 496 497 /// The synchronization scope ID of this fence instruction. Not quite enough 498 /// room in SubClassData for everything, so synchronization scope ID gets its 499 /// own field. 500 SyncScope::ID SSID; 501 }; 502 503 //===----------------------------------------------------------------------===// 504 // AtomicCmpXchgInst Class 505 //===----------------------------------------------------------------------===// 506 507 /// An instruction that atomically checks whether a 508 /// specified value is in a memory location, and, if it is, stores a new value 509 /// there. The value returned by this instruction is a pair containing the 510 /// original value as first element, and an i1 indicating success (true) or 511 /// failure (false) as second element. 512 /// 513 class AtomicCmpXchgInst : public Instruction { 514 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, 515 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, 516 SyncScope::ID SSID); 517 518 template <unsigned Offset> 519 using AtomicOrderingBitfieldElement = 520 typename Bitfield::Element<AtomicOrdering, Offset, 3, 521 AtomicOrdering::LAST>; 522 523 protected: 524 // Note: Instruction needs to be a friend here to call cloneImpl. 525 friend class Instruction; 526 527 AtomicCmpXchgInst *cloneImpl() const; 528 529 public: 530 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, 531 AtomicOrdering SuccessOrdering, 532 AtomicOrdering FailureOrdering, SyncScope::ID SSID, 533 Instruction *InsertBefore = nullptr); 534 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, 535 AtomicOrdering SuccessOrdering, 536 AtomicOrdering FailureOrdering, SyncScope::ID SSID, 537 BasicBlock *InsertAtEnd); 538 539 // allocate space for exactly three operands 540 void *operator new(size_t S) { return User::operator new(S, 3); } 541 void operator delete(void *Ptr) { User::operator delete(Ptr); } 542 543 using VolatileField = BoolBitfieldElementT<0>; 544 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; 545 using SuccessOrderingField = 546 AtomicOrderingBitfieldElementT<WeakField::NextBit>; 547 using FailureOrderingField = 548 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; 549 using AlignmentField = 550 AlignmentBitfieldElementT<FailureOrderingField::NextBit>; 551 static_assert( 552 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, 553 FailureOrderingField, AlignmentField>(), 554 "Bitfields must be contiguous"); 555 556 /// Return the alignment of the memory that is being allocated by the 557 /// instruction. 558 Align getAlign() const { 559 return Align(1ULL << getSubclassData<AlignmentField>()); 560 } 561 562 void setAlignment(Align Align) { 563 setSubclassData<AlignmentField>(Log2(Align)); 564 } 565 566 /// Return true if this is a cmpxchg from a volatile memory 567 /// location. 568 /// 569 bool isVolatile() const { return getSubclassData<VolatileField>(); } 570 571 /// Specify whether this is a volatile cmpxchg. 572 /// 573 void setVolatile(bool V) { setSubclassData<VolatileField>(V); } 574 575 /// Return true if this cmpxchg may spuriously fail. 576 bool isWeak() const { return getSubclassData<WeakField>(); } 577 578 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } 579 580 /// Transparently provide more efficient getOperand methods. 581 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 582 583 static bool isValidSuccessOrdering(AtomicOrdering Ordering) { 584 return Ordering != AtomicOrdering::NotAtomic && 585 Ordering != AtomicOrdering::Unordered; 586 } 587 588 static bool isValidFailureOrdering(AtomicOrdering Ordering) { 589 return Ordering != AtomicOrdering::NotAtomic && 590 Ordering != AtomicOrdering::Unordered && 591 Ordering != AtomicOrdering::AcquireRelease && 592 Ordering != AtomicOrdering::Release; 593 } 594 595 /// Returns the success ordering constraint of this cmpxchg instruction. 596 AtomicOrdering getSuccessOrdering() const { 597 return getSubclassData<SuccessOrderingField>(); 598 } 599 600 /// Sets the success ordering constraint of this cmpxchg instruction. 601 void setSuccessOrdering(AtomicOrdering Ordering) { 602 assert(isValidSuccessOrdering(Ordering) && 603 "invalid CmpXchg success ordering"); 604 setSubclassData<SuccessOrderingField>(Ordering); 605 } 606 607 /// Returns the failure ordering constraint of this cmpxchg instruction. 608 AtomicOrdering getFailureOrdering() const { 609 return getSubclassData<FailureOrderingField>(); 610 } 611 612 /// Sets the failure ordering constraint of this cmpxchg instruction. 613 void setFailureOrdering(AtomicOrdering Ordering) { 614 assert(isValidFailureOrdering(Ordering) && 615 "invalid CmpXchg failure ordering"); 616 setSubclassData<FailureOrderingField>(Ordering); 617 } 618 619 /// Returns a single ordering which is at least as strong as both the 620 /// success and failure orderings for this cmpxchg. 621 AtomicOrdering getMergedOrdering() const { 622 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) 623 return AtomicOrdering::SequentiallyConsistent; 624 if (getFailureOrdering() == AtomicOrdering::Acquire) { 625 if (getSuccessOrdering() == AtomicOrdering::Monotonic) 626 return AtomicOrdering::Acquire; 627 if (getSuccessOrdering() == AtomicOrdering::Release) 628 return AtomicOrdering::AcquireRelease; 629 } 630 return getSuccessOrdering(); 631 } 632 633 /// Returns the synchronization scope ID of this cmpxchg instruction. 634 SyncScope::ID getSyncScopeID() const { 635 return SSID; 636 } 637 638 /// Sets the synchronization scope ID of this cmpxchg instruction. 639 void setSyncScopeID(SyncScope::ID SSID) { 640 this->SSID = SSID; 641 } 642 643 Value *getPointerOperand() { return getOperand(0); } 644 const Value *getPointerOperand() const { return getOperand(0); } 645 static unsigned getPointerOperandIndex() { return 0U; } 646 647 Value *getCompareOperand() { return getOperand(1); } 648 const Value *getCompareOperand() const { return getOperand(1); } 649 650 Value *getNewValOperand() { return getOperand(2); } 651 const Value *getNewValOperand() const { return getOperand(2); } 652 653 /// Returns the address space of the pointer operand. 654 unsigned getPointerAddressSpace() const { 655 return getPointerOperand()->getType()->getPointerAddressSpace(); 656 } 657 658 /// Returns the strongest permitted ordering on failure, given the 659 /// desired ordering on success. 660 /// 661 /// If the comparison in a cmpxchg operation fails, there is no atomic store 662 /// so release semantics cannot be provided. So this function drops explicit 663 /// Release requests from the AtomicOrdering. A SequentiallyConsistent 664 /// operation would remain SequentiallyConsistent. 665 static AtomicOrdering 666 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { 667 switch (SuccessOrdering) { 668 default: 669 llvm_unreachable("invalid cmpxchg success ordering"); 670 case AtomicOrdering::Release: 671 case AtomicOrdering::Monotonic: 672 return AtomicOrdering::Monotonic; 673 case AtomicOrdering::AcquireRelease: 674 case AtomicOrdering::Acquire: 675 return AtomicOrdering::Acquire; 676 case AtomicOrdering::SequentiallyConsistent: 677 return AtomicOrdering::SequentiallyConsistent; 678 } 679 } 680 681 // Methods for support type inquiry through isa, cast, and dyn_cast: 682 static bool classof(const Instruction *I) { 683 return I->getOpcode() == Instruction::AtomicCmpXchg; 684 } 685 static bool classof(const Value *V) { 686 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 687 } 688 689 private: 690 // Shadow Instruction::setInstructionSubclassData with a private forwarding 691 // method so that subclasses cannot accidentally use it. 692 template <typename Bitfield> 693 void setSubclassData(typename Bitfield::Type Value) { 694 Instruction::setSubclassData<Bitfield>(Value); 695 } 696 697 /// The synchronization scope ID of this cmpxchg instruction. Not quite 698 /// enough room in SubClassData for everything, so synchronization scope ID 699 /// gets its own field. 700 SyncScope::ID SSID; 701 }; 702 703 template <> 704 struct OperandTraits<AtomicCmpXchgInst> : 705 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { 706 }; 707 708 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value) 709 710 //===----------------------------------------------------------------------===// 711 // AtomicRMWInst Class 712 //===----------------------------------------------------------------------===// 713 714 /// an instruction that atomically reads a memory location, 715 /// combines it with another value, and then stores the result back. Returns 716 /// the old value. 717 /// 718 class AtomicRMWInst : public Instruction { 719 protected: 720 // Note: Instruction needs to be a friend here to call cloneImpl. 721 friend class Instruction; 722 723 AtomicRMWInst *cloneImpl() const; 724 725 public: 726 /// This enumeration lists the possible modifications atomicrmw can make. In 727 /// the descriptions, 'p' is the pointer to the instruction's memory location, 728 /// 'old' is the initial value of *p, and 'v' is the other value passed to the 729 /// instruction. These instructions always return 'old'. 730 enum BinOp : unsigned { 731 /// *p = v 732 Xchg, 733 /// *p = old + v 734 Add, 735 /// *p = old - v 736 Sub, 737 /// *p = old & v 738 And, 739 /// *p = ~(old & v) 740 Nand, 741 /// *p = old | v 742 Or, 743 /// *p = old ^ v 744 Xor, 745 /// *p = old >signed v ? old : v 746 Max, 747 /// *p = old <signed v ? old : v 748 Min, 749 /// *p = old >unsigned v ? old : v 750 UMax, 751 /// *p = old <unsigned v ? old : v 752 UMin, 753 754 /// *p = old + v 755 FAdd, 756 757 /// *p = old - v 758 FSub, 759 760 /// *p = maxnum(old, v) 761 /// \p maxnum matches the behavior of \p llvm.maxnum.*. 762 FMax, 763 764 /// *p = minnum(old, v) 765 /// \p minnum matches the behavior of \p llvm.minnum.*. 766 FMin, 767 768 /// Increment one up to a maximum value. 769 /// *p = (old u>= v) ? 0 : (old + 1) 770 UIncWrap, 771 772 /// Decrement one until a minimum value or zero. 773 /// *p = ((old == 0) || (old u> v)) ? v : (old - 1) 774 UDecWrap, 775 776 FIRST_BINOP = Xchg, 777 LAST_BINOP = UDecWrap, 778 BAD_BINOP 779 }; 780 781 private: 782 template <unsigned Offset> 783 using AtomicOrderingBitfieldElement = 784 typename Bitfield::Element<AtomicOrdering, Offset, 3, 785 AtomicOrdering::LAST>; 786 787 template <unsigned Offset> 788 using BinOpBitfieldElement = 789 typename Bitfield::Element<BinOp, Offset, 5, BinOp::LAST_BINOP>; 790 791 public: 792 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, 793 AtomicOrdering Ordering, SyncScope::ID SSID, 794 Instruction *InsertBefore = nullptr); 795 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, 796 AtomicOrdering Ordering, SyncScope::ID SSID, 797 BasicBlock *InsertAtEnd); 798 799 // allocate space for exactly two operands 800 void *operator new(size_t S) { return User::operator new(S, 2); } 801 void operator delete(void *Ptr) { User::operator delete(Ptr); } 802 803 using VolatileField = BoolBitfieldElementT<0>; 804 using AtomicOrderingField = 805 AtomicOrderingBitfieldElementT<VolatileField::NextBit>; 806 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; 807 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; 808 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, 809 OperationField, AlignmentField>(), 810 "Bitfields must be contiguous"); 811 812 BinOp getOperation() const { return getSubclassData<OperationField>(); } 813 814 static StringRef getOperationName(BinOp Op); 815 816 static bool isFPOperation(BinOp Op) { 817 switch (Op) { 818 case AtomicRMWInst::FAdd: 819 case AtomicRMWInst::FSub: 820 case AtomicRMWInst::FMax: 821 case AtomicRMWInst::FMin: 822 return true; 823 default: 824 return false; 825 } 826 } 827 828 void setOperation(BinOp Operation) { 829 setSubclassData<OperationField>(Operation); 830 } 831 832 /// Return the alignment of the memory that is being allocated by the 833 /// instruction. 834 Align getAlign() const { 835 return Align(1ULL << getSubclassData<AlignmentField>()); 836 } 837 838 void setAlignment(Align Align) { 839 setSubclassData<AlignmentField>(Log2(Align)); 840 } 841 842 /// Return true if this is a RMW on a volatile memory location. 843 /// 844 bool isVolatile() const { return getSubclassData<VolatileField>(); } 845 846 /// Specify whether this is a volatile RMW or not. 847 /// 848 void setVolatile(bool V) { setSubclassData<VolatileField>(V); } 849 850 /// Transparently provide more efficient getOperand methods. 851 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 852 853 /// Returns the ordering constraint of this rmw instruction. 854 AtomicOrdering getOrdering() const { 855 return getSubclassData<AtomicOrderingField>(); 856 } 857 858 /// Sets the ordering constraint of this rmw instruction. 859 void setOrdering(AtomicOrdering Ordering) { 860 assert(Ordering != AtomicOrdering::NotAtomic && 861 "atomicrmw instructions can only be atomic."); 862 assert(Ordering != AtomicOrdering::Unordered && 863 "atomicrmw instructions cannot be unordered."); 864 setSubclassData<AtomicOrderingField>(Ordering); 865 } 866 867 /// Returns the synchronization scope ID of this rmw instruction. 868 SyncScope::ID getSyncScopeID() const { 869 return SSID; 870 } 871 872 /// Sets the synchronization scope ID of this rmw instruction. 873 void setSyncScopeID(SyncScope::ID SSID) { 874 this->SSID = SSID; 875 } 876 877 Value *getPointerOperand() { return getOperand(0); } 878 const Value *getPointerOperand() const { return getOperand(0); } 879 static unsigned getPointerOperandIndex() { return 0U; } 880 881 Value *getValOperand() { return getOperand(1); } 882 const Value *getValOperand() const { return getOperand(1); } 883 884 /// Returns the address space of the pointer operand. 885 unsigned getPointerAddressSpace() const { 886 return getPointerOperand()->getType()->getPointerAddressSpace(); 887 } 888 889 bool isFloatingPointOperation() const { 890 return isFPOperation(getOperation()); 891 } 892 893 // Methods for support type inquiry through isa, cast, and dyn_cast: 894 static bool classof(const Instruction *I) { 895 return I->getOpcode() == Instruction::AtomicRMW; 896 } 897 static bool classof(const Value *V) { 898 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 899 } 900 901 private: 902 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, 903 AtomicOrdering Ordering, SyncScope::ID SSID); 904 905 // Shadow Instruction::setInstructionSubclassData with a private forwarding 906 // method so that subclasses cannot accidentally use it. 907 template <typename Bitfield> 908 void setSubclassData(typename Bitfield::Type Value) { 909 Instruction::setSubclassData<Bitfield>(Value); 910 } 911 912 /// The synchronization scope ID of this rmw instruction. Not quite enough 913 /// room in SubClassData for everything, so synchronization scope ID gets its 914 /// own field. 915 SyncScope::ID SSID; 916 }; 917 918 template <> 919 struct OperandTraits<AtomicRMWInst> 920 : public FixedNumOperandTraits<AtomicRMWInst,2> { 921 }; 922 923 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value) 924 925 //===----------------------------------------------------------------------===// 926 // GetElementPtrInst Class 927 //===----------------------------------------------------------------------===// 928 929 // checkGEPType - Simple wrapper function to give a better assertion failure 930 // message on bad indexes for a gep instruction. 931 // 932 inline Type *checkGEPType(Type *Ty) { 933 assert(Ty && "Invalid GetElementPtrInst indices for type!"); 934 return Ty; 935 } 936 937 /// an instruction for type-safe pointer arithmetic to 938 /// access elements of arrays and structs 939 /// 940 class GetElementPtrInst : public Instruction { 941 Type *SourceElementType; 942 Type *ResultElementType; 943 944 GetElementPtrInst(const GetElementPtrInst &GEPI); 945 946 /// Constructors - Create a getelementptr instruction with a base pointer an 947 /// list of indices. The first ctor can optionally insert before an existing 948 /// instruction, the second appends the new instruction to the specified 949 /// BasicBlock. 950 inline GetElementPtrInst(Type *PointeeType, Value *Ptr, 951 ArrayRef<Value *> IdxList, unsigned Values, 952 const Twine &NameStr, Instruction *InsertBefore); 953 inline GetElementPtrInst(Type *PointeeType, Value *Ptr, 954 ArrayRef<Value *> IdxList, unsigned Values, 955 const Twine &NameStr, BasicBlock *InsertAtEnd); 956 957 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); 958 959 protected: 960 // Note: Instruction needs to be a friend here to call cloneImpl. 961 friend class Instruction; 962 963 GetElementPtrInst *cloneImpl() const; 964 965 public: 966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, 967 ArrayRef<Value *> IdxList, 968 const Twine &NameStr = "", 969 Instruction *InsertBefore = nullptr) { 970 unsigned Values = 1 + unsigned(IdxList.size()); 971 assert(PointeeType && "Must specify element type"); 972 assert(cast<PointerType>(Ptr->getType()->getScalarType()) 973 ->isOpaqueOrPointeeTypeMatches(PointeeType)); 974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, 975 NameStr, InsertBefore); 976 } 977 978 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, 979 ArrayRef<Value *> IdxList, 980 const Twine &NameStr, 981 BasicBlock *InsertAtEnd) { 982 unsigned Values = 1 + unsigned(IdxList.size()); 983 assert(PointeeType && "Must specify element type"); 984 assert(cast<PointerType>(Ptr->getType()->getScalarType()) 985 ->isOpaqueOrPointeeTypeMatches(PointeeType)); 986 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, 987 NameStr, InsertAtEnd); 988 } 989 990 /// Create an "inbounds" getelementptr. See the documentation for the 991 /// "inbounds" flag in LangRef.html for details. 992 static GetElementPtrInst * 993 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, 994 const Twine &NameStr = "", 995 Instruction *InsertBefore = nullptr) { 996 GetElementPtrInst *GEP = 997 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); 998 GEP->setIsInBounds(true); 999 return GEP; 1000 } 1001 1002 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, 1003 ArrayRef<Value *> IdxList, 1004 const Twine &NameStr, 1005 BasicBlock *InsertAtEnd) { 1006 GetElementPtrInst *GEP = 1007 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); 1008 GEP->setIsInBounds(true); 1009 return GEP; 1010 } 1011 1012 /// Transparently provide more efficient getOperand methods. 1013 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1014 1015 Type *getSourceElementType() const { return SourceElementType; } 1016 1017 void setSourceElementType(Type *Ty) { SourceElementType = Ty; } 1018 void setResultElementType(Type *Ty) { ResultElementType = Ty; } 1019 1020 Type *getResultElementType() const { 1021 assert(cast<PointerType>(getType()->getScalarType()) 1022 ->isOpaqueOrPointeeTypeMatches(ResultElementType)); 1023 return ResultElementType; 1024 } 1025 1026 /// Returns the address space of this instruction's pointer type. 1027 unsigned getAddressSpace() const { 1028 // Note that this is always the same as the pointer operand's address space 1029 // and that is cheaper to compute, so cheat here. 1030 return getPointerAddressSpace(); 1031 } 1032 1033 /// Returns the result type of a getelementptr with the given source 1034 /// element type and indexes. 1035 /// 1036 /// Null is returned if the indices are invalid for the specified 1037 /// source element type. 1038 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); 1039 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); 1040 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); 1041 1042 /// Return the type of the element at the given index of an indexable 1043 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". 1044 /// 1045 /// Returns null if the type can't be indexed, or the given index is not 1046 /// legal for the given type. 1047 static Type *getTypeAtIndex(Type *Ty, Value *Idx); 1048 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); 1049 1050 inline op_iterator idx_begin() { return op_begin()+1; } 1051 inline const_op_iterator idx_begin() const { return op_begin()+1; } 1052 inline op_iterator idx_end() { return op_end(); } 1053 inline const_op_iterator idx_end() const { return op_end(); } 1054 1055 inline iterator_range<op_iterator> indices() { 1056 return make_range(idx_begin(), idx_end()); 1057 } 1058 1059 inline iterator_range<const_op_iterator> indices() const { 1060 return make_range(idx_begin(), idx_end()); 1061 } 1062 1063 Value *getPointerOperand() { 1064 return getOperand(0); 1065 } 1066 const Value *getPointerOperand() const { 1067 return getOperand(0); 1068 } 1069 static unsigned getPointerOperandIndex() { 1070 return 0U; // get index for modifying correct operand. 1071 } 1072 1073 /// Method to return the pointer operand as a 1074 /// PointerType. 1075 Type *getPointerOperandType() const { 1076 return getPointerOperand()->getType(); 1077 } 1078 1079 /// Returns the address space of the pointer operand. 1080 unsigned getPointerAddressSpace() const { 1081 return getPointerOperandType()->getPointerAddressSpace(); 1082 } 1083 1084 /// Returns the pointer type returned by the GEP 1085 /// instruction, which may be a vector of pointers. 1086 static Type *getGEPReturnType(Type *ElTy, Value *Ptr, 1087 ArrayRef<Value *> IdxList) { 1088 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); 1089 unsigned AddrSpace = OrigPtrTy->getAddressSpace(); 1090 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); 1091 Type *PtrTy = OrigPtrTy->isOpaque() 1092 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) 1093 : PointerType::get(ResultElemTy, AddrSpace); 1094 // Vector GEP 1095 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { 1096 ElementCount EltCount = PtrVTy->getElementCount(); 1097 return VectorType::get(PtrTy, EltCount); 1098 } 1099 for (Value *Index : IdxList) 1100 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { 1101 ElementCount EltCount = IndexVTy->getElementCount(); 1102 return VectorType::get(PtrTy, EltCount); 1103 } 1104 // Scalar GEP 1105 return PtrTy; 1106 } 1107 1108 unsigned getNumIndices() const { // Note: always non-negative 1109 return getNumOperands() - 1; 1110 } 1111 1112 bool hasIndices() const { 1113 return getNumOperands() > 1; 1114 } 1115 1116 /// Return true if all of the indices of this GEP are 1117 /// zeros. If so, the result pointer and the first operand have the same 1118 /// value, just potentially different types. 1119 bool hasAllZeroIndices() const; 1120 1121 /// Return true if all of the indices of this GEP are 1122 /// constant integers. If so, the result pointer and the first operand have 1123 /// a constant offset between them. 1124 bool hasAllConstantIndices() const; 1125 1126 /// Set or clear the inbounds flag on this GEP instruction. 1127 /// See LangRef.html for the meaning of inbounds on a getelementptr. 1128 void setIsInBounds(bool b = true); 1129 1130 /// Determine whether the GEP has the inbounds flag. 1131 bool isInBounds() const; 1132 1133 /// Accumulate the constant address offset of this GEP if possible. 