xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Instructions.h (revision 18054d0220cfc8df9c9568c437bd6fbb59d53c3c)
1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class.  This is meant to be an easy way to get access to all
11 // instruction subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/Bitfields.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/ADT/iterator.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/OperandTraits.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/AtomicOrdering.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include <cassert>
44 #include <cstddef>
45 #include <cstdint>
46 #include <iterator>
47 
48 namespace llvm {
49 
50 class APInt;
51 class ConstantInt;
52 class DataLayout;
53 
54 //===----------------------------------------------------------------------===//
55 //                                AllocaInst Class
56 //===----------------------------------------------------------------------===//
57 
58 /// an instruction to allocate memory on the stack
59 class AllocaInst : public UnaryInstruction {
60   Type *AllocatedType;
61 
62   using AlignmentField = AlignmentBitfieldElementT<0>;
63   using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
64   using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
65   static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
66                                         SwiftErrorField>(),
67                 "Bitfields must be contiguous");
68 
69 protected:
70   // Note: Instruction needs to be a friend here to call cloneImpl.
71   friend class Instruction;
72 
73   AllocaInst *cloneImpl() const;
74 
75 public:
76   explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
77                       const Twine &Name, Instruction *InsertBefore);
78   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79              const Twine &Name, BasicBlock *InsertAtEnd);
80 
81   AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
82              Instruction *InsertBefore);
83   AllocaInst(Type *Ty, unsigned AddrSpace,
84              const Twine &Name, BasicBlock *InsertAtEnd);
85 
86   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
87              const Twine &Name = "", Instruction *InsertBefore = nullptr);
88   AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89              const Twine &Name, BasicBlock *InsertAtEnd);
90 
91   /// Return true if there is an allocation size parameter to the allocation
92   /// instruction that is not 1.
93   bool isArrayAllocation() const;
94 
95   /// Get the number of elements allocated. For a simple allocation of a single
96   /// element, this will return a constant 1 value.
97   const Value *getArraySize() const { return getOperand(0); }
98   Value *getArraySize() { return getOperand(0); }
99 
100   /// Overload to return most specific pointer type.
101   PointerType *getType() const {
102     return cast<PointerType>(Instruction::getType());
103   }
104 
105   /// Return the address space for the allocation.
106   unsigned getAddressSpace() const {
107     return getType()->getAddressSpace();
108   }
109 
110   /// Get allocation size in bits. Returns None if size can't be determined,
111   /// e.g. in case of a VLA.
112   Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
113 
114   /// Return the type that is being allocated by the instruction.
115   Type *getAllocatedType() const { return AllocatedType; }
116   /// for use only in special circumstances that need to generically
117   /// transform a whole instruction (eg: IR linking and vectorization).
118   void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
119 
120   /// Return the alignment of the memory that is being allocated by the
121   /// instruction.
122   Align getAlign() const {
123     return Align(1ULL << getSubclassData<AlignmentField>());
124   }
125 
126   void setAlignment(Align Align) {
127     setSubclassData<AlignmentField>(Log2(Align));
128   }
129 
130   // FIXME: Remove this one transition to Align is over.
131   uint64_t getAlignment() const { return getAlign().value(); }
132 
133   /// Return true if this alloca is in the entry block of the function and is a
134   /// constant size. If so, the code generator will fold it into the
135   /// prolog/epilog code, so it is basically free.
136   bool isStaticAlloca() const;
137 
138   /// Return true if this alloca is used as an inalloca argument to a call. Such
139   /// allocas are never considered static even if they are in the entry block.
140   bool isUsedWithInAlloca() const {
141     return getSubclassData<UsedWithInAllocaField>();
142   }
143 
144   /// Specify whether this alloca is used to represent the arguments to a call.
145   void setUsedWithInAlloca(bool V) {
146     setSubclassData<UsedWithInAllocaField>(V);
147   }
148 
149   /// Return true if this alloca is used as a swifterror argument to a call.
150   bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
151   /// Specify whether this alloca is used to represent a swifterror.
152   void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
153 
154   // Methods for support type inquiry through isa, cast, and dyn_cast:
155   static bool classof(const Instruction *I) {
156     return (I->getOpcode() == Instruction::Alloca);
157   }
158   static bool classof(const Value *V) {
159     return isa<Instruction>(V) && classof(cast<Instruction>(V));
160   }
161 
162 private:
163   // Shadow Instruction::setInstructionSubclassData with a private forwarding
164   // method so that subclasses cannot accidentally use it.
165   template <typename Bitfield>
166   void setSubclassData(typename Bitfield::Type Value) {
167     Instruction::setSubclassData<Bitfield>(Value);
168   }
169 };
170 
171 //===----------------------------------------------------------------------===//
172 //                                LoadInst Class
173 //===----------------------------------------------------------------------===//
174 
175 /// An instruction for reading from memory. This uses the SubclassData field in
176 /// Value to store whether or not the load is volatile.
177 class LoadInst : public UnaryInstruction {
178   using VolatileField = BoolBitfieldElementT<0>;
179   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
180   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
181   static_assert(
182       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
183       "Bitfields must be contiguous");
184 
185   void AssertOK();
186 
187 protected:
188   // Note: Instruction needs to be a friend here to call cloneImpl.
189   friend class Instruction;
190 
191   LoadInst *cloneImpl() const;
192 
193 public:
194   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
195            Instruction *InsertBefore);
196   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
197   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198            Instruction *InsertBefore);
199   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200            BasicBlock *InsertAtEnd);
201   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202            Align Align, Instruction *InsertBefore = nullptr);
203   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204            Align Align, BasicBlock *InsertAtEnd);
205   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
206            Align Align, AtomicOrdering Order,
207            SyncScope::ID SSID = SyncScope::System,
208            Instruction *InsertBefore = nullptr);
209   LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
210            Align Align, AtomicOrdering Order, SyncScope::ID SSID,
211            BasicBlock *InsertAtEnd);
212 
213   /// Return true if this is a load from a volatile memory location.
214   bool isVolatile() const { return getSubclassData<VolatileField>(); }
215 
216   /// Specify whether this is a volatile load or not.
217   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
218 
219   /// Return the alignment of the access that is being performed.
220   /// FIXME: Remove this function once transition to Align is over.
221   /// Use getAlign() instead.
222   uint64_t getAlignment() const { return getAlign().value(); }
223 
224   /// Return the alignment of the access that is being performed.
225   Align getAlign() const {
226     return Align(1ULL << (getSubclassData<AlignmentField>()));
227   }
228 
229   void setAlignment(Align Align) {
230     setSubclassData<AlignmentField>(Log2(Align));
231   }
232 
233   /// Returns the ordering constraint of this load instruction.
234   AtomicOrdering getOrdering() const {
235     return getSubclassData<OrderingField>();
236   }
237   /// Sets the ordering constraint of this load instruction.  May not be Release
238   /// or AcquireRelease.
239   void setOrdering(AtomicOrdering Ordering) {
240     setSubclassData<OrderingField>(Ordering);
241   }
242 
243   /// Returns the synchronization scope ID of this load instruction.
244   SyncScope::ID getSyncScopeID() const {
245     return SSID;
246   }
247 
248   /// Sets the synchronization scope ID of this load instruction.
249   void setSyncScopeID(SyncScope::ID SSID) {
250     this->SSID = SSID;
251   }
252 
253   /// Sets the ordering constraint and the synchronization scope ID of this load
254   /// instruction.
255   void setAtomic(AtomicOrdering Ordering,
256                  SyncScope::ID SSID = SyncScope::System) {
257     setOrdering(Ordering);
258     setSyncScopeID(SSID);
259   }
260 
261   bool isSimple() const { return !isAtomic() && !isVolatile(); }
262 
263   bool isUnordered() const {
264     return (getOrdering() == AtomicOrdering::NotAtomic ||
265             getOrdering() == AtomicOrdering::Unordered) &&
266            !isVolatile();
267   }
268 
269   Value *getPointerOperand() { return getOperand(0); }
270   const Value *getPointerOperand() const { return getOperand(0); }
271   static unsigned getPointerOperandIndex() { return 0U; }
272   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
273 
274   /// Returns the address space of the pointer operand.
275   unsigned getPointerAddressSpace() const {
276     return getPointerOperandType()->getPointerAddressSpace();
277   }
278 
279   // Methods for support type inquiry through isa, cast, and dyn_cast:
280   static bool classof(const Instruction *I) {
281     return I->getOpcode() == Instruction::Load;
282   }
283   static bool classof(const Value *V) {
284     return isa<Instruction>(V) && classof(cast<Instruction>(V));
285   }
286 
287 private:
288   // Shadow Instruction::setInstructionSubclassData with a private forwarding
289   // method so that subclasses cannot accidentally use it.
290   template <typename Bitfield>
291   void setSubclassData(typename Bitfield::Type Value) {
292     Instruction::setSubclassData<Bitfield>(Value);
293   }
294 
295   /// The synchronization scope ID of this load instruction.  Not quite enough
296   /// room in SubClassData for everything, so synchronization scope ID gets its
297   /// own field.
298   SyncScope::ID SSID;
299 };
300 
301 //===----------------------------------------------------------------------===//
302 //                                StoreInst Class
303 //===----------------------------------------------------------------------===//
304 
305 /// An instruction for storing to memory.
306 class StoreInst : public Instruction {
307   using VolatileField = BoolBitfieldElementT<0>;
308   using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
309   using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
310   static_assert(
311       Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
312       "Bitfields must be contiguous");
313 
314   void AssertOK();
315 
316 protected:
317   // Note: Instruction needs to be a friend here to call cloneImpl.
318   friend class Instruction;
319 
320   StoreInst *cloneImpl() const;
321 
322 public:
323   StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
324   StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
325   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
326   StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
327   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328             Instruction *InsertBefore = nullptr);
329   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330             BasicBlock *InsertAtEnd);
331   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332             AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
333             Instruction *InsertBefore = nullptr);
334   StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
335             AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
336 
337   // allocate space for exactly two operands
338   void *operator new(size_t S) { return User::operator new(S, 2); }
339   void operator delete(void *Ptr) { User::operator delete(Ptr); }
340 
341   /// Return true if this is a store to a volatile memory location.
342   bool isVolatile() const { return getSubclassData<VolatileField>(); }
343 
344   /// Specify whether this is a volatile store or not.
345   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
346 
347   /// Transparently provide more efficient getOperand methods.
348   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
349 
350   /// Return the alignment of the access that is being performed
351   /// FIXME: Remove this function once transition to Align is over.
352   /// Use getAlign() instead.
353   uint64_t getAlignment() const { return getAlign().value(); }
354 
355   Align getAlign() const {
356     return Align(1ULL << (getSubclassData<AlignmentField>()));
357   }
358 
359   void setAlignment(Align Align) {
360     setSubclassData<AlignmentField>(Log2(Align));
361   }
362 
363   /// Returns the ordering constraint of this store instruction.
364   AtomicOrdering getOrdering() const {
365     return getSubclassData<OrderingField>();
366   }
367 
368   /// Sets the ordering constraint of this store instruction.  May not be
369   /// Acquire or AcquireRelease.
370   void setOrdering(AtomicOrdering Ordering) {
371     setSubclassData<OrderingField>(Ordering);
372   }
373 
374   /// Returns the synchronization scope ID of this store instruction.
375   SyncScope::ID getSyncScopeID() const {
376     return SSID;
377   }
378 
379   /// Sets the synchronization scope ID of this store instruction.
380   void setSyncScopeID(SyncScope::ID SSID) {
381     this->SSID = SSID;
382   }
383 
384   /// Sets the ordering constraint and the synchronization scope ID of this
385   /// store instruction.
386   void setAtomic(AtomicOrdering Ordering,
387                  SyncScope::ID SSID = SyncScope::System) {
388     setOrdering(Ordering);
389     setSyncScopeID(SSID);
390   }
391 
392   bool isSimple() const { return !isAtomic() && !isVolatile(); }
393 
394   bool isUnordered() const {
395     return (getOrdering() == AtomicOrdering::NotAtomic ||
396             getOrdering() == AtomicOrdering::Unordered) &&
397            !isVolatile();
398   }
399 
400   Value *getValueOperand() { return getOperand(0); }
401   const Value *getValueOperand() const { return getOperand(0); }
402 
403   Value *getPointerOperand() { return getOperand(1); }
404   const Value *getPointerOperand() const { return getOperand(1); }
405   static unsigned getPointerOperandIndex() { return 1U; }
406   Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
407 
408   /// Returns the address space of the pointer operand.
409   unsigned getPointerAddressSpace() const {
410     return getPointerOperandType()->getPointerAddressSpace();
411   }
412 
413   // Methods for support type inquiry through isa, cast, and dyn_cast:
414   static bool classof(const Instruction *I) {
415     return I->getOpcode() == Instruction::Store;
416   }
417   static bool classof(const Value *V) {
418     return isa<Instruction>(V) && classof(cast<Instruction>(V));
419   }
420 
421 private:
422   // Shadow Instruction::setInstructionSubclassData with a private forwarding
423   // method so that subclasses cannot accidentally use it.
424   template <typename Bitfield>
425   void setSubclassData(typename Bitfield::Type Value) {
426     Instruction::setSubclassData<Bitfield>(Value);
427   }
428 
429   /// The synchronization scope ID of this store instruction.  Not quite enough
430   /// room in SubClassData for everything, so synchronization scope ID gets its
431   /// own field.
432   SyncScope::ID SSID;
433 };
434 
435 template <>
436 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
437 };
438 
439 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
440 
441 //===----------------------------------------------------------------------===//
442 //                                FenceInst Class
443 //===----------------------------------------------------------------------===//
444 
445 /// An instruction for ordering other memory operations.
446 class FenceInst : public Instruction {
447   using OrderingField = AtomicOrderingBitfieldElementT<0>;
448 
449   void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
450 
451 protected:
452   // Note: Instruction needs to be a friend here to call cloneImpl.
453   friend class Instruction;
454 
455   FenceInst *cloneImpl() const;
456 
457 public:
458   // Ordering may only be Acquire, Release, AcquireRelease, or
459   // SequentiallyConsistent.
460   FenceInst(LLVMContext &C, AtomicOrdering Ordering,
461             SyncScope::ID SSID = SyncScope::System,
462             Instruction *InsertBefore = nullptr);
463   FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
464             BasicBlock *InsertAtEnd);
465 
466   // allocate space for exactly zero operands
467   void *operator new(size_t S) { return User::operator new(S, 0); }
468   void operator delete(void *Ptr) { User::operator delete(Ptr); }
469 
470   /// Returns the ordering constraint of this fence instruction.
471   AtomicOrdering getOrdering() const {
472     return getSubclassData<OrderingField>();
473   }
474 
475   /// Sets the ordering constraint of this fence instruction.  May only be
476   /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
477   void setOrdering(AtomicOrdering Ordering) {
478     setSubclassData<OrderingField>(Ordering);
479   }
480 
481   /// Returns the synchronization scope ID of this fence instruction.
482   SyncScope::ID getSyncScopeID() const {
483     return SSID;
484   }
485 
486   /// Sets the synchronization scope ID of this fence instruction.
487   void setSyncScopeID(SyncScope::ID SSID) {
488     this->SSID = SSID;
489   }
490 
491   // Methods for support type inquiry through isa, cast, and dyn_cast:
492   static bool classof(const Instruction *I) {
493     return I->getOpcode() == Instruction::Fence;
494   }
495   static bool classof(const Value *V) {
496     return isa<Instruction>(V) && classof(cast<Instruction>(V));
497   }
498 
499 private:
500   // Shadow Instruction::setInstructionSubclassData with a private forwarding
501   // method so that subclasses cannot accidentally use it.
502   template <typename Bitfield>
503   void setSubclassData(typename Bitfield::Type Value) {
504     Instruction::setSubclassData<Bitfield>(Value);
505   }
506 
507   /// The synchronization scope ID of this fence instruction.  Not quite enough
508   /// room in SubClassData for everything, so synchronization scope ID gets its
509   /// own field.
510   SyncScope::ID SSID;
511 };
512 
513 //===----------------------------------------------------------------------===//
514 //                                AtomicCmpXchgInst Class
515 //===----------------------------------------------------------------------===//
516 
517 /// An instruction that atomically checks whether a
518 /// specified value is in a memory location, and, if it is, stores a new value
519 /// there. The value returned by this instruction is a pair containing the
520 /// original value as first element, and an i1 indicating success (true) or
521 /// failure (false) as second element.
