xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Instructions.h (revision 8c2dd68caa963f1900a8228b0732b04f5d530ffa)
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class.  This is meant to be an easy way to get access to all
11 // instruction subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Bitfields.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/OperandTraits.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Use.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <iterator>
48 
49 namespace llvm {
50 
51 class APInt;
52 class ConstantInt;
53 class DataLayout;
54 class LLVMContext;
55 
56 //===----------------------------------------------------------------------===//
57 //                                AllocaInst Class
58 //===----------------------------------------------------------------------===//
59 
60 /// an instruction to allocate memory on the stack
61 class AllocaInst : public UnaryInstruction {
62   Type *AllocatedType;
63 
64   using AlignmentField = AlignmentBitfieldElementT<0>;
65   using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66   using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67   static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68                                         SwiftErrorField>(),
69                 "Bitfields must be contiguous");
70 
71 protected:
72   // Note: Instruction needs to be a friend here to call cloneImpl.
73   friend class Instruction;
74 
75   AllocaInst *cloneImpl() const;
76 
77 public:
78   explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79                       const Twine &Name, Instruction *InsertBefore);
80   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81              const Twine &Name, BasicBlock *InsertAtEnd);
82 
83   AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84              Instruction *InsertBefore);
85   AllocaInst(Type *Ty, unsigned AddrSpace,
86              const Twine &Name, BasicBlock *InsertAtEnd);
87 
88   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89              const Twine &Name = "", Instruction *InsertBefore = nullptr);
90   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91              const Twine &Name, BasicBlock *InsertAtEnd);
92 
93   /// Return true if there is an allocation size parameter to the allocation
94   /// instruction that is not 1.
95   bool isArrayAllocation() const;
96 
97   /// Get the number of elements allocated. For a simple allocation of a single
98   /// element, this will return a constant 1 value.
99   const Value *getArraySize() const { return getOperand(0); }
100   Value *getArraySize() { return getOperand(0); }
101 
102   /// Overload to return most specific pointer type.
103   PointerType *getType() const {
104     return cast<PointerType>(Instruction::getType());
105   }
106 
107   /// Get allocation size in bits. Returns None if size can't be determined,
108   /// e.g. in case of a VLA.
109   Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110 
111   /// Return the type that is being allocated by the instruction.
112   Type *getAllocatedType() const { return AllocatedType; }
113   /// for use only in special circumstances that need to generically
114   /// transform a whole instruction (eg: IR linking and vectorization).
115   void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116 
117   /// Return the alignment of the memory that is being allocated by the
118   /// instruction.
119   Align getAlign() const {
120     return Align(1ULL << getSubclassData<AlignmentField>());
121   }
122 
123   void setAlignment(Align Align) {
124     setSubclassData<AlignmentField>(Log2(Align));
125   }
126 
127   // FIXME: Remove this one transition to Align is over.
128   unsigned getAlignment() const { return getAlign().value(); }
129 
130   /// Return true if this alloca is in the entry block of the function and is a
131   /// constant size. If so, the code generator will fold it into the
132   /// prolog/epilog code, so it is basically free.
133   bool isStaticAlloca() const;
134 
135   /// Return true if this alloca is used as an inalloca argument to a call. Such
136   /// allocas are never considered static even if they are in the entry block.
137   bool isUsedWithInAlloca() const {
138     return getSubclassData<UsedWithInAllocaField>();
139   }
140 
141   /// Specify whether this alloca is used to represent the arguments to a call.
142   void setUsedWithInAlloca(bool V) {
143     setSubclassData<UsedWithInAllocaField>(V);
144   }
145 
146   /// Return true if this alloca is used as a swifterror argument to a call.
147   bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148   /// Specify whether this alloca is used to represent a swifterror.
149   void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150 
151   // Methods for support type inquiry through isa, cast, and dyn_cast:
152   static bool classof(const Instruction *I) {
153     return (I->getOpcode() == Instruction::Alloca);
154   }
155   static bool classof(const Value *V) {
156     return isa<Instruction>(V) && classof(cast<Instruction>(V));
157   }
158 
159 private:
160   // Shadow Instruction::setInstructionSubclassData with a private forwarding
161   // method so that subclasses cannot accidentally use it.
162   template <typename Bitfield>
163   void setSubclassData(typename Bitfield::Type Value) {
164     Instruction::setSubclassData<Bitfield>(Value);
165   }
166 };
167 
168 //===----------------------------------------------------------------------===//
169 //                                LoadInst Class
170 //===----------------------------------------------------------------------===//
171 
172 /// An instruction for reading from memory. This uses the SubclassData field in
173 /// Value to store whether or not the load is volatile.
174 class LoadInst : public UnaryInstruction {
175   using VolatileField = BoolBitfieldElementT<0>;
176   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178   static_assert(
179       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180       "Bitfields must be contiguous");
181 
182   void AssertOK();
183 
184 protected:
185   // Note: Instruction needs to be a friend here to call cloneImpl.
186   friend class Instruction;
187 
188   LoadInst *cloneImpl() const;
189 
190 public:
191   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192            Instruction *InsertBefore);
193   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195            Instruction *InsertBefore);
196   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197            BasicBlock *InsertAtEnd);
198   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199            Align Align, Instruction *InsertBefore = nullptr);
200   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201            Align Align, BasicBlock *InsertAtEnd);
202   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203            Align Align, AtomicOrdering Order,
204            SyncScope::ID SSID = SyncScope::System,
205            Instruction *InsertBefore = nullptr);
206   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207            Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208            BasicBlock *InsertAtEnd);
209 
210   /// Return true if this is a load from a volatile memory location.
211   bool isVolatile() const { return getSubclassData<VolatileField>(); }
212 
213   /// Specify whether this is a volatile load or not.
214   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215 
216   /// Return the alignment of the access that is being performed.
217   /// FIXME: Remove this function once transition to Align is over.
218   /// Use getAlign() instead.
219   unsigned getAlignment() const { return getAlign().value(); }
220 
221   /// Return the alignment of the access that is being performed.
222   Align getAlign() const {
223     return Align(1ULL << (getSubclassData<AlignmentField>()));
224   }
225 
226   void setAlignment(Align Align) {
227     setSubclassData<AlignmentField>(Log2(Align));
228   }
229 
230   /// Returns the ordering constraint of this load instruction.
231   AtomicOrdering getOrdering() const {
232     return getSubclassData<OrderingField>();
233   }
234   /// Sets the ordering constraint of this load instruction.  May not be Release
235   /// or AcquireRelease.
236   void setOrdering(AtomicOrdering Ordering) {
237     setSubclassData<OrderingField>(Ordering);
238   }
239 
240   /// Returns the synchronization scope ID of this load instruction.
241   SyncScope::ID getSyncScopeID() const {
242     return SSID;
243   }
244 
245   /// Sets the synchronization scope ID of this load instruction.
246   void setSyncScopeID(SyncScope::ID SSID) {
247     this->SSID = SSID;
248   }
249 
250   /// Sets the ordering constraint and the synchronization scope ID of this load
251   /// instruction.
252   void setAtomic(AtomicOrdering Ordering,
253                  SyncScope::ID SSID = SyncScope::System) {
254     setOrdering(Ordering);
255     setSyncScopeID(SSID);
256   }
257 
258   bool isSimple() const { return !isAtomic() && !isVolatile(); }
259 
260   bool isUnordered() const {
261     return (getOrdering() == AtomicOrdering::NotAtomic ||
262             getOrdering() == AtomicOrdering::Unordered) &&
263            !isVolatile();
264   }
265 
266   Value *getPointerOperand() { return getOperand(0); }
267   const Value *getPointerOperand() const { return getOperand(0); }
268   static unsigned getPointerOperandIndex() { return 0U; }
269   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270 
271   /// Returns the address space of the pointer operand.
272   unsigned getPointerAddressSpace() const {
273     return getPointerOperandType()->getPointerAddressSpace();
274   }
275 
276   // Methods for support type inquiry through isa, cast, and dyn_cast:
277   static bool classof(const Instruction *I) {
278     return I->getOpcode() == Instruction::Load;
279   }
280   static bool classof(const Value *V) {
281     return isa<Instruction>(V) && classof(cast<Instruction>(V));
282   }
283 
284 private:
285   // Shadow Instruction::setInstructionSubclassData with a private forwarding
286   // method so that subclasses cannot accidentally use it.
287   template <typename Bitfield>
288   void setSubclassData(typename Bitfield::Type Value) {
289     Instruction::setSubclassData<Bitfield>(Value);
290   }
291 
292   /// The synchronization scope ID of this load instruction.  Not quite enough
293   /// room in SubClassData for everything, so synchronization scope ID gets its
294   /// own field.
295   SyncScope::ID SSID;
296 };
297 
298 //===----------------------------------------------------------------------===//
299 //                                StoreInst Class
300 //===----------------------------------------------------------------------===//
301 
302 /// An instruction for storing to memory.
303 class StoreInst : public Instruction {
304   using VolatileField = BoolBitfieldElementT<0>;
305   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307   static_assert(
308       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309       "Bitfields must be contiguous");
310 
311   void AssertOK();
312 
313 protected:
314   // Note: Instruction needs to be a friend here to call cloneImpl.
315   friend class Instruction;
316 
317   StoreInst *cloneImpl() const;
318 
319 public:
320   StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321   StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323   StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325             Instruction *InsertBefore = nullptr);
326   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327             BasicBlock *InsertAtEnd);
328   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329             AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330             Instruction *InsertBefore = nullptr);
331   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332             AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333 
334   // allocate space for exactly two operands
335   void *operator new(size_t s) {
336     return User::operator new(s, 2);
337   }
338 
339   /// Return true if this is a store to a volatile memory location.
340   bool isVolatile() const { return getSubclassData<VolatileField>(); }
341 
342   /// Specify whether this is a volatile store or not.
343   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344 
345   /// Transparently provide more efficient getOperand methods.
346   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
347 
348   /// Return the alignment of the access that is being performed
349   /// FIXME: Remove this function once transition to Align is over.
350   /// Use getAlign() instead.
351   unsigned getAlignment() const { return getAlign().value(); }
352 
353   Align getAlign() const {
354     return Align(1ULL << (getSubclassData<AlignmentField>()));
355   }
356 
357   void setAlignment(Align Align) {
358     setSubclassData<AlignmentField>(Log2(Align));
359   }
360 
361   /// Returns the ordering constraint of this store instruction.
362   AtomicOrdering getOrdering() const {
363     return getSubclassData<OrderingField>();
364   }
365 
366   /// Sets the ordering constraint of this store instruction.  May not be
367   /// Acquire or AcquireRelease.
368   void setOrdering(AtomicOrdering Ordering) {
369     setSubclassData<OrderingField>(Ordering);
370   }
371 
372   /// Returns the synchronization scope ID of this store instruction.
373   SyncScope::ID getSyncScopeID() const {
374     return SSID;
375   }
376 
377   /// Sets the synchronization scope ID of this store instruction.
378   void setSyncScopeID(SyncScope::ID SSID) {
379     this->SSID = SSID;
380   }
381 
382   /// Sets the ordering constraint and the synchronization scope ID of this
383   /// store instruction.
384   void setAtomic(AtomicOrdering Ordering,
385                  SyncScope::ID SSID = SyncScope::System) {
386     setOrdering(Ordering);
387     setSyncScopeID(SSID);
388   }
389 
390   bool isSimple() const { return !isAtomic() && !isVolatile(); }
391 
392   bool isUnordered() const {
393     return (getOrdering() == AtomicOrdering::NotAtomic ||
394             getOrdering() == AtomicOrdering::Unordered) &&
395            !isVolatile();
396   }
397 
398   Value *getValueOperand() { return getOperand(0); }
399   const Value *getValueOperand() const { return getOperand(0); }
400 
401   Value *getPointerOperand() { return getOperand(1); }
402   const Value *getPointerOperand() const { return getOperand(1); }
403   static unsigned getPointerOperandIndex() { return 1U; }
404   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405 
406   /// Returns the address space of the pointer operand.
407   unsigned getPointerAddressSpace() const {
408     return getPointerOperandType()->getPointerAddressSpace();
409   }
410 
411   // Methods for support type inquiry through isa, cast, and dyn_cast:
412   static bool classof(const Instruction *I) {
413     return I->getOpcode() == Instruction::Store;
414   }
415   static bool classof(const Value *V) {
416     return isa<Instruction>(V) && classof(cast<Instruction>(V));
417   }
418 
419 private:
420   // Shadow Instruction::setInstructionSubclassData with a private forwarding
421   // method so that subclasses cannot accidentally use it.
422   template <typename Bitfield>
423   void setSubclassData(typename Bitfield::Type Value) {
424     Instruction::setSubclassData<Bitfield>(Value);
425   }
426 
427   /// The synchronization scope ID of this store instruction.  Not quite enough
428   /// room in SubClassData for everything, so synchronization scope ID gets its
429   /// own field.
430   SyncScope::ID SSID;
431 };
432 
433 template <>
434 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435 };
436 
437 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
438 
439 //===----------------------------------------------------------------------===//
440 //                                FenceInst Class
441 //===----------------------------------------------------------------------===//
442 
443 /// An instruction for ordering other memory operations.
444 class FenceInst : public Instruction {
445   using OrderingField = AtomicOrderingBitfieldElementT<0>;
446 
447   void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448 
449 protected:
450   // Note: Instruction needs to be a friend here to call cloneImpl.
451   friend class Instruction;
452 
453   FenceInst *cloneImpl() const;
454 
455 public:
456   // Ordering may only be Acquire, Release, AcquireRelease, or
457   // SequentiallyConsistent.
458   FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459             SyncScope::ID SSID = SyncScope::System,
460             Instruction *InsertBefore = nullptr);
461   FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462             BasicBlock *InsertAtEnd);
463 
464   // allocate space for exactly zero operands
465   void *operator new(size_t s) {
466     return User::operator new(s, 0);
467   }
468 
469   /// Returns the ordering constraint of this fence instruction.
470   AtomicOrdering getOrdering() const {
471     return getSubclassData<OrderingField>();
472   }
473 
474   /// Sets the ordering constraint of this fence instruction.  May only be
475   /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476   void setOrdering(AtomicOrdering Ordering) {
477     setSubclassData<OrderingField>(Ordering);
478   }
479 
480   /// Returns the synchronization scope ID of this fence instruction.
481   SyncScope::ID getSyncScopeID() const {
482     return SSID;
483   }
484 
485   /// Sets the synchronization scope ID of this fence instruction.
486   void setSyncScopeID(SyncScope::ID SSID) {
487     this->SSID = SSID;
488   }
489 
490   // Methods for support type inquiry through isa, cast, and dyn_cast:
491   static bool classof(const Instruction *I) {
492     return I->getOpcode() == Instruction::Fence;
493   }
494   static bool classof(const Value *V) {
495     return isa<Instruction>(V) && classof(cast<Instruction>(V));
496   }
497 
498 private:
499   // Shadow Instruction::setInstructionSubclassData with a private forwarding
500   // method so that subclasses cannot accidentally use it.
501   template <typename Bitfield>
502   void setSubclassData(typename Bitfield::Type Value) {
503     Instruction::setSubclassData<Bitfield>(Value);
504   }
505 
506   /// The synchronization scope ID of this fence instruction.  Not quite enough
507   /// room in SubClassData for everything, so synchronization scope ID gets its
508   /// own field.
509   SyncScope::ID SSID;
510 };
511 
512 //===----------------------------------------------------------------------===//
513 //                                AtomicCmpXchgInst Class
514 //===----------------------------------------------------------------------===//
515 
516 /// An instruction that atomically checks whether a
517 /// specified value is in a memory location, and, if it is, stores a new value
518 /// there. The value returned by this instruction is a pair containing the
519 /// original value as first element, and an i1 indicating success (true) or
520 /// failure (false) as second element.
521 ///
522 class AtomicCmpXchgInst : public Instruction {
523   void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524             AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525             SyncScope::ID SSID);
526 
527   template <unsigned Offset>
528   using AtomicOrderingBitfieldElement =
529       typename Bitfield::Element<AtomicOrdering, Offset, 3,
530                                  AtomicOrdering::LAST>;
531 
532 protected:
533   // Note: Instruction needs to be a friend here to call cloneImpl.
534   friend class Instruction;
535 
536   AtomicCmpXchgInst *cloneImpl() const;
537 
538 public:
539   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540                     AtomicOrdering SuccessOrdering,
541                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542                     Instruction *InsertBefore = nullptr);
543   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544                     AtomicOrdering SuccessOrdering,
545                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546                     BasicBlock *InsertAtEnd);
547 
548   // allocate space for exactly three operands
549   void *operator new(size_t s) {
550     return User::operator new(s, 3);
551   }
552 
553   using VolatileField = BoolBitfieldElementT<0>;
554   using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555   using SuccessOrderingField =
556       AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557   using FailureOrderingField =
558       AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559   using AlignmentField =
560       AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561   static_assert(
562       Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563                               FailureOrderingField, AlignmentField>(),
564       "Bitfields must be contiguous");
565 
566   /// Return the alignment of the memory that is being allocated by the
567   /// instruction.
568   Align getAlign() const {
569     return Align(1ULL << getSubclassData<AlignmentField>());
570   }
571 
572   void setAlignment(Align Align) {
573     setSubclassData<AlignmentField>(Log2(Align));
574   }
575 
576   /// Return true if this is a cmpxchg from a volatile memory
577   /// location.
578   ///
579   bool isVolatile() const { return getSubclassData<VolatileField>(); }
580 
581   /// Specify whether this is a volatile cmpxchg.
582   ///
583   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584 
585   /// Return true if this cmpxchg may spuriously fail.
586   bool isWeak() const { return getSubclassData<WeakField>(); }
587 
588   void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589 
590   /// Transparently provide more efficient getOperand methods.
591   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
592 
593   /// Returns the success ordering constraint of this cmpxchg instruction.
594   AtomicOrdering getSuccessOrdering() const {
595     return getSubclassData<SuccessOrderingField>();
596   }
597 
598   /// Sets the success ordering constraint of this cmpxchg instruction.
599   void setSuccessOrdering(AtomicOrdering Ordering) {
600     assert(Ordering != AtomicOrdering::NotAtomic &&
601            "CmpXchg instructions can only be atomic.");
602     setSubclassData<SuccessOrderingField>(Ordering);
603   }
604 
605   /// Returns the failure ordering constraint of this cmpxchg instruction.
606   AtomicOrdering getFailureOrdering() const {
607     return getSubclassData<FailureOrderingField>();
608   }
609 
610   /// Sets the failure ordering constraint of this cmpxchg instruction.
611   void setFailureOrdering(AtomicOrdering Ordering) {
612     assert(Ordering != AtomicOrdering::NotAtomic &&
613            "CmpXchg instructions can only be atomic.");
614     setSubclassData<FailureOrderingField>(Ordering);
615   }
616 
617   /// Returns the synchronization scope ID of this cmpxchg instruction.
618   SyncScope::ID getSyncScopeID() const {
619     return SSID;
620   }
621 
622   /// Sets the synchronization scope ID of this cmpxchg instruction.
623   void setSyncScopeID(SyncScope::ID SSID) {
624     this->SSID = SSID;
625   }
626 
627   Value *getPointerOperand() { return getOperand(0); }
628   const Value *getPointerOperand() const { return getOperand(0); }
629   static unsigned getPointerOperandIndex() { return 0U; }
630 
631   Value *getCompareOperand() { return getOperand(1); }
632   const Value *getCompareOperand() const { return getOperand(1); }
633 
634   Value *getNewValOperand() { return getOperand(2); }
635   const Value *getNewValOperand() const { return getOperand(2); }
636 
637   /// Returns the address space of the pointer operand.
638   unsigned getPointerAddressSpace() const {
639     return getPointerOperand()->getType()->getPointerAddressSpace();
640   }
641 
642   /// Returns the strongest permitted ordering on failure, given the
643   /// desired ordering on success.
644   ///
645   /// If the comparison in a cmpxchg operation fails, there is no atomic store
646   /// so release semantics cannot be provided. So this function drops explicit
647   /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648   /// operation would remain SequentiallyConsistent.
649   static AtomicOrdering
650   getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651     switch (SuccessOrdering) {
652     default:
653       llvm_unreachable("invalid cmpxchg success ordering");
654     case AtomicOrdering::Release:
655     case AtomicOrdering::Monotonic:
656       return AtomicOrdering::Monotonic;
657     case AtomicOrdering::AcquireRelease:
658     case AtomicOrdering::Acquire:
659       return AtomicOrdering::Acquire;
660     case AtomicOrdering::SequentiallyConsistent:
661       return AtomicOrdering::SequentiallyConsistent;
662     }
663   }
664 
665   // Methods for support type inquiry through isa, cast, and dyn_cast:
666   static bool classof(const Instruction *I) {
667     return I->getOpcode() == Instruction::AtomicCmpXchg;
668   }
669   static bool classof(const Value *V) {
670     return isa<Instruction>(V) && classof(cast<Instruction>(V));
671   }
672 
673 private:
674   // Shadow Instruction::setInstructionSubclassData with a private forwarding
675   // method so that subclasses cannot accidentally use it.
676   template <typename Bitfield>
677   void setSubclassData(typename Bitfield::Type Value) {
678     Instruction::setSubclassData<Bitfield>(Value);
679   }
680 
681   /// The synchronization scope ID of this cmpxchg instruction.  Not quite
682   /// enough room in SubClassData for everything, so synchronization scope ID
683   /// gets its own field.
684   SyncScope::ID SSID;
685 };
686 
687 template <>
688 struct OperandTraits<AtomicCmpXchgInst> :
689     public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690 };
691 
692 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
693 
694 //===----------------------------------------------------------------------===//
695 //                                AtomicRMWInst Class
696 //===----------------------------------------------------------------------===//
697 
698 /// an instruction that atomically reads a memory location,
699 /// combines it with another value, and then stores the result back.  Returns
700 /// the old value.