1134 /// 1135 /// This routine accepts an APInt into which it will accumulate the constant 1136 /// offset of this GEP if the GEP is in fact constant. If the GEP is not 1137 /// all-constant, it returns false and the value of the offset APInt is 1138 /// undefined (it is *not* preserved!). The APInt passed into this routine 1139 /// must be at least as wide as the IntPtr type for the address space of 1140 /// the base GEP pointer. 1141 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; 1142 bool collectOffset(const DataLayout &DL, unsigned BitWidth, 1143 MapVector<Value *, APInt> &VariableOffsets, 1144 APInt &ConstantOffset) const; 1145 // Methods for support type inquiry through isa, cast, and dyn_cast: 1146 static bool classof(const Instruction *I) { 1147 return (I->getOpcode() == Instruction::GetElementPtr); 1148 } 1149 static bool classof(const Value *V) { 1150 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1151 } 1152 }; 1153 1154 template <> 1155 struct OperandTraits<GetElementPtrInst> : 1156 public VariadicOperandTraits<GetElementPtrInst, 1> { 1157 }; 1158 1159 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, 1160 ArrayRef<Value *> IdxList, unsigned Values, 1161 const Twine &NameStr, 1162 Instruction *InsertBefore) 1163 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, 1164 OperandTraits<GetElementPtrInst>::op_end(this) - Values, 1165 Values, InsertBefore), 1166 SourceElementType(PointeeType), 1167 ResultElementType(getIndexedType(PointeeType, IdxList)) { 1168 assert(cast<PointerType>(getType()->getScalarType()) 1169 ->isOpaqueOrPointeeTypeMatches(ResultElementType)); 1170 init(Ptr, IdxList, NameStr); 1171 } 1172 1173 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, 1174 ArrayRef<Value *> IdxList, unsigned Values, 1175 const Twine &NameStr, 1176 BasicBlock *InsertAtEnd) 1177 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, 1178 OperandTraits<GetElementPtrInst>::op_end(this) - Values, 1179 Values, InsertAtEnd), 1180 SourceElementType(PointeeType), 1181 ResultElementType(getIndexedType(PointeeType, IdxList)) { 1182 assert(cast<PointerType>(getType()->getScalarType()) 1183 ->isOpaqueOrPointeeTypeMatches(ResultElementType)); 1184 init(Ptr, IdxList, NameStr); 1185 } 1186 1187 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) 1188 1189 //===----------------------------------------------------------------------===// 1190 // ICmpInst Class 1191 //===----------------------------------------------------------------------===// 1192 1193 /// This instruction compares its operands according to the predicate given 1194 /// to the constructor. It only operates on integers or pointers. The operands 1195 /// must be identical types. 1196 /// Represent an integer comparison operator. 1197 class ICmpInst: public CmpInst { 1198 void AssertOK() { 1199 assert(isIntPredicate() && 1200 "Invalid ICmp predicate value"); 1201 assert(getOperand(0)->getType() == getOperand(1)->getType() && 1202 "Both operands to ICmp instruction are not of the same type!"); 1203 // Check that the operands are the right type 1204 assert((getOperand(0)->getType()->isIntOrIntVectorTy() || 1205 getOperand(0)->getType()->isPtrOrPtrVectorTy()) && 1206 "Invalid operand types for ICmp instruction"); 1207 } 1208 1209 protected: 1210 // Note: Instruction needs to be a friend here to call cloneImpl. 1211 friend class Instruction; 1212 1213 /// Clone an identical ICmpInst 1214 ICmpInst *cloneImpl() const; 1215 1216 public: 1217 /// Constructor with insert-before-instruction semantics. 1218 ICmpInst( 1219 Instruction *InsertBefore, ///< Where to insert 1220 Predicate pred, ///< The predicate to use for the comparison 1221 Value *LHS, ///< The left-hand-side of the expression 1222 Value *RHS, ///< The right-hand-side of the expression 1223 const Twine &NameStr = "" ///< Name of the instruction 1224 ) : CmpInst(makeCmpResultType(LHS->getType()), 1225 Instruction::ICmp, pred, LHS, RHS, NameStr, 1226 InsertBefore) { 1227 #ifndef NDEBUG 1228 AssertOK(); 1229 #endif 1230 } 1231 1232 /// Constructor with insert-at-end semantics. 1233 ICmpInst( 1234 BasicBlock &InsertAtEnd, ///< Block to insert into. 1235 Predicate pred, ///< The predicate to use for the comparison 1236 Value *LHS, ///< The left-hand-side of the expression 1237 Value *RHS, ///< The right-hand-side of the expression 1238 const Twine &NameStr = "" ///< Name of the instruction 1239 ) : CmpInst(makeCmpResultType(LHS->getType()), 1240 Instruction::ICmp, pred, LHS, RHS, NameStr, 1241 &InsertAtEnd) { 1242 #ifndef NDEBUG 1243 AssertOK(); 1244 #endif 1245 } 1246 1247 /// Constructor with no-insertion semantics 1248 ICmpInst( 1249 Predicate pred, ///< The predicate to use for the comparison 1250 Value *LHS, ///< The left-hand-side of the expression 1251 Value *RHS, ///< The right-hand-side of the expression 1252 const Twine &NameStr = "" ///< Name of the instruction 1253 ) : CmpInst(makeCmpResultType(LHS->getType()), 1254 Instruction::ICmp, pred, LHS, RHS, NameStr) { 1255 #ifndef NDEBUG 1256 AssertOK(); 1257 #endif 1258 } 1259 1260 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. 1261 /// @returns the predicate that would be the result if the operand were 1262 /// regarded as signed. 1263 /// Return the signed version of the predicate 1264 Predicate getSignedPredicate() const { 1265 return getSignedPredicate(getPredicate()); 1266 } 1267 1268 /// This is a static version that you can use without an instruction. 1269 /// Return the signed version of the predicate. 1270 static Predicate getSignedPredicate(Predicate pred); 1271 1272 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. 1273 /// @returns the predicate that would be the result if the operand were 1274 /// regarded as unsigned. 1275 /// Return the unsigned version of the predicate 1276 Predicate getUnsignedPredicate() const { 1277 return getUnsignedPredicate(getPredicate()); 1278 } 1279 1280 /// This is a static version that you can use without an instruction. 1281 /// Return the unsigned version of the predicate. 1282 static Predicate getUnsignedPredicate(Predicate pred); 1283 1284 /// Return true if this predicate is either EQ or NE. This also 1285 /// tests for commutativity. 1286 static bool isEquality(Predicate P) { 1287 return P == ICMP_EQ || P == ICMP_NE; 1288 } 1289 1290 /// Return true if this predicate is either EQ or NE. This also 1291 /// tests for commutativity. 1292 bool isEquality() const { 1293 return isEquality(getPredicate()); 1294 } 1295 1296 /// @returns true if the predicate of this ICmpInst is commutative 1297 /// Determine if this relation is commutative. 1298 bool isCommutative() const { return isEquality(); } 1299 1300 /// Return true if the predicate is relational (not EQ or NE). 1301 /// 1302 bool isRelational() const { 1303 return !isEquality(); 1304 } 1305 1306 /// Return true if the predicate is relational (not EQ or NE). 1307 /// 1308 static bool isRelational(Predicate P) { 1309 return !isEquality(P); 1310 } 1311 1312 /// Return true if the predicate is SGT or UGT. 1313 /// 1314 static bool isGT(Predicate P) { 1315 return P == ICMP_SGT || P == ICMP_UGT; 1316 } 1317 1318 /// Return true if the predicate is SLT or ULT. 1319 /// 1320 static bool isLT(Predicate P) { 1321 return P == ICMP_SLT || P == ICMP_ULT; 1322 } 1323 1324 /// Return true if the predicate is SGE or UGE. 1325 /// 1326 static bool isGE(Predicate P) { 1327 return P == ICMP_SGE || P == ICMP_UGE; 1328 } 1329 1330 /// Return true if the predicate is SLE or ULE. 1331 /// 1332 static bool isLE(Predicate P) { 1333 return P == ICMP_SLE || P == ICMP_ULE; 1334 } 1335 1336 /// Returns the sequence of all ICmp predicates. 1337 /// 1338 static auto predicates() { return ICmpPredicates(); } 1339 1340 /// Exchange the two operands to this instruction in such a way that it does 1341 /// not modify the semantics of the instruction. The predicate value may be 1342 /// changed to retain the same result if the predicate is order dependent 1343 /// (e.g. ult). 1344 /// Swap operands and adjust predicate. 1345 void swapOperands() { 1346 setPredicate(getSwappedPredicate()); 1347 Op<0>().swap(Op<1>()); 1348 } 1349 1350 /// Return result of `LHS Pred RHS` comparison. 1351 static bool compare(const APInt &LHS, const APInt &RHS, 1352 ICmpInst::Predicate Pred); 1353 1354 // Methods for support type inquiry through isa, cast, and dyn_cast: 1355 static bool classof(const Instruction *I) { 1356 return I->getOpcode() == Instruction::ICmp; 1357 } 1358 static bool classof(const Value *V) { 1359 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1360 } 1361 }; 1362 1363 //===----------------------------------------------------------------------===// 1364 // FCmpInst Class 1365 //===----------------------------------------------------------------------===// 1366 1367 /// This instruction compares its operands according to the predicate given 1368 /// to the constructor. It only operates on floating point values or packed 1369 /// vectors of floating point values. The operands must be identical types. 1370 /// Represents a floating point comparison operator. 1371 class FCmpInst: public CmpInst { 1372 void AssertOK() { 1373 assert(isFPPredicate() && "Invalid FCmp predicate value"); 1374 assert(getOperand(0)->getType() == getOperand(1)->getType() && 1375 "Both operands to FCmp instruction are not of the same type!"); 1376 // Check that the operands are the right type 1377 assert(getOperand(0)->getType()->isFPOrFPVectorTy() && 1378 "Invalid operand types for FCmp instruction"); 1379 } 1380 1381 protected: 1382 // Note: Instruction needs to be a friend here to call cloneImpl. 1383 friend class Instruction; 1384 1385 /// Clone an identical FCmpInst 1386 FCmpInst *cloneImpl() const; 1387 1388 public: 1389 /// Constructor with insert-before-instruction semantics. 1390 FCmpInst( 1391 Instruction *InsertBefore, ///< Where to insert 1392 Predicate pred, ///< The predicate to use for the comparison 1393 Value *LHS, ///< The left-hand-side of the expression 1394 Value *RHS, ///< The right-hand-side of the expression 1395 const Twine &NameStr = "" ///< Name of the instruction 1396 ) : CmpInst(makeCmpResultType(LHS->getType()), 1397 Instruction::FCmp, pred, LHS, RHS, NameStr, 1398 InsertBefore) { 1399 AssertOK(); 1400 } 1401 1402 /// Constructor with insert-at-end semantics. 1403 FCmpInst( 1404 BasicBlock &InsertAtEnd, ///< Block to insert into. 1405 Predicate pred, ///< The predicate to use for the comparison 1406 Value *LHS, ///< The left-hand-side of the expression 1407 Value *RHS, ///< The right-hand-side of the expression 1408 const Twine &NameStr = "" ///< Name of the instruction 1409 ) : CmpInst(makeCmpResultType(LHS->getType()), 1410 Instruction::FCmp, pred, LHS, RHS, NameStr, 1411 &InsertAtEnd) { 1412 AssertOK(); 1413 } 1414 1415 /// Constructor with no-insertion semantics 1416 FCmpInst( 1417 Predicate Pred, ///< The predicate to use for the comparison 1418 Value *LHS, ///< The left-hand-side of the expression 1419 Value *RHS, ///< The right-hand-side of the expression 1420 const Twine &NameStr = "", ///< Name of the instruction 1421 Instruction *FlagsSource = nullptr 1422 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, 1423 RHS, NameStr, nullptr, FlagsSource) { 1424 AssertOK(); 1425 } 1426 1427 /// @returns true if the predicate of this instruction is EQ or NE. 1428 /// Determine if this is an equality predicate. 1429 static bool isEquality(Predicate Pred) { 1430 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || 1431 Pred == FCMP_UNE; 1432 } 1433 1434 /// @returns true if the predicate of this instruction is EQ or NE. 1435 /// Determine if this is an equality predicate. 1436 bool isEquality() const { return isEquality(getPredicate()); } 1437 1438 /// @returns true if the predicate of this instruction is commutative. 1439 /// Determine if this is a commutative predicate. 1440 bool isCommutative() const { 1441 return isEquality() || 1442 getPredicate() == FCMP_FALSE || 1443 getPredicate() == FCMP_TRUE || 1444 getPredicate() == FCMP_ORD || 1445 getPredicate() == FCMP_UNO; 1446 } 1447 1448 /// @returns true if the predicate is relational (not EQ or NE). 1449 /// Determine if this a relational predicate. 1450 bool isRelational() const { return !isEquality(); } 1451 1452 /// Exchange the two operands to this instruction in such a way that it does 1453 /// not modify the semantics of the instruction. The predicate value may be 1454 /// changed to retain the same result if the predicate is order dependent 1455 /// (e.g. ult). 1456 /// Swap operands and adjust predicate. 1457 void swapOperands() { 1458 setPredicate(getSwappedPredicate()); 1459 Op<0>().swap(Op<1>()); 1460 } 1461 1462 /// Returns the sequence of all FCmp predicates. 1463 /// 1464 static auto predicates() { return FCmpPredicates(); } 1465 1466 /// Return result of `LHS Pred RHS` comparison. 1467 static bool compare(const APFloat &LHS, const APFloat &RHS, 1468 FCmpInst::Predicate Pred); 1469 1470 /// Methods for support type inquiry through isa, cast, and dyn_cast: 1471 static bool classof(const Instruction *I) { 1472 return I->getOpcode() == Instruction::FCmp; 1473 } 1474 static bool classof(const Value *V) { 1475 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1476 } 1477 }; 1478 1479 //===----------------------------------------------------------------------===// 1480 /// This class represents a function call, abstracting a target 1481 /// machine's calling convention. This class uses low bit of the SubClassData 1482 /// field to indicate whether or not this is a tail call. The rest of the bits 1483 /// hold the calling convention of the call. 1484 /// 1485 class CallInst : public CallBase { 1486 CallInst(const CallInst &CI); 1487 1488 /// Construct a CallInst given a range of arguments. 1489 /// Construct a CallInst from a range of arguments 1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1492 Instruction *InsertBefore); 1493 1494 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1495 const Twine &NameStr, Instruction *InsertBefore) 1496 : CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore) {} 1497 1498 /// Construct a CallInst given a range of arguments. 1499 /// Construct a CallInst from a range of arguments 1500 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1502 BasicBlock *InsertAtEnd); 1503 1504 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, 1505 Instruction *InsertBefore); 1506 1507 CallInst(FunctionType *ty, Value *F, const Twine &NameStr, 1508 BasicBlock *InsertAtEnd); 1509 1510 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 1511 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); 1512 void init(FunctionType *FTy, Value *Func, const Twine &NameStr); 1513 1514 /// Compute the number of operands to allocate. 1515 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { 1516 // We need one operand for the called function, plus the input operand 1517 // counts provided. 1518 return 1 + NumArgs + NumBundleInputs; 1519 } 1520 1521 protected: 1522 // Note: Instruction needs to be a friend here to call cloneImpl. 1523 friend class Instruction; 1524 1525 CallInst *cloneImpl() const; 1526 1527 public: 1528 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", 1529 Instruction *InsertBefore = nullptr) { 1530 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); 1531 } 1532 1533 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1534 const Twine &NameStr, 1535 Instruction *InsertBefore = nullptr) { 1536 return new (ComputeNumOperands(Args.size())) 1537 CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore); 1538 } 1539 1540 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1541 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 1542 const Twine &NameStr = "", 1543 Instruction *InsertBefore = nullptr) { 1544 const int NumOperands = 1545 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); 1546 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 1547 1548 return new (NumOperands, DescriptorBytes) 1549 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); 1550 } 1551 1552 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, 1553 BasicBlock *InsertAtEnd) { 1554 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); 1555 } 1556 1557 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1558 const Twine &NameStr, BasicBlock *InsertAtEnd) { 1559 return new (ComputeNumOperands(Args.size())) 1560 CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertAtEnd); 1561 } 1562 1563 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1564 ArrayRef<OperandBundleDef> Bundles, 1565 const Twine &NameStr, BasicBlock *InsertAtEnd) { 1566 const int NumOperands = 1567 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); 1568 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 1569 1570 return new (NumOperands, DescriptorBytes) 1571 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); 1572 } 1573 1574 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", 1575 Instruction *InsertBefore = nullptr) { 1576 return Create(Func.getFunctionType(), Func.getCallee(), NameStr, 1577 InsertBefore); 1578 } 1579 1580 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, 1581 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 1582 const Twine &NameStr = "", 1583 Instruction *InsertBefore = nullptr) { 1584 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, 1585 NameStr, InsertBefore); 1586 } 1587 1588 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, 1589 const Twine &NameStr, 1590 Instruction *InsertBefore = nullptr) { 1591 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, 1592 InsertBefore); 1593 } 1594 1595 static CallInst *Create(FunctionCallee Func, const Twine &NameStr, 1596 BasicBlock *InsertAtEnd) { 1597 return Create(Func.getFunctionType(), Func.getCallee(), NameStr, 1598 InsertAtEnd); 1599 } 1600 1601 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, 1602 const Twine &NameStr, BasicBlock *InsertAtEnd) { 1603 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, 1604 InsertAtEnd); 1605 } 1606 1607 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, 1608 ArrayRef<OperandBundleDef> Bundles, 1609 const Twine &NameStr, BasicBlock *InsertAtEnd) { 1610 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, 1611 NameStr, InsertAtEnd); 1612 } 1613 1614 /// Create a clone of \p CI with a different set of operand bundles and 1615 /// insert it before \p InsertPt. 1616 /// 1617 /// The returned call instruction is identical \p CI in every way except that 1618 /// the operand bundles for the new instruction are set to the operand bundles 1619 /// in \p Bundles. 1620 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, 1621 Instruction *InsertPt = nullptr); 1622 1623 /// Generate the IR for a call to malloc: 1624 /// 1. Compute the malloc call's argument as the specified type's size, 1625 /// possibly multiplied by the array size if the array size is not 1626 /// constant 1. 1627 /// 2. Call malloc with that argument. 1628 /// 3. Bitcast the result of the malloc call to the specified type. 1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, 1630 Type *AllocTy, Value *AllocSize, 1631 Value *ArraySize = nullptr, 1632 Function *MallocF = nullptr, 1633 const Twine &Name = ""); 1634 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, 1635 Type *AllocTy, Value *AllocSize, 1636 Value *ArraySize = nullptr, 1637 Function *MallocF = nullptr, 1638 const Twine &Name = ""); 1639 static Instruction * 1640 CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, 1641 Value *AllocSize, Value *ArraySize = nullptr, 1642 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 1643 Function *MallocF = nullptr, const Twine &Name = ""); 1644 static Instruction * 1645 CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, 1646 Value *AllocSize, Value *ArraySize = nullptr, 1647 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 1648 Function *MallocF = nullptr, const Twine &Name = ""); 1649 /// Generate the IR for a call to the builtin free function. 1650 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); 1651 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); 1652 static Instruction *CreateFree(Value *Source, 1653 ArrayRef<OperandBundleDef> Bundles, 1654 Instruction *InsertBefore); 1655 static Instruction *CreateFree(Value *Source, 1656 ArrayRef<OperandBundleDef> Bundles, 1657 BasicBlock *InsertAtEnd); 1658 1659 // Note that 'musttail' implies 'tail'. 1660 enum TailCallKind : unsigned { 1661 TCK_None = 0, 1662 TCK_Tail = 1, 1663 TCK_MustTail = 2, 1664 TCK_NoTail = 3, 1665 TCK_LAST = TCK_NoTail 1666 }; 1667 1668 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; 1669 static_assert( 1670 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), 1671 "Bitfields must be contiguous"); 1672 1673 TailCallKind getTailCallKind() const { 1674 return getSubclassData<TailCallKindField>(); 1675 } 1676 1677 bool isTailCall() const { 1678 TailCallKind Kind = getTailCallKind(); 1679 return Kind == TCK_Tail || Kind == TCK_MustTail; 1680 } 1681 1682 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } 1683 1684 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } 1685 1686 void setTailCallKind(TailCallKind TCK) { 1687 setSubclassData<TailCallKindField>(TCK); 1688 } 1689 1690 void setTailCall(bool IsTc = true) { 1691 setTailCallKind(IsTc ? TCK_Tail : TCK_None); 1692 } 1693 1694 /// Return true if the call can return twice 1695 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } 1696 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); } 1697 1698 // Methods for support type inquiry through isa, cast, and dyn_cast: 1699 static bool classof(const Instruction *I) { 1700 return I->getOpcode() == Instruction::Call; 1701 } 1702 static bool classof(const Value *V) { 1703 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1704 } 1705 1706 /// Updates profile metadata by scaling it by \p S / \p T. 1707 void updateProfWeight(uint64_t S, uint64_t T); 1708 1709 private: 1710 // Shadow Instruction::setInstructionSubclassData with a private forwarding 1711 // method so that subclasses cannot accidentally use it. 1712 template <typename Bitfield> 1713 void setSubclassData(typename Bitfield::Type Value) { 1714 Instruction::setSubclassData<Bitfield>(Value); 1715 } 1716 }; 1717 1718 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1719 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1720 BasicBlock *InsertAtEnd) 1721 : CallBase(Ty->getReturnType(), Instruction::Call, 1722 OperandTraits<CallBase>::op_end(this) - 1723 (Args.size() + CountBundleInputs(Bundles) + 1), 1724 unsigned(Args.size() + CountBundleInputs(Bundles) + 1), 1725 InsertAtEnd) { 1726 init(Ty, Func, Args, Bundles, NameStr); 1727 } 1728 1729 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1730 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1731 Instruction *InsertBefore) 1732 : CallBase(Ty->getReturnType(), Instruction::Call, 1733 OperandTraits<CallBase>::op_end(this) - 1734 (Args.size() + CountBundleInputs(Bundles) + 1), 1735 unsigned(Args.size() + CountBundleInputs(Bundles) + 1), 1736 InsertBefore) { 1737 init(Ty, Func, Args, Bundles, NameStr); 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // SelectInst Class 1742 //===----------------------------------------------------------------------===// 1743 1744 /// This class represents the LLVM 'select' instruction. 