522 ///
523 class AtomicCmpXchgInst : public Instruction {
524   void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
525             AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
526             SyncScope::ID SSID);
527 
528   template <unsigned Offset>
529   using AtomicOrderingBitfieldElement =
530       typename Bitfield::Element<AtomicOrdering, Offset, 3,
531                                  AtomicOrdering::LAST>;
532 
533 protected:
534   // Note: Instruction needs to be a friend here to call cloneImpl.
535   friend class Instruction;
536 
537   AtomicCmpXchgInst *cloneImpl() const;
538 
539 public:
540   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
541                     AtomicOrdering SuccessOrdering,
542                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
543                     Instruction *InsertBefore = nullptr);
544   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
545                     AtomicOrdering SuccessOrdering,
546                     AtomicOrdering FailureOrdering, SyncScope::ID SSID,
547                     BasicBlock *InsertAtEnd);
548 
549   // allocate space for exactly three operands
550   void *operator new(size_t S) { return User::operator new(S, 3); }
551   void operator delete(void *Ptr) { User::operator delete(Ptr); }
552 
553   using VolatileField = BoolBitfieldElementT<0>;
554   using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555   using SuccessOrderingField =
556       AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557   using FailureOrderingField =
558       AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559   using AlignmentField =
560       AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561   static_assert(
562       Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563                               FailureOrderingField, AlignmentField>(),
564       "Bitfields must be contiguous");
565 
566   /// Return the alignment of the memory that is being allocated by the
567   /// instruction.
568   Align getAlign() const {
569     return Align(1ULL << getSubclassData<AlignmentField>());
570   }
571 
572   void setAlignment(Align Align) {
573     setSubclassData<AlignmentField>(Log2(Align));
574   }
575 
576   /// Return true if this is a cmpxchg from a volatile memory
577   /// location.
578   ///
579   bool isVolatile() const { return getSubclassData<VolatileField>(); }
580 
581   /// Specify whether this is a volatile cmpxchg.
582   ///
583   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584 
585   /// Return true if this cmpxchg may spuriously fail.
586   bool isWeak() const { return getSubclassData<WeakField>(); }
587 
588   void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589 
590   /// Transparently provide more efficient getOperand methods.
591   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
592 
593   static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
594     return Ordering != AtomicOrdering::NotAtomic &&
595            Ordering != AtomicOrdering::Unordered;
596   }
597 
598   static bool isValidFailureOrdering(AtomicOrdering Ordering) {
599     return Ordering != AtomicOrdering::NotAtomic &&
600            Ordering != AtomicOrdering::Unordered &&
601            Ordering != AtomicOrdering::AcquireRelease &&
602            Ordering != AtomicOrdering::Release;
603   }
604 
605   /// Returns the success ordering constraint of this cmpxchg instruction.
606   AtomicOrdering getSuccessOrdering() const {
607     return getSubclassData<SuccessOrderingField>();
608   }
609 
610   /// Sets the success ordering constraint of this cmpxchg instruction.
611   void setSuccessOrdering(AtomicOrdering Ordering) {
612     assert(isValidSuccessOrdering(Ordering) &&
613            "invalid CmpXchg success ordering");
614     setSubclassData<SuccessOrderingField>(Ordering);
615   }
616 
617   /// Returns the failure ordering constraint of this cmpxchg instruction.
618   AtomicOrdering getFailureOrdering() const {
619     return getSubclassData<FailureOrderingField>();
620   }
621 
622   /// Sets the failure ordering constraint of this cmpxchg instruction.
623   void setFailureOrdering(AtomicOrdering Ordering) {
624     assert(isValidFailureOrdering(Ordering) &&
625            "invalid CmpXchg failure ordering");
626     setSubclassData<FailureOrderingField>(Ordering);
627   }
628 
629   /// Returns a single ordering which is at least as strong as both the
630   /// success and failure orderings for this cmpxchg.
631   AtomicOrdering getMergedOrdering() const {
632     if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
633       return AtomicOrdering::SequentiallyConsistent;
634     if (getFailureOrdering() == AtomicOrdering::Acquire) {
635       if (getSuccessOrdering() == AtomicOrdering::Monotonic)
636         return AtomicOrdering::Acquire;
637       if (getSuccessOrdering() == AtomicOrdering::Release)
638         return AtomicOrdering::AcquireRelease;
639     }
640     return getSuccessOrdering();
641   }
642 
643   /// Returns the synchronization scope ID of this cmpxchg instruction.
644   SyncScope::ID getSyncScopeID() const {
645     return SSID;
646   }
647 
648   /// Sets the synchronization scope ID of this cmpxchg instruction.
649   void setSyncScopeID(SyncScope::ID SSID) {
650     this->SSID = SSID;
651   }
652 
653   Value *getPointerOperand() { return getOperand(0); }
654   const Value *getPointerOperand() const { return getOperand(0); }
655   static unsigned getPointerOperandIndex() { return 0U; }
656 
657   Value *getCompareOperand() { return getOperand(1); }
658   const Value *getCompareOperand() const { return getOperand(1); }
659 
660   Value *getNewValOperand() { return getOperand(2); }
661   const Value *getNewValOperand() const { return getOperand(2); }
662 
663   /// Returns the address space of the pointer operand.
664   unsigned getPointerAddressSpace() const {
665     return getPointerOperand()->getType()->getPointerAddressSpace();
666   }
667 
668   /// Returns the strongest permitted ordering on failure, given the
669   /// desired ordering on success.
670   ///
671   /// If the comparison in a cmpxchg operation fails, there is no atomic store
672   /// so release semantics cannot be provided. So this function drops explicit
673   /// Release requests from the AtomicOrdering. A SequentiallyConsistent
674   /// operation would remain SequentiallyConsistent.
675   static AtomicOrdering
676   getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
677     switch (SuccessOrdering) {
678     default:
679       llvm_unreachable("invalid cmpxchg success ordering");
680     case AtomicOrdering::Release:
681     case AtomicOrdering::Monotonic:
682       return AtomicOrdering::Monotonic;
683     case AtomicOrdering::AcquireRelease:
684     case AtomicOrdering::Acquire:
685       return AtomicOrdering::Acquire;
686     case AtomicOrdering::SequentiallyConsistent:
687       return AtomicOrdering::SequentiallyConsistent;
688     }
689   }
690 
691   // Methods for support type inquiry through isa, cast, and dyn_cast:
692   static bool classof(const Instruction *I) {
693     return I->getOpcode() == Instruction::AtomicCmpXchg;
694   }
695   static bool classof(const Value *V) {
696     return isa<Instruction>(V) && classof(cast<Instruction>(V));
697   }
698 
699 private:
700   // Shadow Instruction::setInstructionSubclassData with a private forwarding
701   // method so that subclasses cannot accidentally use it.
702   template <typename Bitfield>
703   void setSubclassData(typename Bitfield::Type Value) {
704     Instruction::setSubclassData<Bitfield>(Value);
705   }
706 
707   /// The synchronization scope ID of this cmpxchg instruction.  Not quite
708   /// enough room in SubClassData for everything, so synchronization scope ID
709   /// gets its own field.
710   SyncScope::ID SSID;
711 };
712 
713 template <>
714 struct OperandTraits<AtomicCmpXchgInst> :
715     public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
716 };
717 
718 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
719 
720 //===----------------------------------------------------------------------===//
721 //                                AtomicRMWInst Class
722 //===----------------------------------------------------------------------===//
723 
724 /// an instruction that atomically reads a memory location,
725 /// combines it with another value, and then stores the result back.  Returns
726 /// the old value.
727 ///
728 class AtomicRMWInst : public Instruction {
729 protected:
730   // Note: Instruction needs to be a friend here to call cloneImpl.
731   friend class Instruction;
732 
733   AtomicRMWInst *cloneImpl() const;
734 
735 public:
736   /// This enumeration lists the possible modifications atomicrmw can make.  In
737   /// the descriptions, 'p' is the pointer to the instruction's memory location,
738   /// 'old' is the initial value of *p, and 'v' is the other value passed to the
739   /// instruction.  These instructions always return 'old'.
740   enum BinOp : unsigned {
741     /// *p = v
742     Xchg,
743     /// *p = old + v
744     Add,
745     /// *p = old - v
746     Sub,
747     /// *p = old & v
748     And,
749     /// *p = ~(old & v)
750     Nand,
751     /// *p = old | v
752     Or,
753     /// *p = old ^ v
754     Xor,
755     /// *p = old >signed v ? old : v
756     Max,
757     /// *p = old <signed v ? old : v
758     Min,
759     /// *p = old >unsigned v ? old : v
760     UMax,
761     /// *p = old <unsigned v ? old : v
762     UMin,
763 
764     /// *p = old + v
765     FAdd,
766 
767     /// *p = old - v
768     FSub,
769 
770     FIRST_BINOP = Xchg,
771     LAST_BINOP = FSub,
772     BAD_BINOP
773   };
774 
775 private:
776   template <unsigned Offset>
777   using AtomicOrderingBitfieldElement =
778       typename Bitfield::Element<AtomicOrdering, Offset, 3,
779                                  AtomicOrdering::LAST>;
780 
781   template <unsigned Offset>
782   using BinOpBitfieldElement =
783       typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
784 
785 public:
786   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
787                 AtomicOrdering Ordering, SyncScope::ID SSID,
788                 Instruction *InsertBefore = nullptr);
789   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
790                 AtomicOrdering Ordering, SyncScope::ID SSID,
791                 BasicBlock *InsertAtEnd);
792 
793   // allocate space for exactly two operands
794   void *operator new(size_t S) { return User::operator new(S, 2); }
795   void operator delete(void *Ptr) { User::operator delete(Ptr); }
796 
797   using VolatileField = BoolBitfieldElementT<0>;
798   using AtomicOrderingField =
799       AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
800   using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
801   using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
802   static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
803                                         OperationField, AlignmentField>(),
804                 "Bitfields must be contiguous");
805 
806   BinOp getOperation() const { return getSubclassData<OperationField>(); }
807 
808   static StringRef getOperationName(BinOp Op);
809 
810   static bool isFPOperation(BinOp Op) {
811     switch (Op) {
812     case AtomicRMWInst::FAdd:
813     case AtomicRMWInst::FSub:
814       return true;
815     default:
816       return false;
817     }
818   }
819 
820   void setOperation(BinOp Operation) {
821     setSubclassData<OperationField>(Operation);
822   }
823 
824   /// Return the alignment of the memory that is being allocated by the
825   /// instruction.
826   Align getAlign() const {
827     return Align(1ULL << getSubclassData<AlignmentField>());
828   }
829 
830   void setAlignment(Align Align) {
831     setSubclassData<AlignmentField>(Log2(Align));
832   }
833 
834   /// Return true if this is a RMW on a volatile memory location.
835   ///
836   bool isVolatile() const { return getSubclassData<VolatileField>(); }
837 
838   /// Specify whether this is a volatile RMW or not.
839   ///
840   void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
841 
842   /// Transparently provide more efficient getOperand methods.
843   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
844 
845   /// Returns the ordering constraint of this rmw instruction.
846   AtomicOrdering getOrdering() const {
847     return getSubclassData<AtomicOrderingField>();
848   }
849 
850   /// Sets the ordering constraint of this rmw instruction.
851   void setOrdering(AtomicOrdering Ordering) {
852     assert(Ordering != AtomicOrdering::NotAtomic &&
853            "atomicrmw instructions can only be atomic.");
854     setSubclassData<AtomicOrderingField>(Ordering);
855   }
856 
857   /// Returns the synchronization scope ID of this rmw instruction.
858   SyncScope::ID getSyncScopeID() const {
859     return SSID;
860   }
861 
862   /// Sets the synchronization scope ID of this rmw instruction.
863   void setSyncScopeID(SyncScope::ID SSID) {
864     this->SSID = SSID;
865   }
866 
867   Value *getPointerOperand() { return getOperand(0); }
868   const Value *getPointerOperand() const { return getOperand(0); }
869   static unsigned getPointerOperandIndex() { return 0U; }
870 
871   Value *getValOperand() { return getOperand(1); }
872   const Value *getValOperand() const { return getOperand(1); }
873 
874   /// Returns the address space of the pointer operand.
875   unsigned getPointerAddressSpace() const {
876     return getPointerOperand()->getType()->getPointerAddressSpace();
877   }
878 
879   bool isFloatingPointOperation() const {
880     return isFPOperation(getOperation());
881   }
882 
883   // Methods for support type inquiry through isa, cast, and dyn_cast:
884   static bool classof(const Instruction *I) {
885     return I->getOpcode() == Instruction::AtomicRMW;
886   }
887   static bool classof(const Value *V) {
888     return isa<Instruction>(V) && classof(cast<Instruction>(V));
889   }
890 
891 private:
892   void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
893             AtomicOrdering Ordering, SyncScope::ID SSID);
894 
895   // Shadow Instruction::setInstructionSubclassData with a private forwarding
896   // method so that subclasses cannot accidentally use it.
897   template <typename Bitfield>
898   void setSubclassData(typename Bitfield::Type Value) {
899     Instruction::setSubclassData<Bitfield>(Value);
900   }
901 
902   /// The synchronization scope ID of this rmw instruction.  Not quite enough
903   /// room in SubClassData for everything, so synchronization scope ID gets its
904   /// own field.
905   SyncScope::ID SSID;
906 };
907 
908 template <>
909 struct OperandTraits<AtomicRMWInst>
910     : public FixedNumOperandTraits<AtomicRMWInst,2> {
911 };
912 
913 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
914 
915 //===----------------------------------------------------------------------===//
916 //                             GetElementPtrInst Class
917 //===----------------------------------------------------------------------===//
918 
919 // checkGEPType - Simple wrapper function to give a better assertion failure
920 // message on bad indexes for a gep instruction.
921 //
922 inline Type *checkGEPType(Type *Ty) {
923   assert(Ty && "Invalid GetElementPtrInst indices for type!");
924   return Ty;
925 }
926 
927 /// an instruction for type-safe pointer arithmetic to
928 /// access elements of arrays and structs
929 ///
930 class GetElementPtrInst : public Instruction {
931   Type *SourceElementType;
932   Type *ResultElementType;
933 
934   GetElementPtrInst(const GetElementPtrInst &GEPI);
935 
936   /// Constructors - Create a getelementptr instruction with a base pointer an
937   /// list of indices. The first ctor can optionally insert before an existing
938   /// instruction, the second appends the new instruction to the specified
939   /// BasicBlock.
940   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
941                            ArrayRef<Value *> IdxList, unsigned Values,
942                            const Twine &NameStr, Instruction *InsertBefore);
943   inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
944                            ArrayRef<Value *> IdxList, unsigned Values,
945                            const Twine &NameStr, BasicBlock *InsertAtEnd);
946 
947   void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
948 
949 protected:
950   // Note: Instruction needs to be a friend here to call cloneImpl.
951   friend class Instruction;
952 
953   GetElementPtrInst *cloneImpl() const;
954 
955 public:
956   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
957                                    ArrayRef<Value *> IdxList,
958                                    const Twine &NameStr = "",
959                                    Instruction *InsertBefore = nullptr) {
960     unsigned Values = 1 + unsigned(IdxList.size());
961     assert(PointeeType && "Must specify element type");
962     assert(cast<PointerType>(Ptr->getType()->getScalarType())
963                ->isOpaqueOrPointeeTypeMatches(PointeeType));
964     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
965                                           NameStr, InsertBefore);
966   }
967 
968   static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
969                                    ArrayRef<Value *> IdxList,
970                                    const Twine &NameStr,
971                                    BasicBlock *InsertAtEnd) {
972     unsigned Values = 1 + unsigned(IdxList.size());
973     assert(PointeeType && "Must specify element type");
974     assert(cast<PointerType>(Ptr->getType()->getScalarType())
975                ->isOpaqueOrPointeeTypeMatches(PointeeType));
976     return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
977                                           NameStr, InsertAtEnd);
978   }
979 
980   /// Create an "inbounds" getelementptr. See the documentation for the
981   /// "inbounds" flag in LangRef.html for details.
982   static GetElementPtrInst *
983   CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
984                  const Twine &NameStr = "",
985                  Instruction *InsertBefore = nullptr) {
986     GetElementPtrInst *GEP =
987         Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
988     GEP->setIsInBounds(true);
989     return GEP;
990   }
991 
992   static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
993                                            ArrayRef<Value *> IdxList,
994                                            const Twine &NameStr,
995                                            BasicBlock *InsertAtEnd) {
996     GetElementPtrInst *GEP =
997         Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
998     GEP->setIsInBounds(true);
999     return GEP;
1000   }
1001 
1002   /// Transparently provide more efficient getOperand methods.