701 ///
702 class AtomicRMWInst : public Instruction {
703 protected:
704   // Note: Instruction needs to be a friend here to call cloneImpl.
705   friend class Instruction;
706 
707   AtomicRMWInst *cloneImpl() const;
708 
709 public:
710   /// This enumeration lists the possible modifications atomicrmw can make.  In
711   /// the descriptions, 'p' is the pointer to the instruction's memory location,
712   /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713   /// instruction.  These instructions always return 'old'.
714   enum BinOp : unsigned {
715     /// *p = v
716     Xchg,
717     /// *p = old + v
718     Add,
719     /// *p = old - v
720     Sub,
721     /// *p = old & v
722     And,
723     /// *p = ~(old & v)
724     Nand,
725     /// *p = old | v
726     Or,
727     /// *p = old ^ v
728     Xor,
729     /// *p = old >signed v ? old : v
730     Max,
731     /// *p = old <signed v ? old : v
732     Min,
733     /// *p = old >unsigned v ? old : v
734     UMax,
735     /// *p = old <unsigned v ? old : v
736     UMin,
737 
738     /// *p = old + v
739     FAdd,
740 
741     /// *p = old - v
742     FSub,
743 
744     FIRST_BINOP = Xchg,
745     LAST_BINOP = FSub,
746     BAD_BINOP
747   };
748 
749 private:
750   template <unsigned Offset>
751   using AtomicOrderingBitfieldElement =
752       typename Bitfield::Element<AtomicOrdering, Offset, 3,
753                                  AtomicOrdering::LAST>;
754 
755   template <unsigned Offset>
756   using BinOpBitfieldElement =
757       typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758 
759 public:
760   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761                 AtomicOrdering Ordering, SyncScope::ID SSID,
762                 Instruction *InsertBefore = nullptr);
763   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764                 AtomicOrdering Ordering, SyncScope::ID SSID,
765                 BasicBlock *InsertAtEnd);
766 
767   // allocate space for exactly two operands
768   void *operator new(size_t s) {
769     return User::operator new(s, 2);
770   }
771 
772   using VolatileField = BoolBitfieldElementT<0>;
773   using AtomicOrderingField =
774       AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775   using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776   using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777   static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778                                         OperationField, AlignmentField>(),
779                 "Bitfields must be contiguous");
780 
781   BinOp getOperation() const { return getSubclassData<OperationField>(); }
782 
783   static StringRef getOperationName(BinOp Op);
784 
785   static bool isFPOperation(BinOp Op) {
786     switch (Op) {
787     case AtomicRMWInst::FAdd:
788     case AtomicRMWInst::FSub:
789       return true;
790     default:
791       return false;
792     }
793   }
794 
795   void setOperation(BinOp Operation) {
796     setSubclassData<OperationField>(Operation);
797   }
798 
799   /// Return the alignment of the memory that is being allocated by the
800   /// instruction.
801   Align getAlign() const {
802     return Align(1ULL << getSubclassData<AlignmentField>());
803   }
804 
805   void setAlignment(Align Align) {
806     setSubclassData<AlignmentField>(Log2(Align));
807   }
808 
809   /// Return true if this is a RMW on a volatile memory location.
810   ///
811   bool isVolatile() const { return getSubclassData<VolatileField>(); }
812 
813   /// Specify whether this is a volatile RMW or not.
814   ///
815   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816 
817   /// Transparently provide more efficient getOperand methods.
818   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
819 
820   /// Returns the ordering constraint of this rmw instruction.
821   AtomicOrdering getOrdering() const {
822     return getSubclassData<AtomicOrderingField>();
823   }
824 
825   /// Sets the ordering constraint of this rmw instruction.
826   void setOrdering(AtomicOrdering Ordering) {
827     assert(Ordering != AtomicOrdering::NotAtomic &&
828            "atomicrmw instructions can only be atomic.");
829     setSubclassData<AtomicOrderingField>(Ordering);
830   }
831 
832   /// Returns the synchronization scope ID of this rmw instruction.
833   SyncScope::ID getSyncScopeID() const {
834     return SSID;
835   }
836 
837   /// Sets the synchronization scope ID of this rmw instruction.
838   void setSyncScopeID(SyncScope::ID SSID) {
839     this->SSID = SSID;
840   }
841 
842   Value *getPointerOperand() { return getOperand(0); }
843   const Value *getPointerOperand() const { return getOperand(0); }
844   static unsigned getPointerOperandIndex() { return 0U; }
845 
846   Value *getValOperand() { return getOperand(1); }
847   const Value *getValOperand() const { return getOperand(1); }
848 
849   /// Returns the address space of the pointer operand.
850   unsigned getPointerAddressSpace() const {
851     return getPointerOperand()->getType()->getPointerAddressSpace();
852   }
853 
854   bool isFloatingPointOperation() const {
855     return isFPOperation(getOperation());
856   }
857 
858   // Methods for support type inquiry through isa, cast, and dyn_cast:
859   static bool classof(const Instruction *I) {
860     return I->getOpcode() == Instruction::AtomicRMW;
861   }
862   static bool classof(const Value *V) {
863     return isa<Instruction>(V) && classof(cast<Instruction>(V));
864   }
865 
866 private:
867   void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868             AtomicOrdering Ordering, SyncScope::ID SSID);
869 
870   // Shadow Instruction::setInstructionSubclassData with a private forwarding
871   // method so that subclasses cannot accidentally use it.
872   template <typename Bitfield>
873   void setSubclassData(typename Bitfield::Type Value) {
874     Instruction::setSubclassData<Bitfield>(Value);
875   }
876 
877   /// The synchronization scope ID of this rmw instruction.  Not quite enough
878   /// room in SubClassData for everything, so synchronization scope ID gets its
879   /// own field.
880   SyncScope::ID SSID;
881 };
882 
883 template <>
884 struct OperandTraits<AtomicRMWInst>
885     : public FixedNumOperandTraits<AtomicRMWInst,2> {
886 };
887 
888 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
889 
890 //===----------------------------------------------------------------------===//
891 //                             GetElementPtrInst Class
892 //===----------------------------------------------------------------------===//
893 
894 // checkGEPType - Simple wrapper function to give a better assertion failure
895 // message on bad indexes for a gep instruction.
896 //
897 inline Type *checkGEPType(Type *Ty) {
898   assert(Ty && "Invalid GetElementPtrInst indices for type!");
899   return Ty;
900 }
901 
902 /// an instruction for type-safe pointer arithmetic to
903 /// access elements of arrays and structs
904 ///
905 class GetElementPtrInst : public Instruction {
906   Type *SourceElementType;
907   Type *ResultElementType;
908 
909   GetElementPtrInst(const GetElementPtrInst &GEPI);
910 
911   /// Constructors - Create a getelementptr instruction with a base pointer an
912   /// list of indices. The first ctor can optionally insert before an existing
913   /// instruction, the second appends the new instruction to the specified
914   /// BasicBlock.
915   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916                            ArrayRef<Value *> IdxList, unsigned Values,
917                            const Twine &NameStr, Instruction *InsertBefore);
918   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919                            ArrayRef<Value *> IdxList, unsigned Values,
920                            const Twine &NameStr, BasicBlock *InsertAtEnd);
921 
922   void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923 
924 protected:
925   // Note: Instruction needs to be a friend here to call cloneImpl.
926   friend class Instruction;
927 
928   GetElementPtrInst *cloneImpl() const;
929 
930 public:
931   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932                                    ArrayRef<Value *> IdxList,
933                                    const Twine &NameStr = "",
934                                    Instruction *InsertBefore = nullptr) {
935     unsigned Values = 1 + unsigned(IdxList.size());
936     if (!PointeeType)
937       PointeeType =
938           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939     else
940       assert(
941           PointeeType ==
942           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
943     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944                                           NameStr, InsertBefore);
945   }
946 
947   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948                                    ArrayRef<Value *> IdxList,
949                                    const Twine &NameStr,
950                                    BasicBlock *InsertAtEnd) {
951     unsigned Values = 1 + unsigned(IdxList.size());
952     if (!PointeeType)
953       PointeeType =
954           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955     else
956       assert(
957           PointeeType ==
958           cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
959     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960                                           NameStr, InsertAtEnd);
961   }
962 
963   /// Create an "inbounds" getelementptr. See the documentation for the
964   /// "inbounds" flag in LangRef.html for details.
965   static GetElementPtrInst *CreateInBounds(Value *Ptr,
966                                            ArrayRef<Value *> IdxList,
967                                            const Twine &NameStr = "",
968                                            Instruction *InsertBefore = nullptr){
969     return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970   }
971 
972   static GetElementPtrInst *
973   CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974                  const Twine &NameStr = "",
975                  Instruction *InsertBefore = nullptr) {
976     GetElementPtrInst *GEP =
977         Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978     GEP->setIsInBounds(true);
979     return GEP;
980   }
981 
982   static GetElementPtrInst *CreateInBounds(Value *Ptr,
983                                            ArrayRef<Value *> IdxList,
984                                            const Twine &NameStr,
985                                            BasicBlock *InsertAtEnd) {
986     return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987   }
988 
989   static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990                                            ArrayRef<Value *> IdxList,
991                                            const Twine &NameStr,
992                                            BasicBlock *InsertAtEnd) {
993     GetElementPtrInst *GEP =
994         Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995     GEP->setIsInBounds(true);
996     return GEP;
997   }
998 
999   /// Transparently provide more efficient getOperand methods.
1000   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1001 
1002   Type *getSourceElementType() const { return SourceElementType; }
1003 
1004   void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005   void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006 
1007   Type *getResultElementType() const {
1008     assert(ResultElementType ==
1009            cast<PointerType>(getType()->getScalarType())->getElementType());
1010     return ResultElementType;
1011   }
1012 
1013   /// Returns the address space of this instruction's pointer type.
1014   unsigned getAddressSpace() const {
1015     // Note that this is always the same as the pointer operand's address space
1016     // and that is cheaper to compute, so cheat here.
1017     return getPointerAddressSpace();
1018   }
1019 
1020   /// Returns the result type of a getelementptr with the given source
1021   /// element type and indexes.
1022   ///
1023   /// Null is returned if the indices are invalid for the specified
1024   /// source element type.
1025   static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026   static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027   static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028 
1029   /// Return the type of the element at the given index of an indexable
1030   /// type.  This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031   ///
1032   /// Returns null if the type can't be indexed, or the given index is not
1033   /// legal for the given type.
1034   static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035   static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036 
1037   inline op_iterator       idx_begin()       { return op_begin()+1; }
1038   inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039   inline op_iterator       idx_end()         { return op_end(); }
1040   inline const_op_iterator idx_end()   const { return op_end(); }
1041 
1042   inline iterator_range<op_iterator> indices() {
1043     return make_range(idx_begin(), idx_end());
1044   }
1045 
1046   inline iterator_range<const_op_iterator> indices() const {
1047     return make_range(idx_begin(), idx_end());
1048   }
1049 
1050   Value *getPointerOperand() {
1051     return getOperand(0);
1052   }
1053   const Value *getPointerOperand() const {
1054     return getOperand(0);
1055   }
1056   static unsigned getPointerOperandIndex() {
1057     return 0U;    // get index for modifying correct operand.
1058   }
1059 
1060   /// Method to return the pointer operand as a
1061   /// PointerType.
1062   Type *getPointerOperandType() const {
1063     return getPointerOperand()->getType();
1064   }
1065 
1066   /// Returns the address space of the pointer operand.
1067   unsigned getPointerAddressSpace() const {
1068     return getPointerOperandType()->getPointerAddressSpace();
1069   }
1070 
1071   /// Returns the pointer type returned by the GEP
1072   /// instruction, which may be a vector of pointers.
1073   static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074                                 ArrayRef<Value *> IdxList) {
1075     Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076                                    Ptr->getType()->getPointerAddressSpace());
1077     // Vector GEP
1078     if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079       ElementCount EltCount = PtrVTy->getElementCount();
1080       return VectorType::get(PtrTy, EltCount);
1081     }
1082     for (Value *Index : IdxList)
1083       if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084         ElementCount EltCount = IndexVTy->getElementCount();
1085         return VectorType::get(PtrTy, EltCount);
1086       }
1087     // Scalar GEP
1088     return PtrTy;
1089   }
1090 
1091   unsigned getNumIndices() const {  // Note: always non-negative
1092     return getNumOperands() - 1;
1093   }
1094 
1095   bool hasIndices() const {
1096     return getNumOperands() > 1;
1097   }
1098 
1099   /// Return true if all of the indices of this GEP are
1100   /// zeros.  If so, the result pointer and the first operand have the same
1101   /// value, just potentially different types.
1102   bool hasAllZeroIndices() const;
1103 
1104   /// Return true if all of the indices of this GEP are
1105   /// constant integers.  If so, the result pointer and the first operand have
1106   /// a constant offset between them.
1107   bool hasAllConstantIndices() const;
1108 
1109   /// Set or clear the inbounds flag on this GEP instruction.
1110   /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111   void setIsInBounds(bool b = true);
1112 
1113   /// Determine whether the GEP has the inbounds flag.
1114   bool isInBounds() const;
1115 
1116   /// Accumulate the constant address offset of this GEP if possible.
1117   ///
1118   /// This routine accepts an APInt into which it will accumulate the constant
1119   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120   /// all-constant, it returns false and the value of the offset APInt is
1121   /// undefined (it is *not* preserved!). The APInt passed into this routine
1122   /// must be at least as wide as the IntPtr type for the address space of
1123   /// the base GEP pointer.
1124   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125 
1126   // Methods for support type inquiry through isa, cast, and dyn_cast:
1127   static bool classof(const Instruction *I) {
1128     return (I->getOpcode() == Instruction::GetElementPtr);
1129   }
1130   static bool classof(const Value *V) {
1131     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132   }
1133 };
1134 
1135 template <>
1136 struct OperandTraits<GetElementPtrInst> :
1137   public VariadicOperandTraits<GetElementPtrInst, 1> {
1138 };
1139 
1140 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141                                      ArrayRef<Value *> IdxList, unsigned Values,
1142                                      const Twine &NameStr,
1143                                      Instruction *InsertBefore)
1144     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146                   Values, InsertBefore),
1147       SourceElementType(PointeeType),
1148       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149   assert(ResultElementType ==
1150          cast<PointerType>(getType()->getScalarType())->getElementType());
1151   init(Ptr, IdxList, NameStr);
1152 }
1153 
1154 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155                                      ArrayRef<Value *> IdxList, unsigned Values,
1156                                      const Twine &NameStr,
1157                                      BasicBlock *InsertAtEnd)
1158     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160                   Values, InsertAtEnd),
1161       SourceElementType(PointeeType),
1162       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163   assert(ResultElementType ==
1164          cast<PointerType>(getType()->getScalarType())->getElementType());
1165   init(Ptr, IdxList, NameStr);
1166 }
1167 
1168 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1169 
1170 //===----------------------------------------------------------------------===//
1171 //                               ICmpInst Class
1172 //===----------------------------------------------------------------------===//
1173 
1174 /// This instruction compares its operands according to the predicate given
1175 /// to the constructor. It only operates on integers or pointers. The operands
1176 /// must be identical types.
1177 /// Represent an integer comparison operator.
1178 class ICmpInst: public CmpInst {
1179   void AssertOK() {
1180     assert(isIntPredicate() &&
1181            "Invalid ICmp predicate value");
1182     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1183           "Both operands to ICmp instruction are not of the same type!");
1184     // Check that the operands are the right type
1185     assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1186             getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1187            "Invalid operand types for ICmp instruction");
1188   }
1189 
1190 protected:
1191   // Note: Instruction needs to be a friend here to call cloneImpl.
1192   friend class Instruction;
1193 
1194   /// Clone an identical ICmpInst
1195   ICmpInst *cloneImpl() const;
1196 
1197 public:
1198   /// Constructor with insert-before-instruction semantics.
1199   ICmpInst(
1200     Instruction *InsertBefore,  ///< Where to insert
1201     Predicate pred,  ///< The predicate to use for the comparison
1202     Value *LHS,      ///< The left-hand-side of the expression
1203     Value *RHS,      ///< The right-hand-side of the expression
1204     const Twine &NameStr = ""  ///< Name of the instruction
1205   ) : CmpInst(makeCmpResultType(LHS->getType()),
1206               Instruction::ICmp, pred, LHS, RHS, NameStr,
1207               InsertBefore) {
1208 #ifndef NDEBUG
1209   AssertOK();
1210 #endif
1211   }
1212 
1213   /// Constructor with insert-at-end semantics.
1214   ICmpInst(
1215     BasicBlock &InsertAtEnd, ///< Block to insert into.
1216     Predicate pred,  ///< The predicate to use for the comparison
1217     Value *LHS,      ///< The left-hand-side of the expression
1218     Value *RHS,      ///< The right-hand-side of the expression
1219     const Twine &NameStr = ""  ///< Name of the instruction
1220   ) : CmpInst(makeCmpResultType(LHS->getType()),
1221               Instruction::ICmp, pred, LHS, RHS, NameStr,
1222               &InsertAtEnd) {
1223 #ifndef NDEBUG
1224   AssertOK();
1225 #endif
1226   }
1227 
1228   /// Constructor with no-insertion semantics
1229   ICmpInst(
1230     Predicate pred, ///< The predicate to use for the comparison
1231     Value *LHS,     ///< The left-hand-side of the expression
1232     Value *RHS,     ///< The right-hand-side of the expression
1233     const Twine &NameStr = "" ///< Name of the instruction
1234   ) : CmpInst(makeCmpResultType(LHS->getType()),
1235               Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236 #ifndef NDEBUG
1237   AssertOK();
1238 #endif
1239   }
1240 
1241   /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242   /// @returns the predicate that would be the result if the operand were
1243   /// regarded as signed.
1244   /// Return the signed version of the predicate
1245   Predicate getSignedPredicate() const {
1246     return getSignedPredicate(getPredicate());
1247   }
1248 
1249   /// This is a static version that you can use without an instruction.
1250   /// Return the signed version of the predicate.
1251   static Predicate getSignedPredicate(Predicate pred);
1252 
1253   /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254   /// @returns the predicate that would be the result if the operand were
1255   /// regarded as unsigned.
1256   /// Return the unsigned version of the predicate
1257   Predicate getUnsignedPredicate() const {
1258     return getUnsignedPredicate(getPredicate());
1259   }
1260 
1261   /// This is a static version that you can use without an instruction.
1262   /// Return the unsigned version of the predicate.
1263   static Predicate getUnsignedPredicate(Predicate pred);
1264 
1265   /// Return true if this predicate is either EQ or NE.  This also
1266   /// tests for commutativity.
1267   static bool isEquality(Predicate P) {
1268     return P == ICMP_EQ || P == ICMP_NE;
1269   }
1270 
1271   /// Return true if this predicate is either EQ or NE.  This also
1272   /// tests for commutativity.
1273   bool isEquality() const {
1274     return isEquality(getPredicate());
1275   }
1276 
1277   /// @returns true if the predicate of this ICmpInst is commutative
1278   /// Determine if this relation is commutative.
1279   bool isCommutative() const { return isEquality(); }
1280 
1281   /// Return true if the predicate is relational (not EQ or NE).
1282   ///
1283   bool isRelational() const {
1284     return !isEquality();
1285   }
1286 
1287   /// Return true if the predicate is relational (not EQ or NE).
1288   ///
1289   static bool isRelational(Predicate P) {
1290     return !isEquality(P);
1291   }
1292 
1293   /// Return true if the predicate is SGT or UGT.
1294   ///
1295   static bool isGT(Predicate P) {
1296     return P == ICMP_SGT || P == ICMP_UGT;
1297   }
1298 
1299   /// Return true if the predicate is SLT or ULT.
1300   ///
1301   static bool isLT(Predicate P) {
1302     return P == ICMP_SLT || P == ICMP_ULT;
1303   }
1304 
1305   /// Return true if the predicate is SGE or UGE.
1306   ///
1307   static bool isGE(Predicate P) {
1308     return P == ICMP_SGE || P == ICMP_UGE;
1309   }
1310 
1311   /// Return true if the predicate is SLE or ULE.
1312   ///
1313   static bool isLE(Predicate P) {
1314     return P == ICMP_SLE || P == ICMP_ULE;
1315   }
1316 
1317   /// Exchange the two operands to this instruction in such a way that it does
1318   /// not modify the semantics of the instruction. The predicate value may be
1319   /// changed to retain the same result if the predicate is order dependent
1320   /// (e.g. ult).
1321   /// Swap operands and adjust predicate.
1322   void swapOperands() {
1323     setPredicate(getSwappedPredicate());
1324     Op<0>().swap(Op<1>());
1325   }
1326 
1327   // Methods for support type inquiry through isa, cast, and dyn_cast:
1328   static bool classof(const Instruction *I) {
1329     return I->getOpcode() == Instruction::ICmp;
1330   }
1331   static bool classof(const Value *V) {
1332     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333   }
1334 };
1335 
1336 //===----------------------------------------------------------------------===//
1337 //                               FCmpInst Class
1338 //===----------------------------------------------------------------------===//
1339 
1340 /// This instruction compares its operands according to the predicate given
1341 /// to the constructor. It only operates on floating point values or packed
1342 /// vectors of floating point values. The operands must be identical types.
1343 /// Represents a floating point comparison operator.
1344 class FCmpInst: public CmpInst {
1345   void AssertOK() {
1346     assert(isFPPredicate() && "Invalid FCmp predicate value");
1347     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1348            "Both operands to FCmp instruction are not of the same type!");
1349     // Check that the operands are the right type
1350     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1351            "Invalid operand types for FCmp instruction");
1352   }
1353 
1354 protected:
1355   // Note: Instruction needs to be a friend here to call cloneImpl.
1356   friend class Instruction;
1357 
1358   /// Clone an identical FCmpInst
1359   FCmpInst *cloneImpl() const;
1360 
1361 public:
1362   /// Constructor with insert-before-instruction semantics.