1745 /// 1746 class SelectInst : public Instruction { 1747 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, 1748 Instruction *InsertBefore) 1749 : Instruction(S1->getType(), Instruction::Select, 1750 &Op<0>(), 3, InsertBefore) { 1751 init(C, S1, S2); 1752 setName(NameStr); 1753 } 1754 1755 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, 1756 BasicBlock *InsertAtEnd) 1757 : Instruction(S1->getType(), Instruction::Select, 1758 &Op<0>(), 3, InsertAtEnd) { 1759 init(C, S1, S2); 1760 setName(NameStr); 1761 } 1762 1763 void init(Value *C, Value *S1, Value *S2) { 1764 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); 1765 Op<0>() = C; 1766 Op<1>() = S1; 1767 Op<2>() = S2; 1768 } 1769 1770 protected: 1771 // Note: Instruction needs to be a friend here to call cloneImpl. 1772 friend class Instruction; 1773 1774 SelectInst *cloneImpl() const; 1775 1776 public: 1777 static SelectInst *Create(Value *C, Value *S1, Value *S2, 1778 const Twine &NameStr = "", 1779 Instruction *InsertBefore = nullptr, 1780 Instruction *MDFrom = nullptr) { 1781 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); 1782 if (MDFrom) 1783 Sel->copyMetadata(*MDFrom); 1784 return Sel; 1785 } 1786 1787 static SelectInst *Create(Value *C, Value *S1, Value *S2, 1788 const Twine &NameStr, 1789 BasicBlock *InsertAtEnd) { 1790 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); 1791 } 1792 1793 const Value *getCondition() const { return Op<0>(); } 1794 const Value *getTrueValue() const { return Op<1>(); } 1795 const Value *getFalseValue() const { return Op<2>(); } 1796 Value *getCondition() { return Op<0>(); } 1797 Value *getTrueValue() { return Op<1>(); } 1798 Value *getFalseValue() { return Op<2>(); } 1799 1800 void setCondition(Value *V) { Op<0>() = V; } 1801 void setTrueValue(Value *V) { Op<1>() = V; } 1802 void setFalseValue(Value *V) { Op<2>() = V; } 1803 1804 /// Swap the true and false values of the select instruction. 1805 /// This doesn't swap prof metadata. 1806 void swapValues() { Op<1>().swap(Op<2>()); } 1807 1808 /// Return a string if the specified operands are invalid 1809 /// for a select operation, otherwise return null. 1810 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); 1811 1812 /// Transparently provide more efficient getOperand methods. 1813 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1814 1815 OtherOps getOpcode() const { 1816 return static_cast<OtherOps>(Instruction::getOpcode()); 1817 } 1818 1819 // Methods for support type inquiry through isa, cast, and dyn_cast: 1820 static bool classof(const Instruction *I) { 1821 return I->getOpcode() == Instruction::Select; 1822 } 1823 static bool classof(const Value *V) { 1824 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1825 } 1826 }; 1827 1828 template <> 1829 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { 1830 }; 1831 1832 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) 1833 1834 //===----------------------------------------------------------------------===// 1835 // VAArgInst Class 1836 //===----------------------------------------------------------------------===// 1837 1838 /// This class represents the va_arg llvm instruction, which returns 1839 /// an argument of the specified type given a va_list and increments that list 1840 /// 1841 class VAArgInst : public UnaryInstruction { 1842 protected: 1843 // Note: Instruction needs to be a friend here to call cloneImpl. 1844 friend class Instruction; 1845 1846 VAArgInst *cloneImpl() const; 1847 1848 public: 1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", 1850 Instruction *InsertBefore = nullptr) 1851 : UnaryInstruction(Ty, VAArg, List, InsertBefore) { 1852 setName(NameStr); 1853 } 1854 1855 VAArgInst(Value *List, Type *Ty, const Twine &NameStr, 1856 BasicBlock *InsertAtEnd) 1857 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { 1858 setName(NameStr); 1859 } 1860 1861 Value *getPointerOperand() { return getOperand(0); } 1862 const Value *getPointerOperand() const { return getOperand(0); } 1863 static unsigned getPointerOperandIndex() { return 0U; } 1864 1865 // Methods for support type inquiry through isa, cast, and dyn_cast: 1866 static bool classof(const Instruction *I) { 1867 return I->getOpcode() == VAArg; 1868 } 1869 static bool classof(const Value *V) { 1870 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1871 } 1872 }; 1873 1874 //===----------------------------------------------------------------------===// 1875 // ExtractElementInst Class 1876 //===----------------------------------------------------------------------===// 1877 1878 /// This instruction extracts a single (scalar) 1879 /// element from a VectorType value 1880 /// 1881 class ExtractElementInst : public Instruction { 1882 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", 1883 Instruction *InsertBefore = nullptr); 1884 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, 1885 BasicBlock *InsertAtEnd); 1886 1887 protected: 1888 // Note: Instruction needs to be a friend here to call cloneImpl. 1889 friend class Instruction; 1890 1891 ExtractElementInst *cloneImpl() const; 1892 1893 public: 1894 static ExtractElementInst *Create(Value *Vec, Value *Idx, 1895 const Twine &NameStr = "", 1896 Instruction *InsertBefore = nullptr) { 1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); 1898 } 1899 1900 static ExtractElementInst *Create(Value *Vec, Value *Idx, 1901 const Twine &NameStr, 1902 BasicBlock *InsertAtEnd) { 1903 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); 1904 } 1905 1906 /// Return true if an extractelement instruction can be 1907 /// formed with the specified operands. 1908 static bool isValidOperands(const Value *Vec, const Value *Idx); 1909 1910 Value *getVectorOperand() { return Op<0>(); } 1911 Value *getIndexOperand() { return Op<1>(); } 1912 const Value *getVectorOperand() const { return Op<0>(); } 1913 const Value *getIndexOperand() const { return Op<1>(); } 1914 1915 VectorType *getVectorOperandType() const { 1916 return cast<VectorType>(getVectorOperand()->getType()); 1917 } 1918 1919 /// Transparently provide more efficient getOperand methods. 1920 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1921 1922 // Methods for support type inquiry through isa, cast, and dyn_cast: 1923 static bool classof(const Instruction *I) { 1924 return I->getOpcode() == Instruction::ExtractElement; 1925 } 1926 static bool classof(const Value *V) { 1927 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1928 } 1929 }; 1930 1931 template <> 1932 struct OperandTraits<ExtractElementInst> : 1933 public FixedNumOperandTraits<ExtractElementInst, 2> { 1934 }; 1935 1936 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) 1937 1938 //===----------------------------------------------------------------------===// 1939 // InsertElementInst Class 1940 //===----------------------------------------------------------------------===// 1941 1942 /// This instruction inserts a single (scalar) 1943 /// element into a VectorType value 1944 /// 1945 class InsertElementInst : public Instruction { 1946 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, 1947 const Twine &NameStr = "", 1948 Instruction *InsertBefore = nullptr); 1949 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, 1950 BasicBlock *InsertAtEnd); 1951 1952 protected: 1953 // Note: Instruction needs to be a friend here to call cloneImpl. 1954 friend class Instruction; 1955 1956 InsertElementInst *cloneImpl() const; 1957 1958 public: 1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, 1960 const Twine &NameStr = "", 1961 Instruction *InsertBefore = nullptr) { 1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); 1963 } 1964 1965 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, 1966 const Twine &NameStr, 1967 BasicBlock *InsertAtEnd) { 1968 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); 1969 } 1970 1971 /// Return true if an insertelement instruction can be 1972 /// formed with the specified operands. 1973 static bool isValidOperands(const Value *Vec, const Value *NewElt, 1974 const Value *Idx); 1975 1976 /// Overload to return most specific vector type. 1977 /// 1978 VectorType *getType() const { 1979 return cast<VectorType>(Instruction::getType()); 1980 } 1981 1982 /// Transparently provide more efficient getOperand methods. 1983 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1984 1985 // Methods for support type inquiry through isa, cast, and dyn_cast: 1986 static bool classof(const Instruction *I) { 1987 return I->getOpcode() == Instruction::InsertElement; 1988 } 1989 static bool classof(const Value *V) { 1990 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1991 } 1992 }; 1993 1994 template <> 1995 struct OperandTraits<InsertElementInst> : 1996 public FixedNumOperandTraits<InsertElementInst, 3> { 1997 }; 1998 1999 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) 2000 2001 //===----------------------------------------------------------------------===// 2002 // ShuffleVectorInst Class 2003 //===----------------------------------------------------------------------===// 2004 2005 constexpr int UndefMaskElem = -1; 2006 2007 /// This instruction constructs a fixed permutation of two 2008 /// input vectors. 2009 /// 2010 /// For each element of the result vector, the shuffle mask selects an element 2011 /// from one of the input vectors to copy to the result. Non-negative elements 2012 /// in the mask represent an index into the concatenated pair of input vectors. 2013 /// UndefMaskElem (-1) specifies that the result element is undefined. 2014 /// 2015 /// For scalable vectors, all the elements of the mask must be 0 or -1. This 2016 /// requirement may be relaxed in the future. 2017 class ShuffleVectorInst : public Instruction { 2018 SmallVector<int, 4> ShuffleMask; 2019 Constant *ShuffleMaskForBitcode; 2020 2021 protected: 2022 // Note: Instruction needs to be a friend here to call cloneImpl. 2023 friend class Instruction; 2024 2025 ShuffleVectorInst *cloneImpl() const; 2026 2027 public: 2028 ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "", 2029 Instruction *InsertBefore = nullptr); 2030 ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr, 2031 BasicBlock *InsertAtEnd); 2032 ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "", 2033 Instruction *InsertBefore = nullptr); 2034 ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr, 2035 BasicBlock *InsertAtEnd); 2036 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 2037 const Twine &NameStr = "", 2038 Instruction *InsertBefor = nullptr); 2039 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 2040 const Twine &NameStr, BasicBlock *InsertAtEnd); 2041 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 2042 const Twine &NameStr = "", 2043 Instruction *InsertBefor = nullptr); 2044 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, 2045 const Twine &NameStr, BasicBlock *InsertAtEnd); 2046 2047 void *operator new(size_t S) { return User::operator new(S, 2); } 2048 void operator delete(void *Ptr) { return User::operator delete(Ptr); } 2049 2050 /// Swap the operands and adjust the mask to preserve the semantics 2051 /// of the instruction. 2052 void commute(); 2053 2054 /// Return true if a shufflevector instruction can be 2055 /// formed with the specified operands. 2056 static bool isValidOperands(const Value *V1, const Value *V2, 2057 const Value *Mask); 2058 static bool isValidOperands(const Value *V1, const Value *V2, 2059 ArrayRef<int> Mask); 2060 2061 /// Overload to return most specific vector type. 2062 /// 2063 VectorType *getType() const { 2064 return cast<VectorType>(Instruction::getType()); 2065 } 2066 2067 /// Transparently provide more efficient getOperand methods. 2068 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2069 2070 /// Return the shuffle mask value of this instruction for the given element 2071 /// index. Return UndefMaskElem if the element is undef. 2072 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } 2073 2074 /// Convert the input shuffle mask operand to a vector of integers. Undefined 2075 /// elements of the mask are returned as UndefMaskElem. 2076 static void getShuffleMask(const Constant *Mask, 2077 SmallVectorImpl<int> &Result); 2078 2079 /// Return the mask for this instruction as a vector of integers. Undefined 2080 /// elements of the mask are returned as UndefMaskElem. 2081 void getShuffleMask(SmallVectorImpl<int> &Result) const { 2082 Result.assign(ShuffleMask.begin(), ShuffleMask.end()); 2083 } 2084 2085 /// Return the mask for this instruction, for use in bitcode. 2086 /// 2087 /// TODO: This is temporary until we decide a new bitcode encoding for 2088 /// shufflevector. 2089 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } 2090 2091 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, 2092 Type *ResultTy); 2093 2094 void setShuffleMask(ArrayRef<int> Mask); 2095 2096 ArrayRef<int> getShuffleMask() const { return ShuffleMask; } 2097 2098 /// Return true if this shuffle returns a vector with a different number of 2099 /// elements than its source vectors. 2100 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> 2101 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> 2102 bool changesLength() const { 2103 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) 2104 ->getElementCount() 2105 .getKnownMinValue(); 2106 unsigned NumMaskElts = ShuffleMask.size(); 2107 return NumSourceElts != NumMaskElts; 2108 } 2109 2110 /// Return true if this shuffle returns a vector with a greater number of 2111 /// elements than its source vectors. 2112 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> 2113 bool increasesLength() const { 2114 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) 2115 ->getElementCount() 2116 .getKnownMinValue(); 2117 unsigned NumMaskElts = ShuffleMask.size(); 2118 return NumSourceElts < NumMaskElts; 2119 } 2120 2121 /// Return true if this shuffle mask chooses elements from exactly one source 2122 /// vector. 2123 /// Example: <7,5,undef,7> 2124 /// This assumes that vector operands are the same length as the mask. 2125 static bool isSingleSourceMask(ArrayRef<int> Mask); 2126 static bool isSingleSourceMask(const Constant *Mask) { 2127 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2128 SmallVector<int, 16> MaskAsInts; 2129 getShuffleMask(Mask, MaskAsInts); 2130 return isSingleSourceMask(MaskAsInts); 2131 } 2132 2133 /// Return true if this shuffle chooses elements from exactly one source 2134 /// vector without changing the length of that vector. 2135 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> 2136 /// TODO: Optionally allow length-changing shuffles. 2137 bool isSingleSource() const { 2138 return !changesLength() && isSingleSourceMask(ShuffleMask); 2139 } 2140 2141 /// Return true if this shuffle mask chooses elements from exactly one source 2142 /// vector without lane crossings. A shuffle using this mask is not 2143 /// necessarily a no-op because it may change the number of elements from its 2144 /// input vectors or it may provide demanded bits knowledge via undef lanes. 2145 /// Example: <undef,undef,2,3> 2146 static bool isIdentityMask(ArrayRef<int> Mask); 2147 static bool isIdentityMask(const Constant *Mask) { 2148 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2149 2150 // Not possible to express a shuffle mask for a scalable vector for this 2151 // case. 2152 if (isa<ScalableVectorType>(Mask->getType())) 2153 return false; 2154 2155 SmallVector<int, 16> MaskAsInts; 2156 getShuffleMask(Mask, MaskAsInts); 2157 return isIdentityMask(MaskAsInts); 2158 } 2159 2160 /// Return true if this shuffle chooses elements from exactly one source 2161 /// vector without lane crossings and does not change the number of elements 2162 /// from its input vectors. 2163 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> 2164 bool isIdentity() const { 2165 // Not possible to express a shuffle mask for a scalable vector for this 2166 // case. 2167 if (isa<ScalableVectorType>(getType())) 2168 return false; 2169 2170 return !changesLength() && isIdentityMask(ShuffleMask); 2171 } 2172 2173 /// Return true if this shuffle lengthens exactly one source vector with 2174 /// undefs in the high elements. 2175 bool isIdentityWithPadding() const; 2176 2177 /// Return true if this shuffle extracts the first N elements of exactly one 2178 /// source vector. 2179 bool isIdentityWithExtract() const; 2180 2181 /// Return true if this shuffle concatenates its 2 source vectors. This 2182 /// returns false if either input is undefined. In that case, the shuffle is 2183 /// is better classified as an identity with padding operation. 2184 bool isConcat() const; 2185 2186 /// Return true if this shuffle mask chooses elements from its source vectors 2187 /// without lane crossings. A shuffle using this mask would be 2188 /// equivalent to a vector select with a constant condition operand. 2189 /// Example: <4,1,6,undef> 2190 /// This returns false if the mask does not choose from both input vectors. 2191 /// In that case, the shuffle is better classified as an identity shuffle. 2192 /// This assumes that vector operands are the same length as the mask 2193 /// (a length-changing shuffle can never be equivalent to a vector select). 2194 static bool isSelectMask(ArrayRef<int> Mask); 2195 static bool isSelectMask(const Constant *Mask) { 2196 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2197 SmallVector<int, 16> MaskAsInts; 2198 getShuffleMask(Mask, MaskAsInts); 2199 return isSelectMask(MaskAsInts); 2200 } 2201 2202 /// Return true if this shuffle chooses elements from its source vectors 2203 /// without lane crossings and all operands have the same number of elements. 2204 /// In other words, this shuffle is equivalent to a vector select with a 2205 /// constant condition operand. 2206 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> 2207 /// This returns false if the mask does not choose from both input vectors. 2208 /// In that case, the shuffle is better classified as an identity shuffle. 2209 /// TODO: Optionally allow length-changing shuffles. 2210 bool isSelect() const { 2211 return !changesLength() && isSelectMask(ShuffleMask); 2212 } 2213 2214 /// Return true if this shuffle mask swaps the order of elements from exactly 2215 /// one source vector. 2216 /// Example: <7,6,undef,4> 2217 /// This assumes that vector operands are the same length as the mask. 2218 static bool isReverseMask(ArrayRef<int> Mask); 2219 static bool isReverseMask(const Constant *Mask) { 2220 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2221 SmallVector<int, 16> MaskAsInts; 2222 getShuffleMask(Mask, MaskAsInts); 2223 return isReverseMask(MaskAsInts); 2224 } 2225 2226 /// Return true if this shuffle swaps the order of elements from exactly 2227 /// one source vector. 2228 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> 2229 /// TODO: Optionally allow length-changing shuffles. 2230 bool isReverse() const { 2231 return !changesLength() && isReverseMask(ShuffleMask); 2232 } 2233 2234 /// Return true if this shuffle mask chooses all elements with the same value 2235 /// as the first element of exactly one source vector. 2236 /// Example: <4,undef,undef,4> 2237 /// This assumes that vector operands are the same length as the mask. 2238 static bool isZeroEltSplatMask(ArrayRef<int> Mask); 2239 static bool isZeroEltSplatMask(const Constant *Mask) { 2240 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2241 SmallVector<int, 16> MaskAsInts; 2242 getShuffleMask(Mask, MaskAsInts); 2243 return isZeroEltSplatMask(MaskAsInts); 2244 } 2245 2246 /// Return true if all elements of this shuffle are the same value as the 2247 /// first element of exactly one source vector without changing the length 2248 /// of that vector. 2249 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> 2250 /// TODO: Optionally allow length-changing shuffles. 2251 /// TODO: Optionally allow splats from other elements. 2252 bool isZeroEltSplat() const { 2253 return !changesLength() && isZeroEltSplatMask(ShuffleMask); 2254 } 2255 2256 /// Return true if this shuffle mask is a transpose mask. 2257 /// Transpose vector masks transpose a 2xn matrix. They read corresponding 2258 /// even- or odd-numbered vector elements from two n-dimensional source 2259 /// vectors and write each result into consecutive elements of an 2260 /// n-dimensional destination vector. Two shuffles are necessary to complete 2261 /// the transpose, one for the even elements and another for the odd elements. 2262 /// This description closely follows how the TRN1 and TRN2 AArch64 2263 /// instructions operate. 2264 /// 2265 /// For example, a simple 2x2 matrix can be transposed with: 2266 /// 2267 /// ; Original matrix 2268 /// m0 = < a, b > 2269 /// m1 = < c, d > 2270 /// 2271 /// ; Transposed matrix 2272 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > 2273 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > 2274 /// 2275 /// For matrices having greater than n columns, the resulting nx2 transposed 2276 /// matrix is stored in two result vectors such that one vector contains 2277 /// interleaved elements from all the even-numbered rows and the other vector 2278 /// contains interleaved elements from all the odd-numbered rows. For example, 2279 /// a 2x4 matrix can be transposed with: 2280 /// 2281 /// ; Original matrix 2282 /// m0 = < a, b, c, d > 2283 /// m1 = < e, f, g, h > 2284 /// 2285 /// ; Transposed matrix 2286 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > 2287 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > 2288 static bool isTransposeMask(ArrayRef<int> Mask); 2289 static bool isTransposeMask(const Constant *Mask) { 2290 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2291 SmallVector<int, 16> MaskAsInts; 2292 getShuffleMask(Mask, MaskAsInts); 2293 return isTransposeMask(MaskAsInts); 2294 } 2295 2296 /// Return true if this shuffle transposes the elements of its inputs without 2297 /// changing the length of the vectors. This operation may also be known as a 2298 /// merge or interleave. See the description for isTransposeMask() for the 2299 /// exact specification. 2300 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> 2301 bool isTranspose() const { 2302 return !changesLength() && isTransposeMask(ShuffleMask); 2303 } 2304 2305 /// Return true if this shuffle mask is a splice mask, concatenating the two 2306 /// inputs together and then extracts an original width vector starting from 2307 /// the splice index. 2308 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> 2309 static bool isSpliceMask(ArrayRef<int> Mask, int &Index); 2310 static bool isSpliceMask(const Constant *Mask, int &Index) { 2311 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2312 SmallVector<int, 16> MaskAsInts; 2313 getShuffleMask(Mask, MaskAsInts); 2314 return isSpliceMask(MaskAsInts, Index); 2315 } 2316 2317 /// Return true if this shuffle splices two inputs without changing the length 2318 /// of the vectors. This operation concatenates the two inputs together and 2319 /// then extracts an original width vector starting from the splice index. 