1003   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1004 
1005   Type *getSourceElementType() const { return SourceElementType; }
1006 
1007   void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1008   void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1009 
1010   Type *getResultElementType() const {
1011     assert(cast<PointerType>(getType()->getScalarType())
1012                ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1013     return ResultElementType;
1014   }
1015 
1016   /// Returns the address space of this instruction's pointer type.
1017   unsigned getAddressSpace() const {
1018     // Note that this is always the same as the pointer operand's address space
1019     // and that is cheaper to compute, so cheat here.
1020     return getPointerAddressSpace();
1021   }
1022 
1023   /// Returns the result type of a getelementptr with the given source
1024   /// element type and indexes.
1025   ///
1026   /// Null is returned if the indices are invalid for the specified
1027   /// source element type.
1028   static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1029   static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1030   static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1031 
1032   /// Return the type of the element at the given index of an indexable
1033   /// type.  This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1034   ///
1035   /// Returns null if the type can't be indexed, or the given index is not
1036   /// legal for the given type.
1037   static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1038   static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1039 
1040   inline op_iterator       idx_begin()       { return op_begin()+1; }
1041   inline const_op_iterator idx_begin() const { return op_begin()+1; }
1042   inline op_iterator       idx_end()         { return op_end(); }
1043   inline const_op_iterator idx_end()   const { return op_end(); }
1044 
1045   inline iterator_range<op_iterator> indices() {
1046     return make_range(idx_begin(), idx_end());
1047   }
1048 
1049   inline iterator_range<const_op_iterator> indices() const {
1050     return make_range(idx_begin(), idx_end());
1051   }
1052 
1053   Value *getPointerOperand() {
1054     return getOperand(0);
1055   }
1056   const Value *getPointerOperand() const {
1057     return getOperand(0);
1058   }
1059   static unsigned getPointerOperandIndex() {
1060     return 0U;    // get index for modifying correct operand.
1061   }
1062 
1063   /// Method to return the pointer operand as a
1064   /// PointerType.
1065   Type *getPointerOperandType() const {
1066     return getPointerOperand()->getType();
1067   }
1068 
1069   /// Returns the address space of the pointer operand.
1070   unsigned getPointerAddressSpace() const {
1071     return getPointerOperandType()->getPointerAddressSpace();
1072   }
1073 
1074   /// Returns the pointer type returned by the GEP
1075   /// instruction, which may be a vector of pointers.
1076   static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1077                                 ArrayRef<Value *> IdxList) {
1078     PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1079     unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1080     Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1081     Type *PtrTy = OrigPtrTy->isOpaque()
1082       ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1083       : PointerType::get(ResultElemTy, AddrSpace);
1084     // Vector GEP
1085     if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1086       ElementCount EltCount = PtrVTy->getElementCount();
1087       return VectorType::get(PtrTy, EltCount);
1088     }
1089     for (Value *Index : IdxList)
1090       if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1091         ElementCount EltCount = IndexVTy->getElementCount();
1092         return VectorType::get(PtrTy, EltCount);
1093       }
1094     // Scalar GEP
1095     return PtrTy;
1096   }
1097 
1098   unsigned getNumIndices() const {  // Note: always non-negative
1099     return getNumOperands() - 1;
1100   }
1101 
1102   bool hasIndices() const {
1103     return getNumOperands() > 1;
1104   }
1105 
1106   /// Return true if all of the indices of this GEP are
1107   /// zeros.  If so, the result pointer and the first operand have the same
1108   /// value, just potentially different types.
1109   bool hasAllZeroIndices() const;
1110 
1111   /// Return true if all of the indices of this GEP are
1112   /// constant integers.  If so, the result pointer and the first operand have
1113   /// a constant offset between them.
1114   bool hasAllConstantIndices() const;
1115 
1116   /// Set or clear the inbounds flag on this GEP instruction.
1117   /// See LangRef.html for the meaning of inbounds on a getelementptr.
1118   void setIsInBounds(bool b = true);
1119 
1120   /// Determine whether the GEP has the inbounds flag.
1121   bool isInBounds() const;
1122 
1123   /// Accumulate the constant address offset of this GEP if possible.
1124   ///
1125   /// This routine accepts an APInt into which it will accumulate the constant
1126   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1127   /// all-constant, it returns false and the value of the offset APInt is
1128   /// undefined (it is *not* preserved!). The APInt passed into this routine
1129   /// must be at least as wide as the IntPtr type for the address space of
1130   /// the base GEP pointer.
1131   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1132   bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1133                      MapVector<Value *, APInt> &VariableOffsets,
1134                      APInt &ConstantOffset) const;
1135   // Methods for support type inquiry through isa, cast, and dyn_cast:
1136   static bool classof(const Instruction *I) {
1137     return (I->getOpcode() == Instruction::GetElementPtr);
1138   }
1139   static bool classof(const Value *V) {
1140     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1141   }
1142 };
1143 
1144 template <>
1145 struct OperandTraits<GetElementPtrInst> :
1146   public VariadicOperandTraits<GetElementPtrInst, 1> {
1147 };
1148 
1149 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1150                                      ArrayRef<Value *> IdxList, unsigned Values,
1151                                      const Twine &NameStr,
1152                                      Instruction *InsertBefore)
1153     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1154                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1155                   Values, InsertBefore),
1156       SourceElementType(PointeeType),
1157       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1158   assert(cast<PointerType>(getType()->getScalarType())
1159              ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1160   init(Ptr, IdxList, NameStr);
1161 }
1162 
1163 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1164                                      ArrayRef<Value *> IdxList, unsigned Values,
1165                                      const Twine &NameStr,
1166                                      BasicBlock *InsertAtEnd)
1167     : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1168                   OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1169                   Values, InsertAtEnd),
1170       SourceElementType(PointeeType),
1171       ResultElementType(getIndexedType(PointeeType, IdxList)) {
1172   assert(cast<PointerType>(getType()->getScalarType())
1173              ->isOpaqueOrPointeeTypeMatches(ResultElementType));
1174   init(Ptr, IdxList, NameStr);
1175 }
1176 
1177 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1178 
1179 //===----------------------------------------------------------------------===//
1180 //                               ICmpInst Class
1181 //===----------------------------------------------------------------------===//
1182 
1183 /// This instruction compares its operands according to the predicate given
1184 /// to the constructor. It only operates on integers or pointers. The operands
1185 /// must be identical types.
1186 /// Represent an integer comparison operator.
1187 class ICmpInst: public CmpInst {
1188   void AssertOK() {
1189     assert(isIntPredicate() &&
1190            "Invalid ICmp predicate value");
1191     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1192           "Both operands to ICmp instruction are not of the same type!");
1193     // Check that the operands are the right type
1194     assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1195             getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1196            "Invalid operand types for ICmp instruction");
1197   }
1198 
1199 protected:
1200   // Note: Instruction needs to be a friend here to call cloneImpl.
1201   friend class Instruction;
1202 
1203   /// Clone an identical ICmpInst
1204   ICmpInst *cloneImpl() const;
1205 
1206 public:
1207   /// Constructor with insert-before-instruction semantics.
1208   ICmpInst(
1209     Instruction *InsertBefore,  ///< Where to insert
1210     Predicate pred,  ///< The predicate to use for the comparison
1211     Value *LHS,      ///< The left-hand-side of the expression
1212     Value *RHS,      ///< The right-hand-side of the expression
1213     const Twine &NameStr = ""  ///< Name of the instruction
1214   ) : CmpInst(makeCmpResultType(LHS->getType()),
1215               Instruction::ICmp, pred, LHS, RHS, NameStr,
1216               InsertBefore) {
1217 #ifndef NDEBUG
1218   AssertOK();
1219 #endif
1220   }
1221 
1222   /// Constructor with insert-at-end semantics.
1223   ICmpInst(
1224     BasicBlock &InsertAtEnd, ///< Block to insert into.
1225     Predicate pred,  ///< The predicate to use for the comparison
1226     Value *LHS,      ///< The left-hand-side of the expression
1227     Value *RHS,      ///< The right-hand-side of the expression
1228     const Twine &NameStr = ""  ///< Name of the instruction
1229   ) : CmpInst(makeCmpResultType(LHS->getType()),
1230               Instruction::ICmp, pred, LHS, RHS, NameStr,
1231               &InsertAtEnd) {
1232 #ifndef NDEBUG
1233   AssertOK();
1234 #endif
1235   }
1236 
1237   /// Constructor with no-insertion semantics
1238   ICmpInst(
1239     Predicate pred, ///< The predicate to use for the comparison
1240     Value *LHS,     ///< The left-hand-side of the expression
1241     Value *RHS,     ///< The right-hand-side of the expression
1242     const Twine &NameStr = "" ///< Name of the instruction
1243   ) : CmpInst(makeCmpResultType(LHS->getType()),
1244               Instruction::ICmp, pred, LHS, RHS, NameStr) {
1245 #ifndef NDEBUG
1246   AssertOK();
1247 #endif
1248   }
1249 
1250   /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1251   /// @returns the predicate that would be the result if the operand were
1252   /// regarded as signed.
1253   /// Return the signed version of the predicate
1254   Predicate getSignedPredicate() const {
1255     return getSignedPredicate(getPredicate());
1256   }
1257 
1258   /// This is a static version that you can use without an instruction.
1259   /// Return the signed version of the predicate.
1260   static Predicate getSignedPredicate(Predicate pred);
1261 
1262   /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1263   /// @returns the predicate that would be the result if the operand were
1264   /// regarded as unsigned.
1265   /// Return the unsigned version of the predicate
1266   Predicate getUnsignedPredicate() const {
1267     return getUnsignedPredicate(getPredicate());
1268   }
1269 
1270   /// This is a static version that you can use without an instruction.
1271   /// Return the unsigned version of the predicate.
1272   static Predicate getUnsignedPredicate(Predicate pred);
1273 
1274   /// Return true if this predicate is either EQ or NE.  This also
1275   /// tests for commutativity.
1276   static bool isEquality(Predicate P) {
1277     return P == ICMP_EQ || P == ICMP_NE;
1278   }
1279 
1280   /// Return true if this predicate is either EQ or NE.  This also
1281   /// tests for commutativity.
1282   bool isEquality() const {
1283     return isEquality(getPredicate());
1284   }
1285 
1286   /// @returns true if the predicate of this ICmpInst is commutative
1287   /// Determine if this relation is commutative.
1288   bool isCommutative() const { return isEquality(); }
1289 
1290   /// Return true if the predicate is relational (not EQ or NE).
1291   ///
1292   bool isRelational() const {
1293     return !isEquality();
1294   }
1295 
1296   /// Return true if the predicate is relational (not EQ or NE).
1297   ///
1298   static bool isRelational(Predicate P) {
1299     return !isEquality(P);
1300   }
1301 
1302   /// Return true if the predicate is SGT or UGT.
1303   ///
1304   static bool isGT(Predicate P) {
1305     return P == ICMP_SGT || P == ICMP_UGT;
1306   }
1307 
1308   /// Return true if the predicate is SLT or ULT.
1309   ///
1310   static bool isLT(Predicate P) {
1311     return P == ICMP_SLT || P == ICMP_ULT;
1312   }
1313 
1314   /// Return true if the predicate is SGE or UGE.
1315   ///
1316   static bool isGE(Predicate P) {
1317     return P == ICMP_SGE || P == ICMP_UGE;
1318   }
1319 
1320   /// Return true if the predicate is SLE or ULE.
1321   ///
1322   static bool isLE(Predicate P) {
1323     return P == ICMP_SLE || P == ICMP_ULE;
1324   }
1325 
1326   /// Returns the sequence of all ICmp predicates.
1327   ///
1328   static auto predicates() { return ICmpPredicates(); }
1329 
1330   /// Exchange the two operands to this instruction in such a way that it does
1331   /// not modify the semantics of the instruction. The predicate value may be
1332   /// changed to retain the same result if the predicate is order dependent
1333   /// (e.g. ult).
1334   /// Swap operands and adjust predicate.
1335   void swapOperands() {
1336     setPredicate(getSwappedPredicate());
1337     Op<0>().swap(Op<1>());
1338   }
1339 
1340   /// Return result of `LHS Pred RHS` comparison.
1341   static bool compare(const APInt &LHS, const APInt &RHS,
1342                       ICmpInst::Predicate Pred);
1343 
1344   // Methods for support type inquiry through isa, cast, and dyn_cast:
1345   static bool classof(const Instruction *I) {
1346     return I->getOpcode() == Instruction::ICmp;
1347   }
1348   static bool classof(const Value *V) {
1349     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1350   }
1351 };
1352 
1353 //===----------------------------------------------------------------------===//
1354 //                               FCmpInst Class
1355 //===----------------------------------------------------------------------===//
1356 
1357 /// This instruction compares its operands according to the predicate given
1358 /// to the constructor. It only operates on floating point values or packed
1359 /// vectors of floating point values. The operands must be identical types.
1360 /// Represents a floating point comparison operator.
1361 class FCmpInst: public CmpInst {
1362   void AssertOK() {
1363     assert(isFPPredicate() && "Invalid FCmp predicate value");
1364     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1365            "Both operands to FCmp instruction are not of the same type!");
1366     // Check that the operands are the right type
1367     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1368            "Invalid operand types for FCmp instruction");
1369   }
1370 
1371 protected:
1372   // Note: Instruction needs to be a friend here to call cloneImpl.
1373   friend class Instruction;
1374 
1375   /// Clone an identical FCmpInst
1376   FCmpInst *cloneImpl() const;
1377 
1378 public:
1379   /// Constructor with insert-before-instruction semantics.
1380   FCmpInst(
1381     Instruction *InsertBefore, ///< Where to insert
1382     Predicate pred,  ///< The predicate to use for the comparison
1383     Value *LHS,      ///< The left-hand-side of the expression
1384     Value *RHS,      ///< The right-hand-side of the expression
1385     const Twine &NameStr = ""  ///< Name of the instruction
1386   ) : CmpInst(makeCmpResultType(LHS->getType()),
1387               Instruction::FCmp, pred, LHS, RHS, NameStr,
1388               InsertBefore) {
1389     AssertOK();
1390   }
1391 
1392   /// Constructor with insert-at-end semantics.
1393   FCmpInst(
1394     BasicBlock &InsertAtEnd, ///< Block to insert into.
1395     Predicate pred,  ///< The predicate to use for the comparison
1396     Value *LHS,      ///< The left-hand-side of the expression
1397     Value *RHS,      ///< The right-hand-side of the expression
1398     const Twine &NameStr = ""  ///< Name of the instruction
1399   ) : CmpInst(makeCmpResultType(LHS->getType()),
1400               Instruction::FCmp, pred, LHS, RHS, NameStr,
1401               &InsertAtEnd) {
1402     AssertOK();
1403   }
1404 
1405   /// Constructor with no-insertion semantics
1406   FCmpInst(
1407     Predicate Pred, ///< The predicate to use for the comparison
1408     Value *LHS,     ///< The left-hand-side of the expression
1409     Value *RHS,     ///< The right-hand-side of the expression
1410     const Twine &NameStr = "", ///< Name of the instruction
1411     Instruction *FlagsSource = nullptr
1412   ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1413               RHS, NameStr, nullptr, FlagsSource) {
1414     AssertOK();
1415   }
1416 
1417   /// @returns true if the predicate of this instruction is EQ or NE.
1418   /// Determine if this is an equality predicate.
1419   static bool isEquality(Predicate Pred) {
1420     return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1421            Pred == FCMP_UNE;
1422   }
1423 
1424   /// @returns true if the predicate of this instruction is EQ or NE.
1425   /// Determine if this is an equality predicate.
1426   bool isEquality() const { return isEquality(getPredicate()); }
1427 
1428   /// @returns true if the predicate of this instruction is commutative.
1429   /// Determine if this is a commutative predicate.
1430   bool isCommutative() const {
1431     return isEquality() ||
1432            getPredicate() == FCMP_FALSE ||
1433            getPredicate() == FCMP_TRUE ||
1434            getPredicate() == FCMP_ORD ||
1435            getPredicate() == FCMP_UNO;
1436   }
1437 
1438   /// @returns true if the predicate is relational (not EQ or NE).
1439   /// Determine if this a relational predicate.