1363   FCmpInst(
1364     Instruction *InsertBefore, ///< Where to insert
1365     Predicate pred,  ///< The predicate to use for the comparison
1366     Value *LHS,      ///< The left-hand-side of the expression
1367     Value *RHS,      ///< The right-hand-side of the expression
1368     const Twine &NameStr = ""  ///< Name of the instruction
1369   ) : CmpInst(makeCmpResultType(LHS->getType()),
1370               Instruction::FCmp, pred, LHS, RHS, NameStr,
1371               InsertBefore) {
1372     AssertOK();
1373   }
1374 
1375   /// Constructor with insert-at-end semantics.
1376   FCmpInst(
1377     BasicBlock &InsertAtEnd, ///< Block to insert into.
1378     Predicate pred,  ///< The predicate to use for the comparison
1379     Value *LHS,      ///< The left-hand-side of the expression
1380     Value *RHS,      ///< The right-hand-side of the expression
1381     const Twine &NameStr = ""  ///< Name of the instruction
1382   ) : CmpInst(makeCmpResultType(LHS->getType()),
1383               Instruction::FCmp, pred, LHS, RHS, NameStr,
1384               &InsertAtEnd) {
1385     AssertOK();
1386   }
1387 
1388   /// Constructor with no-insertion semantics
1389   FCmpInst(
1390     Predicate Pred, ///< The predicate to use for the comparison
1391     Value *LHS,     ///< The left-hand-side of the expression
1392     Value *RHS,     ///< The right-hand-side of the expression
1393     const Twine &NameStr = "", ///< Name of the instruction
1394     Instruction *FlagsSource = nullptr
1395   ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396               RHS, NameStr, nullptr, FlagsSource) {
1397     AssertOK();
1398   }
1399 
1400   /// @returns true if the predicate of this instruction is EQ or NE.
1401   /// Determine if this is an equality predicate.
1402   static bool isEquality(Predicate Pred) {
1403     return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404            Pred == FCMP_UNE;
1405   }
1406 
1407   /// @returns true if the predicate of this instruction is EQ or NE.
1408   /// Determine if this is an equality predicate.
1409   bool isEquality() const { return isEquality(getPredicate()); }
1410 
1411   /// @returns true if the predicate of this instruction is commutative.
1412   /// Determine if this is a commutative predicate.
1413   bool isCommutative() const {
1414     return isEquality() ||
1415            getPredicate() == FCMP_FALSE ||
1416            getPredicate() == FCMP_TRUE ||
1417            getPredicate() == FCMP_ORD ||
1418            getPredicate() == FCMP_UNO;
1419   }
1420 
1421   /// @returns true if the predicate is relational (not EQ or NE).
1422   /// Determine if this a relational predicate.
1423   bool isRelational() const { return !isEquality(); }
1424 
1425   /// Exchange the two operands to this instruction in such a way that it does
1426   /// not modify the semantics of the instruction. The predicate value may be
1427   /// changed to retain the same result if the predicate is order dependent
1428   /// (e.g. ult).
1429   /// Swap operands and adjust predicate.
1430   void swapOperands() {
1431     setPredicate(getSwappedPredicate());
1432     Op<0>().swap(Op<1>());
1433   }
1434 
1435   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436   static bool classof(const Instruction *I) {
1437     return I->getOpcode() == Instruction::FCmp;
1438   }
1439   static bool classof(const Value *V) {
1440     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441   }
1442 };
1443 
1444 //===----------------------------------------------------------------------===//
1445 /// This class represents a function call, abstracting a target
1446 /// machine's calling convention.  This class uses low bit of the SubClassData
1447 /// field to indicate whether or not this is a tail call.  The rest of the bits
1448 /// hold the calling convention of the call.
1449 ///
1450 class CallInst : public CallBase {
1451   CallInst(const CallInst &CI);
1452 
1453   /// Construct a CallInst given a range of arguments.
1454   /// Construct a CallInst from a range of arguments
1455   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457                   Instruction *InsertBefore);
1458 
1459   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460                   const Twine &NameStr, Instruction *InsertBefore)
1461       : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462 
1463   /// Construct a CallInst given a range of arguments.
1464   /// Construct a CallInst from a range of arguments
1465   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467                   BasicBlock *InsertAtEnd);
1468 
1469   explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470                     Instruction *InsertBefore);
1471 
1472   CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473            BasicBlock *InsertAtEnd);
1474 
1475   void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477   void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478 
1479   /// Compute the number of operands to allocate.
1480   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481     // We need one operand for the called function, plus the input operand
1482     // counts provided.
1483     return 1 + NumArgs + NumBundleInputs;
1484   }
1485 
1486 protected:
1487   // Note: Instruction needs to be a friend here to call cloneImpl.
1488   friend class Instruction;
1489 
1490   CallInst *cloneImpl() const;
1491 
1492 public:
1493   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494                           Instruction *InsertBefore = nullptr) {
1495     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496   }
1497 
1498   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499                           const Twine &NameStr,
1500                           Instruction *InsertBefore = nullptr) {
1501     return new (ComputeNumOperands(Args.size()))
1502         CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503   }
1504 
1505   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506                           ArrayRef<OperandBundleDef> Bundles = None,
1507                           const Twine &NameStr = "",
1508                           Instruction *InsertBefore = nullptr) {
1509     const int NumOperands =
1510         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512 
1513     return new (NumOperands, DescriptorBytes)
1514         CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515   }
1516 
1517   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518                           BasicBlock *InsertAtEnd) {
1519     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520   }
1521 
1522   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524     return new (ComputeNumOperands(Args.size()))
1525         CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526   }
1527 
1528   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529                           ArrayRef<OperandBundleDef> Bundles,
1530                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531     const int NumOperands =
1532         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534 
1535     return new (NumOperands, DescriptorBytes)
1536         CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537   }
1538 
1539   static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540                           Instruction *InsertBefore = nullptr) {
1541     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542                   InsertBefore);
1543   }
1544 
1545   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546                           ArrayRef<OperandBundleDef> Bundles = None,
1547                           const Twine &NameStr = "",
1548                           Instruction *InsertBefore = nullptr) {
1549     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550                   NameStr, InsertBefore);
1551   }
1552 
1553   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554                           const Twine &NameStr,
1555                           Instruction *InsertBefore = nullptr) {
1556     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557                   InsertBefore);
1558   }
1559 
1560   static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561                           BasicBlock *InsertAtEnd) {
1562     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563                   InsertAtEnd);
1564   }
1565 
1566   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569                   InsertAtEnd);
1570   }
1571 
1572   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573                           ArrayRef<OperandBundleDef> Bundles,
1574                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576                   NameStr, InsertAtEnd);
1577   }
1578 
1579   /// Create a clone of \p CI with a different set of operand bundles and
1580   /// insert it before \p InsertPt.
1581   ///
1582   /// The returned call instruction is identical \p CI in every way except that
1583   /// the operand bundles for the new instruction are set to the operand bundles
1584   /// in \p Bundles.
1585   static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586                           Instruction *InsertPt = nullptr);
1587 
1588   /// Create a clone of \p CI with a different set of operand bundles and
1589   /// insert it before \p InsertPt.
1590   ///
1591   /// The returned call instruction is identical \p CI in every way except that
1592   /// the operand bundle for the new instruction is set to the operand bundle
1593   /// in \p Bundle.
1594   static CallInst *CreateWithReplacedBundle(CallInst *CI,
1595                                             OperandBundleDef Bundle,
1596                                             Instruction *InsertPt = nullptr);
1597 
1598   /// Generate the IR for a call to malloc:
1599   /// 1. Compute the malloc call's argument as the specified type's size,
1600   ///    possibly multiplied by the array size if the array size is not
1601   ///    constant 1.
1602   /// 2. Call malloc with that argument.
1603   /// 3. Bitcast the result of the malloc call to the specified type.
1604   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605                                    Type *AllocTy, Value *AllocSize,
1606                                    Value *ArraySize = nullptr,
1607                                    Function *MallocF = nullptr,
1608                                    const Twine &Name = "");
1609   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1610                                    Type *AllocTy, Value *AllocSize,
1611                                    Value *ArraySize = nullptr,
1612                                    Function *MallocF = nullptr,
1613                                    const Twine &Name = "");
1614   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1615                                    Type *AllocTy, Value *AllocSize,
1616                                    Value *ArraySize = nullptr,
1617                                    ArrayRef<OperandBundleDef> Bundles = None,
1618                                    Function *MallocF = nullptr,
1619                                    const Twine &Name = "");
1620   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1621                                    Type *AllocTy, Value *AllocSize,
1622                                    Value *ArraySize = nullptr,
1623                                    ArrayRef<OperandBundleDef> Bundles = None,
1624                                    Function *MallocF = nullptr,
1625                                    const Twine &Name = "");
1626   /// Generate the IR for a call to the builtin free function.
1627   static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1628   static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1629   static Instruction *CreateFree(Value *Source,
1630                                  ArrayRef<OperandBundleDef> Bundles,
1631                                  Instruction *InsertBefore);
1632   static Instruction *CreateFree(Value *Source,
1633                                  ArrayRef<OperandBundleDef> Bundles,
1634                                  BasicBlock *InsertAtEnd);
1635 
1636   // Note that 'musttail' implies 'tail'.
1637   enum TailCallKind : unsigned {
1638     TCK_None = 0,
1639     TCK_Tail = 1,
1640     TCK_MustTail = 2,
1641     TCK_NoTail = 3,
1642     TCK_LAST = TCK_NoTail
1643   };
1644 
1645   using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1646   static_assert(
1647       Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1648       "Bitfields must be contiguous");
1649 
1650   TailCallKind getTailCallKind() const {
1651     return getSubclassData<TailCallKindField>();
1652   }
1653 
1654   bool isTailCall() const {
1655     TailCallKind Kind = getTailCallKind();
1656     return Kind == TCK_Tail || Kind == TCK_MustTail;
1657   }
1658 
1659   bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1660 
1661   bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1662 
1663   void setTailCallKind(TailCallKind TCK) {
1664     setSubclassData<TailCallKindField>(TCK);
1665   }
1666 
1667   void setTailCall(bool IsTc = true) {
1668     setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1669   }
1670 
1671   /// Return true if the call can return twice
1672   bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1673   void setCanReturnTwice() {
1674     addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1675   }
1676 
1677   // Methods for support type inquiry through isa, cast, and dyn_cast:
1678   static bool classof(const Instruction *I) {
1679     return I->getOpcode() == Instruction::Call;
1680   }
1681   static bool classof(const Value *V) {
1682     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1683   }
1684 
1685   /// Updates profile metadata by scaling it by \p S / \p T.
1686   void updateProfWeight(uint64_t S, uint64_t T);
1687 
1688 private:
1689   // Shadow Instruction::setInstructionSubclassData with a private forwarding
1690   // method so that subclasses cannot accidentally use it.
1691   template <typename Bitfield>
1692   void setSubclassData(typename Bitfield::Type Value) {
1693     Instruction::setSubclassData<Bitfield>(Value);
1694   }
1695 };
1696 
1697 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699                    BasicBlock *InsertAtEnd)
1700     : CallBase(Ty->getReturnType(), Instruction::Call,
1701                OperandTraits<CallBase>::op_end(this) -
1702                    (Args.size() + CountBundleInputs(Bundles) + 1),
1703                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704                InsertAtEnd) {
1705   init(Ty, Func, Args, Bundles, NameStr);
1706 }
1707 
1708 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710                    Instruction *InsertBefore)
1711     : CallBase(Ty->getReturnType(), Instruction::Call,
1712                OperandTraits<CallBase>::op_end(this) -
1713                    (Args.size() + CountBundleInputs(Bundles) + 1),
1714                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715                InsertBefore) {
1716   init(Ty, Func, Args, Bundles, NameStr);
1717 }
1718 
1719 //===----------------------------------------------------------------------===//
1720 //                               SelectInst Class
1721 //===----------------------------------------------------------------------===//
1722 
1723 /// This class represents the LLVM 'select' instruction.
1724 ///
1725 class SelectInst : public Instruction {
1726   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727              Instruction *InsertBefore)
1728     : Instruction(S1->getType(), Instruction::Select,
1729                   &Op<0>(), 3, InsertBefore) {
1730     init(C, S1, S2);
1731     setName(NameStr);
1732   }
1733 
1734   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735              BasicBlock *InsertAtEnd)
1736     : Instruction(S1->getType(), Instruction::Select,
1737                   &Op<0>(), 3, InsertAtEnd) {
1738     init(C, S1, S2);
1739     setName(NameStr);
1740   }
1741 
1742   void init(Value *C, Value *S1, Value *S2) {
1743     assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1744     Op<0>() = C;
1745     Op<1>() = S1;
1746     Op<2>() = S2;
1747   }
1748 
1749 protected:
1750   // Note: Instruction needs to be a friend here to call cloneImpl.
1751   friend class Instruction;
1752 
1753   SelectInst *cloneImpl() const;
1754 
1755 public:
1756   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757                             const Twine &NameStr = "",
1758                             Instruction *InsertBefore = nullptr,
1759                             Instruction *MDFrom = nullptr) {
1760     SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1761     if (MDFrom)
1762       Sel->copyMetadata(*MDFrom);
1763     return Sel;
1764   }
1765 
1766   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767                             const Twine &NameStr,
1768                             BasicBlock *InsertAtEnd) {
1769     return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770   }
1771 
1772   const Value *getCondition() const { return Op<0>(); }
1773   const Value *getTrueValue() const { return Op<1>(); }
1774   const Value *getFalseValue() const { return Op<2>(); }
1775   Value *getCondition() { return Op<0>(); }
1776   Value *getTrueValue() { return Op<1>(); }
1777   Value *getFalseValue() { return Op<2>(); }
1778 
1779   void setCondition(Value *V) { Op<0>() = V; }
1780   void setTrueValue(Value *V) { Op<1>() = V; }
1781   void setFalseValue(Value *V) { Op<2>() = V; }
1782 
1783   /// Swap the true and false values of the select instruction.
1784   /// This doesn't swap prof metadata.
1785   void swapValues() { Op<1>().swap(Op<2>()); }
1786 
1787   /// Return a string if the specified operands are invalid
1788   /// for a select operation, otherwise return null.
1789   static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790 
1791   /// Transparently provide more efficient getOperand methods.
1792   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1793 
1794   OtherOps getOpcode() const {
1795     return static_cast<OtherOps>(Instruction::getOpcode());
1796   }
1797 
1798   // Methods for support type inquiry through isa, cast, and dyn_cast:
1799   static bool classof(const Instruction *I) {
1800     return I->getOpcode() == Instruction::Select;
1801   }
1802   static bool classof(const Value *V) {
1803     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804   }
1805 };
1806 
1807 template <>
1808 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809 };
1810 
1811 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1812 
1813 //===----------------------------------------------------------------------===//
1814 //                                VAArgInst Class
1815 //===----------------------------------------------------------------------===//
1816 
1817 /// This class represents the va_arg llvm instruction, which returns
1818 /// an argument of the specified type given a va_list and increments that list
1819 ///
1820 class VAArgInst : public UnaryInstruction {
1821 protected:
1822   // Note: Instruction needs to be a friend here to call cloneImpl.
1823   friend class Instruction;
1824 
1825   VAArgInst *cloneImpl() const;
1826 
1827 public:
1828   VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829              Instruction *InsertBefore = nullptr)
1830     : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831     setName(NameStr);
1832   }
1833 
1834   VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835             BasicBlock *InsertAtEnd)
1836     : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837     setName(NameStr);
1838   }
1839 
1840   Value *getPointerOperand() { return getOperand(0); }
1841   const Value *getPointerOperand() const { return getOperand(0); }
1842   static unsigned getPointerOperandIndex() { return 0U; }
1843 
1844   // Methods for support type inquiry through isa, cast, and dyn_cast:
1845   static bool classof(const Instruction *I) {
1846     return I->getOpcode() == VAArg;
1847   }
1848   static bool classof(const Value *V) {
1849     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850   }
1851 };
1852 
1853 //===----------------------------------------------------------------------===//
1854 //                                ExtractElementInst Class
1855 //===----------------------------------------------------------------------===//
1856 
1857 /// This instruction extracts a single (scalar)
1858 /// element from a VectorType value
1859 ///
1860 class ExtractElementInst : public Instruction {
1861   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862                      Instruction *InsertBefore = nullptr);
1863   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864                      BasicBlock *InsertAtEnd);
1865 
1866 protected:
1867   // Note: Instruction needs to be a friend here to call cloneImpl.
1868   friend class Instruction;
1869 
1870   ExtractElementInst *cloneImpl() const;
1871 
1872 public:
1873   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874                                    const Twine &NameStr = "",
1875                                    Instruction *InsertBefore = nullptr) {
1876     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877   }
1878 
1879   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880                                    const Twine &NameStr,
1881                                    BasicBlock *InsertAtEnd) {
1882     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883   }
1884 
1885   /// Return true if an extractelement instruction can be
1886   /// formed with the specified operands.
1887   static bool isValidOperands(const Value *Vec, const Value *Idx);
1888 
1889   Value *getVectorOperand() { return Op<0>(); }
1890   Value *getIndexOperand() { return Op<1>(); }
1891   const Value *getVectorOperand() const { return Op<0>(); }
1892   const Value *getIndexOperand() const { return Op<1>(); }
1893 
1894   VectorType *getVectorOperandType() const {
1895     return cast<VectorType>(getVectorOperand()->getType());
1896   }
1897 
1898   /// Transparently provide more efficient getOperand methods.
1899   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1900 
1901   // Methods for support type inquiry through isa, cast, and dyn_cast:
1902   static bool classof(const Instruction *I) {
1903     return I->getOpcode() == Instruction::ExtractElement;
1904   }
1905   static bool classof(const Value *V) {
1906     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907   }
1908 };
1909 
1910 template <>
1911 struct OperandTraits<ExtractElementInst> :
1912   public FixedNumOperandTraits<ExtractElementInst, 2> {
1913 };
1914 
1915 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1916 
1917 //===----------------------------------------------------------------------===//
1918 //                                InsertElementInst Class
1919 //===----------------------------------------------------------------------===//
1920 
1921 /// This instruction inserts a single (scalar)
1922 /// element into a VectorType value
1923 ///
1924 class InsertElementInst : public Instruction {
1925   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926                     const Twine &NameStr = "",
1927                     Instruction *InsertBefore = nullptr);
1928   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929                     BasicBlock *InsertAtEnd);
1930 
1931 protected:
1932   // Note: Instruction needs to be a friend here to call cloneImpl.
1933   friend class Instruction;
1934 
1935   InsertElementInst *cloneImpl() const;
1936 
1937 public:
1938   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939                                    const Twine &NameStr = "",
1940                                    Instruction *InsertBefore = nullptr) {
1941     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942   }
1943 
1944   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945                                    const Twine &NameStr,
1946                                    BasicBlock *InsertAtEnd) {
1947     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948   }
1949 
1950   /// Return true if an insertelement instruction can be
1951   /// formed with the specified operands.
1952   static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953                               const Value *Idx);
1954 
1955   /// Overload to return most specific vector type.
1956   ///
1957   VectorType *getType() const {
1958     return cast<VectorType>(Instruction::getType());
1959   }
1960 
1961   /// Transparently provide more efficient getOperand methods.
1962   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1963 
1964   // Methods for support type inquiry through isa, cast, and dyn_cast:
1965   static bool classof(const Instruction *I) {
1966     return I->getOpcode() == Instruction::InsertElement;
1967   }
1968   static bool classof(const Value *V) {
1969     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970   }
1971 };
1972 
1973 template <>
1974 struct OperandTraits<InsertElementInst> :
1975   public FixedNumOperandTraits<InsertElementInst, 3> {
1976 };
1977 
1978 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1979 
1980 //===----------------------------------------------------------------------===//
1981 //                           ShuffleVectorInst Class
1982 //===----------------------------------------------------------------------===//
1983 
1984 constexpr int UndefMaskElem = -1;
1985 
1986 /// This instruction constructs a fixed permutation of two
1987 /// input vectors.
1988 ///
1989 /// For each element of the result vector, the shuffle mask selects an element
1990 /// from one of the input vectors to copy to the result. Non-negative elements
1991 /// in the mask represent an index into the concatenated pair of input vectors.
1992 /// UndefMaskElem (-1) specifies that the result element is undefined.
1993 ///
1994 /// For scalable vectors, all the elements of the mask must be 0 or -1. This
1995 /// requirement may be relaxed in the future.
1996 class ShuffleVectorInst : public Instruction {
1997   SmallVector<int, 4> ShuffleMask;
1998   Constant *ShuffleMaskForBitcode;
1999 
2000 protected:
2001   // Note: Instruction needs to be a friend here to call cloneImpl.
2002   friend class Instruction;
2003 
2004   ShuffleVectorInst *cloneImpl() const;
2005 
2006 public:
2007   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2008                     const Twine &NameStr = "",
2009                     Instruction *InsertBefor = nullptr);
2010   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2011                     const Twine &NameStr, BasicBlock *InsertAtEnd);
2012   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2013                     const Twine &NameStr = "",
2014                     Instruction *InsertBefor = nullptr);
2015   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2016                     const Twine &NameStr, BasicBlock *InsertAtEnd);
2017 
2018   void *operator new(size_t s) { return User::operator new(s, 2); }
2019 
2020   /// Swap the operands and adjust the mask to preserve the semantics
2021   /// of the instruction.
2022   void commute();
2023 
2024   /// Return true if a shufflevector instruction can be
2025   /// formed with the specified operands.
2026   static bool isValidOperands(const Value *V1, const Value *V2,
2027                               const Value *Mask);
2028   static bool isValidOperands(const Value *V1, const Value *V2,
2029                               ArrayRef<int> Mask);
2030 
2031   /// Overload to return most specific vector type.