2320 /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> 2321 bool isSplice(int &Index) const { 2322 return !changesLength() && isSpliceMask(ShuffleMask, Index); 2323 } 2324 2325 /// Return true if this shuffle mask is an extract subvector mask. 2326 /// A valid extract subvector mask returns a smaller vector from a single 2327 /// source operand. The base extraction index is returned as well. 2328 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, 2329 int &Index); 2330 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, 2331 int &Index) { 2332 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2333 // Not possible to express a shuffle mask for a scalable vector for this 2334 // case. 2335 if (isa<ScalableVectorType>(Mask->getType())) 2336 return false; 2337 SmallVector<int, 16> MaskAsInts; 2338 getShuffleMask(Mask, MaskAsInts); 2339 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); 2340 } 2341 2342 /// Return true if this shuffle mask is an extract subvector mask. 2343 bool isExtractSubvectorMask(int &Index) const { 2344 // Not possible to express a shuffle mask for a scalable vector for this 2345 // case. 2346 if (isa<ScalableVectorType>(getType())) 2347 return false; 2348 2349 int NumSrcElts = 2350 cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2351 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); 2352 } 2353 2354 /// Return true if this shuffle mask is an insert subvector mask. 2355 /// A valid insert subvector mask inserts the lowest elements of a second 2356 /// source operand into an in-place first source operand operand. 2357 /// Both the sub vector width and the insertion index is returned. 2358 static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, 2359 int &NumSubElts, int &Index); 2360 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, 2361 int &NumSubElts, int &Index) { 2362 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2363 // Not possible to express a shuffle mask for a scalable vector for this 2364 // case. 2365 if (isa<ScalableVectorType>(Mask->getType())) 2366 return false; 2367 SmallVector<int, 16> MaskAsInts; 2368 getShuffleMask(Mask, MaskAsInts); 2369 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index); 2370 } 2371 2372 /// Return true if this shuffle mask is an insert subvector mask. 2373 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const { 2374 // Not possible to express a shuffle mask for a scalable vector for this 2375 // case. 2376 if (isa<ScalableVectorType>(getType())) 2377 return false; 2378 2379 int NumSrcElts = 2380 cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); 2381 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index); 2382 } 2383 2384 /// Return true if this shuffle mask replicates each of the \p VF elements 2385 /// in a vector \p ReplicationFactor times. 2386 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: 2387 /// <0,0,0,1,1,1,2,2,2,3,3,3> 2388 static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor, 2389 int &VF); 2390 static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, 2391 int &VF) { 2392 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant."); 2393 // Not possible to express a shuffle mask for a scalable vector for this 2394 // case. 2395 if (isa<ScalableVectorType>(Mask->getType())) 2396 return false; 2397 SmallVector<int, 16> MaskAsInts; 2398 getShuffleMask(Mask, MaskAsInts); 2399 return isReplicationMask(MaskAsInts, ReplicationFactor, VF); 2400 } 2401 2402 /// Return true if this shuffle mask is a replication mask. 2403 bool isReplicationMask(int &ReplicationFactor, int &VF) const; 2404 2405 /// Return true if this shuffle mask represents "clustered" mask of size VF, 2406 /// i.e. each index between [0..VF) is used exactly once in each submask of 2407 /// size VF. 2408 /// For example, the mask for \p VF=4 is: 2409 /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4 2410 /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time. 2411 /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because 2412 /// element 3 is used twice in the second submask 2413 /// (3,3,1,0) and index 2 is not used at all. 2414 static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF); 2415 2416 /// Return true if this shuffle mask is a one-use-single-source("clustered") 2417 /// mask. 2418 bool isOneUseSingleSourceMask(int VF) const; 2419 2420 /// Change values in a shuffle permute mask assuming the two vector operands 2421 /// of length InVecNumElts have swapped position. 2422 static void commuteShuffleMask(MutableArrayRef<int> Mask, 2423 unsigned InVecNumElts) { 2424 for (int &Idx : Mask) { 2425 if (Idx == -1) 2426 continue; 2427 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; 2428 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 && 2429 "shufflevector mask index out of range"); 2430 } 2431 } 2432 2433 // Methods for support type inquiry through isa, cast, and dyn_cast: 2434 static bool classof(const Instruction *I) { 2435 return I->getOpcode() == Instruction::ShuffleVector; 2436 } 2437 static bool classof(const Value *V) { 2438 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2439 } 2440 }; 2441 2442 template <> 2443 struct OperandTraits<ShuffleVectorInst> 2444 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; 2445 2446 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) 2447 2448 //===----------------------------------------------------------------------===// 2449 // ExtractValueInst Class 2450 //===----------------------------------------------------------------------===// 2451 2452 /// This instruction extracts a struct member or array 2453 /// element value from an aggregate value. 2454 /// 2455 class ExtractValueInst : public UnaryInstruction { 2456 SmallVector<unsigned, 4> Indices; 2457 2458 ExtractValueInst(const ExtractValueInst &EVI); 2459 2460 /// Constructors - Create a extractvalue instruction with a base aggregate 2461 /// value and a list of indices. The first ctor can optionally insert before 2462 /// an existing instruction, the second appends the new instruction to the 2463 /// specified BasicBlock. 2464 inline ExtractValueInst(Value *Agg, 2465 ArrayRef<unsigned> Idxs, 2466 const Twine &NameStr, 2467 Instruction *InsertBefore); 2468 inline ExtractValueInst(Value *Agg, 2469 ArrayRef<unsigned> Idxs, 2470 const Twine &NameStr, BasicBlock *InsertAtEnd); 2471 2472 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); 2473 2474 protected: 2475 // Note: Instruction needs to be a friend here to call cloneImpl. 2476 friend class Instruction; 2477 2478 ExtractValueInst *cloneImpl() const; 2479 2480 public: 2481 static ExtractValueInst *Create(Value *Agg, 2482 ArrayRef<unsigned> Idxs, 2483 const Twine &NameStr = "", 2484 Instruction *InsertBefore = nullptr) { 2485 return new 2486 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); 2487 } 2488 2489 static ExtractValueInst *Create(Value *Agg, 2490 ArrayRef<unsigned> Idxs, 2491 const Twine &NameStr, 2492 BasicBlock *InsertAtEnd) { 2493 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); 2494 } 2495 2496 /// Returns the type of the element that would be extracted 2497 /// with an extractvalue instruction with the specified parameters. 2498 /// 2499 /// Null is returned if the indices are invalid for the specified type. 2500 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); 2501 2502 using idx_iterator = const unsigned*; 2503 2504 inline idx_iterator idx_begin() const { return Indices.begin(); } 2505 inline idx_iterator idx_end() const { return Indices.end(); } 2506 inline iterator_range<idx_iterator> indices() const { 2507 return make_range(idx_begin(), idx_end()); 2508 } 2509 2510 Value *getAggregateOperand() { 2511 return getOperand(0); 2512 } 2513 const Value *getAggregateOperand() const { 2514 return getOperand(0); 2515 } 2516 static unsigned getAggregateOperandIndex() { 2517 return 0U; // get index for modifying correct operand 2518 } 2519 2520 ArrayRef<unsigned> getIndices() const { 2521 return Indices; 2522 } 2523 2524 unsigned getNumIndices() const { 2525 return (unsigned)Indices.size(); 2526 } 2527 2528 bool hasIndices() const { 2529 return true; 2530 } 2531 2532 // Methods for support type inquiry through isa, cast, and dyn_cast: 2533 static bool classof(const Instruction *I) { 2534 return I->getOpcode() == Instruction::ExtractValue; 2535 } 2536 static bool classof(const Value *V) { 2537 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2538 } 2539 }; 2540 2541 ExtractValueInst::ExtractValueInst(Value *Agg, 2542 ArrayRef<unsigned> Idxs, 2543 const Twine &NameStr, 2544 Instruction *InsertBefore) 2545 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), 2546 ExtractValue, Agg, InsertBefore) { 2547 init(Idxs, NameStr); 2548 } 2549 2550 ExtractValueInst::ExtractValueInst(Value *Agg, 2551 ArrayRef<unsigned> Idxs, 2552 const Twine &NameStr, 2553 BasicBlock *InsertAtEnd) 2554 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), 2555 ExtractValue, Agg, InsertAtEnd) { 2556 init(Idxs, NameStr); 2557 } 2558 2559 //===----------------------------------------------------------------------===// 2560 // InsertValueInst Class 2561 //===----------------------------------------------------------------------===// 2562 2563 /// This instruction inserts a struct field of array element 2564 /// value into an aggregate value. 2565 /// 2566 class InsertValueInst : public Instruction { 2567 SmallVector<unsigned, 4> Indices; 2568 2569 InsertValueInst(const InsertValueInst &IVI); 2570 2571 /// Constructors - Create a insertvalue instruction with a base aggregate 2572 /// value, a value to insert, and a list of indices. The first ctor can 2573 /// optionally insert before an existing instruction, the second appends 2574 /// the new instruction to the specified BasicBlock. 2575 inline InsertValueInst(Value *Agg, Value *Val, 2576 ArrayRef<unsigned> Idxs, 2577 const Twine &NameStr, 2578 Instruction *InsertBefore); 2579 inline InsertValueInst(Value *Agg, Value *Val, 2580 ArrayRef<unsigned> Idxs, 2581 const Twine &NameStr, BasicBlock *InsertAtEnd); 2582 2583 /// Constructors - These two constructors are convenience methods because one 2584 /// and two index insertvalue instructions are so common. 2585 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, 2586 const Twine &NameStr = "", 2587 Instruction *InsertBefore = nullptr); 2588 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, 2589 BasicBlock *InsertAtEnd); 2590 2591 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2592 const Twine &NameStr); 2593 2594 protected: 2595 // Note: Instruction needs to be a friend here to call cloneImpl. 2596 friend class Instruction; 2597 2598 InsertValueInst *cloneImpl() const; 2599 2600 public: 2601 // allocate space for exactly two operands 2602 void *operator new(size_t S) { return User::operator new(S, 2); } 2603 void operator delete(void *Ptr) { User::operator delete(Ptr); } 2604 2605 static InsertValueInst *Create(Value *Agg, Value *Val, 2606 ArrayRef<unsigned> Idxs, 2607 const Twine &NameStr = "", 2608 Instruction *InsertBefore = nullptr) { 2609 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); 2610 } 2611 2612 static InsertValueInst *Create(Value *Agg, Value *Val, 2613 ArrayRef<unsigned> Idxs, 2614 const Twine &NameStr, 2615 BasicBlock *InsertAtEnd) { 2616 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); 2617 } 2618 2619 /// Transparently provide more efficient getOperand methods. 2620 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2621 2622 using idx_iterator = const unsigned*; 2623 2624 inline idx_iterator idx_begin() const { return Indices.begin(); } 2625 inline idx_iterator idx_end() const { return Indices.end(); } 2626 inline iterator_range<idx_iterator> indices() const { 2627 return make_range(idx_begin(), idx_end()); 2628 } 2629 2630 Value *getAggregateOperand() { 2631 return getOperand(0); 2632 } 2633 const Value *getAggregateOperand() const { 2634 return getOperand(0); 2635 } 2636 static unsigned getAggregateOperandIndex() { 2637 return 0U; // get index for modifying correct operand 2638 } 2639 2640 Value *getInsertedValueOperand() { 2641 return getOperand(1); 2642 } 2643 const Value *getInsertedValueOperand() const { 2644 return getOperand(1); 2645 } 2646 static unsigned getInsertedValueOperandIndex() { 2647 return 1U; // get index for modifying correct operand 2648 } 2649 2650 ArrayRef<unsigned> getIndices() const { 2651 return Indices; 2652 } 2653 2654 unsigned getNumIndices() const { 2655 return (unsigned)Indices.size(); 2656 } 2657 2658 bool hasIndices() const { 2659 return true; 2660 } 2661 2662 // Methods for support type inquiry through isa, cast, and dyn_cast: 2663 static bool classof(const Instruction *I) { 2664 return I->getOpcode() == Instruction::InsertValue; 2665 } 2666 static bool classof(const Value *V) { 2667 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2668 } 2669 }; 2670 2671 template <> 2672 struct OperandTraits<InsertValueInst> : 2673 public FixedNumOperandTraits<InsertValueInst, 2> { 2674 }; 2675 2676 InsertValueInst::InsertValueInst(Value *Agg, 2677 Value *Val, 2678 ArrayRef<unsigned> Idxs, 2679 const Twine &NameStr, 2680 Instruction *InsertBefore) 2681 : Instruction(Agg->getType(), InsertValue, 2682 OperandTraits<InsertValueInst>::op_begin(this), 2683 2, InsertBefore) { 2684 init(Agg, Val, Idxs, NameStr); 2685 } 2686 2687 InsertValueInst::InsertValueInst(Value *Agg, 2688 Value *Val, 2689 ArrayRef<unsigned> Idxs, 2690 const Twine &NameStr, 2691 BasicBlock *InsertAtEnd) 2692 : Instruction(Agg->getType(), InsertValue, 2693 OperandTraits<InsertValueInst>::op_begin(this), 2694 2, InsertAtEnd) { 2695 init(Agg, Val, Idxs, NameStr); 2696 } 2697 2698 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) 2699 2700 //===----------------------------------------------------------------------===// 2701 // PHINode Class 2702 //===----------------------------------------------------------------------===// 2703 2704 // PHINode - The PHINode class is used to represent the magical mystical PHI 2705 // node, that can not exist in nature, but can be synthesized in a computer 2706 // scientist's overactive imagination. 2707 // 2708 class PHINode : public Instruction { 2709 /// The number of operands actually allocated. NumOperands is 2710 /// the number actually in use. 2711 unsigned ReservedSpace; 2712 2713 PHINode(const PHINode &PN); 2714 2715 explicit PHINode(Type *Ty, unsigned NumReservedValues, 2716 const Twine &NameStr = "", 2717 Instruction *InsertBefore = nullptr) 2718 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), 2719 ReservedSpace(NumReservedValues) { 2720 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!"); 2721 setName(NameStr); 2722 allocHungoffUses(ReservedSpace); 2723 } 2724 2725 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, 2726 BasicBlock *InsertAtEnd) 2727 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), 2728 ReservedSpace(NumReservedValues) { 2729 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!"); 2730 setName(NameStr); 2731 allocHungoffUses(ReservedSpace); 2732 } 2733 2734 protected: 2735 // Note: Instruction needs to be a friend here to call cloneImpl. 2736 friend class Instruction; 2737 2738 PHINode *cloneImpl() const; 2739 2740 // allocHungoffUses - this is more complicated than the generic 2741 // User::allocHungoffUses, because we have to allocate Uses for the incoming 2742 // values and pointers to the incoming blocks, all in one allocation. 2743 void allocHungoffUses(unsigned N) { 2744 User::allocHungoffUses(N, /* IsPhi */ true); 2745 } 2746 2747 public: 2748 /// Constructors - NumReservedValues is a hint for the number of incoming 2749 /// edges that this phi node will have (use 0 if you really have no idea). 2750 static PHINode *Create(Type *Ty, unsigned NumReservedValues, 2751 const Twine &NameStr = "", 2752 Instruction *InsertBefore = nullptr) { 2753 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); 2754 } 2755 2756 static PHINode *Create(Type *Ty, unsigned NumReservedValues, 2757 const Twine &NameStr, BasicBlock *InsertAtEnd) { 2758 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); 2759 } 2760 2761 /// Provide fast operand accessors 2762 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2763 2764 // Block iterator interface. This provides access to the list of incoming 2765 // basic blocks, which parallels the list of incoming values. 2766 // Please note that we are not providing non-const iterators for blocks to 2767 // force all updates go through an interface function. 2768 2769 using block_iterator = BasicBlock **; 2770 using const_block_iterator = BasicBlock * const *; 2771 2772 const_block_iterator block_begin() const { 2773 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); 2774 } 2775 2776 const_block_iterator block_end() const { 2777 return block_begin() + getNumOperands(); 2778 } 2779 2780 iterator_range<const_block_iterator> blocks() const { 2781 return make_range(block_begin(), block_end()); 2782 } 2783 2784 op_range incoming_values() { return operands(); } 2785 2786 const_op_range incoming_values() const { return operands(); } 2787 2788 /// Return the number of incoming edges 2789 /// 2790 unsigned getNumIncomingValues() const { return getNumOperands(); } 2791 2792 /// Return incoming value number x 2793 /// 2794 Value *getIncomingValue(unsigned i) const { 2795 return getOperand(i); 2796 } 2797 void setIncomingValue(unsigned i, Value *V) { 2798 assert(V && "PHI node got a null value!"); 2799 assert(getType() == V->getType() && 2800 "All operands to PHI node must be the same type as the PHI node!"); 2801 setOperand(i, V); 2802 } 2803 2804 static unsigned getOperandNumForIncomingValue(unsigned i) { 2805 return i; 2806 } 2807 2808 static unsigned getIncomingValueNumForOperand(unsigned i) { 2809 return i; 2810 } 2811 2812 /// Return incoming basic block number @p i. 2813 /// 2814 BasicBlock *getIncomingBlock(unsigned i) const { 2815 return block_begin()[i]; 2816 } 2817 2818 /// Return incoming basic block corresponding 2819 /// to an operand of the PHI. 2820 /// 2821 BasicBlock *getIncomingBlock(const Use &U) const { 2822 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); 2823 return getIncomingBlock(unsigned(&U - op_begin())); 2824 } 2825 2826 /// Return incoming basic block corresponding 2827 /// to value use iterator. 2828 /// 2829 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { 2830 return getIncomingBlock(I.getUse()); 2831 } 2832 2833 void setIncomingBlock(unsigned i, BasicBlock *BB) { 2834 const_cast<block_iterator>(block_begin())[i] = BB; 2835 } 2836 2837 /// Copies the basic blocks from \p BBRange to the incoming basic block list 2838 /// of this PHINode, starting at \p ToIdx. 2839 void copyIncomingBlocks(iterator_range<const_block_iterator> BBRange, 2840 uint32_t ToIdx = 0) { 2841 copy(BBRange, const_cast<block_iterator>(block_begin()) + ToIdx); 2842 } 2843 2844 /// Replace every incoming basic block \p Old to basic block \p New. 2845 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { 2846 assert(New && Old && "PHI node got a null basic block!"); 2847 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) 2848 if (getIncomingBlock(Op) == Old) 2849 setIncomingBlock(Op, New); 2850 } 2851 2852 /// Add an incoming value to the end of the PHI list 2853 /// 2854 void addIncoming(Value *V, BasicBlock *BB) { 2855 if (getNumOperands() == ReservedSpace) 2856 growOperands(); // Get more space! 2857 // Initialize some new operands. 2858 setNumHungOffUseOperands(getNumOperands() + 1); 2859 setIncomingValue(getNumOperands() - 1, V); 2860 setIncomingBlock(getNumOperands() - 1, BB); 2861 } 2862 2863 /// Remove an incoming value. This is useful if a 2864 /// predecessor basic block is deleted. The value removed is returned. 2865 /// 2866 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty 2867 /// is true), the PHI node is destroyed and any uses of it are replaced with 2868 /// dummy values. The only time there should be zero incoming values to a PHI 2869 /// node is when the block is dead, so this strategy is sound. 2870 /// 2871 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); 2872 2873 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { 2874 int Idx = getBasicBlockIndex(BB); 2875 assert(Idx >= 0 && "Invalid basic block argument to remove!"); 2876 return removeIncomingValue(Idx, DeletePHIIfEmpty); 2877 } 2878 2879 /// Return the first index of the specified basic 2880 /// block in the value list for this PHI. Returns -1 if no instance. 2881 /// 2882 int getBasicBlockIndex(const BasicBlock *BB) const { 2883 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2884 if (block_begin()[i] == BB) 2885 return i; 2886 return -1; 2887 } 2888 2889 Value *getIncomingValueForBlock(const BasicBlock *BB) const { 2890 int Idx = getBasicBlockIndex(BB); 2891 assert(Idx >= 0 && "Invalid basic block argument!"); 2892 return getIncomingValue(Idx); 2893 } 2894 2895 /// Set every incoming value(s) for block \p BB to \p V. 2896 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { 2897 assert(BB && "PHI node got a null basic block!"); 2898 bool Found = false; 2899 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) 2900 if (getIncomingBlock(Op) == BB) { 2901 Found = true; 2902 setIncomingValue(Op, V); 2903 } 2904 (void)Found; 2905 assert(Found && "Invalid basic block argument to set!"); 2906 } 2907 2908 /// If the specified PHI node always merges together the 2909 /// same value, return the value, otherwise return null. 2910 Value *hasConstantValue() const; 2911 2912 /// Whether the specified PHI node always merges 2913 /// together the same value, assuming undefs are equal to a unique 2914 /// non-undef value. 2915 bool hasConstantOrUndefValue() const; 2916 2917 /// If the PHI node is complete which means all of its parent's predecessors 2918 /// have incoming value in this PHI, return true, otherwise return false. 2919 bool isComplete() const { 2920 return llvm::all_of(predecessors(getParent()), 2921 [this](const BasicBlock *Pred) { 2922 return getBasicBlockIndex(Pred) >= 0; 2923 }); 2924 } 2925 2926 /// Methods for support type inquiry through isa, cast, and dyn_cast: 2927 static bool classof(const Instruction *I) { 2928 return I->getOpcode() == Instruction::PHI; 2929 } 2930 static bool classof(const Value *V) { 2931 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2932 } 2933 2934 private: 2935 void growOperands(); 2936 }; 2937 2938 template <> 2939 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { 2940 }; 2941 2942 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) 2943 2944 //===----------------------------------------------------------------------===// 2945 // LandingPadInst Class 2946 //===----------------------------------------------------------------------===// 2947 2948 //===--------------------------------------------------------------------------- 2949 /// The landingpad instruction holds all of the information 2950 /// necessary to generate correct exception handling. The landingpad instruction 2951 /// cannot be moved from the top of a landing pad block, which itself is 2952 /// accessible only from the 'unwind' edge of an invoke. This uses the 2953 /// SubclassData field in Value to store whether or not the landingpad is a 2954 /// cleanup. 