1440   bool isRelational() const { return !isEquality(); }
1441 
1442   /// Exchange the two operands to this instruction in such a way that it does
1443   /// not modify the semantics of the instruction. The predicate value may be
1444   /// changed to retain the same result if the predicate is order dependent
1445   /// (e.g. ult).
1446   /// Swap operands and adjust predicate.
1447   void swapOperands() {
1448     setPredicate(getSwappedPredicate());
1449     Op<0>().swap(Op<1>());
1450   }
1451 
1452   /// Returns the sequence of all FCmp predicates.
1453   ///
1454   static auto predicates() { return FCmpPredicates(); }
1455 
1456   /// Return result of `LHS Pred RHS` comparison.
1457   static bool compare(const APFloat &LHS, const APFloat &RHS,
1458                       FCmpInst::Predicate Pred);
1459 
1460   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461   static bool classof(const Instruction *I) {
1462     return I->getOpcode() == Instruction::FCmp;
1463   }
1464   static bool classof(const Value *V) {
1465     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466   }
1467 };
1468 
1469 //===----------------------------------------------------------------------===//
1470 /// This class represents a function call, abstracting a target
1471 /// machine's calling convention.  This class uses low bit of the SubClassData
1472 /// field to indicate whether or not this is a tail call.  The rest of the bits
1473 /// hold the calling convention of the call.
1474 ///
1475 class CallInst : public CallBase {
1476   CallInst(const CallInst &CI);
1477 
1478   /// Construct a CallInst given a range of arguments.
1479   /// Construct a CallInst from a range of arguments
1480   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482                   Instruction *InsertBefore);
1483 
1484   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485                   const Twine &NameStr, Instruction *InsertBefore)
1486       : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487 
1488   /// Construct a CallInst given a range of arguments.
1489   /// Construct a CallInst from a range of arguments
1490   inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491                   ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492                   BasicBlock *InsertAtEnd);
1493 
1494   explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495                     Instruction *InsertBefore);
1496 
1497   CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498            BasicBlock *InsertAtEnd);
1499 
1500   void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502   void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503 
1504   /// Compute the number of operands to allocate.
1505   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506     // We need one operand for the called function, plus the input operand
1507     // counts provided.
1508     return 1 + NumArgs + NumBundleInputs;
1509   }
1510 
1511 protected:
1512   // Note: Instruction needs to be a friend here to call cloneImpl.
1513   friend class Instruction;
1514 
1515   CallInst *cloneImpl() const;
1516 
1517 public:
1518   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519                           Instruction *InsertBefore = nullptr) {
1520     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521   }
1522 
1523   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524                           const Twine &NameStr,
1525                           Instruction *InsertBefore = nullptr) {
1526     return new (ComputeNumOperands(Args.size()))
1527         CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528   }
1529 
1530   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531                           ArrayRef<OperandBundleDef> Bundles = None,
1532                           const Twine &NameStr = "",
1533                           Instruction *InsertBefore = nullptr) {
1534     const int NumOperands =
1535         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537 
1538     return new (NumOperands, DescriptorBytes)
1539         CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540   }
1541 
1542   static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543                           BasicBlock *InsertAtEnd) {
1544     return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545   }
1546 
1547   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549     return new (ComputeNumOperands(Args.size()))
1550         CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551   }
1552 
1553   static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554                           ArrayRef<OperandBundleDef> Bundles,
1555                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556     const int NumOperands =
1557         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558     const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559 
1560     return new (NumOperands, DescriptorBytes)
1561         CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562   }
1563 
1564   static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565                           Instruction *InsertBefore = nullptr) {
1566     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567                   InsertBefore);
1568   }
1569 
1570   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571                           ArrayRef<OperandBundleDef> Bundles = None,
1572                           const Twine &NameStr = "",
1573                           Instruction *InsertBefore = nullptr) {
1574     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575                   NameStr, InsertBefore);
1576   }
1577 
1578   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579                           const Twine &NameStr,
1580                           Instruction *InsertBefore = nullptr) {
1581     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582                   InsertBefore);
1583   }
1584 
1585   static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586                           BasicBlock *InsertAtEnd) {
1587     return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588                   InsertAtEnd);
1589   }
1590 
1591   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593     return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594                   InsertAtEnd);
1595   }
1596 
1597   static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598                           ArrayRef<OperandBundleDef> Bundles,
1599                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600     return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601                   NameStr, InsertAtEnd);
1602   }
1603 
1604   /// Create a clone of \p CI with a different set of operand bundles and
1605   /// insert it before \p InsertPt.
1606   ///
1607   /// The returned call instruction is identical \p CI in every way except that
1608   /// the operand bundles for the new instruction are set to the operand bundles
1609   /// in \p Bundles.
1610   static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611                           Instruction *InsertPt = nullptr);
1612 
1613   /// Generate the IR for a call to malloc:
1614   /// 1. Compute the malloc call's argument as the specified type's size,
1615   ///    possibly multiplied by the array size if the array size is not
1616   ///    constant 1.
1617   /// 2. Call malloc with that argument.
1618   /// 3. Bitcast the result of the malloc call to the specified type.
1619   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620                                    Type *AllocTy, Value *AllocSize,
1621                                    Value *ArraySize = nullptr,
1622                                    Function *MallocF = nullptr,
1623                                    const Twine &Name = "");
1624   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625                                    Type *AllocTy, Value *AllocSize,
1626                                    Value *ArraySize = nullptr,
1627                                    Function *MallocF = nullptr,
1628                                    const Twine &Name = "");
1629   static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630                                    Type *AllocTy, Value *AllocSize,
1631                                    Value *ArraySize = nullptr,
1632                                    ArrayRef<OperandBundleDef> Bundles = None,
1633                                    Function *MallocF = nullptr,
1634                                    const Twine &Name = "");
1635   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636                                    Type *AllocTy, Value *AllocSize,
1637                                    Value *ArraySize = nullptr,
1638                                    ArrayRef<OperandBundleDef> Bundles = None,
1639                                    Function *MallocF = nullptr,
1640                                    const Twine &Name = "");
1641   /// Generate the IR for a call to the builtin free function.
1642   static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643   static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644   static Instruction *CreateFree(Value *Source,
1645                                  ArrayRef<OperandBundleDef> Bundles,
1646                                  Instruction *InsertBefore);
1647   static Instruction *CreateFree(Value *Source,
1648                                  ArrayRef<OperandBundleDef> Bundles,
1649                                  BasicBlock *InsertAtEnd);
1650 
1651   // Note that 'musttail' implies 'tail'.
1652   enum TailCallKind : unsigned {
1653     TCK_None = 0,
1654     TCK_Tail = 1,
1655     TCK_MustTail = 2,
1656     TCK_NoTail = 3,
1657     TCK_LAST = TCK_NoTail
1658   };
1659 
1660   using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661   static_assert(
1662       Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663       "Bitfields must be contiguous");
1664 
1665   TailCallKind getTailCallKind() const {
1666     return getSubclassData<TailCallKindField>();
1667   }
1668 
1669   bool isTailCall() const {
1670     TailCallKind Kind = getTailCallKind();
1671     return Kind == TCK_Tail || Kind == TCK_MustTail;
1672   }
1673 
1674   bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675 
1676   bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677 
1678   void setTailCallKind(TailCallKind TCK) {
1679     setSubclassData<TailCallKindField>(TCK);
1680   }
1681 
1682   void setTailCall(bool IsTc = true) {
1683     setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684   }
1685 
1686   /// Return true if the call can return twice
1687   bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688   void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1689 
1690   // Methods for support type inquiry through isa, cast, and dyn_cast:
1691   static bool classof(const Instruction *I) {
1692     return I->getOpcode() == Instruction::Call;
1693   }
1694   static bool classof(const Value *V) {
1695     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1696   }
1697 
1698   /// Updates profile metadata by scaling it by \p S / \p T.
1699   void updateProfWeight(uint64_t S, uint64_t T);
1700 
1701 private:
1702   // Shadow Instruction::setInstructionSubclassData with a private forwarding
1703   // method so that subclasses cannot accidentally use it.
1704   template <typename Bitfield>
1705   void setSubclassData(typename Bitfield::Type Value) {
1706     Instruction::setSubclassData<Bitfield>(Value);
1707   }
1708 };
1709 
1710 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1711                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1712                    BasicBlock *InsertAtEnd)
1713     : CallBase(Ty->getReturnType(), Instruction::Call,
1714                OperandTraits<CallBase>::op_end(this) -
1715                    (Args.size() + CountBundleInputs(Bundles) + 1),
1716                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1717                InsertAtEnd) {
1718   init(Ty, Func, Args, Bundles, NameStr);
1719 }
1720 
1721 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1722                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1723                    Instruction *InsertBefore)
1724     : CallBase(Ty->getReturnType(), Instruction::Call,
1725                OperandTraits<CallBase>::op_end(this) -
1726                    (Args.size() + CountBundleInputs(Bundles) + 1),
1727                unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1728                InsertBefore) {
1729   init(Ty, Func, Args, Bundles, NameStr);
1730 }
1731 
1732 //===----------------------------------------------------------------------===//
1733 //                               SelectInst Class
1734 //===----------------------------------------------------------------------===//
1735 
1736 /// This class represents the LLVM 'select' instruction.
1737 ///
1738 class SelectInst : public Instruction {
1739   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1740              Instruction *InsertBefore)
1741     : Instruction(S1->getType(), Instruction::Select,
1742                   &Op<0>(), 3, InsertBefore) {
1743     init(C, S1, S2);
1744     setName(NameStr);
1745   }
1746 
1747   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1748              BasicBlock *InsertAtEnd)
1749     : Instruction(S1->getType(), Instruction::Select,
1750                   &Op<0>(), 3, InsertAtEnd) {
1751     init(C, S1, S2);
1752     setName(NameStr);
1753   }
1754 
1755   void init(Value *C, Value *S1, Value *S2) {
1756     assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1757     Op<0>() = C;
1758     Op<1>() = S1;
1759     Op<2>() = S2;
1760   }
1761 
1762 protected:
1763   // Note: Instruction needs to be a friend here to call cloneImpl.
1764   friend class Instruction;
1765 
1766   SelectInst *cloneImpl() const;
1767 
1768 public:
1769   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1770                             const Twine &NameStr = "",
1771                             Instruction *InsertBefore = nullptr,
1772                             Instruction *MDFrom = nullptr) {
1773     SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1774     if (MDFrom)
1775       Sel->copyMetadata(*MDFrom);
1776     return Sel;
1777   }
1778 
1779   static SelectInst *Create(Value *C, Value *S1, Value *S2,
1780                             const Twine &NameStr,
1781                             BasicBlock *InsertAtEnd) {
1782     return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1783   }
1784 
1785   const Value *getCondition() const { return Op<0>(); }
1786   const Value *getTrueValue() const { return Op<1>(); }
1787   const Value *getFalseValue() const { return Op<2>(); }
1788   Value *getCondition() { return Op<0>(); }
1789   Value *getTrueValue() { return Op<1>(); }
1790   Value *getFalseValue() { return Op<2>(); }
1791 
1792   void setCondition(Value *V) { Op<0>() = V; }
1793   void setTrueValue(Value *V) { Op<1>() = V; }
1794   void setFalseValue(Value *V) { Op<2>() = V; }
1795 
1796   /// Swap the true and false values of the select instruction.
1797   /// This doesn't swap prof metadata.
1798   void swapValues() { Op<1>().swap(Op<2>()); }
1799 
1800   /// Return a string if the specified operands are invalid
1801   /// for a select operation, otherwise return null.
1802   static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1803 
1804   /// Transparently provide more efficient getOperand methods.
1805   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1806 
1807   OtherOps getOpcode() const {
1808     return static_cast<OtherOps>(Instruction::getOpcode());
1809   }
1810 
1811   // Methods for support type inquiry through isa, cast, and dyn_cast:
1812   static bool classof(const Instruction *I) {
1813     return I->getOpcode() == Instruction::Select;
1814   }
1815   static bool classof(const Value *V) {
1816     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1817   }
1818 };
1819 
1820 template <>
1821 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1822 };
1823 
1824 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1825 
1826 //===----------------------------------------------------------------------===//
1827 //                                VAArgInst Class
1828 //===----------------------------------------------------------------------===//
1829 
1830 /// This class represents the va_arg llvm instruction, which returns
1831 /// an argument of the specified type given a va_list and increments that list
1832 ///
1833 class VAArgInst : public UnaryInstruction {
1834 protected:
1835   // Note: Instruction needs to be a friend here to call cloneImpl.
1836   friend class Instruction;
1837 
1838   VAArgInst *cloneImpl() const;
1839 
1840 public:
1841   VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1842              Instruction *InsertBefore = nullptr)
1843     : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1844     setName(NameStr);
1845   }
1846 
1847   VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1848             BasicBlock *InsertAtEnd)
1849     : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1850     setName(NameStr);
1851   }
1852 
1853   Value *getPointerOperand() { return getOperand(0); }
1854   const Value *getPointerOperand() const { return getOperand(0); }
1855   static unsigned getPointerOperandIndex() { return 0U; }
1856 
1857   // Methods for support type inquiry through isa, cast, and dyn_cast:
1858   static bool classof(const Instruction *I) {
1859     return I->getOpcode() == VAArg;
1860   }
1861   static bool classof(const Value *V) {
1862     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1863   }
1864 };
1865 
1866 //===----------------------------------------------------------------------===//
1867 //                                ExtractElementInst Class
1868 //===----------------------------------------------------------------------===//
1869 
1870 /// This instruction extracts a single (scalar)
1871 /// element from a VectorType value
1872 ///
1873 class ExtractElementInst : public Instruction {
1874   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1875                      Instruction *InsertBefore = nullptr);
1876   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1877                      BasicBlock *InsertAtEnd);
1878 
1879 protected:
1880   // Note: Instruction needs to be a friend here to call cloneImpl.
1881   friend class Instruction;
1882 
1883   ExtractElementInst *cloneImpl() const;
1884 
1885 public:
1886   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1887                                    const Twine &NameStr = "",
1888                                    Instruction *InsertBefore = nullptr) {
1889     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1890   }
1891 
1892   static ExtractElementInst *Create(Value *Vec, Value *Idx,
1893                                    const Twine &NameStr,
1894                                    BasicBlock *InsertAtEnd) {
1895     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1896   }
1897 
1898   /// Return true if an extractelement instruction can be
1899   /// formed with the specified operands.
1900   static bool isValidOperands(const Value *Vec, const Value *Idx);
1901 
1902   Value *getVectorOperand() { return Op<0>(); }
1903   Value *getIndexOperand() { return Op<1>(); }
1904   const Value *getVectorOperand() const { return Op<0>(); }
1905   const Value *getIndexOperand() const { return Op<1>(); }
1906 
1907   VectorType *getVectorOperandType() const {
1908     return cast<VectorType>(getVectorOperand()->getType());
1909   }
1910 
1911   /// Transparently provide more efficient getOperand methods.
1912   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1913 
1914   // Methods for support type inquiry through isa, cast, and dyn_cast:
1915   static bool classof(const Instruction *I) {
1916     return I->getOpcode() == Instruction::ExtractElement;
1917   }
1918   static bool classof(const Value *V) {
1919     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1920   }
1921 };
1922 
1923 template <>
1924 struct OperandTraits<ExtractElementInst> :
1925   public FixedNumOperandTraits<ExtractElementInst, 2> {
1926 };
1927 
1928 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1929 
1930 //===----------------------------------------------------------------------===//
1931 //                                InsertElementInst Class
1932 //===----------------------------------------------------------------------===//
1933 
1934 /// This instruction inserts a single (scalar)
1935 /// element into a VectorType value
1936 ///
1937 class InsertElementInst : public Instruction {
1938   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1939                     const Twine &NameStr = "",
1940                     Instruction *InsertBefore = nullptr);
1941   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1942                     BasicBlock *InsertAtEnd);
1943 
1944 protected:
1945   // Note: Instruction needs to be a friend here to call cloneImpl.
1946   friend class Instruction;
1947 
1948   InsertElementInst *cloneImpl() const;
1949 
1950 public:
1951   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1952                                    const Twine &NameStr = "",
1953                                    Instruction *InsertBefore = nullptr) {
1954     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1955   }
1956 
1957   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1958                                    const Twine &NameStr,
1959                                    BasicBlock *InsertAtEnd) {
1960     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1961   }
1962 
1963   /// Return true if an insertelement instruction can be
1964   /// formed with the specified operands.