2032   ///
2033   VectorType *getType() const {
2034     return cast<VectorType>(Instruction::getType());
2035   }
2036 
2037   /// Transparently provide more efficient getOperand methods.
2038   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2039 
2040   /// Return the shuffle mask value of this instruction for the given element
2041   /// index. Return UndefMaskElem if the element is undef.
2042   int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2043 
2044   /// Convert the input shuffle mask operand to a vector of integers. Undefined
2045   /// elements of the mask are returned as UndefMaskElem.
2046   static void getShuffleMask(const Constant *Mask,
2047                              SmallVectorImpl<int> &Result);
2048 
2049   /// Return the mask for this instruction as a vector of integers. Undefined
2050   /// elements of the mask are returned as UndefMaskElem.
2051   void getShuffleMask(SmallVectorImpl<int> &Result) const {
2052     Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2053   }
2054 
2055   /// Return the mask for this instruction, for use in bitcode.
2056   ///
2057   /// TODO: This is temporary until we decide a new bitcode encoding for
2058   /// shufflevector.
2059   Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2060 
2061   static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2062                                                 Type *ResultTy);
2063 
2064   void setShuffleMask(ArrayRef<int> Mask);
2065 
2066   ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2067 
2068   /// Return true if this shuffle returns a vector with a different number of
2069   /// elements than its source vectors.
2070   /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2071   ///           shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2072   bool changesLength() const {
2073     unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2074                                  ->getElementCount()
2075                                  .getKnownMinValue();
2076     unsigned NumMaskElts = ShuffleMask.size();
2077     return NumSourceElts != NumMaskElts;
2078   }
2079 
2080   /// Return true if this shuffle returns a vector with a greater number of
2081   /// elements than its source vectors.
2082   /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2083   bool increasesLength() const {
2084     unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2085                                  ->getElementCount()
2086                                  .getKnownMinValue();
2087     unsigned NumMaskElts = ShuffleMask.size();
2088     return NumSourceElts < NumMaskElts;
2089   }
2090 
2091   /// Return true if this shuffle mask chooses elements from exactly one source
2092   /// vector.
2093   /// Example: <7,5,undef,7>
2094   /// This assumes that vector operands are the same length as the mask.
2095   static bool isSingleSourceMask(ArrayRef<int> Mask);
2096   static bool isSingleSourceMask(const Constant *Mask) {
2097     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2098     SmallVector<int, 16> MaskAsInts;
2099     getShuffleMask(Mask, MaskAsInts);
2100     return isSingleSourceMask(MaskAsInts);
2101   }
2102 
2103   /// Return true if this shuffle chooses elements from exactly one source
2104   /// vector without changing the length of that vector.
2105   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2106   /// TODO: Optionally allow length-changing shuffles.
2107   bool isSingleSource() const {
2108     return !changesLength() && isSingleSourceMask(ShuffleMask);
2109   }
2110 
2111   /// Return true if this shuffle mask chooses elements from exactly one source
2112   /// vector without lane crossings. A shuffle using this mask is not
2113   /// necessarily a no-op because it may change the number of elements from its
2114   /// input vectors or it may provide demanded bits knowledge via undef lanes.
2115   /// Example: <undef,undef,2,3>
2116   static bool isIdentityMask(ArrayRef<int> Mask);
2117   static bool isIdentityMask(const Constant *Mask) {
2118     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2119     SmallVector<int, 16> MaskAsInts;
2120     getShuffleMask(Mask, MaskAsInts);
2121     return isIdentityMask(MaskAsInts);
2122   }
2123 
2124   /// Return true if this shuffle chooses elements from exactly one source
2125   /// vector without lane crossings and does not change the number of elements
2126   /// from its input vectors.
2127   /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2128   bool isIdentity() const {
2129     return !changesLength() && isIdentityMask(ShuffleMask);
2130   }
2131 
2132   /// Return true if this shuffle lengthens exactly one source vector with
2133   /// undefs in the high elements.
2134   bool isIdentityWithPadding() const;
2135 
2136   /// Return true if this shuffle extracts the first N elements of exactly one
2137   /// source vector.
2138   bool isIdentityWithExtract() const;
2139 
2140   /// Return true if this shuffle concatenates its 2 source vectors. This
2141   /// returns false if either input is undefined. In that case, the shuffle is
2142   /// is better classified as an identity with padding operation.
2143   bool isConcat() const;
2144 
2145   /// Return true if this shuffle mask chooses elements from its source vectors
2146   /// without lane crossings. A shuffle using this mask would be
2147   /// equivalent to a vector select with a constant condition operand.
2148   /// Example: <4,1,6,undef>
2149   /// This returns false if the mask does not choose from both input vectors.
2150   /// In that case, the shuffle is better classified as an identity shuffle.
2151   /// This assumes that vector operands are the same length as the mask
2152   /// (a length-changing shuffle can never be equivalent to a vector select).
2153   static bool isSelectMask(ArrayRef<int> Mask);
2154   static bool isSelectMask(const Constant *Mask) {
2155     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2156     SmallVector<int, 16> MaskAsInts;
2157     getShuffleMask(Mask, MaskAsInts);
2158     return isSelectMask(MaskAsInts);
2159   }
2160 
2161   /// Return true if this shuffle chooses elements from its source vectors
2162   /// without lane crossings and all operands have the same number of elements.
2163   /// In other words, this shuffle is equivalent to a vector select with a
2164   /// constant condition operand.
2165   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2166   /// This returns false if the mask does not choose from both input vectors.
2167   /// In that case, the shuffle is better classified as an identity shuffle.
2168   /// TODO: Optionally allow length-changing shuffles.
2169   bool isSelect() const {
2170     return !changesLength() && isSelectMask(ShuffleMask);
2171   }
2172 
2173   /// Return true if this shuffle mask swaps the order of elements from exactly
2174   /// one source vector.
2175   /// Example: <7,6,undef,4>
2176   /// This assumes that vector operands are the same length as the mask.
2177   static bool isReverseMask(ArrayRef<int> Mask);
2178   static bool isReverseMask(const Constant *Mask) {
2179     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2180     SmallVector<int, 16> MaskAsInts;
2181     getShuffleMask(Mask, MaskAsInts);
2182     return isReverseMask(MaskAsInts);
2183   }
2184 
2185   /// Return true if this shuffle swaps the order of elements from exactly
2186   /// one source vector.
2187   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2188   /// TODO: Optionally allow length-changing shuffles.
2189   bool isReverse() const {
2190     return !changesLength() && isReverseMask(ShuffleMask);
2191   }
2192 
2193   /// Return true if this shuffle mask chooses all elements with the same value
2194   /// as the first element of exactly one source vector.
2195   /// Example: <4,undef,undef,4>
2196   /// This assumes that vector operands are the same length as the mask.
2197   static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2198   static bool isZeroEltSplatMask(const Constant *Mask) {
2199     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2200     SmallVector<int, 16> MaskAsInts;
2201     getShuffleMask(Mask, MaskAsInts);
2202     return isZeroEltSplatMask(MaskAsInts);
2203   }
2204 
2205   /// Return true if all elements of this shuffle are the same value as the
2206   /// first element of exactly one source vector without changing the length
2207   /// of that vector.
2208   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2209   /// TODO: Optionally allow length-changing shuffles.
2210   /// TODO: Optionally allow splats from other elements.
2211   bool isZeroEltSplat() const {
2212     return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2213   }
2214 
2215   /// Return true if this shuffle mask is a transpose mask.
2216   /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2217   /// even- or odd-numbered vector elements from two n-dimensional source
2218   /// vectors and write each result into consecutive elements of an
2219   /// n-dimensional destination vector. Two shuffles are necessary to complete
2220   /// the transpose, one for the even elements and another for the odd elements.
2221   /// This description closely follows how the TRN1 and TRN2 AArch64
2222   /// instructions operate.
2223   ///
2224   /// For example, a simple 2x2 matrix can be transposed with:
2225   ///
2226   ///   ; Original matrix
2227   ///   m0 = < a, b >
2228   ///   m1 = < c, d >
2229   ///
2230   ///   ; Transposed matrix
2231   ///   t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2232   ///   t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2233   ///
2234   /// For matrices having greater than n columns, the resulting nx2 transposed
2235   /// matrix is stored in two result vectors such that one vector contains
2236   /// interleaved elements from all the even-numbered rows and the other vector
2237   /// contains interleaved elements from all the odd-numbered rows. For example,
2238   /// a 2x4 matrix can be transposed with:
2239   ///
2240   ///   ; Original matrix
2241   ///   m0 = < a, b, c, d >
2242   ///   m1 = < e, f, g, h >
2243   ///
2244   ///   ; Transposed matrix
2245   ///   t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2246   ///   t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2247   static bool isTransposeMask(ArrayRef<int> Mask);
2248   static bool isTransposeMask(const Constant *Mask) {
2249     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2250     SmallVector<int, 16> MaskAsInts;
2251     getShuffleMask(Mask, MaskAsInts);
2252     return isTransposeMask(MaskAsInts);
2253   }
2254 
2255   /// Return true if this shuffle transposes the elements of its inputs without
2256   /// changing the length of the vectors. This operation may also be known as a
2257   /// merge or interleave. See the description for isTransposeMask() for the
2258   /// exact specification.
2259   /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2260   bool isTranspose() const {
2261     return !changesLength() && isTransposeMask(ShuffleMask);
2262   }
2263 
2264   /// Return true if this shuffle mask is an extract subvector mask.
2265   /// A valid extract subvector mask returns a smaller vector from a single
2266   /// source operand. The base extraction index is returned as well.
2267   static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2268                                      int &Index);
2269   static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2270                                      int &Index) {
2271     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2272     // Not possible to express a shuffle mask for a scalable vector for this
2273     // case.
2274     if (isa<ScalableVectorType>(Mask->getType()))
2275       return false;
2276     SmallVector<int, 16> MaskAsInts;
2277     getShuffleMask(Mask, MaskAsInts);
2278     return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2279   }
2280 
2281   /// Return true if this shuffle mask is an extract subvector mask.
2282   bool isExtractSubvectorMask(int &Index) const {
2283     // Not possible to express a shuffle mask for a scalable vector for this
2284     // case.
2285     if (isa<ScalableVectorType>(getType()))
2286       return false;
2287 
2288     int NumSrcElts =
2289         cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2290     return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2291   }
2292 
2293   /// Change values in a shuffle permute mask assuming the two vector operands
2294   /// of length InVecNumElts have swapped position.
2295   static void commuteShuffleMask(MutableArrayRef<int> Mask,
2296                                  unsigned InVecNumElts) {
2297     for (int &Idx : Mask) {
2298       if (Idx == -1)
2299         continue;
2300       Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2301       assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2302              "shufflevector mask index out of range");
2303     }
2304   }
2305 
2306   // Methods for support type inquiry through isa, cast, and dyn_cast:
2307   static bool classof(const Instruction *I) {
2308     return I->getOpcode() == Instruction::ShuffleVector;
2309   }
2310   static bool classof(const Value *V) {
2311     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2312   }
2313 };
2314 
2315 template <>
2316 struct OperandTraits<ShuffleVectorInst>
2317     : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2318 
2319 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2320 
2321 //===----------------------------------------------------------------------===//
2322 //                                ExtractValueInst Class
2323 //===----------------------------------------------------------------------===//
2324 
2325 /// This instruction extracts a struct member or array
2326 /// element value from an aggregate value.
2327 ///
2328 class ExtractValueInst : public UnaryInstruction {
2329   SmallVector<unsigned, 4> Indices;
2330 
2331   ExtractValueInst(const ExtractValueInst &EVI);
2332 
2333   /// Constructors - Create a extractvalue instruction with a base aggregate
2334   /// value and a list of indices.  The first ctor can optionally insert before
2335   /// an existing instruction, the second appends the new instruction to the
2336   /// specified BasicBlock.
2337   inline ExtractValueInst(Value *Agg,
2338                           ArrayRef<unsigned> Idxs,
2339                           const Twine &NameStr,
2340                           Instruction *InsertBefore);
2341   inline ExtractValueInst(Value *Agg,
2342                           ArrayRef<unsigned> Idxs,
2343                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2344 
2345   void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2346 
2347 protected:
2348   // Note: Instruction needs to be a friend here to call cloneImpl.
2349   friend class Instruction;
2350 
2351   ExtractValueInst *cloneImpl() const;
2352 
2353 public:
2354   static ExtractValueInst *Create(Value *Agg,
2355                                   ArrayRef<unsigned> Idxs,
2356                                   const Twine &NameStr = "",
2357                                   Instruction *InsertBefore = nullptr) {
2358     return new
2359       ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2360   }
2361 
2362   static ExtractValueInst *Create(Value *Agg,
2363                                   ArrayRef<unsigned> Idxs,
2364                                   const Twine &NameStr,
2365                                   BasicBlock *InsertAtEnd) {
2366     return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2367   }
2368 
2369   /// Returns the type of the element that would be extracted
2370   /// with an extractvalue instruction with the specified parameters.
2371   ///
2372   /// Null is returned if the indices are invalid for the specified type.
2373   static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2374 
2375   using idx_iterator = const unsigned*;
2376 
2377   inline idx_iterator idx_begin() const { return Indices.begin(); }
2378   inline idx_iterator idx_end()   const { return Indices.end(); }
2379   inline iterator_range<idx_iterator> indices() const {
2380     return make_range(idx_begin(), idx_end());
2381   }
2382 
2383   Value *getAggregateOperand() {
2384     return getOperand(0);
2385   }
2386   const Value *getAggregateOperand() const {
2387     return getOperand(0);
2388   }
2389   static unsigned getAggregateOperandIndex() {
2390     return 0U;                      // get index for modifying correct operand
2391   }
2392 
2393   ArrayRef<unsigned> getIndices() const {
2394     return Indices;
2395   }
2396 
2397   unsigned getNumIndices() const {
2398     return (unsigned)Indices.size();
2399   }
2400 
2401   bool hasIndices() const {
2402     return true;
2403   }
2404 
2405   // Methods for support type inquiry through isa, cast, and dyn_cast:
2406   static bool classof(const Instruction *I) {
2407     return I->getOpcode() == Instruction::ExtractValue;
2408   }
2409   static bool classof(const Value *V) {
2410     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2411   }
2412 };
2413 
2414 ExtractValueInst::ExtractValueInst(Value *Agg,
2415                                    ArrayRef<unsigned> Idxs,
2416                                    const Twine &NameStr,
2417                                    Instruction *InsertBefore)
2418   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2419                      ExtractValue, Agg, InsertBefore) {
2420   init(Idxs, NameStr);
2421 }
2422 
2423 ExtractValueInst::ExtractValueInst(Value *Agg,
2424                                    ArrayRef<unsigned> Idxs,
2425                                    const Twine &NameStr,
2426                                    BasicBlock *InsertAtEnd)
2427   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2428                      ExtractValue, Agg, InsertAtEnd) {
2429   init(Idxs, NameStr);
2430 }
2431 
2432 //===----------------------------------------------------------------------===//
2433 //                                InsertValueInst Class
2434 //===----------------------------------------------------------------------===//
2435 
2436 /// This instruction inserts a struct field of array element
2437 /// value into an aggregate value.
2438 ///
2439 class InsertValueInst : public Instruction {
2440   SmallVector<unsigned, 4> Indices;
2441 
2442   InsertValueInst(const InsertValueInst &IVI);
2443 
2444   /// Constructors - Create a insertvalue instruction with a base aggregate
2445   /// value, a value to insert, and a list of indices.  The first ctor can
2446   /// optionally insert before an existing instruction, the second appends
2447   /// the new instruction to the specified BasicBlock.
2448   inline InsertValueInst(Value *Agg, Value *Val,
2449                          ArrayRef<unsigned> Idxs,
2450                          const Twine &NameStr,
2451                          Instruction *InsertBefore);
2452   inline InsertValueInst(Value *Agg, Value *Val,
2453                          ArrayRef<unsigned> Idxs,
2454                          const Twine &NameStr, BasicBlock *InsertAtEnd);
2455 
2456   /// Constructors - These two constructors are convenience methods because one
2457   /// and two index insertvalue instructions are so common.
2458   InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2459                   const Twine &NameStr = "",
2460                   Instruction *InsertBefore = nullptr);
2461   InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2462                   BasicBlock *InsertAtEnd);
2463 
2464   void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2465             const Twine &NameStr);
2466 
2467 protected:
2468   // Note: Instruction needs to be a friend here to call cloneImpl.
2469   friend class Instruction;
2470 
2471   InsertValueInst *cloneImpl() const;
2472 
2473 public:
2474   // allocate space for exactly two operands
2475   void *operator new(size_t s) {
2476     return User::operator new(s, 2);
2477   }
2478 
2479   static InsertValueInst *Create(Value *Agg, Value *Val,
2480                                  ArrayRef<unsigned> Idxs,
2481                                  const Twine &NameStr = "",
2482                                  Instruction *InsertBefore = nullptr) {
2483     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2484   }
2485 
2486   static InsertValueInst *Create(Value *Agg, Value *Val,
2487                                  ArrayRef<unsigned> Idxs,
2488                                  const Twine &NameStr,
2489                                  BasicBlock *InsertAtEnd) {
2490     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2491   }
2492 
2493   /// Transparently provide more efficient getOperand methods.
2494   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2495 
2496   using idx_iterator = const unsigned*;
2497 
2498   inline idx_iterator idx_begin() const { return Indices.begin(); }
2499   inline idx_iterator idx_end()   const { return Indices.end(); }
2500   inline iterator_range<idx_iterator> indices() const {
2501     return make_range(idx_begin(), idx_end());
2502   }
2503 
2504   Value *getAggregateOperand() {
2505     return getOperand(0);
2506   }
2507   const Value *getAggregateOperand() const {
2508     return getOperand(0);
2509   }
2510   static unsigned getAggregateOperandIndex() {
2511     return 0U;                      // get index for modifying correct operand
2512   }
2513 
2514   Value *getInsertedValueOperand() {
2515     return getOperand(1);
2516   }
2517   const Value *getInsertedValueOperand() const {
2518     return getOperand(1);
2519   }
2520   static unsigned getInsertedValueOperandIndex() {
2521     return 1U;                      // get index for modifying correct operand
2522   }
2523 
2524   ArrayRef<unsigned> getIndices() const {
2525     return Indices;
2526   }
2527 
2528   unsigned getNumIndices() const {
2529     return (unsigned)Indices.size();
2530   }
2531 
2532   bool hasIndices() const {
2533     return true;
2534   }
2535 
2536   // Methods for support type inquiry through isa, cast, and dyn_cast:
2537   static bool classof(const Instruction *I) {
2538     return I->getOpcode() == Instruction::InsertValue;
2539   }
2540   static bool classof(const Value *V) {
2541     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2542   }
2543 };
2544 
2545 template <>
2546 struct OperandTraits<InsertValueInst> :
2547   public FixedNumOperandTraits<InsertValueInst, 2> {
2548 };
2549 
2550 InsertValueInst::InsertValueInst(Value *Agg,
2551                                  Value *Val,
2552                                  ArrayRef<unsigned> Idxs,
2553                                  const Twine &NameStr,
2554                                  Instruction *InsertBefore)
2555   : Instruction(Agg->getType(), InsertValue,
2556                 OperandTraits<InsertValueInst>::op_begin(this),
2557                 2, InsertBefore) {
2558   init(Agg, Val, Idxs, NameStr);
2559 }
2560 
2561 InsertValueInst::InsertValueInst(Value *Agg,
2562                                  Value *Val,
2563                                  ArrayRef<unsigned> Idxs,
2564                                  const Twine &NameStr,
2565                                  BasicBlock *InsertAtEnd)
2566   : Instruction(Agg->getType(), InsertValue,
2567                 OperandTraits<InsertValueInst>::op_begin(this),
2568                 2, InsertAtEnd) {
2569   init(Agg, Val, Idxs, NameStr);
2570 }
2571 
2572 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2573 
2574 //===----------------------------------------------------------------------===//
2575 //                               PHINode Class
2576 //===----------------------------------------------------------------------===//
2577 
2578 // PHINode - The PHINode class is used to represent the magical mystical PHI
2579 // node, that can not exist in nature, but can be synthesized in a computer
2580 // scientist's overactive imagination.
2581 //
2582 class PHINode : public Instruction {
2583   /// The number of operands actually allocated.  NumOperands is
2584   /// the number actually in use.
2585   unsigned ReservedSpace;
2586 
2587   PHINode(const PHINode &PN);
2588 
2589   explicit PHINode(Type *Ty, unsigned NumReservedValues,
2590                    const Twine &NameStr = "",
2591                    Instruction *InsertBefore = nullptr)
2592     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2593       ReservedSpace(NumReservedValues) {
2594     setName(NameStr);
2595     allocHungoffUses(ReservedSpace);
2596   }
2597 
2598   PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2599           BasicBlock *InsertAtEnd)
2600     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2601       ReservedSpace(NumReservedValues) {
2602     setName(NameStr);
2603     allocHungoffUses(ReservedSpace);
2604   }
2605 
2606 protected:
2607   // Note: Instruction needs to be a friend here to call cloneImpl.
2608   friend class Instruction;
2609 
2610   PHINode *cloneImpl() const;
2611 
2612   // allocHungoffUses - this is more complicated than the generic
2613   // User::allocHungoffUses, because we have to allocate Uses for the incoming
2614   // values and pointers to the incoming blocks, all in one allocation.
2615   void allocHungoffUses(unsigned N) {
2616     User::allocHungoffUses(N, /* IsPhi */ true);
2617   }
2618 
2619 public:
2620   /// Constructors - NumReservedValues is a hint for the number of incoming
2621   /// edges that this phi node will have (use 0 if you really have no idea).
2622   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2623                          const Twine &NameStr = "",
2624                          Instruction *InsertBefore = nullptr) {
2625     return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2626   }
2627 
2628   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2629                          const Twine &NameStr, BasicBlock *InsertAtEnd) {
2630     return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2631   }
2632 
2633   /// Provide fast operand accessors
2634   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2635 
2636   // Block iterator interface. This provides access to the list of incoming
2637   // basic blocks, which parallels the list of incoming values.