2955 /// 2956 class LandingPadInst : public Instruction { 2957 using CleanupField = BoolBitfieldElementT<0>; 2958 2959 /// The number of operands actually allocated. NumOperands is 2960 /// the number actually in use. 2961 unsigned ReservedSpace; 2962 2963 LandingPadInst(const LandingPadInst &LP); 2964 2965 public: 2966 enum ClauseType { Catch, Filter }; 2967 2968 private: 2969 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, 2970 const Twine &NameStr, Instruction *InsertBefore); 2971 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, 2972 const Twine &NameStr, BasicBlock *InsertAtEnd); 2973 2974 // Allocate space for exactly zero operands. 2975 void *operator new(size_t S) { return User::operator new(S); } 2976 2977 void growOperands(unsigned Size); 2978 void init(unsigned NumReservedValues, const Twine &NameStr); 2979 2980 protected: 2981 // Note: Instruction needs to be a friend here to call cloneImpl. 2982 friend class Instruction; 2983 2984 LandingPadInst *cloneImpl() const; 2985 2986 public: 2987 void operator delete(void *Ptr) { User::operator delete(Ptr); } 2988 2989 /// Constructors - NumReservedClauses is a hint for the number of incoming 2990 /// clauses that this landingpad will have (use 0 if you really have no idea). 2991 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, 2992 const Twine &NameStr = "", 2993 Instruction *InsertBefore = nullptr); 2994 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, 2995 const Twine &NameStr, BasicBlock *InsertAtEnd); 2996 2997 /// Provide fast operand accessors 2998 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2999 3000 /// Return 'true' if this landingpad instruction is a 3001 /// cleanup. I.e., it should be run when unwinding even if its landing pad 3002 /// doesn't catch the exception. 3003 bool isCleanup() const { return getSubclassData<CleanupField>(); } 3004 3005 /// Indicate that this landingpad instruction is a cleanup. 3006 void setCleanup(bool V) { setSubclassData<CleanupField>(V); } 3007 3008 /// Add a catch or filter clause to the landing pad. 3009 void addClause(Constant *ClauseVal); 3010 3011 /// Get the value of the clause at index Idx. Use isCatch/isFilter to 3012 /// determine what type of clause this is. 3013 Constant *getClause(unsigned Idx) const { 3014 return cast<Constant>(getOperandList()[Idx]); 3015 } 3016 3017 /// Return 'true' if the clause and index Idx is a catch clause. 3018 bool isCatch(unsigned Idx) const { 3019 return !isa<ArrayType>(getOperandList()[Idx]->getType()); 3020 } 3021 3022 /// Return 'true' if the clause and index Idx is a filter clause. 3023 bool isFilter(unsigned Idx) const { 3024 return isa<ArrayType>(getOperandList()[Idx]->getType()); 3025 } 3026 3027 /// Get the number of clauses for this landing pad. 3028 unsigned getNumClauses() const { return getNumOperands(); } 3029 3030 /// Grow the size of the operand list to accommodate the new 3031 /// number of clauses. 3032 void reserveClauses(unsigned Size) { growOperands(Size); } 3033 3034 // Methods for support type inquiry through isa, cast, and dyn_cast: 3035 static bool classof(const Instruction *I) { 3036 return I->getOpcode() == Instruction::LandingPad; 3037 } 3038 static bool classof(const Value *V) { 3039 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3040 } 3041 }; 3042 3043 template <> 3044 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { 3045 }; 3046 3047 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value) 3048 3049 //===----------------------------------------------------------------------===// 3050 // ReturnInst Class 3051 //===----------------------------------------------------------------------===// 3052 3053 //===--------------------------------------------------------------------------- 3054 /// Return a value (possibly void), from a function. Execution 3055 /// does not continue in this function any longer. 3056 /// 3057 class ReturnInst : public Instruction { 3058 ReturnInst(const ReturnInst &RI); 3059 3060 private: 3061 // ReturnInst constructors: 3062 // ReturnInst() - 'ret void' instruction 3063 // ReturnInst( null) - 'ret void' instruction 3064 // ReturnInst(Value* X) - 'ret X' instruction 3065 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I 3066 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I 3067 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B 3068 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B 3069 // 3070 // NOTE: If the Value* passed is of type void then the constructor behaves as 3071 // if it was passed NULL. 3072 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, 3073 Instruction *InsertBefore = nullptr); 3074 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); 3075 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); 3076 3077 protected: 3078 // Note: Instruction needs to be a friend here to call cloneImpl. 3079 friend class Instruction; 3080 3081 ReturnInst *cloneImpl() const; 3082 3083 public: 3084 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, 3085 Instruction *InsertBefore = nullptr) { 3086 return new(!!retVal) ReturnInst(C, retVal, InsertBefore); 3087 } 3088 3089 static ReturnInst* Create(LLVMContext &C, Value *retVal, 3090 BasicBlock *InsertAtEnd) { 3091 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); 3092 } 3093 3094 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { 3095 return new(0) ReturnInst(C, InsertAtEnd); 3096 } 3097 3098 /// Provide fast operand accessors 3099 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3100 3101 /// Convenience accessor. Returns null if there is no return value. 3102 Value *getReturnValue() const { 3103 return getNumOperands() != 0 ? getOperand(0) : nullptr; 3104 } 3105 3106 unsigned getNumSuccessors() const { return 0; } 3107 3108 // Methods for support type inquiry through isa, cast, and dyn_cast: 3109 static bool classof(const Instruction *I) { 3110 return (I->getOpcode() == Instruction::Ret); 3111 } 3112 static bool classof(const Value *V) { 3113 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3114 } 3115 3116 private: 3117 BasicBlock *getSuccessor(unsigned idx) const { 3118 llvm_unreachable("ReturnInst has no successors!"); 3119 } 3120 3121 void setSuccessor(unsigned idx, BasicBlock *B) { 3122 llvm_unreachable("ReturnInst has no successors!"); 3123 } 3124 }; 3125 3126 template <> 3127 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { 3128 }; 3129 3130 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) 3131 3132 //===----------------------------------------------------------------------===// 3133 // BranchInst Class 3134 //===----------------------------------------------------------------------===// 3135 3136 //===--------------------------------------------------------------------------- 3137 /// Conditional or Unconditional Branch instruction. 3138 /// 3139 class BranchInst : public Instruction { 3140 /// Ops list - Branches are strange. The operands are ordered: 3141 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because 3142 /// they don't have to check for cond/uncond branchness. These are mostly 3143 /// accessed relative from op_end(). 3144 BranchInst(const BranchInst &BI); 3145 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): 3146 // BranchInst(BB *B) - 'br B' 3147 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' 3148 // BranchInst(BB* B, Inst *I) - 'br B' insert before I 3149 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I 3150 // BranchInst(BB* B, BB *I) - 'br B' insert at end 3151 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end 3152 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); 3153 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 3154 Instruction *InsertBefore = nullptr); 3155 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); 3156 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 3157 BasicBlock *InsertAtEnd); 3158 3159 void AssertOK(); 3160 3161 protected: 3162 // Note: Instruction needs to be a friend here to call cloneImpl. 3163 friend class Instruction; 3164 3165 BranchInst *cloneImpl() const; 3166 3167 public: 3168 /// Iterator type that casts an operand to a basic block. 3169 /// 3170 /// This only makes sense because the successors are stored as adjacent 3171 /// operands for branch instructions. 3172 struct succ_op_iterator 3173 : iterator_adaptor_base<succ_op_iterator, value_op_iterator, 3174 std::random_access_iterator_tag, BasicBlock *, 3175 ptrdiff_t, BasicBlock *, BasicBlock *> { 3176 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} 3177 3178 BasicBlock *operator*() const { return cast<BasicBlock>(*I); } 3179 BasicBlock *operator->() const { return operator*(); } 3180 }; 3181 3182 /// The const version of `succ_op_iterator`. 3183 struct const_succ_op_iterator 3184 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, 3185 std::random_access_iterator_tag, 3186 const BasicBlock *, ptrdiff_t, const BasicBlock *, 3187 const BasicBlock *> { 3188 explicit const_succ_op_iterator(const_value_op_iterator I) 3189 : iterator_adaptor_base(I) {} 3190 3191 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } 3192 const BasicBlock *operator->() const { return operator*(); } 3193 }; 3194 3195 static BranchInst *Create(BasicBlock *IfTrue, 3196 Instruction *InsertBefore = nullptr) { 3197 return new(1) BranchInst(IfTrue, InsertBefore); 3198 } 3199 3200 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, 3201 Value *Cond, Instruction *InsertBefore = nullptr) { 3202 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); 3203 } 3204 3205 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { 3206 return new(1) BranchInst(IfTrue, InsertAtEnd); 3207 } 3208 3209 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, 3210 Value *Cond, BasicBlock *InsertAtEnd) { 3211 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); 3212 } 3213 3214 /// Transparently provide more efficient getOperand methods. 3215 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3216 3217 bool isUnconditional() const { return getNumOperands() == 1; } 3218 bool isConditional() const { return getNumOperands() == 3; } 3219 3220 Value *getCondition() const { 3221 assert(isConditional() && "Cannot get condition of an uncond branch!"); 3222 return Op<-3>(); 3223 } 3224 3225 void setCondition(Value *V) { 3226 assert(isConditional() && "Cannot set condition of unconditional branch!"); 3227 Op<-3>() = V; 3228 } 3229 3230 unsigned getNumSuccessors() const { return 1+isConditional(); } 3231 3232 BasicBlock *getSuccessor(unsigned i) const { 3233 assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); 3234 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); 3235 } 3236 3237 void setSuccessor(unsigned idx, BasicBlock *NewSucc) { 3238 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); 3239 *(&Op<-1>() - idx) = NewSucc; 3240 } 3241 3242 /// Swap the successors of this branch instruction. 3243 /// 3244 /// Swaps the successors of the branch instruction. This also swaps any 3245 /// branch weight metadata associated with the instruction so that it 3246 /// continues to map correctly to each operand. 3247 void swapSuccessors(); 3248 3249 iterator_range<succ_op_iterator> successors() { 3250 return make_range( 3251 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), 3252 succ_op_iterator(value_op_end())); 3253 } 3254 3255 iterator_range<const_succ_op_iterator> successors() const { 3256 return make_range(const_succ_op_iterator( 3257 std::next(value_op_begin(), isConditional() ? 1 : 0)), 3258 const_succ_op_iterator(value_op_end())); 3259 } 3260 3261 // Methods for support type inquiry through isa, cast, and dyn_cast: 3262 static bool classof(const Instruction *I) { 3263 return (I->getOpcode() == Instruction::Br); 3264 } 3265 static bool classof(const Value *V) { 3266 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3267 } 3268 }; 3269 3270 template <> 3271 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { 3272 }; 3273 3274 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) 3275 3276 //===----------------------------------------------------------------------===// 3277 // SwitchInst Class 3278 //===----------------------------------------------------------------------===// 3279 3280 //===--------------------------------------------------------------------------- 3281 /// Multiway switch 3282 /// 3283 class SwitchInst : public Instruction { 3284 unsigned ReservedSpace; 3285 3286 // Operand[0] = Value to switch on 3287 // Operand[1] = Default basic block destination 3288 // Operand[2n ] = Value to match 3289 // Operand[2n+1] = BasicBlock to go to on match 3290 SwitchInst(const SwitchInst &SI); 3291 3292 /// Create a new switch instruction, specifying a value to switch on and a 3293 /// default destination. The number of additional cases can be specified here 3294 /// to make memory allocation more efficient. This constructor can also 3295 /// auto-insert before another instruction. 3296 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3297 Instruction *InsertBefore); 3298 3299 /// Create a new switch instruction, specifying a value to switch on and a 3300 /// default destination. The number of additional cases can be specified here 3301 /// to make memory allocation more efficient. This constructor also 3302 /// auto-inserts at the end of the specified BasicBlock. 3303 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 3304 BasicBlock *InsertAtEnd); 3305 3306 // allocate space for exactly zero operands 3307 void *operator new(size_t S) { return User::operator new(S); } 3308 3309 void init(Value *Value, BasicBlock *Default, unsigned NumReserved); 3310 void growOperands(); 3311 3312 protected: 3313 // Note: Instruction needs to be a friend here to call cloneImpl. 3314 friend class Instruction; 3315 3316 SwitchInst *cloneImpl() const; 3317 3318 public: 3319 void operator delete(void *Ptr) { User::operator delete(Ptr); } 3320 3321 // -2 3322 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); 3323 3324 template <typename CaseHandleT> class CaseIteratorImpl; 3325 3326 /// A handle to a particular switch case. It exposes a convenient interface 3327 /// to both the case value and the successor block. 3328 /// 3329 /// We define this as a template and instantiate it to form both a const and 3330 /// non-const handle. 3331 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> 3332 class CaseHandleImpl { 3333 // Directly befriend both const and non-const iterators. 3334 friend class SwitchInst::CaseIteratorImpl< 3335 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; 3336 3337 protected: 3338 // Expose the switch type we're parameterized with to the iterator. 3339 using SwitchInstType = SwitchInstT; 3340 3341 SwitchInstT *SI; 3342 ptrdiff_t Index; 3343 3344 CaseHandleImpl() = default; 3345 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} 3346 3347 public: 3348 /// Resolves case value for current case. 3349 ConstantIntT *getCaseValue() const { 3350 assert((unsigned)Index < SI->getNumCases() && 3351 "Index out the number of cases."); 3352 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); 3353 } 3354 3355 /// Resolves successor for current case. 3356 BasicBlockT *getCaseSuccessor() const { 3357 assert(((unsigned)Index < SI->getNumCases() || 3358 (unsigned)Index == DefaultPseudoIndex) && 3359 "Index out the number of cases."); 3360 return SI->getSuccessor(getSuccessorIndex()); 3361 } 3362 3363 /// Returns number of current case. 3364 unsigned getCaseIndex() const { return Index; } 3365 3366 /// Returns successor index for current case successor. 3367 unsigned getSuccessorIndex() const { 3368 assert(((unsigned)Index == DefaultPseudoIndex || 3369 (unsigned)Index < SI->getNumCases()) && 3370 "Index out the number of cases."); 3371 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; 3372 } 3373 3374 bool operator==(const CaseHandleImpl &RHS) const { 3375 assert(SI == RHS.SI && "Incompatible operators."); 3376 return Index == RHS.Index; 3377 } 3378 }; 3379 3380 using ConstCaseHandle = 3381 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; 3382 3383 class CaseHandle 3384 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { 3385 friend class SwitchInst::CaseIteratorImpl<CaseHandle>; 3386 3387 public: 3388 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} 3389 3390 /// Sets the new value for current case. 3391 void setValue(ConstantInt *V) const { 3392 assert((unsigned)Index < SI->getNumCases() && 3393 "Index out the number of cases."); 3394 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); 3395 } 3396 3397 /// Sets the new successor for current case. 3398 void setSuccessor(BasicBlock *S) const { 3399 SI->setSuccessor(getSuccessorIndex(), S); 3400 } 3401 }; 3402 3403 template <typename CaseHandleT> 3404 class CaseIteratorImpl 3405 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, 3406 std::random_access_iterator_tag, 3407 const CaseHandleT> { 3408 using SwitchInstT = typename CaseHandleT::SwitchInstType; 3409 3410 CaseHandleT Case; 3411 3412 public: 3413 /// Default constructed iterator is in an invalid state until assigned to 3414 /// a case for a particular switch. 3415 CaseIteratorImpl() = default; 3416 3417 /// Initializes case iterator for given SwitchInst and for given 3418 /// case number. 3419 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} 3420 3421 /// Initializes case iterator for given SwitchInst and for given 3422 /// successor index. 3423 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, 3424 unsigned SuccessorIndex) { 3425 assert(SuccessorIndex < SI->getNumSuccessors() && 3426 "Successor index # out of range!"); 3427 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) 3428 : CaseIteratorImpl(SI, DefaultPseudoIndex); 3429 } 3430 3431 /// Support converting to the const variant. This will be a no-op for const 3432 /// variant. 3433 operator CaseIteratorImpl<ConstCaseHandle>() const { 3434 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); 3435 } 3436 3437 CaseIteratorImpl &operator+=(ptrdiff_t N) { 3438 // Check index correctness after addition. 3439 // Note: Index == getNumCases() means end(). 3440 assert(Case.Index + N >= 0 && 3441 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && 3442 "Case.Index out the number of cases."); 3443 Case.Index += N; 3444 return *this; 3445 } 3446 CaseIteratorImpl &operator-=(ptrdiff_t N) { 3447 // Check index correctness after subtraction. 3448 // Note: Case.Index == getNumCases() means end(). 3449 assert(Case.Index - N >= 0 && 3450 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && 3451 "Case.Index out the number of cases."); 3452 Case.Index -= N; 3453 return *this; 3454 } 3455 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { 3456 assert(Case.SI == RHS.Case.SI && "Incompatible operators."); 3457 return Case.Index - RHS.Case.Index; 3458 } 3459 bool operator==(const CaseIteratorImpl &RHS) const { 3460 return Case == RHS.Case; 3461 } 3462 bool operator<(const CaseIteratorImpl &RHS) const { 3463 assert(Case.SI == RHS.Case.SI && "Incompatible operators."); 3464 return Case.Index < RHS.Case.Index; 3465 } 3466 const CaseHandleT &operator*() const { return Case; } 3467 }; 3468 3469 using CaseIt = CaseIteratorImpl<CaseHandle>; 3470 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; 3471 3472 static SwitchInst *Create(Value *Value, BasicBlock *Default, 3473 unsigned NumCases, 3474 Instruction *InsertBefore = nullptr) { 3475 return new SwitchInst(Value, Default, NumCases, InsertBefore); 3476 } 3477 3478 static SwitchInst *Create(Value *Value, BasicBlock *Default, 3479 unsigned NumCases, BasicBlock *InsertAtEnd) { 3480 return new SwitchInst(Value, Default, NumCases, InsertAtEnd); 3481 } 3482 3483 /// Provide fast operand accessors 3484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3485 3486 // Accessor Methods for Switch stmt 3487 Value *getCondition() const { return getOperand(0); } 3488 void setCondition(Value *V) { setOperand(0, V); } 3489 3490 BasicBlock *getDefaultDest() const { 3491 return cast<BasicBlock>(getOperand(1)); 3492 } 3493 3494 void setDefaultDest(BasicBlock *DefaultCase) { 3495 setOperand(1, reinterpret_cast<Value*>(DefaultCase)); 3496 } 3497 3498 /// Return the number of 'cases' in this switch instruction, excluding the 3499 /// default case. 3500 unsigned getNumCases() const { 3501 return getNumOperands()/2 - 1; 3502 } 3503 3504 /// Returns a read/write iterator that points to the first case in the 3505 /// SwitchInst. 3506 CaseIt case_begin() { 3507 return CaseIt(this, 0); 3508 } 3509 3510 /// Returns a read-only iterator that points to the first case in the 3511 /// SwitchInst. 3512 ConstCaseIt case_begin() const { 3513 return ConstCaseIt(this, 0); 3514 } 3515 3516 /// Returns a read/write iterator that points one past the last in the 3517 /// SwitchInst. 3518 CaseIt case_end() { 3519 return CaseIt(this, getNumCases()); 3520 } 3521 3522 /// Returns a read-only iterator that points one past the last in the 3523 /// SwitchInst. 3524 ConstCaseIt case_end() const { 3525 return ConstCaseIt(this, getNumCases()); 3526 } 3527 3528 /// Iteration adapter for range-for loops. 3529 iterator_range<CaseIt> cases() { 3530 return make_range(case_begin(), case_end()); 3531 } 3532 3533 /// Constant iteration adapter for range-for loops. 3534 iterator_range<ConstCaseIt> cases() const { 3535 return make_range(case_begin(), case_end()); 3536 } 3537 3538 /// Returns an iterator that points to the default case. 3539 /// Note: this iterator allows to resolve successor only. Attempt 3540 /// to resolve case value causes an assertion. 3541 /// Also note, that increment and decrement also causes an assertion and 3542 /// makes iterator invalid. 3543 CaseIt case_default() { 3544 return CaseIt(this, DefaultPseudoIndex); 3545 } 3546 ConstCaseIt case_default() const { 3547 return ConstCaseIt(this, DefaultPseudoIndex); 3548 } 3549 3550 /// Search all of the case values for the specified constant. If it is 3551 /// explicitly handled, return the case iterator of it, otherwise return 3552 /// default case iterator to indicate that it is handled by the default 3553 /// handler. 3554 CaseIt findCaseValue(const ConstantInt *C) { 3555 return CaseIt( 3556 this, 3557 const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex()); 3558 } 3559 ConstCaseIt findCaseValue(const ConstantInt *C) const { 3560 ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) { 3561 return Case.getCaseValue() == C; 3562 }); 3563 if (I != case_end()) 3564 return I; 3565 3566 return case_default(); 3567 } 3568 3569 /// Finds the unique case value for a given successor. Returns null if the 3570 /// successor is not found, not unique, or is the default case. 3571 ConstantInt *findCaseDest(BasicBlock *BB) { 3572 if (BB == getDefaultDest()) 3573 return nullptr; 3574 3575 ConstantInt *CI = nullptr; 3576 for (auto Case : cases()) { 3577 if (Case.getCaseSuccessor() != BB) 3578 continue; 3579 3580 if (CI) 3581 return nullptr; // Multiple cases lead to BB. 3582 3583 CI = Case.getCaseValue(); 3584 } 3585 3586 return CI; 3587 } 3588 3589 /// Add an entry to the switch instruction. 