1965   static bool isValidOperands(const Value *Vec, const Value *NewElt,
1966                               const Value *Idx);
1967 
1968   /// Overload to return most specific vector type.
1969   ///
1970   VectorType *getType() const {
1971     return cast<VectorType>(Instruction::getType());
1972   }
1973 
1974   /// Transparently provide more efficient getOperand methods.
1975   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1976 
1977   // Methods for support type inquiry through isa, cast, and dyn_cast:
1978   static bool classof(const Instruction *I) {
1979     return I->getOpcode() == Instruction::InsertElement;
1980   }
1981   static bool classof(const Value *V) {
1982     return isa<Instruction>(V) && classof(cast<Instruction>(V));
1983   }
1984 };
1985 
1986 template <>
1987 struct OperandTraits<InsertElementInst> :
1988   public FixedNumOperandTraits<InsertElementInst, 3> {
1989 };
1990 
1991 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1992 
1993 //===----------------------------------------------------------------------===//
1994 //                           ShuffleVectorInst Class
1995 //===----------------------------------------------------------------------===//
1996 
1997 constexpr int UndefMaskElem = -1;
1998 
1999 /// This instruction constructs a fixed permutation of two
2000 /// input vectors.
2001 ///
2002 /// For each element of the result vector, the shuffle mask selects an element
2003 /// from one of the input vectors to copy to the result. Non-negative elements
2004 /// in the mask represent an index into the concatenated pair of input vectors.
2005 /// UndefMaskElem (-1) specifies that the result element is undefined.
2006 ///
2007 /// For scalable vectors, all the elements of the mask must be 0 or -1. This
2008 /// requirement may be relaxed in the future.
2009 class ShuffleVectorInst : public Instruction {
2010   SmallVector<int, 4> ShuffleMask;
2011   Constant *ShuffleMaskForBitcode;
2012 
2013 protected:
2014   // Note: Instruction needs to be a friend here to call cloneImpl.
2015   friend class Instruction;
2016 
2017   ShuffleVectorInst *cloneImpl() const;
2018 
2019 public:
2020   ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "",
2021                     Instruction *InsertBefore = nullptr);
2022   ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr,
2023                     BasicBlock *InsertAtEnd);
2024   ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "",
2025                     Instruction *InsertBefore = nullptr);
2026   ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr,
2027                     BasicBlock *InsertAtEnd);
2028   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2029                     const Twine &NameStr = "",
2030                     Instruction *InsertBefor = nullptr);
2031   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2032                     const Twine &NameStr, BasicBlock *InsertAtEnd);
2033   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2034                     const Twine &NameStr = "",
2035                     Instruction *InsertBefor = nullptr);
2036   ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2037                     const Twine &NameStr, BasicBlock *InsertAtEnd);
2038 
2039   void *operator new(size_t S) { return User::operator new(S, 2); }
2040   void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2041 
2042   /// Swap the operands and adjust the mask to preserve the semantics
2043   /// of the instruction.
2044   void commute();
2045 
2046   /// Return true if a shufflevector instruction can be
2047   /// formed with the specified operands.
2048   static bool isValidOperands(const Value *V1, const Value *V2,
2049                               const Value *Mask);
2050   static bool isValidOperands(const Value *V1, const Value *V2,
2051                               ArrayRef<int> Mask);
2052 
2053   /// Overload to return most specific vector type.
2054   ///
2055   VectorType *getType() const {
2056     return cast<VectorType>(Instruction::getType());
2057   }
2058 
2059   /// Transparently provide more efficient getOperand methods.
2060   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2061 
2062   /// Return the shuffle mask value of this instruction for the given element
2063   /// index. Return UndefMaskElem if the element is undef.
2064   int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2065 
2066   /// Convert the input shuffle mask operand to a vector of integers. Undefined
2067   /// elements of the mask are returned as UndefMaskElem.
2068   static void getShuffleMask(const Constant *Mask,
2069                              SmallVectorImpl<int> &Result);
2070 
2071   /// Return the mask for this instruction as a vector of integers. Undefined
2072   /// elements of the mask are returned as UndefMaskElem.
2073   void getShuffleMask(SmallVectorImpl<int> &Result) const {
2074     Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2075   }
2076 
2077   /// Return the mask for this instruction, for use in bitcode.
2078   ///
2079   /// TODO: This is temporary until we decide a new bitcode encoding for
2080   /// shufflevector.
2081   Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2082 
2083   static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2084                                                 Type *ResultTy);
2085 
2086   void setShuffleMask(ArrayRef<int> Mask);
2087 
2088   ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2089 
2090   /// Return true if this shuffle returns a vector with a different number of
2091   /// elements than its source vectors.
2092   /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2093   ///           shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2094   bool changesLength() const {
2095     unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2096                                  ->getElementCount()
2097                                  .getKnownMinValue();
2098     unsigned NumMaskElts = ShuffleMask.size();
2099     return NumSourceElts != NumMaskElts;
2100   }
2101 
2102   /// Return true if this shuffle returns a vector with a greater number of
2103   /// elements than its source vectors.
2104   /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2105   bool increasesLength() const {
2106     unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2107                                  ->getElementCount()
2108                                  .getKnownMinValue();
2109     unsigned NumMaskElts = ShuffleMask.size();
2110     return NumSourceElts < NumMaskElts;
2111   }
2112 
2113   /// Return true if this shuffle mask chooses elements from exactly one source
2114   /// vector.
2115   /// Example: <7,5,undef,7>
2116   /// This assumes that vector operands are the same length as the mask.
2117   static bool isSingleSourceMask(ArrayRef<int> Mask);
2118   static bool isSingleSourceMask(const Constant *Mask) {
2119     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2120     SmallVector<int, 16> MaskAsInts;
2121     getShuffleMask(Mask, MaskAsInts);
2122     return isSingleSourceMask(MaskAsInts);
2123   }
2124 
2125   /// Return true if this shuffle chooses elements from exactly one source
2126   /// vector without changing the length of that vector.
2127   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2128   /// TODO: Optionally allow length-changing shuffles.
2129   bool isSingleSource() const {
2130     return !changesLength() && isSingleSourceMask(ShuffleMask);
2131   }
2132 
2133   /// Return true if this shuffle mask chooses elements from exactly one source
2134   /// vector without lane crossings. A shuffle using this mask is not
2135   /// necessarily a no-op because it may change the number of elements from its
2136   /// input vectors or it may provide demanded bits knowledge via undef lanes.
2137   /// Example: <undef,undef,2,3>
2138   static bool isIdentityMask(ArrayRef<int> Mask);
2139   static bool isIdentityMask(const Constant *Mask) {
2140     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2141     SmallVector<int, 16> MaskAsInts;
2142     getShuffleMask(Mask, MaskAsInts);
2143     return isIdentityMask(MaskAsInts);
2144   }
2145 
2146   /// Return true if this shuffle chooses elements from exactly one source
2147   /// vector without lane crossings and does not change the number of elements
2148   /// from its input vectors.
2149   /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2150   bool isIdentity() const {
2151     return !changesLength() && isIdentityMask(ShuffleMask);
2152   }
2153 
2154   /// Return true if this shuffle lengthens exactly one source vector with
2155   /// undefs in the high elements.
2156   bool isIdentityWithPadding() const;
2157 
2158   /// Return true if this shuffle extracts the first N elements of exactly one
2159   /// source vector.
2160   bool isIdentityWithExtract() const;
2161 
2162   /// Return true if this shuffle concatenates its 2 source vectors. This
2163   /// returns false if either input is undefined. In that case, the shuffle is
2164   /// is better classified as an identity with padding operation.
2165   bool isConcat() const;
2166 
2167   /// Return true if this shuffle mask chooses elements from its source vectors
2168   /// without lane crossings. A shuffle using this mask would be
2169   /// equivalent to a vector select with a constant condition operand.
2170   /// Example: <4,1,6,undef>
2171   /// This returns false if the mask does not choose from both input vectors.
2172   /// In that case, the shuffle is better classified as an identity shuffle.
2173   /// This assumes that vector operands are the same length as the mask
2174   /// (a length-changing shuffle can never be equivalent to a vector select).
2175   static bool isSelectMask(ArrayRef<int> Mask);
2176   static bool isSelectMask(const Constant *Mask) {
2177     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2178     SmallVector<int, 16> MaskAsInts;
2179     getShuffleMask(Mask, MaskAsInts);
2180     return isSelectMask(MaskAsInts);
2181   }
2182 
2183   /// Return true if this shuffle chooses elements from its source vectors
2184   /// without lane crossings and all operands have the same number of elements.
2185   /// In other words, this shuffle is equivalent to a vector select with a
2186   /// constant condition operand.
2187   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2188   /// This returns false if the mask does not choose from both input vectors.
2189   /// In that case, the shuffle is better classified as an identity shuffle.
2190   /// TODO: Optionally allow length-changing shuffles.
2191   bool isSelect() const {
2192     return !changesLength() && isSelectMask(ShuffleMask);
2193   }
2194 
2195   /// Return true if this shuffle mask swaps the order of elements from exactly
2196   /// one source vector.
2197   /// Example: <7,6,undef,4>
2198   /// This assumes that vector operands are the same length as the mask.
2199   static bool isReverseMask(ArrayRef<int> Mask);
2200   static bool isReverseMask(const Constant *Mask) {
2201     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2202     SmallVector<int, 16> MaskAsInts;
2203     getShuffleMask(Mask, MaskAsInts);
2204     return isReverseMask(MaskAsInts);
2205   }
2206 
2207   /// Return true if this shuffle swaps the order of elements from exactly
2208   /// one source vector.
2209   /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2210   /// TODO: Optionally allow length-changing shuffles.
2211   bool isReverse() const {
2212     return !changesLength() && isReverseMask(ShuffleMask);
2213   }
2214 
2215   /// Return true if this shuffle mask chooses all elements with the same value
2216   /// as the first element of exactly one source vector.
2217   /// Example: <4,undef,undef,4>
2218   /// This assumes that vector operands are the same length as the mask.
2219   static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2220   static bool isZeroEltSplatMask(const Constant *Mask) {
2221     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2222     SmallVector<int, 16> MaskAsInts;
2223     getShuffleMask(Mask, MaskAsInts);
2224     return isZeroEltSplatMask(MaskAsInts);
2225   }
2226 
2227   /// Return true if all elements of this shuffle are the same value as the
2228   /// first element of exactly one source vector without changing the length
2229   /// of that vector.
2230   /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2231   /// TODO: Optionally allow length-changing shuffles.
2232   /// TODO: Optionally allow splats from other elements.
2233   bool isZeroEltSplat() const {
2234     return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2235   }
2236 
2237   /// Return true if this shuffle mask is a transpose mask.
2238   /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2239   /// even- or odd-numbered vector elements from two n-dimensional source
2240   /// vectors and write each result into consecutive elements of an
2241   /// n-dimensional destination vector. Two shuffles are necessary to complete
2242   /// the transpose, one for the even elements and another for the odd elements.
2243   /// This description closely follows how the TRN1 and TRN2 AArch64
2244   /// instructions operate.
2245   ///
2246   /// For example, a simple 2x2 matrix can be transposed with:
2247   ///
2248   ///   ; Original matrix
2249   ///   m0 = < a, b >
2250   ///   m1 = < c, d >
2251   ///
2252   ///   ; Transposed matrix
2253   ///   t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2254   ///   t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2255   ///
2256   /// For matrices having greater than n columns, the resulting nx2 transposed
2257   /// matrix is stored in two result vectors such that one vector contains
2258   /// interleaved elements from all the even-numbered rows and the other vector
2259   /// contains interleaved elements from all the odd-numbered rows. For example,
2260   /// a 2x4 matrix can be transposed with:
2261   ///
2262   ///   ; Original matrix
2263   ///   m0 = < a, b, c, d >
2264   ///   m1 = < e, f, g, h >
2265   ///
2266   ///   ; Transposed matrix
2267   ///   t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2268   ///   t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2269   static bool isTransposeMask(ArrayRef<int> Mask);
2270   static bool isTransposeMask(const Constant *Mask) {
2271     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2272     SmallVector<int, 16> MaskAsInts;
2273     getShuffleMask(Mask, MaskAsInts);
2274     return isTransposeMask(MaskAsInts);
2275   }
2276 
2277   /// Return true if this shuffle transposes the elements of its inputs without
2278   /// changing the length of the vectors. This operation may also be known as a
2279   /// merge or interleave. See the description for isTransposeMask() for the
2280   /// exact specification.
2281   /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2282   bool isTranspose() const {
2283     return !changesLength() && isTransposeMask(ShuffleMask);
2284   }
2285 
2286   /// Return true if this shuffle mask is an extract subvector mask.
2287   /// A valid extract subvector mask returns a smaller vector from a single
2288   /// source operand. The base extraction index is returned as well.
2289   static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2290                                      int &Index);
2291   static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2292                                      int &Index) {
2293     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2294     // Not possible to express a shuffle mask for a scalable vector for this
2295     // case.
2296     if (isa<ScalableVectorType>(Mask->getType()))
2297       return false;
2298     SmallVector<int, 16> MaskAsInts;
2299     getShuffleMask(Mask, MaskAsInts);
2300     return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2301   }
2302 
2303   /// Return true if this shuffle mask is an extract subvector mask.
2304   bool isExtractSubvectorMask(int &Index) const {
2305     // Not possible to express a shuffle mask for a scalable vector for this
2306     // case.
2307     if (isa<ScalableVectorType>(getType()))
2308       return false;
2309 
2310     int NumSrcElts =
2311         cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2312     return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2313   }
2314 
2315   /// Return true if this shuffle mask is an insert subvector mask.
2316   /// A valid insert subvector mask inserts the lowest elements of a second
2317   /// source operand into an in-place first source operand operand.
2318   /// Both the sub vector width and the insertion index is returned.
2319   static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2320                                     int &NumSubElts, int &Index);
2321   static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2322                                     int &NumSubElts, int &Index) {
2323     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2324     // Not possible to express a shuffle mask for a scalable vector for this
2325     // case.
2326     if (isa<ScalableVectorType>(Mask->getType()))
2327       return false;
2328     SmallVector<int, 16> MaskAsInts;
2329     getShuffleMask(Mask, MaskAsInts);
2330     return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2331   }
2332 
2333   /// Return true if this shuffle mask is an insert subvector mask.
2334   bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2335     // Not possible to express a shuffle mask for a scalable vector for this
2336     // case.
2337     if (isa<ScalableVectorType>(getType()))
2338       return false;
2339 
2340     int NumSrcElts =
2341         cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2342     return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2343   }
2344 
2345   /// Return true if this shuffle mask replicates each of the \p VF elements
2346   /// in a vector \p ReplicationFactor times.
2347   /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
2348   ///   <0,0,0,1,1,1,2,2,2,3,3,3>
2349   static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor,
2350                                 int &VF);
2351   static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor,
2352                                 int &VF) {
2353     assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2354     // Not possible to express a shuffle mask for a scalable vector for this
2355     // case.
2356     if (isa<ScalableVectorType>(Mask->getType()))
2357       return false;
2358     SmallVector<int, 16> MaskAsInts;
2359     getShuffleMask(Mask, MaskAsInts);
2360     return isReplicationMask(MaskAsInts, ReplicationFactor, VF);
2361   }
2362 
2363   /// Return true if this shuffle mask is a replication mask.
2364   bool isReplicationMask(int &ReplicationFactor, int &VF) const;
2365 
2366   /// Change values in a shuffle permute mask assuming the two vector operands
2367   /// of length InVecNumElts have swapped position.
2368   static void commuteShuffleMask(MutableArrayRef<int> Mask,
2369                                  unsigned InVecNumElts) {
2370     for (int &Idx : Mask) {
2371       if (Idx == -1)
2372         continue;
2373       Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2374       assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2375              "shufflevector mask index out of range");
2376     }
2377   }
2378 
2379   // Methods for support type inquiry through isa, cast, and dyn_cast:
2380   static bool classof(const Instruction *I) {
2381     return I->getOpcode() == Instruction::ShuffleVector;
2382   }
2383   static bool classof(const Value *V) {
2384     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2385   }
2386 };
2387 
2388 template <>
2389 struct OperandTraits<ShuffleVectorInst>
2390     : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2391 
2392 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2393 
2394 //===----------------------------------------------------------------------===//
2395 //                                ExtractValueInst Class
2396 //===----------------------------------------------------------------------===//
2397 
2398 /// This instruction extracts a struct member or array
2399 /// element value from an aggregate value.