2638 
2639   using block_iterator = BasicBlock **;
2640   using const_block_iterator = BasicBlock * const *;
2641 
2642   block_iterator block_begin() {
2643     return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2644   }
2645 
2646   const_block_iterator block_begin() const {
2647     return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2648   }
2649 
2650   block_iterator block_end() {
2651     return block_begin() + getNumOperands();
2652   }
2653 
2654   const_block_iterator block_end() const {
2655     return block_begin() + getNumOperands();
2656   }
2657 
2658   iterator_range<block_iterator> blocks() {
2659     return make_range(block_begin(), block_end());
2660   }
2661 
2662   iterator_range<const_block_iterator> blocks() const {
2663     return make_range(block_begin(), block_end());
2664   }
2665 
2666   op_range incoming_values() { return operands(); }
2667 
2668   const_op_range incoming_values() const { return operands(); }
2669 
2670   /// Return the number of incoming edges
2671   ///
2672   unsigned getNumIncomingValues() const { return getNumOperands(); }
2673 
2674   /// Return incoming value number x
2675   ///
2676   Value *getIncomingValue(unsigned i) const {
2677     return getOperand(i);
2678   }
2679   void setIncomingValue(unsigned i, Value *V) {
2680     assert(V && "PHI node got a null value!");
2681     assert(getType() == V->getType() &&
2682            "All operands to PHI node must be the same type as the PHI node!");
2683     setOperand(i, V);
2684   }
2685 
2686   static unsigned getOperandNumForIncomingValue(unsigned i) {
2687     return i;
2688   }
2689 
2690   static unsigned getIncomingValueNumForOperand(unsigned i) {
2691     return i;
2692   }
2693 
2694   /// Return incoming basic block number @p i.
2695   ///
2696   BasicBlock *getIncomingBlock(unsigned i) const {
2697     return block_begin()[i];
2698   }
2699 
2700   /// Return incoming basic block corresponding
2701   /// to an operand of the PHI.
2702   ///
2703   BasicBlock *getIncomingBlock(const Use &U) const {
2704     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2705     return getIncomingBlock(unsigned(&U - op_begin()));
2706   }
2707 
2708   /// Return incoming basic block corresponding
2709   /// to value use iterator.
2710   ///
2711   BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2712     return getIncomingBlock(I.getUse());
2713   }
2714 
2715   void setIncomingBlock(unsigned i, BasicBlock *BB) {
2716     assert(BB && "PHI node got a null basic block!");
2717     block_begin()[i] = BB;
2718   }
2719 
2720   /// Replace every incoming basic block \p Old to basic block \p New.
2721   void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2722     assert(New && Old && "PHI node got a null basic block!");
2723     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2724       if (getIncomingBlock(Op) == Old)
2725         setIncomingBlock(Op, New);
2726   }
2727 
2728   /// Add an incoming value to the end of the PHI list
2729   ///
2730   void addIncoming(Value *V, BasicBlock *BB) {
2731     if (getNumOperands() == ReservedSpace)
2732       growOperands();  // Get more space!
2733     // Initialize some new operands.
2734     setNumHungOffUseOperands(getNumOperands() + 1);
2735     setIncomingValue(getNumOperands() - 1, V);
2736     setIncomingBlock(getNumOperands() - 1, BB);
2737   }
2738 
2739   /// Remove an incoming value.  This is useful if a
2740   /// predecessor basic block is deleted.  The value removed is returned.
2741   ///
2742   /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2743   /// is true), the PHI node is destroyed and any uses of it are replaced with
2744   /// dummy values.  The only time there should be zero incoming values to a PHI
2745   /// node is when the block is dead, so this strategy is sound.
2746   ///
2747   Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2748 
2749   Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2750     int Idx = getBasicBlockIndex(BB);
2751     assert(Idx >= 0 && "Invalid basic block argument to remove!");
2752     return removeIncomingValue(Idx, DeletePHIIfEmpty);
2753   }
2754 
2755   /// Return the first index of the specified basic
2756   /// block in the value list for this PHI.  Returns -1 if no instance.
2757   ///
2758   int getBasicBlockIndex(const BasicBlock *BB) const {
2759     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2760       if (block_begin()[i] == BB)
2761         return i;
2762     return -1;
2763   }
2764 
2765   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2766     int Idx = getBasicBlockIndex(BB);
2767     assert(Idx >= 0 && "Invalid basic block argument!");
2768     return getIncomingValue(Idx);
2769   }
2770 
2771   /// Set every incoming value(s) for block \p BB to \p V.
2772   void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2773     assert(BB && "PHI node got a null basic block!");
2774     bool Found = false;
2775     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2776       if (getIncomingBlock(Op) == BB) {
2777         Found = true;
2778         setIncomingValue(Op, V);
2779       }
2780     (void)Found;
2781     assert(Found && "Invalid basic block argument to set!");
2782   }
2783 
2784   /// If the specified PHI node always merges together the
2785   /// same value, return the value, otherwise return null.
2786   Value *hasConstantValue() const;
2787 
2788   /// Whether the specified PHI node always merges
2789   /// together the same value, assuming undefs are equal to a unique
2790   /// non-undef value.
2791   bool hasConstantOrUndefValue() const;
2792 
2793   /// If the PHI node is complete which means all of its parent's predecessors
2794   /// have incoming value in this PHI, return true, otherwise return false.
2795   bool isComplete() const {
2796     return llvm::all_of(predecessors(getParent()),
2797                         [this](const BasicBlock *Pred) {
2798                           return getBasicBlockIndex(Pred) >= 0;
2799                         });
2800   }
2801 
2802   /// Methods for support type inquiry through isa, cast, and dyn_cast:
2803   static bool classof(const Instruction *I) {
2804     return I->getOpcode() == Instruction::PHI;
2805   }
2806   static bool classof(const Value *V) {
2807     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2808   }
2809 
2810 private:
2811   void growOperands();
2812 };
2813 
2814 template <>
2815 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2816 };
2817 
2818 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2819 
2820 //===----------------------------------------------------------------------===//
2821 //                           LandingPadInst Class
2822 //===----------------------------------------------------------------------===//
2823 
2824 //===---------------------------------------------------------------------------
2825 /// The landingpad instruction holds all of the information
2826 /// necessary to generate correct exception handling. The landingpad instruction
2827 /// cannot be moved from the top of a landing pad block, which itself is
2828 /// accessible only from the 'unwind' edge of an invoke. This uses the
2829 /// SubclassData field in Value to store whether or not the landingpad is a
2830 /// cleanup.
2831 ///
2832 class LandingPadInst : public Instruction {
2833   using CleanupField = BoolBitfieldElementT<0>;
2834 
2835   /// The number of operands actually allocated.  NumOperands is
2836   /// the number actually in use.
2837   unsigned ReservedSpace;
2838 
2839   LandingPadInst(const LandingPadInst &LP);
2840 
2841 public:
2842   enum ClauseType { Catch, Filter };
2843 
2844 private:
2845   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2846                           const Twine &NameStr, Instruction *InsertBefore);
2847   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2848                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2849 
2850   // Allocate space for exactly zero operands.
2851   void *operator new(size_t s) {
2852     return User::operator new(s);
2853   }
2854 
2855   void growOperands(unsigned Size);
2856   void init(unsigned NumReservedValues, const Twine &NameStr);
2857 
2858 protected:
2859   // Note: Instruction needs to be a friend here to call cloneImpl.
2860   friend class Instruction;
2861 
2862   LandingPadInst *cloneImpl() const;
2863 
2864 public:
2865   /// Constructors - NumReservedClauses is a hint for the number of incoming
2866   /// clauses that this landingpad will have (use 0 if you really have no idea).
2867   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2868                                 const Twine &NameStr = "",
2869                                 Instruction *InsertBefore = nullptr);
2870   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2871                                 const Twine &NameStr, BasicBlock *InsertAtEnd);
2872 
2873   /// Provide fast operand accessors
2874   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2875 
2876   /// Return 'true' if this landingpad instruction is a
2877   /// cleanup. I.e., it should be run when unwinding even if its landing pad
2878   /// doesn't catch the exception.
2879   bool isCleanup() const { return getSubclassData<CleanupField>(); }
2880 
2881   /// Indicate that this landingpad instruction is a cleanup.
2882   void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2883 
2884   /// Add a catch or filter clause to the landing pad.
2885   void addClause(Constant *ClauseVal);
2886 
2887   /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2888   /// determine what type of clause this is.
2889   Constant *getClause(unsigned Idx) const {
2890     return cast<Constant>(getOperandList()[Idx]);
2891   }
2892 
2893   /// Return 'true' if the clause and index Idx is a catch clause.
2894   bool isCatch(unsigned Idx) const {
2895     return !isa<ArrayType>(getOperandList()[Idx]->getType());
2896   }
2897 
2898   /// Return 'true' if the clause and index Idx is a filter clause.
2899   bool isFilter(unsigned Idx) const {
2900     return isa<ArrayType>(getOperandList()[Idx]->getType());
2901   }
2902 
2903   /// Get the number of clauses for this landing pad.
2904   unsigned getNumClauses() const { return getNumOperands(); }
2905 
2906   /// Grow the size of the operand list to accommodate the new
2907   /// number of clauses.
2908   void reserveClauses(unsigned Size) { growOperands(Size); }
2909 
2910   // Methods for support type inquiry through isa, cast, and dyn_cast:
2911   static bool classof(const Instruction *I) {
2912     return I->getOpcode() == Instruction::LandingPad;
2913   }
2914   static bool classof(const Value *V) {
2915     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2916   }
2917 };
2918 
2919 template <>
2920 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2921 };
2922 
2923 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2924 
2925 //===----------------------------------------------------------------------===//
2926 //                               ReturnInst Class
2927 //===----------------------------------------------------------------------===//
2928 
2929 //===---------------------------------------------------------------------------
2930 /// Return a value (possibly void), from a function.  Execution
2931 /// does not continue in this function any longer.
2932 ///
2933 class ReturnInst : public Instruction {
2934   ReturnInst(const ReturnInst &RI);
2935 
2936 private:
2937   // ReturnInst constructors:
2938   // ReturnInst()                  - 'ret void' instruction
2939   // ReturnInst(    null)          - 'ret void' instruction
2940   // ReturnInst(Value* X)          - 'ret X'    instruction
2941   // ReturnInst(    null, Inst *I) - 'ret void' instruction, insert before I
2942   // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
2943   // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of B
2944   // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of B
2945   //
2946   // NOTE: If the Value* passed is of type void then the constructor behaves as
2947   // if it was passed NULL.
2948   explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2949                       Instruction *InsertBefore = nullptr);
2950   ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2951   explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2952 
2953 protected:
2954   // Note: Instruction needs to be a friend here to call cloneImpl.
2955   friend class Instruction;
2956 
2957   ReturnInst *cloneImpl() const;
2958 
2959 public:
2960   static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2961                             Instruction *InsertBefore = nullptr) {
2962     return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2963   }
2964 
2965   static ReturnInst* Create(LLVMContext &C, Value *retVal,
2966                             BasicBlock *InsertAtEnd) {
2967     return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2968   }
2969 
2970   static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2971     return new(0) ReturnInst(C, InsertAtEnd);
2972   }
2973 
2974   /// Provide fast operand accessors
2975   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2976 
2977   /// Convenience accessor. Returns null if there is no return value.
2978   Value *getReturnValue() const {
2979     return getNumOperands() != 0 ? getOperand(0) : nullptr;
2980   }
2981 
2982   unsigned getNumSuccessors() const { return 0; }
2983 
2984   // Methods for support type inquiry through isa, cast, and dyn_cast:
2985   static bool classof(const Instruction *I) {
2986     return (I->getOpcode() == Instruction::Ret);
2987   }
2988   static bool classof(const Value *V) {
2989     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2990   }
2991 
2992 private:
2993   BasicBlock *getSuccessor(unsigned idx) const {
2994     llvm_unreachable("ReturnInst has no successors!");
2995   }
2996 
2997   void setSuccessor(unsigned idx, BasicBlock *B) {
2998     llvm_unreachable("ReturnInst has no successors!");
2999   }
3000 };
3001 
3002 template <>
3003 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3004 };
3005 
3006 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
3007 
3008 //===----------------------------------------------------------------------===//
3009 //                               BranchInst Class
3010 //===----------------------------------------------------------------------===//
3011 
3012 //===---------------------------------------------------------------------------
3013 /// Conditional or Unconditional Branch instruction.
3014 ///
3015 class BranchInst : public Instruction {
3016   /// Ops list - Branches are strange.  The operands are ordered:
3017   ///  [Cond, FalseDest,] TrueDest.  This makes some accessors faster because
3018   /// they don't have to check for cond/uncond branchness. These are mostly
3019   /// accessed relative from op_end().
3020   BranchInst(const BranchInst &BI);
3021   // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3022   // BranchInst(BB *B)                           - 'br B'
3023   // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
3024   // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
3025   // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3026   // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
3027   // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
3028   explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3029   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3030              Instruction *InsertBefore = nullptr);
3031   BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3032   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3033              BasicBlock *InsertAtEnd);
3034 
3035   void AssertOK();
3036 
3037 protected:
3038   // Note: Instruction needs to be a friend here to call cloneImpl.
3039   friend class Instruction;
3040 
3041   BranchInst *cloneImpl() const;
3042 
3043 public:
3044   /// Iterator type that casts an operand to a basic block.
3045   ///
3046   /// This only makes sense because the successors are stored as adjacent
3047   /// operands for branch instructions.
3048   struct succ_op_iterator
3049       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3050                               std::random_access_iterator_tag, BasicBlock *,
3051                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3052     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3053 
3054     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3055     BasicBlock *operator->() const { return operator*(); }
3056   };
3057 
3058   /// The const version of `succ_op_iterator`.
3059   struct const_succ_op_iterator
3060       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3061                               std::random_access_iterator_tag,
3062                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3063                               const BasicBlock *> {
3064     explicit const_succ_op_iterator(const_value_op_iterator I)
3065         : iterator_adaptor_base(I) {}
3066 
3067     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3068     const BasicBlock *operator->() const { return operator*(); }
3069   };
3070 
3071   static BranchInst *Create(BasicBlock *IfTrue,
3072                             Instruction *InsertBefore = nullptr) {
3073     return new(1) BranchInst(IfTrue, InsertBefore);
3074   }
3075 
3076   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3077                             Value *Cond, Instruction *InsertBefore = nullptr) {
3078     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3079   }
3080 
3081   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3082     return new(1) BranchInst(IfTrue, InsertAtEnd);
3083   }
3084 
3085   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3086                             Value *Cond, BasicBlock *InsertAtEnd) {
3087     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3088   }
3089 
3090   /// Transparently provide more efficient getOperand methods.
3091   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3092 
3093   bool isUnconditional() const { return getNumOperands() == 1; }
3094   bool isConditional()   const { return getNumOperands() == 3; }
3095 
3096   Value *getCondition() const {
3097     assert(isConditional() && "Cannot get condition of an uncond branch!");
3098     return Op<-3>();
3099   }
3100 
3101   void setCondition(Value *V) {
3102     assert(isConditional() && "Cannot set condition of unconditional branch!");
3103     Op<-3>() = V;
3104   }
3105 
3106   unsigned getNumSuccessors() const { return 1+isConditional(); }
3107 
3108   BasicBlock *getSuccessor(unsigned i) const {
3109     assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3110     return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3111   }
3112 
3113   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3114     assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3115     *(&Op<-1>() - idx) = NewSucc;
3116   }
3117 
3118   /// Swap the successors of this branch instruction.
3119   ///
3120   /// Swaps the successors of the branch instruction. This also swaps any
3121   /// branch weight metadata associated with the instruction so that it
3122   /// continues to map correctly to each operand.
3123   void swapSuccessors();
3124 
3125   iterator_range<succ_op_iterator> successors() {
3126     return make_range(
3127         succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3128         succ_op_iterator(value_op_end()));
3129   }
3130 
3131   iterator_range<const_succ_op_iterator> successors() const {
3132     return make_range(const_succ_op_iterator(
3133                           std::next(value_op_begin(), isConditional() ? 1 : 0)),
3134                       const_succ_op_iterator(value_op_end()));
3135   }
3136 
3137   // Methods for support type inquiry through isa, cast, and dyn_cast:
3138   static bool classof(const Instruction *I) {
3139     return (I->getOpcode() == Instruction::Br);
3140   }
3141   static bool classof(const Value *V) {
3142     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3143   }
3144 };
3145 
3146 template <>
3147 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3148 };
3149 
3150 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
3151 
3152 //===----------------------------------------------------------------------===//
3153 //                               SwitchInst Class
3154 //===----------------------------------------------------------------------===//
3155 
3156 //===---------------------------------------------------------------------------
3157 /// Multiway switch
3158 ///
3159 class SwitchInst : public Instruction {
3160   unsigned ReservedSpace;
3161 
3162   // Operand[0]    = Value to switch on
3163   // Operand[1]    = Default basic block destination
3164   // Operand[2n  ] = Value to match
3165   // Operand[2n+1] = BasicBlock to go to on match
3166   SwitchInst(const SwitchInst &SI);
3167 
3168   /// Create a new switch instruction, specifying a value to switch on and a
3169   /// default destination. The number of additional cases can be specified here
3170   /// to make memory allocation more efficient. This constructor can also
3171   /// auto-insert before another instruction.
3172   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3173              Instruction *InsertBefore);
3174 
3175   /// Create a new switch instruction, specifying a value to switch on and a
3176   /// default destination. The number of additional cases can be specified here
3177   /// to make memory allocation more efficient. This constructor also
3178   /// auto-inserts at the end of the specified BasicBlock.
3179   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3180              BasicBlock *InsertAtEnd);
3181 
3182   // allocate space for exactly zero operands
3183   void *operator new(size_t s) {
3184     return User::operator new(s);
3185   }
3186 
3187   void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3188   void growOperands();
3189 
3190 protected:
3191   // Note: Instruction needs to be a friend here to call cloneImpl.
3192   friend class Instruction;
3193 
3194   SwitchInst *cloneImpl() const;
3195 
3196 public:
3197   // -2
3198   static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3199 
3200   template <typename CaseHandleT> class CaseIteratorImpl;
3201 
3202   /// A handle to a particular switch case. It exposes a convenient interface
3203   /// to both the case value and the successor block.
3204   ///
3205   /// We define this as a template and instantiate it to form both a const and
3206   /// non-const handle.
3207   template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3208   class CaseHandleImpl {
3209     // Directly befriend both const and non-const iterators.
3210     friend class SwitchInst::CaseIteratorImpl<
3211         CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3212 
3213   protected:
3214     // Expose the switch type we're parameterized with to the iterator.
3215     using SwitchInstType = SwitchInstT;
3216 
3217     SwitchInstT *SI;
3218     ptrdiff_t Index;
3219 
3220     CaseHandleImpl() = default;
3221     CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3222 
3223   public:
3224     /// Resolves case value for current case.
3225     ConstantIntT *getCaseValue() const {
3226       assert((unsigned)Index < SI->getNumCases() &&
3227              "Index out the number of cases.");
3228       return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3229     }
3230 
3231     /// Resolves successor for current case.
3232     BasicBlockT *getCaseSuccessor() const {
3233       assert(((unsigned)Index < SI->getNumCases() ||
3234               (unsigned)Index == DefaultPseudoIndex) &&
3235              "Index out the number of cases.");
3236       return SI->getSuccessor(getSuccessorIndex());
3237     }
3238 
3239     /// Returns number of current case.
3240     unsigned getCaseIndex() const { return Index; }
3241 
3242     /// Returns successor index for current case successor.
3243     unsigned getSuccessorIndex() const {
3244       assert(((unsigned)Index == DefaultPseudoIndex ||
3245               (unsigned)Index < SI->getNumCases()) &&
3246              "Index out the number of cases.");
3247       return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3248     }
3249 
3250     bool operator==(const CaseHandleImpl &RHS) const {
3251       assert(SI == RHS.SI && "Incompatible operators.");
3252       return Index == RHS.Index;
3253     }
3254   };
3255 
3256   using ConstCaseHandle =
3257       CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3258 
3259   class CaseHandle
3260       : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3261     friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3262 
3263   public:
3264     CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3265 
3266     /// Sets the new value for current case.
3267     void setValue(ConstantInt *V) {
3268       assert((unsigned)Index < SI->getNumCases() &&
3269              "Index out the number of cases.");
3270       SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3271     }
3272 
3273     /// Sets the new successor for current case.
3274     void setSuccessor(BasicBlock *S) {
3275       SI->setSuccessor(getSuccessorIndex(), S);
3276     }
3277   };
3278 
3279   template <typename CaseHandleT>
3280   class CaseIteratorImpl
3281       : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3282                                     std::random_access_iterator_tag,
3283                                     CaseHandleT> {
3284     using SwitchInstT = typename CaseHandleT::SwitchInstType;
3285 
3286     CaseHandleT Case;
3287 
3288   public:
3289     /// Default constructed iterator is in an invalid state until assigned to
3290     /// a case for a particular switch.
3291     CaseIteratorImpl() = default;
3292 
3293     /// Initializes case iterator for given SwitchInst and for given
3294     /// case number.
3295     CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3296 
3297     /// Initializes case iterator for given SwitchInst and for given
3298     /// successor index.
3299     static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3300                                                unsigned SuccessorIndex) {
3301       assert(SuccessorIndex < SI->getNumSuccessors() &&
3302              "Successor index # out of range!");
3303       return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3304                                  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3305     }
3306 
3307     /// Support converting to the const variant. This will be a no-op for const
3308     /// variant.
3309     operator CaseIteratorImpl<ConstCaseHandle>() const {
3310       return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3311     }
3312 
3313     CaseIteratorImpl &operator+=(ptrdiff_t N) {
3314       // Check index correctness after addition.