3590 /// Note: 3591 /// This action invalidates case_end(). Old case_end() iterator will 3592 /// point to the added case. 3593 void addCase(ConstantInt *OnVal, BasicBlock *Dest); 3594 3595 /// This method removes the specified case and its successor from the switch 3596 /// instruction. Note that this operation may reorder the remaining cases at 3597 /// index idx and above. 3598 /// Note: 3599 /// This action invalidates iterators for all cases following the one removed, 3600 /// including the case_end() iterator. It returns an iterator for the next 3601 /// case. 3602 CaseIt removeCase(CaseIt I); 3603 3604 unsigned getNumSuccessors() const { return getNumOperands()/2; } 3605 BasicBlock *getSuccessor(unsigned idx) const { 3606 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); 3607 return cast<BasicBlock>(getOperand(idx*2+1)); 3608 } 3609 void setSuccessor(unsigned idx, BasicBlock *NewSucc) { 3610 assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); 3611 setOperand(idx * 2 + 1, NewSucc); 3612 } 3613 3614 // Methods for support type inquiry through isa, cast, and dyn_cast: 3615 static bool classof(const Instruction *I) { 3616 return I->getOpcode() == Instruction::Switch; 3617 } 3618 static bool classof(const Value *V) { 3619 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3620 } 3621 }; 3622 3623 /// A wrapper class to simplify modification of SwitchInst cases along with 3624 /// their prof branch_weights metadata. 3625 class SwitchInstProfUpdateWrapper { 3626 SwitchInst &SI; 3627 std::optional<SmallVector<uint32_t, 8>> Weights; 3628 bool Changed = false; 3629 3630 protected: 3631 MDNode *buildProfBranchWeightsMD(); 3632 3633 void init(); 3634 3635 public: 3636 using CaseWeightOpt = std::optional<uint32_t>; 3637 SwitchInst *operator->() { return &SI; } 3638 SwitchInst &operator*() { return SI; } 3639 operator SwitchInst *() { return &SI; } 3640 3641 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } 3642 3643 ~SwitchInstProfUpdateWrapper() { 3644 if (Changed) 3645 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); 3646 } 3647 3648 /// Delegate the call to the underlying SwitchInst::removeCase() and remove 3649 /// correspondent branch weight. 3650 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); 3651 3652 /// Delegate the call to the underlying SwitchInst::addCase() and set the 3653 /// specified branch weight for the added case. 3654 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); 3655 3656 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark 3657 /// this object to not touch the underlying SwitchInst in destructor. 3658 SymbolTableList<Instruction>::iterator eraseFromParent(); 3659 3660 void setSuccessorWeight(unsigned idx, CaseWeightOpt W); 3661 CaseWeightOpt getSuccessorWeight(unsigned idx); 3662 3663 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); 3664 }; 3665 3666 template <> 3667 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { 3668 }; 3669 3670 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value) 3671 3672 //===----------------------------------------------------------------------===// 3673 // IndirectBrInst Class 3674 //===----------------------------------------------------------------------===// 3675 3676 //===--------------------------------------------------------------------------- 3677 /// Indirect Branch Instruction. 3678 /// 3679 class IndirectBrInst : public Instruction { 3680 unsigned ReservedSpace; 3681 3682 // Operand[0] = Address to jump to 3683 // Operand[n+1] = n-th destination 3684 IndirectBrInst(const IndirectBrInst &IBI); 3685 3686 /// Create a new indirectbr instruction, specifying an 3687 /// Address to jump to. The number of expected destinations can be specified 3688 /// here to make memory allocation more efficient. This constructor can also 3689 /// autoinsert before another instruction. 3690 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); 3691 3692 /// Create a new indirectbr instruction, specifying an 3693 /// Address to jump to. The number of expected destinations can be specified 3694 /// here to make memory allocation more efficient. This constructor also 3695 /// autoinserts at the end of the specified BasicBlock. 3696 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); 3697 3698 // allocate space for exactly zero operands 3699 void *operator new(size_t S) { return User::operator new(S); } 3700 3701 void init(Value *Address, unsigned NumDests); 3702 void growOperands(); 3703 3704 protected: 3705 // Note: Instruction needs to be a friend here to call cloneImpl. 3706 friend class Instruction; 3707 3708 IndirectBrInst *cloneImpl() const; 3709 3710 public: 3711 void operator delete(void *Ptr) { User::operator delete(Ptr); } 3712 3713 /// Iterator type that casts an operand to a basic block. 3714 /// 3715 /// This only makes sense because the successors are stored as adjacent 3716 /// operands for indirectbr instructions. 3717 struct succ_op_iterator 3718 : iterator_adaptor_base<succ_op_iterator, value_op_iterator, 3719 std::random_access_iterator_tag, BasicBlock *, 3720 ptrdiff_t, BasicBlock *, BasicBlock *> { 3721 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} 3722 3723 BasicBlock *operator*() const { return cast<BasicBlock>(*I); } 3724 BasicBlock *operator->() const { return operator*(); } 3725 }; 3726 3727 /// The const version of `succ_op_iterator`. 3728 struct const_succ_op_iterator 3729 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, 3730 std::random_access_iterator_tag, 3731 const BasicBlock *, ptrdiff_t, const BasicBlock *, 3732 const BasicBlock *> { 3733 explicit const_succ_op_iterator(const_value_op_iterator I) 3734 : iterator_adaptor_base(I) {} 3735 3736 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } 3737 const BasicBlock *operator->() const { return operator*(); } 3738 }; 3739 3740 static IndirectBrInst *Create(Value *Address, unsigned NumDests, 3741 Instruction *InsertBefore = nullptr) { 3742 return new IndirectBrInst(Address, NumDests, InsertBefore); 3743 } 3744 3745 static IndirectBrInst *Create(Value *Address, unsigned NumDests, 3746 BasicBlock *InsertAtEnd) { 3747 return new IndirectBrInst(Address, NumDests, InsertAtEnd); 3748 } 3749 3750 /// Provide fast operand accessors. 3751 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3752 3753 // Accessor Methods for IndirectBrInst instruction. 3754 Value *getAddress() { return getOperand(0); } 3755 const Value *getAddress() const { return getOperand(0); } 3756 void setAddress(Value *V) { setOperand(0, V); } 3757 3758 /// return the number of possible destinations in this 3759 /// indirectbr instruction. 3760 unsigned getNumDestinations() const { return getNumOperands()-1; } 3761 3762 /// Return the specified destination. 3763 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } 3764 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } 3765 3766 /// Add a destination. 3767 /// 3768 void addDestination(BasicBlock *Dest); 3769 3770 /// This method removes the specified successor from the 3771 /// indirectbr instruction. 3772 void removeDestination(unsigned i); 3773 3774 unsigned getNumSuccessors() const { return getNumOperands()-1; } 3775 BasicBlock *getSuccessor(unsigned i) const { 3776 return cast<BasicBlock>(getOperand(i+1)); 3777 } 3778 void setSuccessor(unsigned i, BasicBlock *NewSucc) { 3779 setOperand(i + 1, NewSucc); 3780 } 3781 3782 iterator_range<succ_op_iterator> successors() { 3783 return make_range(succ_op_iterator(std::next(value_op_begin())), 3784 succ_op_iterator(value_op_end())); 3785 } 3786 3787 iterator_range<const_succ_op_iterator> successors() const { 3788 return make_range(const_succ_op_iterator(std::next(value_op_begin())), 3789 const_succ_op_iterator(value_op_end())); 3790 } 3791 3792 // Methods for support type inquiry through isa, cast, and dyn_cast: 3793 static bool classof(const Instruction *I) { 3794 return I->getOpcode() == Instruction::IndirectBr; 3795 } 3796 static bool classof(const Value *V) { 3797 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3798 } 3799 }; 3800 3801 template <> 3802 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { 3803 }; 3804 3805 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value) 3806 3807 //===----------------------------------------------------------------------===// 3808 // InvokeInst Class 3809 //===----------------------------------------------------------------------===// 3810 3811 /// Invoke instruction. The SubclassData field is used to hold the 3812 /// calling convention of the call. 3813 /// 3814 class InvokeInst : public CallBase { 3815 /// The number of operands for this call beyond the called function, 3816 /// arguments, and operand bundles. 3817 static constexpr int NumExtraOperands = 2; 3818 3819 /// The index from the end of the operand array to the normal destination. 3820 static constexpr int NormalDestOpEndIdx = -3; 3821 3822 /// The index from the end of the operand array to the unwind destination. 3823 static constexpr int UnwindDestOpEndIdx = -2; 3824 3825 InvokeInst(const InvokeInst &BI); 3826 3827 /// Construct an InvokeInst given a range of arguments. 3828 /// 3829 /// Construct an InvokeInst from a range of arguments 3830 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3831 BasicBlock *IfException, ArrayRef<Value *> Args, 3832 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 3833 const Twine &NameStr, Instruction *InsertBefore); 3834 3835 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3836 BasicBlock *IfException, ArrayRef<Value *> Args, 3837 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 3838 const Twine &NameStr, BasicBlock *InsertAtEnd); 3839 3840 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3841 BasicBlock *IfException, ArrayRef<Value *> Args, 3842 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); 3843 3844 /// Compute the number of operands to allocate. 3845 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { 3846 // We need one operand for the called function, plus our extra operands and 3847 // the input operand counts provided. 3848 return 1 + NumExtraOperands + NumArgs + NumBundleInputs; 3849 } 3850 3851 protected: 3852 // Note: Instruction needs to be a friend here to call cloneImpl. 3853 friend class Instruction; 3854 3855 InvokeInst *cloneImpl() const; 3856 3857 public: 3858 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3859 BasicBlock *IfException, ArrayRef<Value *> Args, 3860 const Twine &NameStr, 3861 Instruction *InsertBefore = nullptr) { 3862 int NumOperands = ComputeNumOperands(Args.size()); 3863 return new (NumOperands) 3864 InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, 3865 NumOperands, NameStr, InsertBefore); 3866 } 3867 3868 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3869 BasicBlock *IfException, ArrayRef<Value *> Args, 3870 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 3871 const Twine &NameStr = "", 3872 Instruction *InsertBefore = nullptr) { 3873 int NumOperands = 3874 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); 3875 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 3876 3877 return new (NumOperands, DescriptorBytes) 3878 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, 3879 NameStr, InsertBefore); 3880 } 3881 3882 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3883 BasicBlock *IfException, ArrayRef<Value *> Args, 3884 const Twine &NameStr, BasicBlock *InsertAtEnd) { 3885 int NumOperands = ComputeNumOperands(Args.size()); 3886 return new (NumOperands) 3887 InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, 3888 NumOperands, NameStr, InsertAtEnd); 3889 } 3890 3891 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3892 BasicBlock *IfException, ArrayRef<Value *> Args, 3893 ArrayRef<OperandBundleDef> Bundles, 3894 const Twine &NameStr, BasicBlock *InsertAtEnd) { 3895 int NumOperands = 3896 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); 3897 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 3898 3899 return new (NumOperands, DescriptorBytes) 3900 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, 3901 NameStr, InsertAtEnd); 3902 } 3903 3904 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, 3905 BasicBlock *IfException, ArrayRef<Value *> Args, 3906 const Twine &NameStr, 3907 Instruction *InsertBefore = nullptr) { 3908 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, 3909 IfException, Args, std::nullopt, NameStr, InsertBefore); 3910 } 3911 3912 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, 3913 BasicBlock *IfException, ArrayRef<Value *> Args, 3914 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 3915 const Twine &NameStr = "", 3916 Instruction *InsertBefore = nullptr) { 3917 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, 3918 IfException, Args, Bundles, NameStr, InsertBefore); 3919 } 3920 3921 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, 3922 BasicBlock *IfException, ArrayRef<Value *> Args, 3923 const Twine &NameStr, BasicBlock *InsertAtEnd) { 3924 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, 3925 IfException, Args, NameStr, InsertAtEnd); 3926 } 3927 3928 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, 3929 BasicBlock *IfException, ArrayRef<Value *> Args, 3930 ArrayRef<OperandBundleDef> Bundles, 3931 const Twine &NameStr, BasicBlock *InsertAtEnd) { 3932 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, 3933 IfException, Args, Bundles, NameStr, InsertAtEnd); 3934 } 3935 3936 /// Create a clone of \p II with a different set of operand bundles and 3937 /// insert it before \p InsertPt. 3938 /// 3939 /// The returned invoke instruction is identical to \p II in every way except 3940 /// that the operand bundles for the new instruction are set to the operand 3941 /// bundles in \p Bundles. 3942 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, 3943 Instruction *InsertPt = nullptr); 3944 3945 // get*Dest - Return the destination basic blocks... 3946 BasicBlock *getNormalDest() const { 3947 return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); 3948 } 3949 BasicBlock *getUnwindDest() const { 3950 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); 3951 } 3952 void setNormalDest(BasicBlock *B) { 3953 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); 3954 } 3955 void setUnwindDest(BasicBlock *B) { 3956 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); 3957 } 3958 3959 /// Get the landingpad instruction from the landing pad 3960 /// block (the unwind destination). 3961 LandingPadInst *getLandingPadInst() const; 3962 3963 BasicBlock *getSuccessor(unsigned i) const { 3964 assert(i < 2 && "Successor # out of range for invoke!"); 3965 return i == 0 ? getNormalDest() : getUnwindDest(); 3966 } 3967 3968 void setSuccessor(unsigned i, BasicBlock *NewSucc) { 3969 assert(i < 2 && "Successor # out of range for invoke!"); 3970 if (i == 0) 3971 setNormalDest(NewSucc); 3972 else 3973 setUnwindDest(NewSucc); 3974 } 3975 3976 unsigned getNumSuccessors() const { return 2; } 3977 3978 // Methods for support type inquiry through isa, cast, and dyn_cast: 3979 static bool classof(const Instruction *I) { 3980 return (I->getOpcode() == Instruction::Invoke); 3981 } 3982 static bool classof(const Value *V) { 3983 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3984 } 3985 3986 private: 3987 // Shadow Instruction::setInstructionSubclassData with a private forwarding 3988 // method so that subclasses cannot accidentally use it. 3989 template <typename Bitfield> 3990 void setSubclassData(typename Bitfield::Type Value) { 3991 Instruction::setSubclassData<Bitfield>(Value); 3992 } 3993 }; 3994 3995 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3996 BasicBlock *IfException, ArrayRef<Value *> Args, 3997 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 3998 const Twine &NameStr, Instruction *InsertBefore) 3999 : CallBase(Ty->getReturnType(), Instruction::Invoke, 4000 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, 4001 InsertBefore) { 4002 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); 4003 } 4004 4005 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 4006 BasicBlock *IfException, ArrayRef<Value *> Args, 4007 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 4008 const Twine &NameStr, BasicBlock *InsertAtEnd) 4009 : CallBase(Ty->getReturnType(), Instruction::Invoke, 4010 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, 4011 InsertAtEnd) { 4012 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); 4013 } 4014 4015 //===----------------------------------------------------------------------===// 4016 // CallBrInst Class 4017 //===----------------------------------------------------------------------===// 4018 4019 /// CallBr instruction, tracking function calls that may not return control but 4020 /// instead transfer it to a third location. The SubclassData field is used to 4021 /// hold the calling convention of the call. 4022 /// 4023 class CallBrInst : public CallBase { 4024 4025 unsigned NumIndirectDests; 4026 4027 CallBrInst(const CallBrInst &BI); 4028 4029 /// Construct a CallBrInst given a range of arguments. 4030 /// 4031 /// Construct a CallBrInst from a range of arguments 4032 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, 4033 ArrayRef<BasicBlock *> IndirectDests, 4034 ArrayRef<Value *> Args, 4035 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 4036 const Twine &NameStr, Instruction *InsertBefore); 4037 4038 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, 4039 ArrayRef<BasicBlock *> IndirectDests, 4040 ArrayRef<Value *> Args, 4041 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 4042 const Twine &NameStr, BasicBlock *InsertAtEnd); 4043 4044 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, 4045 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, 4046 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); 4047 4048 /// Compute the number of operands to allocate. 4049 static int ComputeNumOperands(int NumArgs, int NumIndirectDests, 4050 int NumBundleInputs = 0) { 4051 // We need one operand for the called function, plus our extra operands and 4052 // the input operand counts provided. 4053 return 2 + NumIndirectDests + NumArgs + NumBundleInputs; 4054 } 4055 4056 protected: 4057 // Note: Instruction needs to be a friend here to call cloneImpl. 4058 friend class Instruction; 4059 4060 CallBrInst *cloneImpl() const; 4061 4062 public: 4063 static CallBrInst *Create(FunctionType *Ty, Value *Func, 4064 BasicBlock *DefaultDest, 4065 ArrayRef<BasicBlock *> IndirectDests, 4066 ArrayRef<Value *> Args, const Twine &NameStr, 4067 Instruction *InsertBefore = nullptr) { 4068 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); 4069 return new (NumOperands) 4070 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, 4071 NumOperands, NameStr, InsertBefore); 4072 } 4073 4074 static CallBrInst * 4075 Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, 4076 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, 4077 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 4078 const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { 4079 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), 4080 CountBundleInputs(Bundles)); 4081 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 4082 4083 return new (NumOperands, DescriptorBytes) 4084 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, 4085 NumOperands, NameStr, InsertBefore); 4086 } 4087 4088 static CallBrInst *Create(FunctionType *Ty, Value *Func, 4089 BasicBlock *DefaultDest, 4090 ArrayRef<BasicBlock *> IndirectDests, 4091 ArrayRef<Value *> Args, const Twine &NameStr, 4092 BasicBlock *InsertAtEnd) { 4093 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); 4094 return new (NumOperands) 4095 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, 4096 NumOperands, NameStr, InsertAtEnd); 4097 } 4098 4099 static CallBrInst *Create(FunctionType *Ty, Value *Func, 4100 BasicBlock *DefaultDest, 4101 ArrayRef<BasicBlock *> IndirectDests, 4102 ArrayRef<Value *> Args, 4103 ArrayRef<OperandBundleDef> Bundles, 4104 const Twine &NameStr, BasicBlock *InsertAtEnd) { 4105 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), 4106 CountBundleInputs(Bundles)); 4107 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 4108 4109 return new (NumOperands, DescriptorBytes) 4110 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, 4111 NumOperands, NameStr, InsertAtEnd); 4112 } 4113 4114 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, 4115 ArrayRef<BasicBlock *> IndirectDests, 4116 ArrayRef<Value *> Args, const Twine &NameStr, 4117 Instruction *InsertBefore = nullptr) { 4118 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, 4119 IndirectDests, Args, NameStr, InsertBefore); 4120 } 4121 4122 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, 4123 ArrayRef<BasicBlock *> IndirectDests, 4124 ArrayRef<Value *> Args, 4125 ArrayRef<OperandBundleDef> Bundles = std::nullopt, 4126 const Twine &NameStr = "", 4127 Instruction *InsertBefore = nullptr) { 4128 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, 4129 IndirectDests, Args, Bundles, NameStr, InsertBefore); 4130 } 4131 4132 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, 4133 ArrayRef<BasicBlock *> IndirectDests, 4134 ArrayRef<Value *> Args, const Twine &NameStr, 4135 BasicBlock *InsertAtEnd) { 4136 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, 4137 IndirectDests, Args, NameStr, InsertAtEnd); 4138 } 4139 4140 static CallBrInst *Create(FunctionCallee Func, 4141 BasicBlock *DefaultDest, 4142 ArrayRef<BasicBlock *> IndirectDests, 4143 ArrayRef<Value *> Args, 4144 ArrayRef<OperandBundleDef> Bundles, 4145 const Twine &NameStr, BasicBlock *InsertAtEnd) { 4146 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, 4147 IndirectDests, Args, Bundles, NameStr, InsertAtEnd); 4148 } 4149 4150 /// Create a clone of \p CBI with a different set of operand bundles and 4151 /// insert it before \p InsertPt. 4152 /// 4153 /// The returned callbr instruction is identical to \p CBI in every way 4154 /// except that the operand bundles for the new instruction are set to the 4155 /// operand bundles in \p Bundles. 4156 static CallBrInst *Create(CallBrInst *CBI, 4157 ArrayRef<OperandBundleDef> Bundles, 4158 Instruction *InsertPt = nullptr); 4159 4160 /// Return the number of callbr indirect dest labels. 4161 /// 4162 unsigned getNumIndirectDests() const { return NumIndirectDests; } 4163 4164 /// getIndirectDestLabel - Return the i-th indirect dest label. 4165 /// 4166 Value *getIndirectDestLabel(unsigned i) const { 4167 assert(i < getNumIndirectDests() && "Out of bounds!"); 4168 return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1); 4169 } 4170 4171 Value *getIndirectDestLabelUse(unsigned i) const { 4172 assert(i < getNumIndirectDests() && "Out of bounds!"); 4173 return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1); 4174 } 4175 4176 // Return the destination basic blocks... 