2400 ///
2401 class ExtractValueInst : public UnaryInstruction {
2402   SmallVector<unsigned, 4> Indices;
2403 
2404   ExtractValueInst(const ExtractValueInst &EVI);
2405 
2406   /// Constructors - Create a extractvalue instruction with a base aggregate
2407   /// value and a list of indices.  The first ctor can optionally insert before
2408   /// an existing instruction, the second appends the new instruction to the
2409   /// specified BasicBlock.
2410   inline ExtractValueInst(Value *Agg,
2411                           ArrayRef<unsigned> Idxs,
2412                           const Twine &NameStr,
2413                           Instruction *InsertBefore);
2414   inline ExtractValueInst(Value *Agg,
2415                           ArrayRef<unsigned> Idxs,
2416                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2417 
2418   void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2419 
2420 protected:
2421   // Note: Instruction needs to be a friend here to call cloneImpl.
2422   friend class Instruction;
2423 
2424   ExtractValueInst *cloneImpl() const;
2425 
2426 public:
2427   static ExtractValueInst *Create(Value *Agg,
2428                                   ArrayRef<unsigned> Idxs,
2429                                   const Twine &NameStr = "",
2430                                   Instruction *InsertBefore = nullptr) {
2431     return new
2432       ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2433   }
2434 
2435   static ExtractValueInst *Create(Value *Agg,
2436                                   ArrayRef<unsigned> Idxs,
2437                                   const Twine &NameStr,
2438                                   BasicBlock *InsertAtEnd) {
2439     return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2440   }
2441 
2442   /// Returns the type of the element that would be extracted
2443   /// with an extractvalue instruction with the specified parameters.
2444   ///
2445   /// Null is returned if the indices are invalid for the specified type.
2446   static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2447 
2448   using idx_iterator = const unsigned*;
2449 
2450   inline idx_iterator idx_begin() const { return Indices.begin(); }
2451   inline idx_iterator idx_end()   const { return Indices.end(); }
2452   inline iterator_range<idx_iterator> indices() const {
2453     return make_range(idx_begin(), idx_end());
2454   }
2455 
2456   Value *getAggregateOperand() {
2457     return getOperand(0);
2458   }
2459   const Value *getAggregateOperand() const {
2460     return getOperand(0);
2461   }
2462   static unsigned getAggregateOperandIndex() {
2463     return 0U;                      // get index for modifying correct operand
2464   }
2465 
2466   ArrayRef<unsigned> getIndices() const {
2467     return Indices;
2468   }
2469 
2470   unsigned getNumIndices() const {
2471     return (unsigned)Indices.size();
2472   }
2473 
2474   bool hasIndices() const {
2475     return true;
2476   }
2477 
2478   // Methods for support type inquiry through isa, cast, and dyn_cast:
2479   static bool classof(const Instruction *I) {
2480     return I->getOpcode() == Instruction::ExtractValue;
2481   }
2482   static bool classof(const Value *V) {
2483     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2484   }
2485 };
2486 
2487 ExtractValueInst::ExtractValueInst(Value *Agg,
2488                                    ArrayRef<unsigned> Idxs,
2489                                    const Twine &NameStr,
2490                                    Instruction *InsertBefore)
2491   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2492                      ExtractValue, Agg, InsertBefore) {
2493   init(Idxs, NameStr);
2494 }
2495 
2496 ExtractValueInst::ExtractValueInst(Value *Agg,
2497                                    ArrayRef<unsigned> Idxs,
2498                                    const Twine &NameStr,
2499                                    BasicBlock *InsertAtEnd)
2500   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2501                      ExtractValue, Agg, InsertAtEnd) {
2502   init(Idxs, NameStr);
2503 }
2504 
2505 //===----------------------------------------------------------------------===//
2506 //                                InsertValueInst Class
2507 //===----------------------------------------------------------------------===//
2508 
2509 /// This instruction inserts a struct field of array element
2510 /// value into an aggregate value.
2511 ///
2512 class InsertValueInst : public Instruction {
2513   SmallVector<unsigned, 4> Indices;
2514 
2515   InsertValueInst(const InsertValueInst &IVI);
2516 
2517   /// Constructors - Create a insertvalue instruction with a base aggregate
2518   /// value, a value to insert, and a list of indices.  The first ctor can
2519   /// optionally insert before an existing instruction, the second appends
2520   /// the new instruction to the specified BasicBlock.
2521   inline InsertValueInst(Value *Agg, Value *Val,
2522                          ArrayRef<unsigned> Idxs,
2523                          const Twine &NameStr,
2524                          Instruction *InsertBefore);
2525   inline InsertValueInst(Value *Agg, Value *Val,
2526                          ArrayRef<unsigned> Idxs,
2527                          const Twine &NameStr, BasicBlock *InsertAtEnd);
2528 
2529   /// Constructors - These two constructors are convenience methods because one
2530   /// and two index insertvalue instructions are so common.
2531   InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2532                   const Twine &NameStr = "",
2533                   Instruction *InsertBefore = nullptr);
2534   InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2535                   BasicBlock *InsertAtEnd);
2536 
2537   void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2538             const Twine &NameStr);
2539 
2540 protected:
2541   // Note: Instruction needs to be a friend here to call cloneImpl.
2542   friend class Instruction;
2543 
2544   InsertValueInst *cloneImpl() const;
2545 
2546 public:
2547   // allocate space for exactly two operands
2548   void *operator new(size_t S) { return User::operator new(S, 2); }
2549   void operator delete(void *Ptr) { User::operator delete(Ptr); }
2550 
2551   static InsertValueInst *Create(Value *Agg, Value *Val,
2552                                  ArrayRef<unsigned> Idxs,
2553                                  const Twine &NameStr = "",
2554                                  Instruction *InsertBefore = nullptr) {
2555     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2556   }
2557 
2558   static InsertValueInst *Create(Value *Agg, Value *Val,
2559                                  ArrayRef<unsigned> Idxs,
2560                                  const Twine &NameStr,
2561                                  BasicBlock *InsertAtEnd) {
2562     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2563   }
2564 
2565   /// Transparently provide more efficient getOperand methods.
2566   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2567 
2568   using idx_iterator = const unsigned*;
2569 
2570   inline idx_iterator idx_begin() const { return Indices.begin(); }
2571   inline idx_iterator idx_end()   const { return Indices.end(); }
2572   inline iterator_range<idx_iterator> indices() const {
2573     return make_range(idx_begin(), idx_end());
2574   }
2575 
2576   Value *getAggregateOperand() {
2577     return getOperand(0);
2578   }
2579   const Value *getAggregateOperand() const {
2580     return getOperand(0);
2581   }
2582   static unsigned getAggregateOperandIndex() {
2583     return 0U;                      // get index for modifying correct operand
2584   }
2585 
2586   Value *getInsertedValueOperand() {
2587     return getOperand(1);
2588   }
2589   const Value *getInsertedValueOperand() const {
2590     return getOperand(1);
2591   }
2592   static unsigned getInsertedValueOperandIndex() {
2593     return 1U;                      // get index for modifying correct operand
2594   }
2595 
2596   ArrayRef<unsigned> getIndices() const {
2597     return Indices;
2598   }
2599 
2600   unsigned getNumIndices() const {
2601     return (unsigned)Indices.size();
2602   }
2603 
2604   bool hasIndices() const {
2605     return true;
2606   }
2607 
2608   // Methods for support type inquiry through isa, cast, and dyn_cast:
2609   static bool classof(const Instruction *I) {
2610     return I->getOpcode() == Instruction::InsertValue;
2611   }
2612   static bool classof(const Value *V) {
2613     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2614   }
2615 };
2616 
2617 template <>
2618 struct OperandTraits<InsertValueInst> :
2619   public FixedNumOperandTraits<InsertValueInst, 2> {
2620 };
2621 
2622 InsertValueInst::InsertValueInst(Value *Agg,
2623                                  Value *Val,
2624                                  ArrayRef<unsigned> Idxs,
2625                                  const Twine &NameStr,
2626                                  Instruction *InsertBefore)
2627   : Instruction(Agg->getType(), InsertValue,
2628                 OperandTraits<InsertValueInst>::op_begin(this),
2629                 2, InsertBefore) {
2630   init(Agg, Val, Idxs, NameStr);
2631 }
2632 
2633 InsertValueInst::InsertValueInst(Value *Agg,
2634                                  Value *Val,
2635                                  ArrayRef<unsigned> Idxs,
2636                                  const Twine &NameStr,
2637                                  BasicBlock *InsertAtEnd)
2638   : Instruction(Agg->getType(), InsertValue,
2639                 OperandTraits<InsertValueInst>::op_begin(this),
2640                 2, InsertAtEnd) {
2641   init(Agg, Val, Idxs, NameStr);
2642 }
2643 
2644 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2645 
2646 //===----------------------------------------------------------------------===//
2647 //                               PHINode Class
2648 //===----------------------------------------------------------------------===//
2649 
2650 // PHINode - The PHINode class is used to represent the magical mystical PHI
2651 // node, that can not exist in nature, but can be synthesized in a computer
2652 // scientist's overactive imagination.
2653 //
2654 class PHINode : public Instruction {
2655   /// The number of operands actually allocated.  NumOperands is
2656   /// the number actually in use.
2657   unsigned ReservedSpace;
2658 
2659   PHINode(const PHINode &PN);
2660 
2661   explicit PHINode(Type *Ty, unsigned NumReservedValues,
2662                    const Twine &NameStr = "",
2663                    Instruction *InsertBefore = nullptr)
2664     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2665       ReservedSpace(NumReservedValues) {
2666     assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2667     setName(NameStr);
2668     allocHungoffUses(ReservedSpace);
2669   }
2670 
2671   PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2672           BasicBlock *InsertAtEnd)
2673     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2674       ReservedSpace(NumReservedValues) {
2675     assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2676     setName(NameStr);
2677     allocHungoffUses(ReservedSpace);
2678   }
2679 
2680 protected:
2681   // Note: Instruction needs to be a friend here to call cloneImpl.
2682   friend class Instruction;
2683 
2684   PHINode *cloneImpl() const;
2685 
2686   // allocHungoffUses - this is more complicated than the generic
2687   // User::allocHungoffUses, because we have to allocate Uses for the incoming
2688   // values and pointers to the incoming blocks, all in one allocation.
2689   void allocHungoffUses(unsigned N) {
2690     User::allocHungoffUses(N, /* IsPhi */ true);
2691   }
2692 
2693 public:
2694   /// Constructors - NumReservedValues is a hint for the number of incoming
2695   /// edges that this phi node will have (use 0 if you really have no idea).
2696   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2697                          const Twine &NameStr = "",
2698                          Instruction *InsertBefore = nullptr) {
2699     return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2700   }
2701 
2702   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2703                          const Twine &NameStr, BasicBlock *InsertAtEnd) {
2704     return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2705   }
2706 
2707   /// Provide fast operand accessors
2708   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2709 
2710   // Block iterator interface. This provides access to the list of incoming
2711   // basic blocks, which parallels the list of incoming values.
2712 
2713   using block_iterator = BasicBlock **;
2714   using const_block_iterator = BasicBlock * const *;
2715 
2716   block_iterator block_begin() {
2717     return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2718   }
2719 
2720   const_block_iterator block_begin() const {
2721     return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2722   }
2723 
2724   block_iterator block_end() {
2725     return block_begin() + getNumOperands();
2726   }
2727 
2728   const_block_iterator block_end() const {
2729     return block_begin() + getNumOperands();
2730   }
2731 
2732   iterator_range<block_iterator> blocks() {
2733     return make_range(block_begin(), block_end());
2734   }
2735 
2736   iterator_range<const_block_iterator> blocks() const {
2737     return make_range(block_begin(), block_end());
2738   }
2739 
2740   op_range incoming_values() { return operands(); }
2741 
2742   const_op_range incoming_values() const { return operands(); }
2743 
2744   /// Return the number of incoming edges
2745   ///
2746   unsigned getNumIncomingValues() const { return getNumOperands(); }
2747 
2748   /// Return incoming value number x
2749   ///
2750   Value *getIncomingValue(unsigned i) const {
2751     return getOperand(i);
2752   }
2753   void setIncomingValue(unsigned i, Value *V) {
2754     assert(V && "PHI node got a null value!");
2755     assert(getType() == V->getType() &&
2756            "All operands to PHI node must be the same type as the PHI node!");
2757     setOperand(i, V);
2758   }
2759 
2760   static unsigned getOperandNumForIncomingValue(unsigned i) {
2761     return i;
2762   }
2763 
2764   static unsigned getIncomingValueNumForOperand(unsigned i) {
2765     return i;
2766   }
2767 
2768   /// Return incoming basic block number @p i.
2769   ///
2770   BasicBlock *getIncomingBlock(unsigned i) const {
2771     return block_begin()[i];
2772   }
2773 
2774   /// Return incoming basic block corresponding
2775   /// to an operand of the PHI.
2776   ///
2777   BasicBlock *getIncomingBlock(const Use &U) const {
2778     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2779     return getIncomingBlock(unsigned(&U - op_begin()));
2780   }
2781 
2782   /// Return incoming basic block corresponding
2783   /// to value use iterator.
2784   ///
2785   BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2786     return getIncomingBlock(I.getUse());
2787   }
2788 
2789   void setIncomingBlock(unsigned i, BasicBlock *BB) {
2790     assert(BB && "PHI node got a null basic block!");
2791     block_begin()[i] = BB;
2792   }
2793 
2794   /// Replace every incoming basic block \p Old to basic block \p New.
2795   void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2796     assert(New && Old && "PHI node got a null basic block!");
2797     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2798       if (getIncomingBlock(Op) == Old)
2799         setIncomingBlock(Op, New);
2800   }
2801 
2802   /// Add an incoming value to the end of the PHI list
2803   ///
2804   void addIncoming(Value *V, BasicBlock *BB) {
2805     if (getNumOperands() == ReservedSpace)
2806       growOperands();  // Get more space!
2807     // Initialize some new operands.
2808     setNumHungOffUseOperands(getNumOperands() + 1);
2809     setIncomingValue(getNumOperands() - 1, V);
2810     setIncomingBlock(getNumOperands() - 1, BB);
2811   }
2812 
2813   /// Remove an incoming value.  This is useful if a
2814   /// predecessor basic block is deleted.  The value removed is returned.
2815   ///
2816   /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2817   /// is true), the PHI node is destroyed and any uses of it are replaced with
2818   /// dummy values.  The only time there should be zero incoming values to a PHI
2819   /// node is when the block is dead, so this strategy is sound.
2820   ///
2821   Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2822 
2823   Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2824     int Idx = getBasicBlockIndex(BB);
2825     assert(Idx >= 0 && "Invalid basic block argument to remove!");
2826     return removeIncomingValue(Idx, DeletePHIIfEmpty);
2827   }
2828 
2829   /// Return the first index of the specified basic
2830   /// block in the value list for this PHI.  Returns -1 if no instance.
2831   ///
2832   int getBasicBlockIndex(const BasicBlock *BB) const {
2833     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2834       if (block_begin()[i] == BB)
2835         return i;
2836     return -1;
2837   }
2838 
2839   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2840     int Idx = getBasicBlockIndex(BB);
2841     assert(Idx >= 0 && "Invalid basic block argument!");
2842     return getIncomingValue(Idx);
2843   }
2844 
2845   /// Set every incoming value(s) for block \p BB to \p V.
2846   void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2847     assert(BB && "PHI node got a null basic block!");
2848     bool Found = false;
2849     for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2850       if (getIncomingBlock(Op) == BB) {
2851         Found = true;
2852         setIncomingValue(Op, V);
2853       }
2854     (void)Found;
2855     assert(Found && "Invalid basic block argument to set!");
2856   }
2857 
2858   /// If the specified PHI node always merges together the
2859   /// same value, return the value, otherwise return null.
2860   Value *hasConstantValue() const;
2861 
2862   /// Whether the specified PHI node always merges
2863   /// together the same value, assuming undefs are equal to a unique
2864   /// non-undef value.
2865   bool hasConstantOrUndefValue() const;
2866 
2867   /// If the PHI node is complete which means all of its parent's predecessors
2868   /// have incoming value in this PHI, return true, otherwise return false.