3315       // Note: Index == getNumCases() means end().
3316       assert(Case.Index + N >= 0 &&
3317              (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3318              "Case.Index out the number of cases.");
3319       Case.Index += N;
3320       return *this;
3321     }
3322     CaseIteratorImpl &operator-=(ptrdiff_t N) {
3323       // Check index correctness after subtraction.
3324       // Note: Case.Index == getNumCases() means end().
3325       assert(Case.Index - N >= 0 &&
3326              (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3327              "Case.Index out the number of cases.");
3328       Case.Index -= N;
3329       return *this;
3330     }
3331     ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3332       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3333       return Case.Index - RHS.Case.Index;
3334     }
3335     bool operator==(const CaseIteratorImpl &RHS) const {
3336       return Case == RHS.Case;
3337     }
3338     bool operator<(const CaseIteratorImpl &RHS) const {
3339       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3340       return Case.Index < RHS.Case.Index;
3341     }
3342     CaseHandleT &operator*() { return Case; }
3343     const CaseHandleT &operator*() const { return Case; }
3344   };
3345 
3346   using CaseIt = CaseIteratorImpl<CaseHandle>;
3347   using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3348 
3349   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3350                             unsigned NumCases,
3351                             Instruction *InsertBefore = nullptr) {
3352     return new SwitchInst(Value, Default, NumCases, InsertBefore);
3353   }
3354 
3355   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3356                             unsigned NumCases, BasicBlock *InsertAtEnd) {
3357     return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3358   }
3359 
3360   /// Provide fast operand accessors
3361   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3362 
3363   // Accessor Methods for Switch stmt
3364   Value *getCondition() const { return getOperand(0); }
3365   void setCondition(Value *V) { setOperand(0, V); }
3366 
3367   BasicBlock *getDefaultDest() const {
3368     return cast<BasicBlock>(getOperand(1));
3369   }
3370 
3371   void setDefaultDest(BasicBlock *DefaultCase) {
3372     setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3373   }
3374 
3375   /// Return the number of 'cases' in this switch instruction, excluding the
3376   /// default case.
3377   unsigned getNumCases() const {
3378     return getNumOperands()/2 - 1;
3379   }
3380 
3381   /// Returns a read/write iterator that points to the first case in the
3382   /// SwitchInst.
3383   CaseIt case_begin() {
3384     return CaseIt(this, 0);
3385   }
3386 
3387   /// Returns a read-only iterator that points to the first case in the
3388   /// SwitchInst.
3389   ConstCaseIt case_begin() const {
3390     return ConstCaseIt(this, 0);
3391   }
3392 
3393   /// Returns a read/write iterator that points one past the last in the
3394   /// SwitchInst.
3395   CaseIt case_end() {
3396     return CaseIt(this, getNumCases());
3397   }
3398 
3399   /// Returns a read-only iterator that points one past the last in the
3400   /// SwitchInst.
3401   ConstCaseIt case_end() const {
3402     return ConstCaseIt(this, getNumCases());
3403   }
3404 
3405   /// Iteration adapter for range-for loops.
3406   iterator_range<CaseIt> cases() {
3407     return make_range(case_begin(), case_end());
3408   }
3409 
3410   /// Constant iteration adapter for range-for loops.
3411   iterator_range<ConstCaseIt> cases() const {
3412     return make_range(case_begin(), case_end());
3413   }
3414 
3415   /// Returns an iterator that points to the default case.
3416   /// Note: this iterator allows to resolve successor only. Attempt
3417   /// to resolve case value causes an assertion.
3418   /// Also note, that increment and decrement also causes an assertion and
3419   /// makes iterator invalid.
3420   CaseIt case_default() {
3421     return CaseIt(this, DefaultPseudoIndex);
3422   }
3423   ConstCaseIt case_default() const {
3424     return ConstCaseIt(this, DefaultPseudoIndex);
3425   }
3426 
3427   /// Search all of the case values for the specified constant. If it is
3428   /// explicitly handled, return the case iterator of it, otherwise return
3429   /// default case iterator to indicate that it is handled by the default
3430   /// handler.
3431   CaseIt findCaseValue(const ConstantInt *C) {
3432     CaseIt I = llvm::find_if(
3433         cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3434     if (I != case_end())
3435       return I;
3436 
3437     return case_default();
3438   }
3439   ConstCaseIt findCaseValue(const ConstantInt *C) const {
3440     ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3441       return Case.getCaseValue() == C;
3442     });
3443     if (I != case_end())
3444       return I;
3445 
3446     return case_default();
3447   }
3448 
3449   /// Finds the unique case value for a given successor. Returns null if the
3450   /// successor is not found, not unique, or is the default case.
3451   ConstantInt *findCaseDest(BasicBlock *BB) {
3452     if (BB == getDefaultDest())
3453       return nullptr;
3454 
3455     ConstantInt *CI = nullptr;
3456     for (auto Case : cases()) {
3457       if (Case.getCaseSuccessor() != BB)
3458         continue;
3459 
3460       if (CI)
3461         return nullptr; // Multiple cases lead to BB.
3462 
3463       CI = Case.getCaseValue();
3464     }
3465 
3466     return CI;
3467   }
3468 
3469   /// Add an entry to the switch instruction.
3470   /// Note:
3471   /// This action invalidates case_end(). Old case_end() iterator will
3472   /// point to the added case.
3473   void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3474 
3475   /// This method removes the specified case and its successor from the switch
3476   /// instruction. Note that this operation may reorder the remaining cases at
3477   /// index idx and above.
3478   /// Note:
3479   /// This action invalidates iterators for all cases following the one removed,
3480   /// including the case_end() iterator. It returns an iterator for the next
3481   /// case.
3482   CaseIt removeCase(CaseIt I);
3483 
3484   unsigned getNumSuccessors() const { return getNumOperands()/2; }
3485   BasicBlock *getSuccessor(unsigned idx) const {
3486     assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3487     return cast<BasicBlock>(getOperand(idx*2+1));
3488   }
3489   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3490     assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3491     setOperand(idx * 2 + 1, NewSucc);
3492   }
3493 
3494   // Methods for support type inquiry through isa, cast, and dyn_cast:
3495   static bool classof(const Instruction *I) {
3496     return I->getOpcode() == Instruction::Switch;
3497   }
3498   static bool classof(const Value *V) {
3499     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3500   }
3501 };
3502 
3503 /// A wrapper class to simplify modification of SwitchInst cases along with
3504 /// their prof branch_weights metadata.
3505 class SwitchInstProfUpdateWrapper {
3506   SwitchInst &SI;
3507   Optional<SmallVector<uint32_t, 8> > Weights = None;
3508   bool Changed = false;
3509 
3510 protected:
3511   static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3512 
3513   MDNode *buildProfBranchWeightsMD();
3514 
3515   void init();
3516 
3517 public:
3518   using CaseWeightOpt = Optional<uint32_t>;
3519   SwitchInst *operator->() { return &SI; }
3520   SwitchInst &operator*() { return SI; }
3521   operator SwitchInst *() { return &SI; }
3522 
3523   SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3524 
3525   ~SwitchInstProfUpdateWrapper() {
3526     if (Changed)
3527       SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3528   }
3529 
3530   /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3531   /// correspondent branch weight.
3532   SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3533 
3534   /// Delegate the call to the underlying SwitchInst::addCase() and set the
3535   /// specified branch weight for the added case.
3536   void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3537 
3538   /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3539   /// this object to not touch the underlying SwitchInst in destructor.
3540   SymbolTableList<Instruction>::iterator eraseFromParent();
3541 
3542   void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3543   CaseWeightOpt getSuccessorWeight(unsigned idx);
3544 
3545   static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3546 };
3547 
3548 template <>
3549 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3550 };
3551 
3552 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3553 
3554 //===----------------------------------------------------------------------===//
3555 //                             IndirectBrInst Class
3556 //===----------------------------------------------------------------------===//
3557 
3558 //===---------------------------------------------------------------------------
3559 /// Indirect Branch Instruction.
3560 ///
3561 class IndirectBrInst : public Instruction {
3562   unsigned ReservedSpace;
3563 
3564   // Operand[0]   = Address to jump to
3565   // Operand[n+1] = n-th destination
3566   IndirectBrInst(const IndirectBrInst &IBI);
3567 
3568   /// Create a new indirectbr instruction, specifying an
3569   /// Address to jump to.  The number of expected destinations can be specified
3570   /// here to make memory allocation more efficient.  This constructor can also
3571   /// autoinsert before another instruction.
3572   IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3573 
3574   /// Create a new indirectbr instruction, specifying an
3575   /// Address to jump to.  The number of expected destinations can be specified
3576   /// here to make memory allocation more efficient.  This constructor also
3577   /// autoinserts at the end of the specified BasicBlock.
3578   IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3579 
3580   // allocate space for exactly zero operands
3581   void *operator new(size_t s) {
3582     return User::operator new(s);
3583   }
3584 
3585   void init(Value *Address, unsigned NumDests);
3586   void growOperands();
3587 
3588 protected:
3589   // Note: Instruction needs to be a friend here to call cloneImpl.
3590   friend class Instruction;
3591 
3592   IndirectBrInst *cloneImpl() const;
3593 
3594 public:
3595   /// Iterator type that casts an operand to a basic block.
3596   ///
3597   /// This only makes sense because the successors are stored as adjacent
3598   /// operands for indirectbr instructions.
3599   struct succ_op_iterator
3600       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3601                               std::random_access_iterator_tag, BasicBlock *,
3602                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3603     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3604 
3605     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3606     BasicBlock *operator->() const { return operator*(); }
3607   };
3608 
3609   /// The const version of `succ_op_iterator`.
3610   struct const_succ_op_iterator
3611       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3612                               std::random_access_iterator_tag,
3613                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3614                               const BasicBlock *> {
3615     explicit const_succ_op_iterator(const_value_op_iterator I)
3616         : iterator_adaptor_base(I) {}
3617 
3618     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3619     const BasicBlock *operator->() const { return operator*(); }
3620   };
3621 
3622   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3623                                 Instruction *InsertBefore = nullptr) {
3624     return new IndirectBrInst(Address, NumDests, InsertBefore);
3625   }
3626 
3627   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3628                                 BasicBlock *InsertAtEnd) {
3629     return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3630   }
3631 
3632   /// Provide fast operand accessors.
3633   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3634 
3635   // Accessor Methods for IndirectBrInst instruction.
3636   Value *getAddress() { return getOperand(0); }
3637   const Value *getAddress() const { return getOperand(0); }
3638   void setAddress(Value *V) { setOperand(0, V); }
3639 
3640   /// return the number of possible destinations in this
3641   /// indirectbr instruction.
3642   unsigned getNumDestinations() const { return getNumOperands()-1; }
3643 
3644   /// Return the specified destination.
3645   BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3646   const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3647 
3648   /// Add a destination.
3649   ///
3650   void addDestination(BasicBlock *Dest);
3651 
3652   /// This method removes the specified successor from the
3653   /// indirectbr instruction.
3654   void removeDestination(unsigned i);
3655 
3656   unsigned getNumSuccessors() const { return getNumOperands()-1; }
3657   BasicBlock *getSuccessor(unsigned i) const {
3658     return cast<BasicBlock>(getOperand(i+1));
3659   }
3660   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3661     setOperand(i + 1, NewSucc);
3662   }
3663 
3664   iterator_range<succ_op_iterator> successors() {
3665     return make_range(succ_op_iterator(std::next(value_op_begin())),
3666                       succ_op_iterator(value_op_end()));
3667   }
3668 
3669   iterator_range<const_succ_op_iterator> successors() const {
3670     return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3671                       const_succ_op_iterator(value_op_end()));
3672   }
3673 
3674   // Methods for support type inquiry through isa, cast, and dyn_cast:
3675   static bool classof(const Instruction *I) {
3676     return I->getOpcode() == Instruction::IndirectBr;
3677   }
3678   static bool classof(const Value *V) {
3679     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3680   }
3681 };
3682 
3683 template <>
3684 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3685 };
3686 
3687 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3688 
3689 //===----------------------------------------------------------------------===//
3690 //                               InvokeInst Class
3691 //===----------------------------------------------------------------------===//
3692 
3693 /// Invoke instruction.  The SubclassData field is used to hold the
3694 /// calling convention of the call.
3695 ///
3696 class InvokeInst : public CallBase {
3697   /// The number of operands for this call beyond the called function,
3698   /// arguments, and operand bundles.
3699   static constexpr int NumExtraOperands = 2;
3700 
3701   /// The index from the end of the operand array to the normal destination.
3702   static constexpr int NormalDestOpEndIdx = -3;
3703 
3704   /// The index from the end of the operand array to the unwind destination.
3705   static constexpr int UnwindDestOpEndIdx = -2;
3706 
3707   InvokeInst(const InvokeInst &BI);
3708 
3709   /// Construct an InvokeInst given a range of arguments.
3710   ///
3711   /// Construct an InvokeInst from a range of arguments
3712   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3713                     BasicBlock *IfException, ArrayRef<Value *> Args,
3714                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3715                     const Twine &NameStr, Instruction *InsertBefore);
3716 
3717   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3718                     BasicBlock *IfException, ArrayRef<Value *> Args,
3719                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3720                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3721 
3722   void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3723             BasicBlock *IfException, ArrayRef<Value *> Args,
3724             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3725 
3726   /// Compute the number of operands to allocate.
3727   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3728     // We need one operand for the called function, plus our extra operands and
3729     // the input operand counts provided.
3730     return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3731   }
3732 
3733 protected:
3734   // Note: Instruction needs to be a friend here to call cloneImpl.
3735   friend class Instruction;
3736 
3737   InvokeInst *cloneImpl() const;
3738 
3739 public:
3740   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3741                             BasicBlock *IfException, ArrayRef<Value *> Args,
3742                             const Twine &NameStr,
3743                             Instruction *InsertBefore = nullptr) {
3744     int NumOperands = ComputeNumOperands(Args.size());
3745     return new (NumOperands)
3746         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3747                    NameStr, InsertBefore);
3748   }
3749 
3750   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3751                             BasicBlock *IfException, ArrayRef<Value *> Args,
3752                             ArrayRef<OperandBundleDef> Bundles = None,
3753                             const Twine &NameStr = "",
3754                             Instruction *InsertBefore = nullptr) {
3755     int NumOperands =
3756         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3757     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3758 
3759     return new (NumOperands, DescriptorBytes)
3760         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3761                    NameStr, InsertBefore);
3762   }
3763 
3764   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3765                             BasicBlock *IfException, ArrayRef<Value *> Args,
3766                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3767     int NumOperands = ComputeNumOperands(Args.size());
3768     return new (NumOperands)
3769         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3770                    NameStr, InsertAtEnd);
3771   }
3772 
3773   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3774                             BasicBlock *IfException, ArrayRef<Value *> Args,
3775                             ArrayRef<OperandBundleDef> Bundles,
3776                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3777     int NumOperands =
3778         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3779     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3780 
3781     return new (NumOperands, DescriptorBytes)
3782         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3783                    NameStr, InsertAtEnd);
3784   }
3785 
3786   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3787                             BasicBlock *IfException, ArrayRef<Value *> Args,
3788                             const Twine &NameStr,
3789                             Instruction *InsertBefore = nullptr) {
3790     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3791                   IfException, Args, None, NameStr, InsertBefore);
3792   }
3793 
3794   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3795                             BasicBlock *IfException, ArrayRef<Value *> Args,
3796                             ArrayRef<OperandBundleDef> Bundles = None,
3797                             const Twine &NameStr = "",
3798                             Instruction *InsertBefore = nullptr) {
3799     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3800                   IfException, Args, Bundles, NameStr, InsertBefore);
3801   }
3802 
3803   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804                             BasicBlock *IfException, ArrayRef<Value *> Args,
3805                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3806     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3807                   IfException, Args, NameStr, InsertAtEnd);
3808   }
3809 
3810   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3811                             BasicBlock *IfException, ArrayRef<Value *> Args,
3812                             ArrayRef<OperandBundleDef> Bundles,
3813                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3814     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3815                   IfException, Args, Bundles, NameStr, InsertAtEnd);
3816   }
3817 
3818   /// Create a clone of \p II with a different set of operand bundles and
3819   /// insert it before \p InsertPt.
3820   ///
3821   /// The returned invoke instruction is identical to \p II in every way except
3822   /// that the operand bundles for the new instruction are set to the operand
3823   /// bundles in \p Bundles.
3824   static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3825                             Instruction *InsertPt = nullptr);
3826 
3827   /// Create a clone of \p II with a different set of operand bundles and
3828   /// insert it before \p InsertPt.
3829   ///
3830   /// The returned invoke instruction is identical to \p II in every way except
3831   /// that the operand bundle for the new instruction is set to the operand
3832   /// bundle in \p Bundle.
3833   static InvokeInst *CreateWithReplacedBundle(InvokeInst *II,
3834                                               OperandBundleDef Bundles,
3835                                               Instruction *InsertPt = nullptr);
3836 
3837   // get*Dest - Return the destination basic blocks...
3838   BasicBlock *getNormalDest() const {
3839     return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3840   }
3841   BasicBlock *getUnwindDest() const {
3842     return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3843   }
3844   void setNormalDest(BasicBlock *B) {
3845     Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3846   }
3847   void setUnwindDest(BasicBlock *B) {
3848     Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3849   }
3850 
3851   /// Get the landingpad instruction from the landing pad
3852   /// block (the unwind destination).
3853   LandingPadInst *getLandingPadInst() const;
3854 
3855   BasicBlock *getSuccessor(unsigned i) const {
3856     assert(i < 2 && "Successor # out of range for invoke!");
3857     return i == 0 ? getNormalDest() : getUnwindDest();
3858   }
3859 
3860   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3861     assert(i < 2 && "Successor # out of range for invoke!");
3862     if (i == 0)
3863       setNormalDest(NewSucc);
3864     else
3865       setUnwindDest(NewSucc);
3866   }
3867 
3868   unsigned getNumSuccessors() const { return 2; }
3869 
3870   // Methods for support type inquiry through isa, cast, and dyn_cast:
3871   static bool classof(const Instruction *I) {
3872     return (I->getOpcode() == Instruction::Invoke);
3873   }
3874   static bool classof(const Value *V) {
3875     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3876   }
3877 
3878 private:
3879   // Shadow Instruction::setInstructionSubclassData with a private forwarding
3880   // method so that subclasses cannot accidentally use it.
3881   template <typename Bitfield>
3882   void setSubclassData(typename Bitfield::Type Value) {
3883     Instruction::setSubclassData<Bitfield>(Value);
3884   }
3885 };
3886 
3887 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3888                        BasicBlock *IfException, ArrayRef<Value *> Args,
3889                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3890                        const Twine &NameStr, Instruction *InsertBefore)
3891     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3892                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3893                InsertBefore) {
3894   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3895 }
3896 
3897 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3898                        BasicBlock *IfException, ArrayRef<Value *> Args,
3899                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3900                        const Twine &NameStr, BasicBlock *InsertAtEnd)
3901     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3902                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3903                InsertAtEnd) {
3904   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3905 }
3906 
3907 //===----------------------------------------------------------------------===//
3908 //                              CallBrInst Class
3909 //===----------------------------------------------------------------------===//
3910 
3911 /// CallBr instruction, tracking function calls that may not return control but
3912 /// instead transfer it to a third location. The SubclassData field is used to
3913 /// hold the calling convention of the call.
3914 ///
3915 class CallBrInst : public CallBase {
3916 
3917   unsigned NumIndirectDests;
3918 
3919   CallBrInst(const CallBrInst &BI);
3920 
3921   /// Construct a CallBrInst given a range of arguments.
3922   ///
3923   /// Construct a CallBrInst from a range of arguments
3924   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3925                     ArrayRef<BasicBlock *> IndirectDests,
3926                     ArrayRef<Value *> Args,
3927                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3928                     const Twine &NameStr, Instruction *InsertBefore);
3929 
3930   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3931                     ArrayRef<BasicBlock *> IndirectDests,
3932                     ArrayRef<Value *> Args,
3933                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3934                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3935 
3936   void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3937             ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3938             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3939 
3940   /// Should the Indirect Destinations change, scan + update the Arg list.
3941   void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3942 
3943   /// Compute the number of operands to allocate.
3944   static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3945                                 int NumBundleInputs = 0) {
3946     // We need one operand for the called function, plus our extra operands and
3947     // the input operand counts provided.
3948     return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3949   }
3950 
3951 protected:
3952   // Note: Instruction needs to be a friend here to call cloneImpl.