4177 BasicBlock *getDefaultDest() const { 4178 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); 4179 } 4180 BasicBlock *getIndirectDest(unsigned i) const { 4181 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); 4182 } 4183 SmallVector<BasicBlock *, 16> getIndirectDests() const { 4184 SmallVector<BasicBlock *, 16> IndirectDests; 4185 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) 4186 IndirectDests.push_back(getIndirectDest(i)); 4187 return IndirectDests; 4188 } 4189 void setDefaultDest(BasicBlock *B) { 4190 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); 4191 } 4192 void setIndirectDest(unsigned i, BasicBlock *B) { 4193 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); 4194 } 4195 4196 BasicBlock *getSuccessor(unsigned i) const { 4197 assert(i < getNumSuccessors() + 1 && 4198 "Successor # out of range for callbr!"); 4199 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); 4200 } 4201 4202 void setSuccessor(unsigned i, BasicBlock *NewSucc) { 4203 assert(i < getNumIndirectDests() + 1 && 4204 "Successor # out of range for callbr!"); 4205 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); 4206 } 4207 4208 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } 4209 4210 // Methods for support type inquiry through isa, cast, and dyn_cast: 4211 static bool classof(const Instruction *I) { 4212 return (I->getOpcode() == Instruction::CallBr); 4213 } 4214 static bool classof(const Value *V) { 4215 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4216 } 4217 4218 private: 4219 // Shadow Instruction::setInstructionSubclassData with a private forwarding 4220 // method so that subclasses cannot accidentally use it. 4221 template <typename Bitfield> 4222 void setSubclassData(typename Bitfield::Type Value) { 4223 Instruction::setSubclassData<Bitfield>(Value); 4224 } 4225 }; 4226 4227 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, 4228 ArrayRef<BasicBlock *> IndirectDests, 4229 ArrayRef<Value *> Args, 4230 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 4231 const Twine &NameStr, Instruction *InsertBefore) 4232 : CallBase(Ty->getReturnType(), Instruction::CallBr, 4233 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, 4234 InsertBefore) { 4235 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); 4236 } 4237 4238 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, 4239 ArrayRef<BasicBlock *> IndirectDests, 4240 ArrayRef<Value *> Args, 4241 ArrayRef<OperandBundleDef> Bundles, int NumOperands, 4242 const Twine &NameStr, BasicBlock *InsertAtEnd) 4243 : CallBase(Ty->getReturnType(), Instruction::CallBr, 4244 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, 4245 InsertAtEnd) { 4246 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); 4247 } 4248 4249 //===----------------------------------------------------------------------===// 4250 // ResumeInst Class 4251 //===----------------------------------------------------------------------===// 4252 4253 //===--------------------------------------------------------------------------- 4254 /// Resume the propagation of an exception. 4255 /// 4256 class ResumeInst : public Instruction { 4257 ResumeInst(const ResumeInst &RI); 4258 4259 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); 4260 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); 4261 4262 protected: 4263 // Note: Instruction needs to be a friend here to call cloneImpl. 4264 friend class Instruction; 4265 4266 ResumeInst *cloneImpl() const; 4267 4268 public: 4269 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { 4270 return new(1) ResumeInst(Exn, InsertBefore); 4271 } 4272 4273 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { 4274 return new(1) ResumeInst(Exn, InsertAtEnd); 4275 } 4276 4277 /// Provide fast operand accessors 4278 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 4279 4280 /// Convenience accessor. 4281 Value *getValue() const { return Op<0>(); } 4282 4283 unsigned getNumSuccessors() const { return 0; } 4284 4285 // Methods for support type inquiry through isa, cast, and dyn_cast: 4286 static bool classof(const Instruction *I) { 4287 return I->getOpcode() == Instruction::Resume; 4288 } 4289 static bool classof(const Value *V) { 4290 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4291 } 4292 4293 private: 4294 BasicBlock *getSuccessor(unsigned idx) const { 4295 llvm_unreachable("ResumeInst has no successors!"); 4296 } 4297 4298 void setSuccessor(unsigned idx, BasicBlock *NewSucc) { 4299 llvm_unreachable("ResumeInst has no successors!"); 4300 } 4301 }; 4302 4303 template <> 4304 struct OperandTraits<ResumeInst> : 4305 public FixedNumOperandTraits<ResumeInst, 1> { 4306 }; 4307 4308 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value) 4309 4310 //===----------------------------------------------------------------------===// 4311 // CatchSwitchInst Class 4312 //===----------------------------------------------------------------------===// 4313 class CatchSwitchInst : public Instruction { 4314 using UnwindDestField = BoolBitfieldElementT<0>; 4315 4316 /// The number of operands actually allocated. NumOperands is 4317 /// the number actually in use. 4318 unsigned ReservedSpace; 4319 4320 // Operand[0] = Outer scope 4321 // Operand[1] = Unwind block destination 4322 // Operand[n] = BasicBlock to go to on match 4323 CatchSwitchInst(const CatchSwitchInst &CSI); 4324 4325 /// Create a new switch instruction, specifying a 4326 /// default destination. The number of additional handlers can be specified 4327 /// here to make memory allocation more efficient. 4328 /// This constructor can also autoinsert before another instruction. 4329 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 4330 unsigned NumHandlers, const Twine &NameStr, 4331 Instruction *InsertBefore); 4332 4333 /// Create a new switch instruction, specifying a 4334 /// default destination. The number of additional handlers can be specified 4335 /// here to make memory allocation more efficient. 4336 /// This constructor also autoinserts at the end of the specified BasicBlock. 4337 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 4338 unsigned NumHandlers, const Twine &NameStr, 4339 BasicBlock *InsertAtEnd); 4340 4341 // allocate space for exactly zero operands 4342 void *operator new(size_t S) { return User::operator new(S); } 4343 4344 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); 4345 void growOperands(unsigned Size); 4346 4347 protected: 4348 // Note: Instruction needs to be a friend here to call cloneImpl. 4349 friend class Instruction; 4350 4351 CatchSwitchInst *cloneImpl() const; 4352 4353 public: 4354 void operator delete(void *Ptr) { return User::operator delete(Ptr); } 4355 4356 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, 4357 unsigned NumHandlers, 4358 const Twine &NameStr = "", 4359 Instruction *InsertBefore = nullptr) { 4360 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, 4361 InsertBefore); 4362 } 4363 4364 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, 4365 unsigned NumHandlers, const Twine &NameStr, 4366 BasicBlock *InsertAtEnd) { 4367 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, 4368 InsertAtEnd); 4369 } 4370 4371 /// Provide fast operand accessors 4372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 4373 4374 // Accessor Methods for CatchSwitch stmt 4375 Value *getParentPad() const { return getOperand(0); } 4376 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } 4377 4378 // Accessor Methods for CatchSwitch stmt 4379 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } 4380 bool unwindsToCaller() const { return !hasUnwindDest(); } 4381 BasicBlock *getUnwindDest() const { 4382 if (hasUnwindDest()) 4383 return cast<BasicBlock>(getOperand(1)); 4384 return nullptr; 4385 } 4386 void setUnwindDest(BasicBlock *UnwindDest) { 4387 assert(UnwindDest); 4388 assert(hasUnwindDest()); 4389 setOperand(1, UnwindDest); 4390 } 4391 4392 /// return the number of 'handlers' in this catchswitch 4393 /// instruction, except the default handler 4394 unsigned getNumHandlers() const { 4395 if (hasUnwindDest()) 4396 return getNumOperands() - 2; 4397 return getNumOperands() - 1; 4398 } 4399 4400 private: 4401 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } 4402 static const BasicBlock *handler_helper(const Value *V) { 4403 return cast<BasicBlock>(V); 4404 } 4405 4406 public: 4407 using DerefFnTy = BasicBlock *(*)(Value *); 4408 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; 4409 using handler_range = iterator_range<handler_iterator>; 4410 using ConstDerefFnTy = const BasicBlock *(*)(const Value *); 4411 using const_handler_iterator = 4412 mapped_iterator<const_op_iterator, ConstDerefFnTy>; 4413 using const_handler_range = iterator_range<const_handler_iterator>; 4414 4415 /// Returns an iterator that points to the first handler in CatchSwitchInst. 4416 handler_iterator handler_begin() { 4417 op_iterator It = op_begin() + 1; 4418 if (hasUnwindDest()) 4419 ++It; 4420 return handler_iterator(It, DerefFnTy(handler_helper)); 4421 } 4422 4423 /// Returns an iterator that points to the first handler in the 4424 /// CatchSwitchInst. 4425 const_handler_iterator handler_begin() const { 4426 const_op_iterator It = op_begin() + 1; 4427 if (hasUnwindDest()) 4428 ++It; 4429 return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); 4430 } 4431 4432 /// Returns a read-only iterator that points one past the last 4433 /// handler in the CatchSwitchInst. 4434 handler_iterator handler_end() { 4435 return handler_iterator(op_end(), DerefFnTy(handler_helper)); 4436 } 4437 4438 /// Returns an iterator that points one past the last handler in the 4439 /// CatchSwitchInst. 4440 const_handler_iterator handler_end() const { 4441 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); 4442 } 4443 4444 /// iteration adapter for range-for loops. 4445 handler_range handlers() { 4446 return make_range(handler_begin(), handler_end()); 4447 } 4448 4449 /// iteration adapter for range-for loops. 4450 const_handler_range handlers() const { 4451 return make_range(handler_begin(), handler_end()); 4452 } 4453 4454 /// Add an entry to the switch instruction... 4455 /// Note: 4456 /// This action invalidates handler_end(). Old handler_end() iterator will 4457 /// point to the added handler. 4458 void addHandler(BasicBlock *Dest); 4459 4460 void removeHandler(handler_iterator HI); 4461 4462 unsigned getNumSuccessors() const { return getNumOperands() - 1; } 4463 BasicBlock *getSuccessor(unsigned Idx) const { 4464 assert(Idx < getNumSuccessors() && 4465 "Successor # out of range for catchswitch!"); 4466 return cast<BasicBlock>(getOperand(Idx + 1)); 4467 } 4468 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { 4469 assert(Idx < getNumSuccessors() && 4470 "Successor # out of range for catchswitch!"); 4471 setOperand(Idx + 1, NewSucc); 4472 } 4473 4474 // Methods for support type inquiry through isa, cast, and dyn_cast: 4475 static bool classof(const Instruction *I) { 4476 return I->getOpcode() == Instruction::CatchSwitch; 4477 } 4478 static bool classof(const Value *V) { 4479 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4480 } 4481 }; 4482 4483 template <> 4484 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; 4485 4486 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value) 4487 4488 //===----------------------------------------------------------------------===// 4489 // CleanupPadInst Class 4490 //===----------------------------------------------------------------------===// 4491 class CleanupPadInst : public FuncletPadInst { 4492 private: 4493 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, 4494 unsigned Values, const Twine &NameStr, 4495 Instruction *InsertBefore) 4496 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, 4497 NameStr, InsertBefore) {} 4498 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, 4499 unsigned Values, const Twine &NameStr, 4500 BasicBlock *InsertAtEnd) 4501 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, 4502 NameStr, InsertAtEnd) {} 4503 4504 public: 4505 static CleanupPadInst *Create(Value *ParentPad, 4506 ArrayRef<Value *> Args = std::nullopt, 4507 const Twine &NameStr = "", 4508 Instruction *InsertBefore = nullptr) { 4509 unsigned Values = 1 + Args.size(); 4510 return new (Values) 4511 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); 4512 } 4513 4514 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, 4515 const Twine &NameStr, BasicBlock *InsertAtEnd) { 4516 unsigned Values = 1 + Args.size(); 4517 return new (Values) 4518 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); 4519 } 4520 4521 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4522 static bool classof(const Instruction *I) { 4523 return I->getOpcode() == Instruction::CleanupPad; 4524 } 4525 static bool classof(const Value *V) { 4526 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4527 } 4528 }; 4529 4530 //===----------------------------------------------------------------------===// 4531 // CatchPadInst Class 4532 //===----------------------------------------------------------------------===// 4533 class CatchPadInst : public FuncletPadInst { 4534 private: 4535 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, 4536 unsigned Values, const Twine &NameStr, 4537 Instruction *InsertBefore) 4538 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, 4539 NameStr, InsertBefore) {} 4540 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, 4541 unsigned Values, const Twine &NameStr, 4542 BasicBlock *InsertAtEnd) 4543 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, 4544 NameStr, InsertAtEnd) {} 4545 4546 public: 4547 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, 4548 const Twine &NameStr = "", 4549 Instruction *InsertBefore = nullptr) { 4550 unsigned Values = 1 + Args.size(); 4551 return new (Values) 4552 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); 4553 } 4554 4555 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, 4556 const Twine &NameStr, BasicBlock *InsertAtEnd) { 4557 unsigned Values = 1 + Args.size(); 4558 return new (Values) 4559 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); 4560 } 4561 4562 /// Convenience accessors 4563 CatchSwitchInst *getCatchSwitch() const { 4564 return cast<CatchSwitchInst>(Op<-1>()); 4565 } 4566 void setCatchSwitch(Value *CatchSwitch) { 4567 assert(CatchSwitch); 4568 Op<-1>() = CatchSwitch; 4569 } 4570 4571 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4572 static bool classof(const Instruction *I) { 4573 return I->getOpcode() == Instruction::CatchPad; 4574 } 4575 static bool classof(const Value *V) { 4576 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4577 } 4578 }; 4579 4580 //===----------------------------------------------------------------------===// 4581 // CatchReturnInst Class 4582 //===----------------------------------------------------------------------===// 4583 4584 class CatchReturnInst : public Instruction { 4585 CatchReturnInst(const CatchReturnInst &RI); 4586 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); 4587 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); 4588 4589 void init(Value *CatchPad, BasicBlock *BB); 4590 4591 protected: 4592 // Note: Instruction needs to be a friend here to call cloneImpl. 4593 friend class Instruction; 4594 4595 CatchReturnInst *cloneImpl() const; 4596 4597 public: 4598 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, 4599 Instruction *InsertBefore = nullptr) { 4600 assert(CatchPad); 4601 assert(BB); 4602 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); 4603 } 4604 4605 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, 4606 BasicBlock *InsertAtEnd) { 4607 assert(CatchPad); 4608 assert(BB); 4609 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); 4610 } 4611 4612 /// Provide fast operand accessors 4613 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 4614 4615 /// Convenience accessors. 4616 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } 4617 void setCatchPad(CatchPadInst *CatchPad) { 4618 assert(CatchPad); 4619 Op<0>() = CatchPad; 4620 } 4621 4622 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } 4623 void setSuccessor(BasicBlock *NewSucc) { 4624 assert(NewSucc); 4625 Op<1>() = NewSucc; 4626 } 4627 unsigned getNumSuccessors() const { return 1; } 4628 4629 /// Get the parentPad of this catchret's catchpad's catchswitch. 4630 /// The successor block is implicitly a member of this funclet. 4631 Value *getCatchSwitchParentPad() const { 4632 return getCatchPad()->getCatchSwitch()->getParentPad(); 4633 } 4634 4635 // Methods for support type inquiry through isa, cast, and dyn_cast: 4636 static bool classof(const Instruction *I) { 4637 return (I->getOpcode() == Instruction::CatchRet); 4638 } 4639 static bool classof(const Value *V) { 4640 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4641 } 4642 4643 private: 4644 BasicBlock *getSuccessor(unsigned Idx) const { 4645 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 4646 return getSuccessor(); 4647 } 4648 4649 void setSuccessor(unsigned Idx, BasicBlock *B) { 4650 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!"); 4651 setSuccessor(B); 4652 } 4653 }; 4654 4655 template <> 4656 struct OperandTraits<CatchReturnInst> 4657 : public FixedNumOperandTraits<CatchReturnInst, 2> {}; 4658 4659 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value) 4660 4661 //===----------------------------------------------------------------------===// 4662 // CleanupReturnInst Class 4663 //===----------------------------------------------------------------------===// 4664 4665 class CleanupReturnInst : public Instruction { 4666 using UnwindDestField = BoolBitfieldElementT<0>; 4667 4668 private: 4669 CleanupReturnInst(const CleanupReturnInst &RI); 4670 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, 4671 Instruction *InsertBefore = nullptr); 4672 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, 4673 BasicBlock *InsertAtEnd); 4674 4675 void init(Value *CleanupPad, BasicBlock *UnwindBB); 4676 4677 protected: 4678 // Note: Instruction needs to be a friend here to call cloneImpl. 4679 friend class Instruction; 4680 4681 CleanupReturnInst *cloneImpl() const; 4682 4683 public: 4684 static CleanupReturnInst *Create(Value *CleanupPad, 4685 BasicBlock *UnwindBB = nullptr, 4686 Instruction *InsertBefore = nullptr) { 4687 assert(CleanupPad); 4688 unsigned Values = 1; 4689 if (UnwindBB) 4690 ++Values; 4691 return new (Values) 4692 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); 4693 } 4694 4695 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, 4696 BasicBlock *InsertAtEnd) { 4697 assert(CleanupPad); 4698 unsigned Values = 1; 4699 if (UnwindBB) 4700 ++Values; 4701 return new (Values) 4702 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); 4703 } 4704 4705 /// Provide fast operand accessors 4706 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 4707 4708 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } 4709 bool unwindsToCaller() const { return !hasUnwindDest(); } 4710 4711 /// Convenience accessor. 4712 CleanupPadInst *getCleanupPad() const { 4713 return cast<CleanupPadInst>(Op<0>()); 4714 } 4715 void setCleanupPad(CleanupPadInst *CleanupPad) { 4716 assert(CleanupPad); 4717 Op<0>() = CleanupPad; 4718 } 4719 4720 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } 4721 4722 BasicBlock *getUnwindDest() const { 4723 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; 4724 } 4725 void setUnwindDest(BasicBlock *NewDest) { 4726 assert(NewDest); 4727 assert(hasUnwindDest()); 4728 Op<1>() = NewDest; 4729 } 4730 4731 // Methods for support type inquiry through isa, cast, and dyn_cast: 4732 static bool classof(const Instruction *I) { 4733 return (I->getOpcode() == Instruction::CleanupRet); 4734 } 4735 static bool classof(const Value *V) { 4736 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4737 } 4738 4739 private: 4740 BasicBlock *getSuccessor(unsigned Idx) const { 4741 assert(Idx == 0); 4742 return getUnwindDest(); 4743 } 4744 4745 void setSuccessor(unsigned Idx, BasicBlock *B) { 4746 assert(Idx == 0); 4747 setUnwindDest(B); 4748 } 4749 4750 // Shadow Instruction::setInstructionSubclassData with a private forwarding 4751 // method so that subclasses cannot accidentally use it. 4752 template <typename Bitfield> 4753 void setSubclassData(typename Bitfield::Type Value) { 4754 Instruction::setSubclassData<Bitfield>(Value); 4755 } 4756 }; 4757 4758 template <> 4759 struct OperandTraits<CleanupReturnInst> 4760 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; 4761 4762 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value) 4763 4764 //===----------------------------------------------------------------------===// 4765 // UnreachableInst Class 4766 //===----------------------------------------------------------------------===// 4767 4768 //===--------------------------------------------------------------------------- 4769 /// This function has undefined behavior. In particular, the 4770 /// presence of this instruction indicates some higher level knowledge that the 4771 /// end of the block cannot be reached. 4772 /// 4773 class UnreachableInst : public Instruction { 4774 protected: 4775 // Note: Instruction needs to be a friend here to call cloneImpl. 4776 friend class Instruction; 4777 4778 UnreachableInst *cloneImpl() const; 4779 4780 public: 4781 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); 4782 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); 4783 4784 // allocate space for exactly zero operands 4785 void *operator new(size_t S) { return User::operator new(S, 0); } 4786 void operator delete(void *Ptr) { User::operator delete(Ptr); } 4787 4788 unsigned getNumSuccessors() const { return 0; } 4789 4790 // Methods for support type inquiry through isa, cast, and dyn_cast: 4791 static bool classof(const Instruction *I) { 4792 return I->getOpcode() == Instruction::Unreachable; 4793 } 4794 static bool classof(const Value *V) { 4795 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4796 } 4797 4798 private: 4799 BasicBlock *getSuccessor(unsigned idx) const { 4800 llvm_unreachable("UnreachableInst has no successors!"); 4801 } 4802 4803 void setSuccessor(unsigned idx, BasicBlock *B) { 4804 llvm_unreachable("UnreachableInst has no successors!"); 4805 } 4806 }; 4807 4808 //===----------------------------------------------------------------------===// 4809 // TruncInst Class 4810 //===----------------------------------------------------------------------===// 4811 4812 /// This class represents a truncation of integer types. 4813 class TruncInst : public CastInst { 4814 protected: 4815 // Note: Instruction needs to be a friend here to call cloneImpl. 4816 friend class Instruction; 4817 4818 /// Clone an identical TruncInst 4819 TruncInst *cloneImpl() const; 4820 4821 public: 4822 /// Constructor with insert-before-instruction semantics 4823 TruncInst( 4824 Value *S, ///< The value to be truncated 4825 Type *Ty, ///< The (smaller) type to truncate to 4826 const Twine &NameStr = "", ///< A name for the new instruction 4827 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4828 ); 4829 4830 /// Constructor with insert-at-end-of-block semantics 4831 TruncInst( 4832 Value *S, ///< The value to be truncated 4833 Type *Ty, ///< The (smaller) type to truncate to 4834 const Twine &NameStr, ///< A name for the new instruction 4835 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4836 ); 4837 4838 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4839 static bool classof(const Instruction *I) { 4840 return I->getOpcode() == Trunc; 4841 } 4842 static bool classof(const Value *V) { 4843 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4844 } 4845 }; 4846 4847 //===----------------------------------------------------------------------===// 4848 // ZExtInst Class 4849 //===----------------------------------------------------------------------===// 4850 4851 /// This class represents zero extension of integer types. 