2869   bool isComplete() const {
2870     return llvm::all_of(predecessors(getParent()),
2871                         [this](const BasicBlock *Pred) {
2872                           return getBasicBlockIndex(Pred) >= 0;
2873                         });
2874   }
2875 
2876   /// Methods for support type inquiry through isa, cast, and dyn_cast:
2877   static bool classof(const Instruction *I) {
2878     return I->getOpcode() == Instruction::PHI;
2879   }
2880   static bool classof(const Value *V) {
2881     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2882   }
2883 
2884 private:
2885   void growOperands();
2886 };
2887 
2888 template <>
2889 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2890 };
2891 
2892 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2893 
2894 //===----------------------------------------------------------------------===//
2895 //                           LandingPadInst Class
2896 //===----------------------------------------------------------------------===//
2897 
2898 //===---------------------------------------------------------------------------
2899 /// The landingpad instruction holds all of the information
2900 /// necessary to generate correct exception handling. The landingpad instruction
2901 /// cannot be moved from the top of a landing pad block, which itself is
2902 /// accessible only from the 'unwind' edge of an invoke. This uses the
2903 /// SubclassData field in Value to store whether or not the landingpad is a
2904 /// cleanup.
2905 ///
2906 class LandingPadInst : public Instruction {
2907   using CleanupField = BoolBitfieldElementT<0>;
2908 
2909   /// The number of operands actually allocated.  NumOperands is
2910   /// the number actually in use.
2911   unsigned ReservedSpace;
2912 
2913   LandingPadInst(const LandingPadInst &LP);
2914 
2915 public:
2916   enum ClauseType { Catch, Filter };
2917 
2918 private:
2919   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2920                           const Twine &NameStr, Instruction *InsertBefore);
2921   explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2922                           const Twine &NameStr, BasicBlock *InsertAtEnd);
2923 
2924   // Allocate space for exactly zero operands.
2925   void *operator new(size_t S) { return User::operator new(S); }
2926 
2927   void growOperands(unsigned Size);
2928   void init(unsigned NumReservedValues, const Twine &NameStr);
2929 
2930 protected:
2931   // Note: Instruction needs to be a friend here to call cloneImpl.
2932   friend class Instruction;
2933 
2934   LandingPadInst *cloneImpl() const;
2935 
2936 public:
2937   void operator delete(void *Ptr) { User::operator delete(Ptr); }
2938 
2939   /// Constructors - NumReservedClauses is a hint for the number of incoming
2940   /// clauses that this landingpad will have (use 0 if you really have no idea).
2941   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2942                                 const Twine &NameStr = "",
2943                                 Instruction *InsertBefore = nullptr);
2944   static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2945                                 const Twine &NameStr, BasicBlock *InsertAtEnd);
2946 
2947   /// Provide fast operand accessors
2948   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2949 
2950   /// Return 'true' if this landingpad instruction is a
2951   /// cleanup. I.e., it should be run when unwinding even if its landing pad
2952   /// doesn't catch the exception.
2953   bool isCleanup() const { return getSubclassData<CleanupField>(); }
2954 
2955   /// Indicate that this landingpad instruction is a cleanup.
2956   void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2957 
2958   /// Add a catch or filter clause to the landing pad.
2959   void addClause(Constant *ClauseVal);
2960 
2961   /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2962   /// determine what type of clause this is.
2963   Constant *getClause(unsigned Idx) const {
2964     return cast<Constant>(getOperandList()[Idx]);
2965   }
2966 
2967   /// Return 'true' if the clause and index Idx is a catch clause.
2968   bool isCatch(unsigned Idx) const {
2969     return !isa<ArrayType>(getOperandList()[Idx]->getType());
2970   }
2971 
2972   /// Return 'true' if the clause and index Idx is a filter clause.
2973   bool isFilter(unsigned Idx) const {
2974     return isa<ArrayType>(getOperandList()[Idx]->getType());
2975   }
2976 
2977   /// Get the number of clauses for this landing pad.
2978   unsigned getNumClauses() const { return getNumOperands(); }
2979 
2980   /// Grow the size of the operand list to accommodate the new
2981   /// number of clauses.
2982   void reserveClauses(unsigned Size) { growOperands(Size); }
2983 
2984   // Methods for support type inquiry through isa, cast, and dyn_cast:
2985   static bool classof(const Instruction *I) {
2986     return I->getOpcode() == Instruction::LandingPad;
2987   }
2988   static bool classof(const Value *V) {
2989     return isa<Instruction>(V) && classof(cast<Instruction>(V));
2990   }
2991 };
2992 
2993 template <>
2994 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2995 };
2996 
2997 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2998 
2999 //===----------------------------------------------------------------------===//
3000 //                               ReturnInst Class
3001 //===----------------------------------------------------------------------===//
3002 
3003 //===---------------------------------------------------------------------------
3004 /// Return a value (possibly void), from a function.  Execution
3005 /// does not continue in this function any longer.
3006 ///
3007 class ReturnInst : public Instruction {
3008   ReturnInst(const ReturnInst &RI);
3009 
3010 private:
3011   // ReturnInst constructors:
3012   // ReturnInst()                  - 'ret void' instruction
3013   // ReturnInst(    null)          - 'ret void' instruction
3014   // ReturnInst(Value* X)          - 'ret X'    instruction
3015   // ReturnInst(    null, Inst *I) - 'ret void' instruction, insert before I
3016   // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
3017   // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of B
3018   // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of B
3019   //
3020   // NOTE: If the Value* passed is of type void then the constructor behaves as
3021   // if it was passed NULL.
3022   explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
3023                       Instruction *InsertBefore = nullptr);
3024   ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
3025   explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
3026 
3027 protected:
3028   // Note: Instruction needs to be a friend here to call cloneImpl.
3029   friend class Instruction;
3030 
3031   ReturnInst *cloneImpl() const;
3032 
3033 public:
3034   static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3035                             Instruction *InsertBefore = nullptr) {
3036     return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3037   }
3038 
3039   static ReturnInst* Create(LLVMContext &C, Value *retVal,
3040                             BasicBlock *InsertAtEnd) {
3041     return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3042   }
3043 
3044   static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3045     return new(0) ReturnInst(C, InsertAtEnd);
3046   }
3047 
3048   /// Provide fast operand accessors
3049   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3050 
3051   /// Convenience accessor. Returns null if there is no return value.
3052   Value *getReturnValue() const {
3053     return getNumOperands() != 0 ? getOperand(0) : nullptr;
3054   }
3055 
3056   unsigned getNumSuccessors() const { return 0; }
3057 
3058   // Methods for support type inquiry through isa, cast, and dyn_cast:
3059   static bool classof(const Instruction *I) {
3060     return (I->getOpcode() == Instruction::Ret);
3061   }
3062   static bool classof(const Value *V) {
3063     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3064   }
3065 
3066 private:
3067   BasicBlock *getSuccessor(unsigned idx) const {
3068     llvm_unreachable("ReturnInst has no successors!");
3069   }
3070 
3071   void setSuccessor(unsigned idx, BasicBlock *B) {
3072     llvm_unreachable("ReturnInst has no successors!");
3073   }
3074 };
3075 
3076 template <>
3077 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3078 };
3079 
3080 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
3081 
3082 //===----------------------------------------------------------------------===//
3083 //                               BranchInst Class
3084 //===----------------------------------------------------------------------===//
3085 
3086 //===---------------------------------------------------------------------------
3087 /// Conditional or Unconditional Branch instruction.
3088 ///
3089 class BranchInst : public Instruction {
3090   /// Ops list - Branches are strange.  The operands are ordered:
3091   ///  [Cond, FalseDest,] TrueDest.  This makes some accessors faster because
3092   /// they don't have to check for cond/uncond branchness. These are mostly
3093   /// accessed relative from op_end().
3094   BranchInst(const BranchInst &BI);
3095   // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3096   // BranchInst(BB *B)                           - 'br B'
3097   // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
3098   // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
3099   // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3100   // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
3101   // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
3102   explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3103   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3104              Instruction *InsertBefore = nullptr);
3105   BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3106   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3107              BasicBlock *InsertAtEnd);
3108 
3109   void AssertOK();
3110 
3111 protected:
3112   // Note: Instruction needs to be a friend here to call cloneImpl.
3113   friend class Instruction;
3114 
3115   BranchInst *cloneImpl() const;
3116 
3117 public:
3118   /// Iterator type that casts an operand to a basic block.
3119   ///
3120   /// This only makes sense because the successors are stored as adjacent
3121   /// operands for branch instructions.
3122   struct succ_op_iterator
3123       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3124                               std::random_access_iterator_tag, BasicBlock *,
3125                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3126     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3127 
3128     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3129     BasicBlock *operator->() const { return operator*(); }
3130   };
3131 
3132   /// The const version of `succ_op_iterator`.
3133   struct const_succ_op_iterator
3134       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3135                               std::random_access_iterator_tag,
3136                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3137                               const BasicBlock *> {
3138     explicit const_succ_op_iterator(const_value_op_iterator I)
3139         : iterator_adaptor_base(I) {}
3140 
3141     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3142     const BasicBlock *operator->() const { return operator*(); }
3143   };
3144 
3145   static BranchInst *Create(BasicBlock *IfTrue,
3146                             Instruction *InsertBefore = nullptr) {
3147     return new(1) BranchInst(IfTrue, InsertBefore);
3148   }
3149 
3150   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3151                             Value *Cond, Instruction *InsertBefore = nullptr) {
3152     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3153   }
3154 
3155   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3156     return new(1) BranchInst(IfTrue, InsertAtEnd);
3157   }
3158 
3159   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3160                             Value *Cond, BasicBlock *InsertAtEnd) {
3161     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3162   }
3163 
3164   /// Transparently provide more efficient getOperand methods.
3165   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3166 
3167   bool isUnconditional() const { return getNumOperands() == 1; }
3168   bool isConditional()   const { return getNumOperands() == 3; }
3169 
3170   Value *getCondition() const {
3171     assert(isConditional() && "Cannot get condition of an uncond branch!");
3172     return Op<-3>();
3173   }
3174 
3175   void setCondition(Value *V) {
3176     assert(isConditional() && "Cannot set condition of unconditional branch!");
3177     Op<-3>() = V;
3178   }
3179 
3180   unsigned getNumSuccessors() const { return 1+isConditional(); }
3181 
3182   BasicBlock *getSuccessor(unsigned i) const {
3183     assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
3184     return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3185   }
3186 
3187   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3188     assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
3189     *(&Op<-1>() - idx) = NewSucc;
3190   }
3191 
3192   /// Swap the successors of this branch instruction.
3193   ///
3194   /// Swaps the successors of the branch instruction. This also swaps any
3195   /// branch weight metadata associated with the instruction so that it
3196   /// continues to map correctly to each operand.
3197   void swapSuccessors();
3198 
3199   iterator_range<succ_op_iterator> successors() {
3200     return make_range(
3201         succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3202         succ_op_iterator(value_op_end()));
3203   }
3204 
3205   iterator_range<const_succ_op_iterator> successors() const {
3206     return make_range(const_succ_op_iterator(
3207                           std::next(value_op_begin(), isConditional() ? 1 : 0)),
3208                       const_succ_op_iterator(value_op_end()));
3209   }
3210 
3211   // Methods for support type inquiry through isa, cast, and dyn_cast:
3212   static bool classof(const Instruction *I) {
3213     return (I->getOpcode() == Instruction::Br);
3214   }
3215   static bool classof(const Value *V) {
3216     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3217   }
3218 };
3219 
3220 template <>
3221 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3222 };
3223 
3224 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
3225 
3226 //===----------------------------------------------------------------------===//
3227 //                               SwitchInst Class
3228 //===----------------------------------------------------------------------===//
3229 
3230 //===---------------------------------------------------------------------------
3231 /// Multiway switch
3232 ///
3233 class SwitchInst : public Instruction {
3234   unsigned ReservedSpace;
3235 
3236   // Operand[0]    = Value to switch on
3237   // Operand[1]    = Default basic block destination
3238   // Operand[2n  ] = Value to match
3239   // Operand[2n+1] = BasicBlock to go to on match
3240   SwitchInst(const SwitchInst &SI);
3241 
3242   /// Create a new switch instruction, specifying a value to switch on and a
3243   /// default destination. The number of additional cases can be specified here
3244   /// to make memory allocation more efficient. This constructor can also
3245   /// auto-insert before another instruction.
3246   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3247              Instruction *InsertBefore);
3248 
3249   /// Create a new switch instruction, specifying a value to switch on and a
3250   /// default destination. The number of additional cases can be specified here
3251   /// to make memory allocation more efficient. This constructor also
3252   /// auto-inserts at the end of the specified BasicBlock.
3253   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3254              BasicBlock *InsertAtEnd);
3255 
3256   // allocate space for exactly zero operands
3257   void *operator new(size_t S) { return User::operator new(S); }
3258 
3259   void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3260   void growOperands();
3261 
3262 protected:
3263   // Note: Instruction needs to be a friend here to call cloneImpl.
3264   friend class Instruction;
3265 
3266   SwitchInst *cloneImpl() const;
3267 
3268 public:
3269   void operator delete(void *Ptr) { User::operator delete(Ptr); }
3270 
3271   // -2
3272   static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3273 
3274   template <typename CaseHandleT> class CaseIteratorImpl;
3275 
3276   /// A handle to a particular switch case. It exposes a convenient interface
3277   /// to both the case value and the successor block.
3278   ///
3279   /// We define this as a template and instantiate it to form both a const and
3280   /// non-const handle.
3281   template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3282   class CaseHandleImpl {
3283     // Directly befriend both const and non-const iterators.
3284     friend class SwitchInst::CaseIteratorImpl<
3285         CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3286 
3287   protected:
3288     // Expose the switch type we're parameterized with to the iterator.
3289     using SwitchInstType = SwitchInstT;
3290 
3291     SwitchInstT *SI;
3292     ptrdiff_t Index;
3293 
3294     CaseHandleImpl() = default;
3295     CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3296 
3297   public:
3298     /// Resolves case value for current case.
3299     ConstantIntT *getCaseValue() const {
3300       assert((unsigned)Index < SI->getNumCases() &&
3301              "Index out the number of cases.");
3302       return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3303     }
3304 
3305     /// Resolves successor for current case.
3306     BasicBlockT *getCaseSuccessor() const {
3307       assert(((unsigned)Index < SI->getNumCases() ||
3308               (unsigned)Index == DefaultPseudoIndex) &&
3309              "Index out the number of cases.");
3310       return SI->getSuccessor(getSuccessorIndex());
3311     }
3312 
3313     /// Returns number of current case.
3314     unsigned getCaseIndex() const { return Index; }
3315 
3316     /// Returns successor index for current case successor.
3317     unsigned getSuccessorIndex() const {
3318       assert(((unsigned)Index == DefaultPseudoIndex ||
3319               (unsigned)Index < SI->getNumCases()) &&
3320              "Index out the number of cases.");
3321       return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3322     }
3323 
3324     bool operator==(const CaseHandleImpl &RHS) const {
3325       assert(SI == RHS.SI && "Incompatible operators.");
3326       return Index == RHS.Index;
3327     }
3328   };
3329 
3330   using ConstCaseHandle =
3331       CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3332 
3333   class CaseHandle
3334       : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3335     friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3336 
3337   public:
3338     CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3339 
3340     /// Sets the new value for current case.
3341     void setValue(ConstantInt *V) const {
3342       assert((unsigned)Index < SI->getNumCases() &&
3343              "Index out the number of cases.");
3344       SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3345     }
3346 
3347     /// Sets the new successor for current case.
3348     void setSuccessor(BasicBlock *S) const {
3349       SI->setSuccessor(getSuccessorIndex(), S);
3350     }
3351   };
3352 
3353   template <typename CaseHandleT>
3354   class CaseIteratorImpl
3355       : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3356                                     std::random_access_iterator_tag,
3357                                     const CaseHandleT> {
3358     using SwitchInstT = typename CaseHandleT::SwitchInstType;
3359 
3360     CaseHandleT Case;
3361 
3362   public:
3363     /// Default constructed iterator is in an invalid state until assigned to
3364     /// a case for a particular switch.
3365     CaseIteratorImpl() = default;
3366 
3367     /// Initializes case iterator for given SwitchInst and for given
3368     /// case number.
3369     CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3370 
3371     /// Initializes case iterator for given SwitchInst and for given
3372     /// successor index.