3953   friend class Instruction;
3954 
3955   CallBrInst *cloneImpl() const;
3956 
3957 public:
3958   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3959                             BasicBlock *DefaultDest,
3960                             ArrayRef<BasicBlock *> IndirectDests,
3961                             ArrayRef<Value *> Args, const Twine &NameStr,
3962                             Instruction *InsertBefore = nullptr) {
3963     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3964     return new (NumOperands)
3965         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3966                    NumOperands, NameStr, InsertBefore);
3967   }
3968 
3969   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3970                             BasicBlock *DefaultDest,
3971                             ArrayRef<BasicBlock *> IndirectDests,
3972                             ArrayRef<Value *> Args,
3973                             ArrayRef<OperandBundleDef> Bundles = None,
3974                             const Twine &NameStr = "",
3975                             Instruction *InsertBefore = nullptr) {
3976     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3977                                          CountBundleInputs(Bundles));
3978     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3979 
3980     return new (NumOperands, DescriptorBytes)
3981         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3982                    NumOperands, NameStr, InsertBefore);
3983   }
3984 
3985   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3986                             BasicBlock *DefaultDest,
3987                             ArrayRef<BasicBlock *> IndirectDests,
3988                             ArrayRef<Value *> Args, const Twine &NameStr,
3989                             BasicBlock *InsertAtEnd) {
3990     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3991     return new (NumOperands)
3992         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3993                    NumOperands, NameStr, InsertAtEnd);
3994   }
3995 
3996   static CallBrInst *Create(FunctionType *Ty, Value *Func,
3997                             BasicBlock *DefaultDest,
3998                             ArrayRef<BasicBlock *> IndirectDests,
3999                             ArrayRef<Value *> Args,
4000                             ArrayRef<OperandBundleDef> Bundles,
4001                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
4002     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4003                                          CountBundleInputs(Bundles));
4004     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4005 
4006     return new (NumOperands, DescriptorBytes)
4007         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4008                    NumOperands, NameStr, InsertAtEnd);
4009   }
4010 
4011   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4012                             ArrayRef<BasicBlock *> IndirectDests,
4013                             ArrayRef<Value *> Args, const Twine &NameStr,
4014                             Instruction *InsertBefore = nullptr) {
4015     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4016                   IndirectDests, Args, NameStr, InsertBefore);
4017   }
4018 
4019   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4020                             ArrayRef<BasicBlock *> IndirectDests,
4021                             ArrayRef<Value *> Args,
4022                             ArrayRef<OperandBundleDef> Bundles = None,
4023                             const Twine &NameStr = "",
4024                             Instruction *InsertBefore = nullptr) {
4025     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4026                   IndirectDests, Args, Bundles, NameStr, InsertBefore);
4027   }
4028 
4029   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4030                             ArrayRef<BasicBlock *> IndirectDests,
4031                             ArrayRef<Value *> Args, const Twine &NameStr,
4032                             BasicBlock *InsertAtEnd) {
4033     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4034                   IndirectDests, Args, NameStr, InsertAtEnd);
4035   }
4036 
4037   static CallBrInst *Create(FunctionCallee Func,
4038                             BasicBlock *DefaultDest,
4039                             ArrayRef<BasicBlock *> IndirectDests,
4040                             ArrayRef<Value *> Args,
4041                             ArrayRef<OperandBundleDef> Bundles,
4042                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
4043     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4044                   IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4045   }
4046 
4047   /// Create a clone of \p CBI with a different set of operand bundles and
4048   /// insert it before \p InsertPt.
4049   ///
4050   /// The returned callbr instruction is identical to \p CBI in every way
4051   /// except that the operand bundles for the new instruction are set to the
4052   /// operand bundles in \p Bundles.
4053   static CallBrInst *Create(CallBrInst *CBI,
4054                             ArrayRef<OperandBundleDef> Bundles,
4055                             Instruction *InsertPt = nullptr);
4056 
4057   /// Return the number of callbr indirect dest labels.
4058   ///
4059   unsigned getNumIndirectDests() const { return NumIndirectDests; }
4060 
4061   /// getIndirectDestLabel - Return the i-th indirect dest label.
4062   ///
4063   Value *getIndirectDestLabel(unsigned i) const {
4064     assert(i < getNumIndirectDests() && "Out of bounds!");
4065     return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4066                       1);
4067   }
4068 
4069   Value *getIndirectDestLabelUse(unsigned i) const {
4070     assert(i < getNumIndirectDests() && "Out of bounds!");
4071     return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4072                          1);
4073   }
4074 
4075   // Return the destination basic blocks...
4076   BasicBlock *getDefaultDest() const {
4077     return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4078   }
4079   BasicBlock *getIndirectDest(unsigned i) const {
4080     return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4081   }
4082   SmallVector<BasicBlock *, 16> getIndirectDests() const {
4083     SmallVector<BasicBlock *, 16> IndirectDests;
4084     for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4085       IndirectDests.push_back(getIndirectDest(i));
4086     return IndirectDests;
4087   }
4088   void setDefaultDest(BasicBlock *B) {
4089     *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4090   }
4091   void setIndirectDest(unsigned i, BasicBlock *B) {
4092     updateArgBlockAddresses(i, B);
4093     *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4094   }
4095 
4096   BasicBlock *getSuccessor(unsigned i) const {
4097     assert(i < getNumSuccessors() + 1 &&
4098            "Successor # out of range for callbr!");
4099     return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4100   }
4101 
4102   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4103     assert(i < getNumIndirectDests() + 1 &&
4104            "Successor # out of range for callbr!");
4105     return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4106   }
4107 
4108   unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4109 
4110   // Methods for support type inquiry through isa, cast, and dyn_cast:
4111   static bool classof(const Instruction *I) {
4112     return (I->getOpcode() == Instruction::CallBr);
4113   }
4114   static bool classof(const Value *V) {
4115     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4116   }
4117 
4118 private:
4119   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4120   // method so that subclasses cannot accidentally use it.
4121   template <typename Bitfield>
4122   void setSubclassData(typename Bitfield::Type Value) {
4123     Instruction::setSubclassData<Bitfield>(Value);
4124   }
4125 };
4126 
4127 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4128                        ArrayRef<BasicBlock *> IndirectDests,
4129                        ArrayRef<Value *> Args,
4130                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4131                        const Twine &NameStr, Instruction *InsertBefore)
4132     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4133                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4134                InsertBefore) {
4135   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4136 }
4137 
4138 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4139                        ArrayRef<BasicBlock *> IndirectDests,
4140                        ArrayRef<Value *> Args,
4141                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4142                        const Twine &NameStr, BasicBlock *InsertAtEnd)
4143     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4144                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4145                InsertAtEnd) {
4146   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4147 }
4148 
4149 //===----------------------------------------------------------------------===//
4150 //                              ResumeInst Class
4151 //===----------------------------------------------------------------------===//
4152 
4153 //===---------------------------------------------------------------------------
4154 /// Resume the propagation of an exception.
4155 ///
4156 class ResumeInst : public Instruction {
4157   ResumeInst(const ResumeInst &RI);
4158 
4159   explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4160   ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4161 
4162 protected:
4163   // Note: Instruction needs to be a friend here to call cloneImpl.
4164   friend class Instruction;
4165 
4166   ResumeInst *cloneImpl() const;
4167 
4168 public:
4169   static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4170     return new(1) ResumeInst(Exn, InsertBefore);
4171   }
4172 
4173   static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4174     return new(1) ResumeInst(Exn, InsertAtEnd);
4175   }
4176 
4177   /// Provide fast operand accessors
4178   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4179 
4180   /// Convenience accessor.
4181   Value *getValue() const { return Op<0>(); }
4182 
4183   unsigned getNumSuccessors() const { return 0; }
4184 
4185   // Methods for support type inquiry through isa, cast, and dyn_cast:
4186   static bool classof(const Instruction *I) {
4187     return I->getOpcode() == Instruction::Resume;
4188   }
4189   static bool classof(const Value *V) {
4190     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4191   }
4192 
4193 private:
4194   BasicBlock *getSuccessor(unsigned idx) const {
4195     llvm_unreachable("ResumeInst has no successors!");
4196   }
4197 
4198   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4199     llvm_unreachable("ResumeInst has no successors!");
4200   }
4201 };
4202 
4203 template <>
4204 struct OperandTraits<ResumeInst> :
4205     public FixedNumOperandTraits<ResumeInst, 1> {
4206 };
4207 
4208 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4209 
4210 //===----------------------------------------------------------------------===//
4211 //                         CatchSwitchInst Class
4212 //===----------------------------------------------------------------------===//
4213 class CatchSwitchInst : public Instruction {
4214   using UnwindDestField = BoolBitfieldElementT<0>;
4215 
4216   /// The number of operands actually allocated.  NumOperands is
4217   /// the number actually in use.
4218   unsigned ReservedSpace;
4219 
4220   // Operand[0] = Outer scope
4221   // Operand[1] = Unwind block destination
4222   // Operand[n] = BasicBlock to go to on match
4223   CatchSwitchInst(const CatchSwitchInst &CSI);
4224 
4225   /// Create a new switch instruction, specifying a
4226   /// default destination.  The number of additional handlers can be specified
4227   /// here to make memory allocation more efficient.
4228   /// This constructor can also autoinsert before another instruction.
4229   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4230                   unsigned NumHandlers, const Twine &NameStr,
4231                   Instruction *InsertBefore);
4232 
4233   /// Create a new switch instruction, specifying a
4234   /// default destination.  The number of additional handlers can be specified
4235   /// here to make memory allocation more efficient.
4236   /// This constructor also autoinserts at the end of the specified BasicBlock.
4237   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4238                   unsigned NumHandlers, const Twine &NameStr,
4239                   BasicBlock *InsertAtEnd);
4240 
4241   // allocate space for exactly zero operands
4242   void *operator new(size_t s) { return User::operator new(s); }
4243 
4244   void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4245   void growOperands(unsigned Size);
4246 
4247 protected:
4248   // Note: Instruction needs to be a friend here to call cloneImpl.
4249   friend class Instruction;
4250 
4251   CatchSwitchInst *cloneImpl() const;
4252 
4253 public:
4254   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4255                                  unsigned NumHandlers,
4256                                  const Twine &NameStr = "",
4257                                  Instruction *InsertBefore = nullptr) {
4258     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4259                                InsertBefore);
4260   }
4261 
4262   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4263                                  unsigned NumHandlers, const Twine &NameStr,
4264                                  BasicBlock *InsertAtEnd) {
4265     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4266                                InsertAtEnd);
4267   }
4268 
4269   /// Provide fast operand accessors
4270   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4271 
4272   // Accessor Methods for CatchSwitch stmt
4273   Value *getParentPad() const { return getOperand(0); }
4274   void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4275 
4276   // Accessor Methods for CatchSwitch stmt
4277   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4278   bool unwindsToCaller() const { return !hasUnwindDest(); }
4279   BasicBlock *getUnwindDest() const {
4280     if (hasUnwindDest())
4281       return cast<BasicBlock>(getOperand(1));
4282     return nullptr;
4283   }
4284   void setUnwindDest(BasicBlock *UnwindDest) {
4285     assert(UnwindDest);
4286     assert(hasUnwindDest());
4287     setOperand(1, UnwindDest);
4288   }
4289 
4290   /// return the number of 'handlers' in this catchswitch
4291   /// instruction, except the default handler
4292   unsigned getNumHandlers() const {
4293     if (hasUnwindDest())
4294       return getNumOperands() - 2;
4295     return getNumOperands() - 1;
4296   }
4297 
4298 private:
4299   static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4300   static const BasicBlock *handler_helper(const Value *V) {
4301     return cast<BasicBlock>(V);
4302   }
4303 
4304 public:
4305   using DerefFnTy = BasicBlock *(*)(Value *);
4306   using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4307   using handler_range = iterator_range<handler_iterator>;
4308   using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4309   using const_handler_iterator =
4310       mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4311   using const_handler_range = iterator_range<const_handler_iterator>;
4312 
4313   /// Returns an iterator that points to the first handler in CatchSwitchInst.
4314   handler_iterator handler_begin() {
4315     op_iterator It = op_begin() + 1;
4316     if (hasUnwindDest())
4317       ++It;
4318     return handler_iterator(It, DerefFnTy(handler_helper));
4319   }
4320 
4321   /// Returns an iterator that points to the first handler in the
4322   /// CatchSwitchInst.
4323   const_handler_iterator handler_begin() const {
4324     const_op_iterator It = op_begin() + 1;
4325     if (hasUnwindDest())
4326       ++It;
4327     return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4328   }
4329 
4330   /// Returns a read-only iterator that points one past the last
4331   /// handler in the CatchSwitchInst.
4332   handler_iterator handler_end() {
4333     return handler_iterator(op_end(), DerefFnTy(handler_helper));
4334   }
4335 
4336   /// Returns an iterator that points one past the last handler in the
4337   /// CatchSwitchInst.
4338   const_handler_iterator handler_end() const {
4339     return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4340   }
4341 
4342   /// iteration adapter for range-for loops.
4343   handler_range handlers() {
4344     return make_range(handler_begin(), handler_end());
4345   }
4346 
4347   /// iteration adapter for range-for loops.
4348   const_handler_range handlers() const {
4349     return make_range(handler_begin(), handler_end());
4350   }
4351 
4352   /// Add an entry to the switch instruction...
4353   /// Note:
4354   /// This action invalidates handler_end(). Old handler_end() iterator will
4355   /// point to the added handler.
4356   void addHandler(BasicBlock *Dest);
4357 
4358   void removeHandler(handler_iterator HI);
4359 
4360   unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4361   BasicBlock *getSuccessor(unsigned Idx) const {
4362     assert(Idx < getNumSuccessors() &&
4363            "Successor # out of range for catchswitch!");
4364     return cast<BasicBlock>(getOperand(Idx + 1));
4365   }
4366   void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4367     assert(Idx < getNumSuccessors() &&
4368            "Successor # out of range for catchswitch!");
4369     setOperand(Idx + 1, NewSucc);
4370   }
4371 
4372   // Methods for support type inquiry through isa, cast, and dyn_cast:
4373   static bool classof(const Instruction *I) {
4374     return I->getOpcode() == Instruction::CatchSwitch;
4375   }
4376   static bool classof(const Value *V) {
4377     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4378   }
4379 };
4380 
4381 template <>
4382 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4383 
4384 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4385 
4386 //===----------------------------------------------------------------------===//
4387 //                               CleanupPadInst Class
4388 //===----------------------------------------------------------------------===//
4389 class CleanupPadInst : public FuncletPadInst {
4390 private:
4391   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4392                           unsigned Values, const Twine &NameStr,
4393                           Instruction *InsertBefore)
4394       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4395                        NameStr, InsertBefore) {}
4396   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4397                           unsigned Values, const Twine &NameStr,
4398                           BasicBlock *InsertAtEnd)
4399       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4400                        NameStr, InsertAtEnd) {}
4401 
4402 public:
4403   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4404                                 const Twine &NameStr = "",
4405                                 Instruction *InsertBefore = nullptr) {
4406     unsigned Values = 1 + Args.size();
4407     return new (Values)
4408         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4409   }
4410 
4411   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4412                                 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4413     unsigned Values = 1 + Args.size();
4414     return new (Values)
4415         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4416   }
4417 
4418   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4419   static bool classof(const Instruction *I) {
4420     return I->getOpcode() == Instruction::CleanupPad;
4421   }
4422   static bool classof(const Value *V) {
4423     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4424   }
4425 };
4426 
4427 //===----------------------------------------------------------------------===//
4428 //                               CatchPadInst Class
4429 //===----------------------------------------------------------------------===//
4430 class CatchPadInst : public FuncletPadInst {
4431 private:
4432   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4433                         unsigned Values, const Twine &NameStr,
4434                         Instruction *InsertBefore)
4435       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4436                        NameStr, InsertBefore) {}
4437   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4438                         unsigned Values, const Twine &NameStr,
4439                         BasicBlock *InsertAtEnd)
4440       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4441                        NameStr, InsertAtEnd) {}
4442 
4443 public:
4444   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4445                               const Twine &NameStr = "",
4446                               Instruction *InsertBefore = nullptr) {
4447     unsigned Values = 1 + Args.size();
4448     return new (Values)
4449         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4450   }
4451 
4452   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4453                               const Twine &NameStr, BasicBlock *InsertAtEnd) {
4454     unsigned Values = 1 + Args.size();
4455     return new (Values)
4456         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4457   }
4458 
4459   /// Convenience accessors
4460   CatchSwitchInst *getCatchSwitch() const {
4461     return cast<CatchSwitchInst>(Op<-1>());
4462   }
4463   void setCatchSwitch(Value *CatchSwitch) {
4464     assert(CatchSwitch);
4465     Op<-1>() = CatchSwitch;
4466   }
4467 
4468   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4469   static bool classof(const Instruction *I) {
4470     return I->getOpcode() == Instruction::CatchPad;
4471   }
4472   static bool classof(const Value *V) {
4473     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4474   }
4475 };
4476 
4477 //===----------------------------------------------------------------------===//
4478 //                               CatchReturnInst Class
4479 //===----------------------------------------------------------------------===//
4480 
4481 class CatchReturnInst : public Instruction {
4482   CatchReturnInst(const CatchReturnInst &RI);
4483   CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4484   CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4485 
4486   void init(Value *CatchPad, BasicBlock *BB);
4487 
4488 protected:
4489   // Note: Instruction needs to be a friend here to call cloneImpl.
4490   friend class Instruction;
4491 
4492   CatchReturnInst *cloneImpl() const;
4493 
4494 public:
4495   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4496                                  Instruction *InsertBefore = nullptr) {
4497     assert(CatchPad);
4498     assert(BB);
4499     return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4500   }
4501 
4502   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4503                                  BasicBlock *InsertAtEnd) {
4504     assert(CatchPad);
4505     assert(BB);
4506     return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4507   }
4508 
4509   /// Provide fast operand accessors
4510   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4511 
4512   /// Convenience accessors.
4513   CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4514   void setCatchPad(CatchPadInst *CatchPad) {
4515     assert(CatchPad);
4516     Op<0>() = CatchPad;
4517   }
4518 
4519   BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4520   void setSuccessor(BasicBlock *NewSucc) {
4521     assert(NewSucc);
4522     Op<1>() = NewSucc;
4523   }
4524   unsigned getNumSuccessors() const { return 1; }
4525 
4526   /// Get the parentPad of this catchret's catchpad's catchswitch.
4527   /// The successor block is implicitly a member of this funclet.
4528   Value *getCatchSwitchParentPad() const {
4529     return getCatchPad()->getCatchSwitch()->getParentPad();
4530   }
4531 
4532   // Methods for support type inquiry through isa, cast, and dyn_cast:
4533   static bool classof(const Instruction *I) {
4534     return (I->getOpcode() == Instruction::CatchRet);
4535   }
4536   static bool classof(const Value *V) {
4537     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4538   }
4539 
4540 private:
4541   BasicBlock *getSuccessor(unsigned Idx) const {
4542     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4543     return getSuccessor();
4544   }
4545 
4546   void setSuccessor(unsigned Idx, BasicBlock *B) {
4547     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4548     setSuccessor(B);
4549   }
4550 };
4551 
4552 template <>
4553 struct OperandTraits<CatchReturnInst>
4554     : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4555 
4556 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4557 
4558 //===----------------------------------------------------------------------===//
4559 //                               CleanupReturnInst Class
4560 //===----------------------------------------------------------------------===//
4561 
4562 class CleanupReturnInst : public Instruction {
4563   using UnwindDestField = BoolBitfieldElementT<0>;
4564 
4565 private:
4566   CleanupReturnInst(const CleanupReturnInst &RI);
4567   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4568                     Instruction *InsertBefore = nullptr);
4569   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4570                     BasicBlock *InsertAtEnd);
4571 
4572   void init(Value *CleanupPad, BasicBlock *UnwindBB);
4573 
4574 protected:
4575   // Note: Instruction needs to be a friend here to call cloneImpl.
4576   friend class Instruction;
4577 
4578   CleanupReturnInst *cloneImpl() const;
4579 
4580 public:
4581   static CleanupReturnInst *Create(Value *CleanupPad,
4582                                    BasicBlock *UnwindBB = nullptr,
4583                                    Instruction *InsertBefore = nullptr) {
4584     assert(CleanupPad);
4585     unsigned Values = 1;
4586     if (UnwindBB)
4587       ++Values;
4588     return new (Values)
4589         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4590   }
4591 
4592   static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4593                                    BasicBlock *InsertAtEnd) {
4594     assert(CleanupPad);
4595     unsigned Values = 1;
4596     if (UnwindBB)
4597       ++Values;
4598     return new (Values)
4599         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4600   }
4601 
4602   /// Provide fast operand accessors
4603   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4604 
4605   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4606   bool unwindsToCaller() const { return !hasUnwindDest(); }
4607 
4608   /// Convenience accessor.
4609   CleanupPadInst *getCleanupPad() const {
4610     return cast<CleanupPadInst>(Op<0>());
4611   }
4612   void setCleanupPad(CleanupPadInst *CleanupPad) {
4613     assert(CleanupPad);
4614     Op<0>() = CleanupPad;
4615   }
4616 
4617   unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4618 
4619   BasicBlock *getUnwindDest() const {
4620     return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4621   }
4622   void setUnwindDest(BasicBlock *NewDest) {
4623     assert(NewDest);
4624     assert(hasUnwindDest());
4625     Op<1>() = NewDest;
4626   }
4627 
4628   // Methods for support type inquiry through isa, cast, and dyn_cast:
4629   static bool classof(const Instruction *I) {
4630     return (I->getOpcode() == Instruction::CleanupRet);
4631   }
4632   static bool classof(const Value *V) {
4633     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4634   }
4635 
4636 private:
4637   BasicBlock *getSuccessor(unsigned Idx) const {
4638     assert(Idx == 0);
4639     return getUnwindDest();
4640   }
4641 
4642   void setSuccessor(unsigned Idx, BasicBlock *B) {
4643     assert(Idx == 0);
4644     setUnwindDest(B);
4645   }
4646 
4647   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4648   // method so that subclasses cannot accidentally use it.
4649   template <typename Bitfield>
4650   void setSubclassData(typename Bitfield::Type Value) {
4651     Instruction::setSubclassData<Bitfield>(Value);
4652   }
4653 };
4654 
4655 template <>
4656 struct OperandTraits<CleanupReturnInst>
4657     : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4658 
4659 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4660 
4661 //===----------------------------------------------------------------------===//
4662 //                           UnreachableInst Class
4663 //===----------------------------------------------------------------------===//
4664 
4665 //===---------------------------------------------------------------------------
4666 /// This function has undefined behavior.  In particular, the
4667 /// presence of this instruction indicates some higher level knowledge that the
4668 /// end of the block cannot be reached.
4669 ///
4670 class UnreachableInst : public Instruction {
4671 protected:
4672   // Note: Instruction needs to be a friend here to call cloneImpl.