4852 class ZExtInst : public CastInst { 4853 protected: 4854 // Note: Instruction needs to be a friend here to call cloneImpl. 4855 friend class Instruction; 4856 4857 /// Clone an identical ZExtInst 4858 ZExtInst *cloneImpl() const; 4859 4860 public: 4861 /// Constructor with insert-before-instruction semantics 4862 ZExtInst( 4863 Value *S, ///< The value to be zero extended 4864 Type *Ty, ///< The type to zero extend to 4865 const Twine &NameStr = "", ///< A name for the new instruction 4866 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4867 ); 4868 4869 /// Constructor with insert-at-end semantics. 4870 ZExtInst( 4871 Value *S, ///< The value to be zero extended 4872 Type *Ty, ///< The type to zero extend to 4873 const Twine &NameStr, ///< A name for the new instruction 4874 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4875 ); 4876 4877 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4878 static bool classof(const Instruction *I) { 4879 return I->getOpcode() == ZExt; 4880 } 4881 static bool classof(const Value *V) { 4882 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4883 } 4884 }; 4885 4886 //===----------------------------------------------------------------------===// 4887 // SExtInst Class 4888 //===----------------------------------------------------------------------===// 4889 4890 /// This class represents a sign extension of integer types. 4891 class SExtInst : public CastInst { 4892 protected: 4893 // Note: Instruction needs to be a friend here to call cloneImpl. 4894 friend class Instruction; 4895 4896 /// Clone an identical SExtInst 4897 SExtInst *cloneImpl() const; 4898 4899 public: 4900 /// Constructor with insert-before-instruction semantics 4901 SExtInst( 4902 Value *S, ///< The value to be sign extended 4903 Type *Ty, ///< The type to sign extend to 4904 const Twine &NameStr = "", ///< A name for the new instruction 4905 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4906 ); 4907 4908 /// Constructor with insert-at-end-of-block semantics 4909 SExtInst( 4910 Value *S, ///< The value to be sign extended 4911 Type *Ty, ///< The type to sign extend to 4912 const Twine &NameStr, ///< A name for the new instruction 4913 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4914 ); 4915 4916 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4917 static bool classof(const Instruction *I) { 4918 return I->getOpcode() == SExt; 4919 } 4920 static bool classof(const Value *V) { 4921 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4922 } 4923 }; 4924 4925 //===----------------------------------------------------------------------===// 4926 // FPTruncInst Class 4927 //===----------------------------------------------------------------------===// 4928 4929 /// This class represents a truncation of floating point types. 4930 class FPTruncInst : public CastInst { 4931 protected: 4932 // Note: Instruction needs to be a friend here to call cloneImpl. 4933 friend class Instruction; 4934 4935 /// Clone an identical FPTruncInst 4936 FPTruncInst *cloneImpl() const; 4937 4938 public: 4939 /// Constructor with insert-before-instruction semantics 4940 FPTruncInst( 4941 Value *S, ///< The value to be truncated 4942 Type *Ty, ///< The type to truncate to 4943 const Twine &NameStr = "", ///< A name for the new instruction 4944 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4945 ); 4946 4947 /// Constructor with insert-before-instruction semantics 4948 FPTruncInst( 4949 Value *S, ///< The value to be truncated 4950 Type *Ty, ///< The type to truncate to 4951 const Twine &NameStr, ///< A name for the new instruction 4952 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4953 ); 4954 4955 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4956 static bool classof(const Instruction *I) { 4957 return I->getOpcode() == FPTrunc; 4958 } 4959 static bool classof(const Value *V) { 4960 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4961 } 4962 }; 4963 4964 //===----------------------------------------------------------------------===// 4965 // FPExtInst Class 4966 //===----------------------------------------------------------------------===// 4967 4968 /// This class represents an extension of floating point types. 4969 class FPExtInst : public CastInst { 4970 protected: 4971 // Note: Instruction needs to be a friend here to call cloneImpl. 4972 friend class Instruction; 4973 4974 /// Clone an identical FPExtInst 4975 FPExtInst *cloneImpl() const; 4976 4977 public: 4978 /// Constructor with insert-before-instruction semantics 4979 FPExtInst( 4980 Value *S, ///< The value to be extended 4981 Type *Ty, ///< The type to extend to 4982 const Twine &NameStr = "", ///< A name for the new instruction 4983 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4984 ); 4985 4986 /// Constructor with insert-at-end-of-block semantics 4987 FPExtInst( 4988 Value *S, ///< The value to be extended 4989 Type *Ty, ///< The type to extend to 4990 const Twine &NameStr, ///< A name for the new instruction 4991 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4992 ); 4993 4994 /// Methods for support type inquiry through isa, cast, and dyn_cast: 4995 static bool classof(const Instruction *I) { 4996 return I->getOpcode() == FPExt; 4997 } 4998 static bool classof(const Value *V) { 4999 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5000 } 5001 }; 5002 5003 //===----------------------------------------------------------------------===// 5004 // UIToFPInst Class 5005 //===----------------------------------------------------------------------===// 5006 5007 /// This class represents a cast unsigned integer to floating point. 5008 class UIToFPInst : public CastInst { 5009 protected: 5010 // Note: Instruction needs to be a friend here to call cloneImpl. 5011 friend class Instruction; 5012 5013 /// Clone an identical UIToFPInst 5014 UIToFPInst *cloneImpl() const; 5015 5016 public: 5017 /// Constructor with insert-before-instruction semantics 5018 UIToFPInst( 5019 Value *S, ///< The value to be converted 5020 Type *Ty, ///< The type to convert to 5021 const Twine &NameStr = "", ///< A name for the new instruction 5022 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5023 ); 5024 5025 /// Constructor with insert-at-end-of-block semantics 5026 UIToFPInst( 5027 Value *S, ///< The value to be converted 5028 Type *Ty, ///< The type to convert to 5029 const Twine &NameStr, ///< A name for the new instruction 5030 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5031 ); 5032 5033 /// Methods for support type inquiry through isa, cast, and dyn_cast: 5034 static bool classof(const Instruction *I) { 5035 return I->getOpcode() == UIToFP; 5036 } 5037 static bool classof(const Value *V) { 5038 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5039 } 5040 }; 5041 5042 //===----------------------------------------------------------------------===// 5043 // SIToFPInst Class 5044 //===----------------------------------------------------------------------===// 5045 5046 /// This class represents a cast from signed integer to floating point. 5047 class SIToFPInst : public CastInst { 5048 protected: 5049 // Note: Instruction needs to be a friend here to call cloneImpl. 5050 friend class Instruction; 5051 5052 /// Clone an identical SIToFPInst 5053 SIToFPInst *cloneImpl() const; 5054 5055 public: 5056 /// Constructor with insert-before-instruction semantics 5057 SIToFPInst( 5058 Value *S, ///< The value to be converted 5059 Type *Ty, ///< The type to convert to 5060 const Twine &NameStr = "", ///< A name for the new instruction 5061 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5062 ); 5063 5064 /// Constructor with insert-at-end-of-block semantics 5065 SIToFPInst( 5066 Value *S, ///< The value to be converted 5067 Type *Ty, ///< The type to convert to 5068 const Twine &NameStr, ///< A name for the new instruction 5069 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5070 ); 5071 5072 /// Methods for support type inquiry through isa, cast, and dyn_cast: 5073 static bool classof(const Instruction *I) { 5074 return I->getOpcode() == SIToFP; 5075 } 5076 static bool classof(const Value *V) { 5077 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5078 } 5079 }; 5080 5081 //===----------------------------------------------------------------------===// 5082 // FPToUIInst Class 5083 //===----------------------------------------------------------------------===// 5084 5085 /// This class represents a cast from floating point to unsigned integer 5086 class FPToUIInst : public CastInst { 5087 protected: 5088 // Note: Instruction needs to be a friend here to call cloneImpl. 5089 friend class Instruction; 5090 5091 /// Clone an identical FPToUIInst 5092 FPToUIInst *cloneImpl() const; 5093 5094 public: 5095 /// Constructor with insert-before-instruction semantics 5096 FPToUIInst( 5097 Value *S, ///< The value to be converted 5098 Type *Ty, ///< The type to convert to 5099 const Twine &NameStr = "", ///< A name for the new instruction 5100 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5101 ); 5102 5103 /// Constructor with insert-at-end-of-block semantics 5104 FPToUIInst( 5105 Value *S, ///< The value to be converted 5106 Type *Ty, ///< The type to convert to 5107 const Twine &NameStr, ///< A name for the new instruction 5108 BasicBlock *InsertAtEnd ///< Where to insert the new instruction 5109 ); 5110 5111 /// Methods for support type inquiry through isa, cast, and dyn_cast: 5112 static bool classof(const Instruction *I) { 5113 return I->getOpcode() == FPToUI; 5114 } 5115 static bool classof(const Value *V) { 5116 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5117 } 5118 }; 5119 5120 //===----------------------------------------------------------------------===// 5121 // FPToSIInst Class 5122 //===----------------------------------------------------------------------===// 5123 5124 /// This class represents a cast from floating point to signed integer. 5125 class FPToSIInst : public CastInst { 5126 protected: 5127 // Note: Instruction needs to be a friend here to call cloneImpl. 5128 friend class Instruction; 5129 5130 /// Clone an identical FPToSIInst 5131 FPToSIInst *cloneImpl() const; 5132 5133 public: 5134 /// Constructor with insert-before-instruction semantics 5135 FPToSIInst( 5136 Value *S, ///< The value to be converted 5137 Type *Ty, ///< The type to convert to 5138 const Twine &NameStr = "", ///< A name for the new instruction 5139 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5140 ); 5141 5142 /// Constructor with insert-at-end-of-block semantics 5143 FPToSIInst( 5144 Value *S, ///< The value to be converted 5145 Type *Ty, ///< The type to convert to 5146 const Twine &NameStr, ///< A name for the new instruction 5147 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5148 ); 5149 5150 /// Methods for support type inquiry through isa, cast, and dyn_cast: 5151 static bool classof(const Instruction *I) { 5152 return I->getOpcode() == FPToSI; 5153 } 5154 static bool classof(const Value *V) { 5155 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5156 } 5157 }; 5158 5159 //===----------------------------------------------------------------------===// 5160 // IntToPtrInst Class 5161 //===----------------------------------------------------------------------===// 5162 5163 /// This class represents a cast from an integer to a pointer. 5164 class IntToPtrInst : public CastInst { 5165 public: 5166 // Note: Instruction needs to be a friend here to call cloneImpl. 5167 friend class Instruction; 5168 5169 /// Constructor with insert-before-instruction semantics 5170 IntToPtrInst( 5171 Value *S, ///< The value to be converted 5172 Type *Ty, ///< The type to convert to 5173 const Twine &NameStr = "", ///< A name for the new instruction 5174 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5175 ); 5176 5177 /// Constructor with insert-at-end-of-block semantics 5178 IntToPtrInst( 5179 Value *S, ///< The value to be converted 5180 Type *Ty, ///< The type to convert to 5181 const Twine &NameStr, ///< A name for the new instruction 5182 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5183 ); 5184 5185 /// Clone an identical IntToPtrInst. 5186 IntToPtrInst *cloneImpl() const; 5187 5188 /// Returns the address space of this instruction's pointer type. 5189 unsigned getAddressSpace() const { 5190 return getType()->getPointerAddressSpace(); 5191 } 5192 5193 // Methods for support type inquiry through isa, cast, and dyn_cast: 5194 static bool classof(const Instruction *I) { 5195 return I->getOpcode() == IntToPtr; 5196 } 5197 static bool classof(const Value *V) { 5198 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5199 } 5200 }; 5201 5202 //===----------------------------------------------------------------------===// 5203 // PtrToIntInst Class 5204 //===----------------------------------------------------------------------===// 5205 5206 /// This class represents a cast from a pointer to an integer. 5207 class PtrToIntInst : public CastInst { 5208 protected: 5209 // Note: Instruction needs to be a friend here to call cloneImpl. 5210 friend class Instruction; 5211 5212 /// Clone an identical PtrToIntInst. 5213 PtrToIntInst *cloneImpl() const; 5214 5215 public: 5216 /// Constructor with insert-before-instruction semantics 5217 PtrToIntInst( 5218 Value *S, ///< The value to be converted 5219 Type *Ty, ///< The type to convert to 5220 const Twine &NameStr = "", ///< A name for the new instruction 5221 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5222 ); 5223 5224 /// Constructor with insert-at-end-of-block semantics 5225 PtrToIntInst( 5226 Value *S, ///< The value to be converted 5227 Type *Ty, ///< The type to convert to 5228 const Twine &NameStr, ///< A name for the new instruction 5229 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5230 ); 5231 5232 /// Gets the pointer operand. 5233 Value *getPointerOperand() { return getOperand(0); } 5234 /// Gets the pointer operand. 5235 const Value *getPointerOperand() const { return getOperand(0); } 5236 /// Gets the operand index of the pointer operand. 5237 static unsigned getPointerOperandIndex() { return 0U; } 5238 5239 /// Returns the address space of the pointer operand. 5240 unsigned getPointerAddressSpace() const { 5241 return getPointerOperand()->getType()->getPointerAddressSpace(); 5242 } 5243 5244 // Methods for support type inquiry through isa, cast, and dyn_cast: 5245 static bool classof(const Instruction *I) { 5246 return I->getOpcode() == PtrToInt; 5247 } 5248 static bool classof(const Value *V) { 5249 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5250 } 5251 }; 5252 5253 //===----------------------------------------------------------------------===// 5254 // BitCastInst Class 5255 //===----------------------------------------------------------------------===// 5256 5257 /// This class represents a no-op cast from one type to another. 5258 class BitCastInst : public CastInst { 5259 protected: 5260 // Note: Instruction needs to be a friend here to call cloneImpl. 5261 friend class Instruction; 5262 5263 /// Clone an identical BitCastInst. 5264 BitCastInst *cloneImpl() const; 5265 5266 public: 5267 /// Constructor with insert-before-instruction semantics 5268 BitCastInst( 5269 Value *S, ///< The value to be casted 5270 Type *Ty, ///< The type to casted to 5271 const Twine &NameStr = "", ///< A name for the new instruction 5272 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5273 ); 5274 5275 /// Constructor with insert-at-end-of-block semantics 5276 BitCastInst( 5277 Value *S, ///< The value to be casted 5278 Type *Ty, ///< The type to casted to 5279 const Twine &NameStr, ///< A name for the new instruction 5280 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5281 ); 5282 5283 // Methods for support type inquiry through isa, cast, and dyn_cast: 5284 static bool classof(const Instruction *I) { 5285 return I->getOpcode() == BitCast; 5286 } 5287 static bool classof(const Value *V) { 5288 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5289 } 5290 }; 5291 5292 //===----------------------------------------------------------------------===// 5293 // AddrSpaceCastInst Class 5294 //===----------------------------------------------------------------------===// 5295 5296 /// This class represents a conversion between pointers from one address space 5297 /// to another. 5298 class AddrSpaceCastInst : public CastInst { 5299 protected: 5300 // Note: Instruction needs to be a friend here to call cloneImpl. 5301 friend class Instruction; 5302 5303 /// Clone an identical AddrSpaceCastInst. 5304 AddrSpaceCastInst *cloneImpl() const; 5305 5306 public: 5307 /// Constructor with insert-before-instruction semantics 5308 AddrSpaceCastInst( 5309 Value *S, ///< The value to be casted 5310 Type *Ty, ///< The type to casted to 5311 const Twine &NameStr = "", ///< A name for the new instruction 5312 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 5313 ); 5314 5315 /// Constructor with insert-at-end-of-block semantics 5316 AddrSpaceCastInst( 5317 Value *S, ///< The value to be casted 5318 Type *Ty, ///< The type to casted to 5319 const Twine &NameStr, ///< A name for the new instruction 5320 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 5321 ); 5322 5323 // Methods for support type inquiry through isa, cast, and dyn_cast: 5324 static bool classof(const Instruction *I) { 5325 return I->getOpcode() == AddrSpaceCast; 5326 } 5327 static bool classof(const Value *V) { 5328 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5329 } 5330 5331 /// Gets the pointer operand. 5332 Value *getPointerOperand() { 5333 return getOperand(0); 5334 } 5335 5336 /// Gets the pointer operand. 5337 const Value *getPointerOperand() const { 5338 return getOperand(0); 5339 } 5340 5341 /// Gets the operand index of the pointer operand. 5342 static unsigned getPointerOperandIndex() { 5343 return 0U; 5344 } 5345 5346 /// Returns the address space of the pointer operand. 5347 unsigned getSrcAddressSpace() const { 5348 return getPointerOperand()->getType()->getPointerAddressSpace(); 5349 } 5350 5351 /// Returns the address space of the result. 5352 unsigned getDestAddressSpace() const { 5353 return getType()->getPointerAddressSpace(); 5354 } 5355 }; 5356 5357 //===----------------------------------------------------------------------===// 5358 // Helper functions 5359 //===----------------------------------------------------------------------===// 5360 5361 /// A helper function that returns the pointer operand of a load or store 5362 /// instruction. Returns nullptr if not load or store. 5363 inline const Value *getLoadStorePointerOperand(const Value *V) { 5364 if (auto *Load = dyn_cast<LoadInst>(V)) 5365 return Load->getPointerOperand(); 5366 if (auto *Store = dyn_cast<StoreInst>(V)) 5367 return Store->getPointerOperand(); 5368 return nullptr; 5369 } 5370 inline Value *getLoadStorePointerOperand(Value *V) { 5371 return const_cast<Value *>( 5372 getLoadStorePointerOperand(static_cast<const Value *>(V))); 5373 } 5374 5375 /// A helper function that returns the pointer operand of a load, store 5376 /// or GEP instruction. Returns nullptr if not load, store, or GEP. 5377 inline const Value *getPointerOperand(const Value *V) { 5378 if (auto *Ptr = getLoadStorePointerOperand(V)) 5379 return Ptr; 5380 if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) 5381 return Gep->getPointerOperand(); 5382 return nullptr; 5383 } 5384 inline Value *getPointerOperand(Value *V) { 5385 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); 5386 } 5387 5388 /// A helper function that returns the alignment of load or store instruction. 5389 inline Align getLoadStoreAlignment(Value *I) { 5390 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 5391 "Expected Load or Store instruction"); 5392 if (auto *LI = dyn_cast<LoadInst>(I)) 5393 return LI->getAlign(); 5394 return cast<StoreInst>(I)->getAlign(); 5395 } 5396 5397 /// A helper function that returns the address space of the pointer operand of 5398 /// load or store instruction. 5399 inline unsigned getLoadStoreAddressSpace(Value *I) { 5400 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 5401 "Expected Load or Store instruction"); 5402 if (auto *LI = dyn_cast<LoadInst>(I)) 5403 return LI->getPointerAddressSpace(); 5404 return cast<StoreInst>(I)->getPointerAddressSpace(); 5405 } 5406 5407 /// A helper function that returns the type of a load or store instruction. 5408 inline Type *getLoadStoreType(Value *I) { 5409 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 5410 "Expected Load or Store instruction"); 5411 if (auto *LI = dyn_cast<LoadInst>(I)) 5412 return LI->getType(); 5413 return cast<StoreInst>(I)->getValueOperand()->getType(); 5414 } 5415 5416 /// A helper function that returns an atomic operation's sync scope; returns 5417 /// std::nullopt if it is not an atomic operation. 5418 inline std::optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) { 5419 if (!I->isAtomic()) 5420 return std::nullopt; 5421 if (auto *AI = dyn_cast<LoadInst>(I)) 5422 return AI->getSyncScopeID(); 5423 if (auto *AI = dyn_cast<StoreInst>(I)) 5424 return AI->getSyncScopeID(); 5425 if (auto *AI = dyn_cast<FenceInst>(I)) 5426 return AI->getSyncScopeID(); 5427 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) 5428 return AI->getSyncScopeID(); 5429 if (auto *AI = dyn_cast<AtomicRMWInst>(I)) 5430 return AI->getSyncScopeID(); 5431 llvm_unreachable("unhandled atomic operation"); 5432 } 5433 5434 //===----------------------------------------------------------------------===// 5435 // FreezeInst Class 5436 //===----------------------------------------------------------------------===// 5437 5438 /// This class represents a freeze function that returns random concrete 5439 /// value if an operand is either a poison value or an undef value 5440 class FreezeInst : public UnaryInstruction { 5441 protected: 5442 // Note: Instruction needs to be a friend here to call cloneImpl. 5443 friend class Instruction; 5444 5445 /// Clone an identical FreezeInst 5446 FreezeInst *cloneImpl() const; 5447 5448 public: 5449 explicit FreezeInst(Value *S, 5450 const Twine &NameStr = "", 5451 Instruction *InsertBefore = nullptr); 5452 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); 5453 5454 // Methods for support type inquiry through isa, cast, and dyn_cast: 5455 static inline bool classof(const Instruction *I) { 5456 return I->getOpcode() == Freeze; 5457 } 5458 static inline bool classof(const Value *V) { 5459 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 5460 } 5461 }; 5462 5463 } // end namespace llvm 5464 5465 #endif // LLVM_IR_INSTRUCTIONS_H 5466