4673   friend class Instruction;
4674 
4675   UnreachableInst *cloneImpl() const;
4676 
4677 public:
4678   explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4679   explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4680 
4681   // allocate space for exactly zero operands
4682   void *operator new(size_t s) {
4683     return User::operator new(s, 0);
4684   }
4685 
4686   unsigned getNumSuccessors() const { return 0; }
4687 
4688   // Methods for support type inquiry through isa, cast, and dyn_cast:
4689   static bool classof(const Instruction *I) {
4690     return I->getOpcode() == Instruction::Unreachable;
4691   }
4692   static bool classof(const Value *V) {
4693     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4694   }
4695 
4696 private:
4697   BasicBlock *getSuccessor(unsigned idx) const {
4698     llvm_unreachable("UnreachableInst has no successors!");
4699   }
4700 
4701   void setSuccessor(unsigned idx, BasicBlock *B) {
4702     llvm_unreachable("UnreachableInst has no successors!");
4703   }
4704 };
4705 
4706 //===----------------------------------------------------------------------===//
4707 //                                 TruncInst Class
4708 //===----------------------------------------------------------------------===//
4709 
4710 /// This class represents a truncation of integer types.
4711 class TruncInst : public CastInst {
4712 protected:
4713   // Note: Instruction needs to be a friend here to call cloneImpl.
4714   friend class Instruction;
4715 
4716   /// Clone an identical TruncInst
4717   TruncInst *cloneImpl() const;
4718 
4719 public:
4720   /// Constructor with insert-before-instruction semantics
4721   TruncInst(
4722     Value *S,                           ///< The value to be truncated
4723     Type *Ty,                           ///< The (smaller) type to truncate to
4724     const Twine &NameStr = "",          ///< A name for the new instruction
4725     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4726   );
4727 
4728   /// Constructor with insert-at-end-of-block semantics
4729   TruncInst(
4730     Value *S,                     ///< The value to be truncated
4731     Type *Ty,                     ///< The (smaller) type to truncate to
4732     const Twine &NameStr,         ///< A name for the new instruction
4733     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4734   );
4735 
4736   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4737   static bool classof(const Instruction *I) {
4738     return I->getOpcode() == Trunc;
4739   }
4740   static bool classof(const Value *V) {
4741     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4742   }
4743 };
4744 
4745 //===----------------------------------------------------------------------===//
4746 //                                 ZExtInst Class
4747 //===----------------------------------------------------------------------===//
4748 
4749 /// This class represents zero extension of integer types.
4750 class ZExtInst : public CastInst {
4751 protected:
4752   // Note: Instruction needs to be a friend here to call cloneImpl.
4753   friend class Instruction;
4754 
4755   /// Clone an identical ZExtInst
4756   ZExtInst *cloneImpl() const;
4757 
4758 public:
4759   /// Constructor with insert-before-instruction semantics
4760   ZExtInst(
4761     Value *S,                           ///< The value to be zero extended
4762     Type *Ty,                           ///< The type to zero extend to
4763     const Twine &NameStr = "",          ///< A name for the new instruction
4764     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4765   );
4766 
4767   /// Constructor with insert-at-end semantics.
4768   ZExtInst(
4769     Value *S,                     ///< The value to be zero extended
4770     Type *Ty,                     ///< The type to zero extend to
4771     const Twine &NameStr,         ///< A name for the new instruction
4772     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4773   );
4774 
4775   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4776   static bool classof(const Instruction *I) {
4777     return I->getOpcode() == ZExt;
4778   }
4779   static bool classof(const Value *V) {
4780     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4781   }
4782 };
4783 
4784 //===----------------------------------------------------------------------===//
4785 //                                 SExtInst Class
4786 //===----------------------------------------------------------------------===//
4787 
4788 /// This class represents a sign extension of integer types.
4789 class SExtInst : public CastInst {
4790 protected:
4791   // Note: Instruction needs to be a friend here to call cloneImpl.
4792   friend class Instruction;
4793 
4794   /// Clone an identical SExtInst
4795   SExtInst *cloneImpl() const;
4796 
4797 public:
4798   /// Constructor with insert-before-instruction semantics
4799   SExtInst(
4800     Value *S,                           ///< The value to be sign extended
4801     Type *Ty,                           ///< The type to sign extend to
4802     const Twine &NameStr = "",          ///< A name for the new instruction
4803     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4804   );
4805 
4806   /// Constructor with insert-at-end-of-block semantics
4807   SExtInst(
4808     Value *S,                     ///< The value to be sign extended
4809     Type *Ty,                     ///< The type to sign extend to
4810     const Twine &NameStr,         ///< A name for the new instruction
4811     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4812   );
4813 
4814   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4815   static bool classof(const Instruction *I) {
4816     return I->getOpcode() == SExt;
4817   }
4818   static bool classof(const Value *V) {
4819     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4820   }
4821 };
4822 
4823 //===----------------------------------------------------------------------===//
4824 //                                 FPTruncInst Class
4825 //===----------------------------------------------------------------------===//
4826 
4827 /// This class represents a truncation of floating point types.
4828 class FPTruncInst : public CastInst {
4829 protected:
4830   // Note: Instruction needs to be a friend here to call cloneImpl.
4831   friend class Instruction;
4832 
4833   /// Clone an identical FPTruncInst
4834   FPTruncInst *cloneImpl() const;
4835 
4836 public:
4837   /// Constructor with insert-before-instruction semantics
4838   FPTruncInst(
4839     Value *S,                           ///< The value to be truncated
4840     Type *Ty,                           ///< The type to truncate to
4841     const Twine &NameStr = "",          ///< A name for the new instruction
4842     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4843   );
4844 
4845   /// Constructor with insert-before-instruction semantics
4846   FPTruncInst(
4847     Value *S,                     ///< The value to be truncated
4848     Type *Ty,                     ///< The type to truncate to
4849     const Twine &NameStr,         ///< A name for the new instruction
4850     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4851   );
4852 
4853   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4854   static bool classof(const Instruction *I) {
4855     return I->getOpcode() == FPTrunc;
4856   }
4857   static bool classof(const Value *V) {
4858     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4859   }
4860 };
4861 
4862 //===----------------------------------------------------------------------===//
4863 //                                 FPExtInst Class
4864 //===----------------------------------------------------------------------===//
4865 
4866 /// This class represents an extension of floating point types.
4867 class FPExtInst : public CastInst {
4868 protected:
4869   // Note: Instruction needs to be a friend here to call cloneImpl.
4870   friend class Instruction;
4871 
4872   /// Clone an identical FPExtInst
4873   FPExtInst *cloneImpl() const;
4874 
4875 public:
4876   /// Constructor with insert-before-instruction semantics
4877   FPExtInst(
4878     Value *S,                           ///< The value to be extended
4879     Type *Ty,                           ///< The type to extend to
4880     const Twine &NameStr = "",          ///< A name for the new instruction
4881     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4882   );
4883 
4884   /// Constructor with insert-at-end-of-block semantics
4885   FPExtInst(
4886     Value *S,                     ///< The value to be extended
4887     Type *Ty,                     ///< The type to extend to
4888     const Twine &NameStr,         ///< A name for the new instruction
4889     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4890   );
4891 
4892   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4893   static bool classof(const Instruction *I) {
4894     return I->getOpcode() == FPExt;
4895   }
4896   static bool classof(const Value *V) {
4897     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4898   }
4899 };
4900 
4901 //===----------------------------------------------------------------------===//
4902 //                                 UIToFPInst Class
4903 //===----------------------------------------------------------------------===//
4904 
4905 /// This class represents a cast unsigned integer to floating point.
4906 class UIToFPInst : public CastInst {
4907 protected:
4908   // Note: Instruction needs to be a friend here to call cloneImpl.
4909   friend class Instruction;
4910 
4911   /// Clone an identical UIToFPInst
4912   UIToFPInst *cloneImpl() const;
4913 
4914 public:
4915   /// Constructor with insert-before-instruction semantics
4916   UIToFPInst(
4917     Value *S,                           ///< The value to be converted
4918     Type *Ty,                           ///< The type to convert to
4919     const Twine &NameStr = "",          ///< A name for the new instruction
4920     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4921   );
4922 
4923   /// Constructor with insert-at-end-of-block semantics
4924   UIToFPInst(
4925     Value *S,                     ///< The value to be converted
4926     Type *Ty,                     ///< The type to convert to
4927     const Twine &NameStr,         ///< A name for the new instruction
4928     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4929   );
4930 
4931   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4932   static bool classof(const Instruction *I) {
4933     return I->getOpcode() == UIToFP;
4934   }
4935   static bool classof(const Value *V) {
4936     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4937   }
4938 };
4939 
4940 //===----------------------------------------------------------------------===//
4941 //                                 SIToFPInst Class
4942 //===----------------------------------------------------------------------===//
4943 
4944 /// This class represents a cast from signed integer to floating point.
4945 class SIToFPInst : public CastInst {
4946 protected:
4947   // Note: Instruction needs to be a friend here to call cloneImpl.
4948   friend class Instruction;
4949 
4950   /// Clone an identical SIToFPInst
4951   SIToFPInst *cloneImpl() const;
4952 
4953 public:
4954   /// Constructor with insert-before-instruction semantics
4955   SIToFPInst(
4956     Value *S,                           ///< The value to be converted
4957     Type *Ty,                           ///< The type to convert to
4958     const Twine &NameStr = "",          ///< A name for the new instruction
4959     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4960   );
4961 
4962   /// Constructor with insert-at-end-of-block semantics
4963   SIToFPInst(
4964     Value *S,                     ///< The value to be converted
4965     Type *Ty,                     ///< The type to convert to
4966     const Twine &NameStr,         ///< A name for the new instruction
4967     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4968   );
4969 
4970   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4971   static bool classof(const Instruction *I) {
4972     return I->getOpcode() == SIToFP;
4973   }
4974   static bool classof(const Value *V) {
4975     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4976   }
4977 };
4978 
4979 //===----------------------------------------------------------------------===//
4980 //                                 FPToUIInst Class
4981 //===----------------------------------------------------------------------===//
4982 
4983 /// This class represents a cast from floating point to unsigned integer
4984 class FPToUIInst  : public CastInst {
4985 protected:
4986   // Note: Instruction needs to be a friend here to call cloneImpl.
4987   friend class Instruction;
4988 
4989   /// Clone an identical FPToUIInst
4990   FPToUIInst *cloneImpl() const;
4991 
4992 public:
4993   /// Constructor with insert-before-instruction semantics
4994   FPToUIInst(
4995     Value *S,                           ///< The value to be converted
4996     Type *Ty,                           ///< The type to convert to
4997     const Twine &NameStr = "",          ///< A name for the new instruction
4998     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4999   );
5000 
5001   /// Constructor with insert-at-end-of-block semantics
5002   FPToUIInst(
5003     Value *S,                     ///< The value to be converted
5004     Type *Ty,                     ///< The type to convert to
5005     const Twine &NameStr,         ///< A name for the new instruction
5006     BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
5007   );
5008 
5009   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5010   static bool classof(const Instruction *I) {
5011     return I->getOpcode() == FPToUI;
5012   }
5013   static bool classof(const Value *V) {
5014     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5015   }
5016 };
5017 
5018 //===----------------------------------------------------------------------===//
5019 //                                 FPToSIInst Class
5020 //===----------------------------------------------------------------------===//
5021 
5022 /// This class represents a cast from floating point to signed integer.
5023 class FPToSIInst  : public CastInst {
5024 protected:
5025   // Note: Instruction needs to be a friend here to call cloneImpl.
5026   friend class Instruction;
5027 
5028   /// Clone an identical FPToSIInst
5029   FPToSIInst *cloneImpl() const;
5030 
5031 public:
5032   /// Constructor with insert-before-instruction semantics
5033   FPToSIInst(
5034     Value *S,                           ///< The value to be converted
5035     Type *Ty,                           ///< The type to convert to
5036     const Twine &NameStr = "",          ///< A name for the new instruction
5037     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5038   );
5039 
5040   /// Constructor with insert-at-end-of-block semantics
5041   FPToSIInst(
5042     Value *S,                     ///< The value to be converted
5043     Type *Ty,                     ///< The type to convert to
5044     const Twine &NameStr,         ///< A name for the new instruction
5045     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5046   );
5047 
5048   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5049   static bool classof(const Instruction *I) {
5050     return I->getOpcode() == FPToSI;
5051   }
5052   static bool classof(const Value *V) {
5053     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5054   }
5055 };
5056 
5057 //===----------------------------------------------------------------------===//
5058 //                                 IntToPtrInst Class
5059 //===----------------------------------------------------------------------===//
5060 
5061 /// This class represents a cast from an integer to a pointer.
5062 class IntToPtrInst : public CastInst {
5063 public:
5064   // Note: Instruction needs to be a friend here to call cloneImpl.
5065   friend class Instruction;
5066 
5067   /// Constructor with insert-before-instruction semantics
5068   IntToPtrInst(
5069     Value *S,                           ///< The value to be converted
5070     Type *Ty,                           ///< The type to convert to
5071     const Twine &NameStr = "",          ///< A name for the new instruction
5072     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5073   );
5074 
5075   /// Constructor with insert-at-end-of-block semantics
5076   IntToPtrInst(
5077     Value *S,                     ///< The value to be converted
5078     Type *Ty,                     ///< The type to convert to
5079     const Twine &NameStr,         ///< A name for the new instruction
5080     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5081   );
5082 
5083   /// Clone an identical IntToPtrInst.
5084   IntToPtrInst *cloneImpl() const;
5085 
5086   /// Returns the address space of this instruction's pointer type.
5087   unsigned getAddressSpace() const {
5088     return getType()->getPointerAddressSpace();
5089   }
5090 
5091   // Methods for support type inquiry through isa, cast, and dyn_cast:
5092   static bool classof(const Instruction *I) {
5093     return I->getOpcode() == IntToPtr;
5094   }
5095   static bool classof(const Value *V) {
5096     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5097   }
5098 };
5099 
5100 //===----------------------------------------------------------------------===//
5101 //                                 PtrToIntInst Class
5102 //===----------------------------------------------------------------------===//
5103 
5104 /// This class represents a cast from a pointer to an integer.
5105 class PtrToIntInst : public CastInst {
5106 protected:
5107   // Note: Instruction needs to be a friend here to call cloneImpl.
5108   friend class Instruction;
5109 
5110   /// Clone an identical PtrToIntInst.
5111   PtrToIntInst *cloneImpl() const;
5112 
5113 public:
5114   /// Constructor with insert-before-instruction semantics
5115   PtrToIntInst(
5116     Value *S,                           ///< The value to be converted
5117     Type *Ty,                           ///< The type to convert to
5118     const Twine &NameStr = "",          ///< A name for the new instruction
5119     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5120   );
5121 
5122   /// Constructor with insert-at-end-of-block semantics
5123   PtrToIntInst(
5124     Value *S,                     ///< The value to be converted
5125     Type *Ty,                     ///< The type to convert to
5126     const Twine &NameStr,         ///< A name for the new instruction
5127     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5128   );
5129 
5130   /// Gets the pointer operand.
5131   Value *getPointerOperand() { return getOperand(0); }
5132   /// Gets the pointer operand.
5133   const Value *getPointerOperand() const { return getOperand(0); }
5134   /// Gets the operand index of the pointer operand.
5135   static unsigned getPointerOperandIndex() { return 0U; }
5136 
5137   /// Returns the address space of the pointer operand.
5138   unsigned getPointerAddressSpace() const {
5139     return getPointerOperand()->getType()->getPointerAddressSpace();
5140   }
5141 
5142   // Methods for support type inquiry through isa, cast, and dyn_cast:
5143   static bool classof(const Instruction *I) {
5144     return I->getOpcode() == PtrToInt;
5145   }
5146   static bool classof(const Value *V) {
5147     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5148   }
5149 };
5150 
5151 //===----------------------------------------------------------------------===//
5152 //                             BitCastInst Class
5153 //===----------------------------------------------------------------------===//
5154 
5155 /// This class represents a no-op cast from one type to another.
5156 class BitCastInst : public CastInst {
5157 protected:
5158   // Note: Instruction needs to be a friend here to call cloneImpl.
5159   friend class Instruction;
5160 
5161   /// Clone an identical BitCastInst.
5162   BitCastInst *cloneImpl() const;
5163 
5164 public:
5165   /// Constructor with insert-before-instruction semantics
5166   BitCastInst(
5167     Value *S,                           ///< The value to be casted
5168     Type *Ty,                           ///< The type to casted to
5169     const Twine &NameStr = "",          ///< A name for the new instruction
5170     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5171   );
5172 
5173   /// Constructor with insert-at-end-of-block semantics
5174   BitCastInst(
5175     Value *S,                     ///< The value to be casted
5176     Type *Ty,                     ///< The type to casted to
5177     const Twine &NameStr,         ///< A name for the new instruction
5178     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5179   );
5180 
5181   // Methods for support type inquiry through isa, cast, and dyn_cast:
5182   static bool classof(const Instruction *I) {
5183     return I->getOpcode() == BitCast;
5184   }
5185   static bool classof(const Value *V) {
5186     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5187   }
5188 };
5189 
5190 //===----------------------------------------------------------------------===//
5191 //                          AddrSpaceCastInst Class
5192 //===----------------------------------------------------------------------===//
5193 
5194 /// This class represents a conversion between pointers from one address space
5195 /// to another.
5196 class AddrSpaceCastInst : public CastInst {
5197 protected:
5198   // Note: Instruction needs to be a friend here to call cloneImpl.
5199   friend class Instruction;
5200 
5201   /// Clone an identical AddrSpaceCastInst.
5202   AddrSpaceCastInst *cloneImpl() const;
5203 
5204 public:
5205   /// Constructor with insert-before-instruction semantics
5206   AddrSpaceCastInst(
5207     Value *S,                           ///< The value to be casted
5208     Type *Ty,                           ///< The type to casted to
5209     const Twine &NameStr = "",          ///< A name for the new instruction
5210     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5211   );
5212 
5213   /// Constructor with insert-at-end-of-block semantics
5214   AddrSpaceCastInst(
5215     Value *S,                     ///< The value to be casted
5216     Type *Ty,                     ///< The type to casted to
5217     const Twine &NameStr,         ///< A name for the new instruction
5218     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5219   );
5220 
5221   // Methods for support type inquiry through isa, cast, and dyn_cast:
5222   static bool classof(const Instruction *I) {
5223     return I->getOpcode() == AddrSpaceCast;
5224   }
5225   static bool classof(const Value *V) {
5226     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5227   }
5228 
5229   /// Gets the pointer operand.
5230   Value *getPointerOperand() {
5231     return getOperand(0);
5232   }
5233 
5234   /// Gets the pointer operand.
5235   const Value *getPointerOperand() const {
5236     return getOperand(0);
5237   }
5238 
5239   /// Gets the operand index of the pointer operand.
5240   static unsigned getPointerOperandIndex() {
5241     return 0U;
5242   }
5243 
5244   /// Returns the address space of the pointer operand.
5245   unsigned getSrcAddressSpace() const {
5246     return getPointerOperand()->getType()->getPointerAddressSpace();
5247   }
5248 
5249   /// Returns the address space of the result.
5250   unsigned getDestAddressSpace() const {
5251     return getType()->getPointerAddressSpace();
5252   }
5253 };
5254 
5255 /// A helper function that returns the pointer operand of a load or store
5256 /// instruction. Returns nullptr if not load or store.
5257 inline const Value *getLoadStorePointerOperand(const Value *V) {
5258   if (auto *Load = dyn_cast<LoadInst>(V))
5259     return Load->getPointerOperand();
5260   if (auto *Store = dyn_cast<StoreInst>(V))
5261     return Store->getPointerOperand();
5262   return nullptr;
5263 }
5264 inline Value *getLoadStorePointerOperand(Value *V) {
5265   return const_cast<Value *>(
5266       getLoadStorePointerOperand(static_cast<const Value *>(V)));
5267 }
5268 
5269 /// A helper function that returns the pointer operand of a load, store
5270 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5271 inline const Value *getPointerOperand(const Value *V) {
5272   if (auto *Ptr = getLoadStorePointerOperand(V))
5273     return Ptr;
5274   if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5275     return Gep->getPointerOperand();
5276   return nullptr;
5277 }
5278 inline Value *getPointerOperand(Value *V) {
5279   return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5280 }
5281 
5282 /// A helper function that returns the alignment of load or store instruction.
5283 inline Align getLoadStoreAlignment(Value *I) {
5284   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5285          "Expected Load or Store instruction");
5286   if (auto *LI = dyn_cast<LoadInst>(I))
5287     return LI->getAlign();
5288   return cast<StoreInst>(I)->getAlign();
5289 }
5290 
5291 /// A helper function that returns the address space of the pointer operand of
5292 /// load or store instruction.
5293 inline unsigned getLoadStoreAddressSpace(Value *I) {
5294   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5295          "Expected Load or Store instruction");
5296   if (auto *LI = dyn_cast<LoadInst>(I))
5297     return LI->getPointerAddressSpace();
5298   return cast<StoreInst>(I)->getPointerAddressSpace();
5299 }
5300 
5301 //===----------------------------------------------------------------------===//
5302 //                              FreezeInst Class
5303 //===----------------------------------------------------------------------===//
5304 
5305 /// This class represents a freeze function that returns random concrete
5306 /// value if an operand is either a poison value or an undef value
5307 class FreezeInst : public UnaryInstruction {
5308 protected:
5309   // Note: Instruction needs to be a friend here to call cloneImpl.
5310   friend class Instruction;
5311 
5312   /// Clone an identical FreezeInst
5313   FreezeInst *cloneImpl() const;
5314 
5315 public:
5316   explicit FreezeInst(Value *S,
5317                       const Twine &NameStr = "",
5318                       Instruction *InsertBefore = nullptr);
5319   FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5320 
5321   // Methods for support type inquiry through isa, cast, and dyn_cast:
5322   static inline bool classof(const Instruction *I) {
5323     return I->getOpcode() == Freeze;
5324   }
5325   static inline bool classof(const Value *V) {
5326     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5327   }
5328 };
5329 
5330 } // end namespace llvm
5331 
5332 #endif // LLVM_IR_INSTRUCTIONS_H
5333