3373     static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3374                                                unsigned SuccessorIndex) {
3375       assert(SuccessorIndex < SI->getNumSuccessors() &&
3376              "Successor index # out of range!");
3377       return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3378                                  : CaseIteratorImpl(SI, DefaultPseudoIndex);
3379     }
3380 
3381     /// Support converting to the const variant. This will be a no-op for const
3382     /// variant.
3383     operator CaseIteratorImpl<ConstCaseHandle>() const {
3384       return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3385     }
3386 
3387     CaseIteratorImpl &operator+=(ptrdiff_t N) {
3388       // Check index correctness after addition.
3389       // Note: Index == getNumCases() means end().
3390       assert(Case.Index + N >= 0 &&
3391              (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
3392              "Case.Index out the number of cases.");
3393       Case.Index += N;
3394       return *this;
3395     }
3396     CaseIteratorImpl &operator-=(ptrdiff_t N) {
3397       // Check index correctness after subtraction.
3398       // Note: Case.Index == getNumCases() means end().
3399       assert(Case.Index - N >= 0 &&
3400              (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
3401              "Case.Index out the number of cases.");
3402       Case.Index -= N;
3403       return *this;
3404     }
3405     ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3406       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3407       return Case.Index - RHS.Case.Index;
3408     }
3409     bool operator==(const CaseIteratorImpl &RHS) const {
3410       return Case == RHS.Case;
3411     }
3412     bool operator<(const CaseIteratorImpl &RHS) const {
3413       assert(Case.SI == RHS.Case.SI && "Incompatible operators.");
3414       return Case.Index < RHS.Case.Index;
3415     }
3416     const CaseHandleT &operator*() const { return Case; }
3417   };
3418 
3419   using CaseIt = CaseIteratorImpl<CaseHandle>;
3420   using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3421 
3422   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3423                             unsigned NumCases,
3424                             Instruction *InsertBefore = nullptr) {
3425     return new SwitchInst(Value, Default, NumCases, InsertBefore);
3426   }
3427 
3428   static SwitchInst *Create(Value *Value, BasicBlock *Default,
3429                             unsigned NumCases, BasicBlock *InsertAtEnd) {
3430     return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3431   }
3432 
3433   /// Provide fast operand accessors
3434   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3435 
3436   // Accessor Methods for Switch stmt
3437   Value *getCondition() const { return getOperand(0); }
3438   void setCondition(Value *V) { setOperand(0, V); }
3439 
3440   BasicBlock *getDefaultDest() const {
3441     return cast<BasicBlock>(getOperand(1));
3442   }
3443 
3444   void setDefaultDest(BasicBlock *DefaultCase) {
3445     setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3446   }
3447 
3448   /// Return the number of 'cases' in this switch instruction, excluding the
3449   /// default case.
3450   unsigned getNumCases() const {
3451     return getNumOperands()/2 - 1;
3452   }
3453 
3454   /// Returns a read/write iterator that points to the first case in the
3455   /// SwitchInst.
3456   CaseIt case_begin() {
3457     return CaseIt(this, 0);
3458   }
3459 
3460   /// Returns a read-only iterator that points to the first case in the
3461   /// SwitchInst.
3462   ConstCaseIt case_begin() const {
3463     return ConstCaseIt(this, 0);
3464   }
3465 
3466   /// Returns a read/write iterator that points one past the last in the
3467   /// SwitchInst.
3468   CaseIt case_end() {
3469     return CaseIt(this, getNumCases());
3470   }
3471 
3472   /// Returns a read-only iterator that points one past the last in the
3473   /// SwitchInst.
3474   ConstCaseIt case_end() const {
3475     return ConstCaseIt(this, getNumCases());
3476   }
3477 
3478   /// Iteration adapter for range-for loops.
3479   iterator_range<CaseIt> cases() {
3480     return make_range(case_begin(), case_end());
3481   }
3482 
3483   /// Constant iteration adapter for range-for loops.
3484   iterator_range<ConstCaseIt> cases() const {
3485     return make_range(case_begin(), case_end());
3486   }
3487 
3488   /// Returns an iterator that points to the default case.
3489   /// Note: this iterator allows to resolve successor only. Attempt
3490   /// to resolve case value causes an assertion.
3491   /// Also note, that increment and decrement also causes an assertion and
3492   /// makes iterator invalid.
3493   CaseIt case_default() {
3494     return CaseIt(this, DefaultPseudoIndex);
3495   }
3496   ConstCaseIt case_default() const {
3497     return ConstCaseIt(this, DefaultPseudoIndex);
3498   }
3499 
3500   /// Search all of the case values for the specified constant. If it is
3501   /// explicitly handled, return the case iterator of it, otherwise return
3502   /// default case iterator to indicate that it is handled by the default
3503   /// handler.
3504   CaseIt findCaseValue(const ConstantInt *C) {
3505     return CaseIt(
3506         this,
3507         const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex());
3508   }
3509   ConstCaseIt findCaseValue(const ConstantInt *C) const {
3510     ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) {
3511       return Case.getCaseValue() == C;
3512     });
3513     if (I != case_end())
3514       return I;
3515 
3516     return case_default();
3517   }
3518 
3519   /// Finds the unique case value for a given successor. Returns null if the
3520   /// successor is not found, not unique, or is the default case.
3521   ConstantInt *findCaseDest(BasicBlock *BB) {
3522     if (BB == getDefaultDest())
3523       return nullptr;
3524 
3525     ConstantInt *CI = nullptr;
3526     for (auto Case : cases()) {
3527       if (Case.getCaseSuccessor() != BB)
3528         continue;
3529 
3530       if (CI)
3531         return nullptr; // Multiple cases lead to BB.
3532 
3533       CI = Case.getCaseValue();
3534     }
3535 
3536     return CI;
3537   }
3538 
3539   /// Add an entry to the switch instruction.
3540   /// Note:
3541   /// This action invalidates case_end(). Old case_end() iterator will
3542   /// point to the added case.
3543   void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3544 
3545   /// This method removes the specified case and its successor from the switch
3546   /// instruction. Note that this operation may reorder the remaining cases at
3547   /// index idx and above.
3548   /// Note:
3549   /// This action invalidates iterators for all cases following the one removed,
3550   /// including the case_end() iterator. It returns an iterator for the next
3551   /// case.
3552   CaseIt removeCase(CaseIt I);
3553 
3554   unsigned getNumSuccessors() const { return getNumOperands()/2; }
3555   BasicBlock *getSuccessor(unsigned idx) const {
3556     assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
3557     return cast<BasicBlock>(getOperand(idx*2+1));
3558   }
3559   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3560     assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
3561     setOperand(idx * 2 + 1, NewSucc);
3562   }
3563 
3564   // Methods for support type inquiry through isa, cast, and dyn_cast:
3565   static bool classof(const Instruction *I) {
3566     return I->getOpcode() == Instruction::Switch;
3567   }
3568   static bool classof(const Value *V) {
3569     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3570   }
3571 };
3572 
3573 /// A wrapper class to simplify modification of SwitchInst cases along with
3574 /// their prof branch_weights metadata.
3575 class SwitchInstProfUpdateWrapper {
3576   SwitchInst &SI;
3577   Optional<SmallVector<uint32_t, 8> > Weights = None;
3578   bool Changed = false;
3579 
3580 protected:
3581   static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3582 
3583   MDNode *buildProfBranchWeightsMD();
3584 
3585   void init();
3586 
3587 public:
3588   using CaseWeightOpt = Optional<uint32_t>;
3589   SwitchInst *operator->() { return &SI; }
3590   SwitchInst &operator*() { return SI; }
3591   operator SwitchInst *() { return &SI; }
3592 
3593   SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3594 
3595   ~SwitchInstProfUpdateWrapper() {
3596     if (Changed)
3597       SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3598   }
3599 
3600   /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3601   /// correspondent branch weight.
3602   SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3603 
3604   /// Delegate the call to the underlying SwitchInst::addCase() and set the
3605   /// specified branch weight for the added case.
3606   void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3607 
3608   /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3609   /// this object to not touch the underlying SwitchInst in destructor.
3610   SymbolTableList<Instruction>::iterator eraseFromParent();
3611 
3612   void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3613   CaseWeightOpt getSuccessorWeight(unsigned idx);
3614 
3615   static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3616 };
3617 
3618 template <>
3619 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3620 };
3621 
3622 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
3623 
3624 //===----------------------------------------------------------------------===//
3625 //                             IndirectBrInst Class
3626 //===----------------------------------------------------------------------===//
3627 
3628 //===---------------------------------------------------------------------------
3629 /// Indirect Branch Instruction.
3630 ///
3631 class IndirectBrInst : public Instruction {
3632   unsigned ReservedSpace;
3633 
3634   // Operand[0]   = Address to jump to
3635   // Operand[n+1] = n-th destination
3636   IndirectBrInst(const IndirectBrInst &IBI);
3637 
3638   /// Create a new indirectbr instruction, specifying an
3639   /// Address to jump to.  The number of expected destinations can be specified
3640   /// here to make memory allocation more efficient.  This constructor can also
3641   /// autoinsert before another instruction.
3642   IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3643 
3644   /// Create a new indirectbr instruction, specifying an
3645   /// Address to jump to.  The number of expected destinations can be specified
3646   /// here to make memory allocation more efficient.  This constructor also
3647   /// autoinserts at the end of the specified BasicBlock.
3648   IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3649 
3650   // allocate space for exactly zero operands
3651   void *operator new(size_t S) { return User::operator new(S); }
3652 
3653   void init(Value *Address, unsigned NumDests);
3654   void growOperands();
3655 
3656 protected:
3657   // Note: Instruction needs to be a friend here to call cloneImpl.
3658   friend class Instruction;
3659 
3660   IndirectBrInst *cloneImpl() const;
3661 
3662 public:
3663   void operator delete(void *Ptr) { User::operator delete(Ptr); }
3664 
3665   /// Iterator type that casts an operand to a basic block.
3666   ///
3667   /// This only makes sense because the successors are stored as adjacent
3668   /// operands for indirectbr instructions.
3669   struct succ_op_iterator
3670       : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3671                               std::random_access_iterator_tag, BasicBlock *,
3672                               ptrdiff_t, BasicBlock *, BasicBlock *> {
3673     explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3674 
3675     BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3676     BasicBlock *operator->() const { return operator*(); }
3677   };
3678 
3679   /// The const version of `succ_op_iterator`.
3680   struct const_succ_op_iterator
3681       : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3682                               std::random_access_iterator_tag,
3683                               const BasicBlock *, ptrdiff_t, const BasicBlock *,
3684                               const BasicBlock *> {
3685     explicit const_succ_op_iterator(const_value_op_iterator I)
3686         : iterator_adaptor_base(I) {}
3687 
3688     const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3689     const BasicBlock *operator->() const { return operator*(); }
3690   };
3691 
3692   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3693                                 Instruction *InsertBefore = nullptr) {
3694     return new IndirectBrInst(Address, NumDests, InsertBefore);
3695   }
3696 
3697   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3698                                 BasicBlock *InsertAtEnd) {
3699     return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3700   }
3701 
3702   /// Provide fast operand accessors.
3703   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3704 
3705   // Accessor Methods for IndirectBrInst instruction.
3706   Value *getAddress() { return getOperand(0); }
3707   const Value *getAddress() const { return getOperand(0); }
3708   void setAddress(Value *V) { setOperand(0, V); }
3709 
3710   /// return the number of possible destinations in this
3711   /// indirectbr instruction.
3712   unsigned getNumDestinations() const { return getNumOperands()-1; }
3713 
3714   /// Return the specified destination.
3715   BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3716   const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3717 
3718   /// Add a destination.
3719   ///
3720   void addDestination(BasicBlock *Dest);
3721 
3722   /// This method removes the specified successor from the
3723   /// indirectbr instruction.
3724   void removeDestination(unsigned i);
3725 
3726   unsigned getNumSuccessors() const { return getNumOperands()-1; }
3727   BasicBlock *getSuccessor(unsigned i) const {
3728     return cast<BasicBlock>(getOperand(i+1));
3729   }
3730   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3731     setOperand(i + 1, NewSucc);
3732   }
3733 
3734   iterator_range<succ_op_iterator> successors() {
3735     return make_range(succ_op_iterator(std::next(value_op_begin())),
3736                       succ_op_iterator(value_op_end()));
3737   }
3738 
3739   iterator_range<const_succ_op_iterator> successors() const {
3740     return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3741                       const_succ_op_iterator(value_op_end()));
3742   }
3743 
3744   // Methods for support type inquiry through isa, cast, and dyn_cast:
3745   static bool classof(const Instruction *I) {
3746     return I->getOpcode() == Instruction::IndirectBr;
3747   }
3748   static bool classof(const Value *V) {
3749     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3750   }
3751 };
3752 
3753 template <>
3754 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3755 };
3756 
3757 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
3758 
3759 //===----------------------------------------------------------------------===//
3760 //                               InvokeInst Class
3761 //===----------------------------------------------------------------------===//
3762 
3763 /// Invoke instruction.  The SubclassData field is used to hold the
3764 /// calling convention of the call.
3765 ///
3766 class InvokeInst : public CallBase {
3767   /// The number of operands for this call beyond the called function,
3768   /// arguments, and operand bundles.
3769   static constexpr int NumExtraOperands = 2;
3770 
3771   /// The index from the end of the operand array to the normal destination.
3772   static constexpr int NormalDestOpEndIdx = -3;
3773 
3774   /// The index from the end of the operand array to the unwind destination.
3775   static constexpr int UnwindDestOpEndIdx = -2;
3776 
3777   InvokeInst(const InvokeInst &BI);
3778 
3779   /// Construct an InvokeInst given a range of arguments.
3780   ///
3781   /// Construct an InvokeInst from a range of arguments
3782   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3783                     BasicBlock *IfException, ArrayRef<Value *> Args,
3784                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3785                     const Twine &NameStr, Instruction *InsertBefore);
3786 
3787   inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3788                     BasicBlock *IfException, ArrayRef<Value *> Args,
3789                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3790                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3791 
3792   void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3793             BasicBlock *IfException, ArrayRef<Value *> Args,
3794             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3795 
3796   /// Compute the number of operands to allocate.
3797   static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3798     // We need one operand for the called function, plus our extra operands and
3799     // the input operand counts provided.
3800     return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3801   }
3802 
3803 protected:
3804   // Note: Instruction needs to be a friend here to call cloneImpl.
3805   friend class Instruction;
3806 
3807   InvokeInst *cloneImpl() const;
3808 
3809 public:
3810   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3811                             BasicBlock *IfException, ArrayRef<Value *> Args,
3812                             const Twine &NameStr,
3813                             Instruction *InsertBefore = nullptr) {
3814     int NumOperands = ComputeNumOperands(Args.size());
3815     return new (NumOperands)
3816         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3817                    NameStr, InsertBefore);
3818   }
3819 
3820   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3821                             BasicBlock *IfException, ArrayRef<Value *> Args,
3822                             ArrayRef<OperandBundleDef> Bundles = None,
3823                             const Twine &NameStr = "",
3824                             Instruction *InsertBefore = nullptr) {
3825     int NumOperands =
3826         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3827     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3828 
3829     return new (NumOperands, DescriptorBytes)
3830         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3831                    NameStr, InsertBefore);
3832   }
3833 
3834   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3835                             BasicBlock *IfException, ArrayRef<Value *> Args,
3836                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3837     int NumOperands = ComputeNumOperands(Args.size());
3838     return new (NumOperands)
3839         InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3840                    NameStr, InsertAtEnd);
3841   }
3842 
3843   static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3844                             BasicBlock *IfException, ArrayRef<Value *> Args,
3845                             ArrayRef<OperandBundleDef> Bundles,
3846                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3847     int NumOperands =
3848         ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3849     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3850 
3851     return new (NumOperands, DescriptorBytes)
3852         InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3853                    NameStr, InsertAtEnd);
3854   }
3855 
3856   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3857                             BasicBlock *IfException, ArrayRef<Value *> Args,
3858                             const Twine &NameStr,
3859                             Instruction *InsertBefore = nullptr) {
3860     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3861                   IfException, Args, None, NameStr, InsertBefore);
3862   }
3863 
3864   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3865                             BasicBlock *IfException, ArrayRef<Value *> Args,
3866                             ArrayRef<OperandBundleDef> Bundles = None,
3867                             const Twine &NameStr = "",
3868                             Instruction *InsertBefore = nullptr) {
3869     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3870                   IfException, Args, Bundles, NameStr, InsertBefore);
3871   }
3872 
3873   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3874                             BasicBlock *IfException, ArrayRef<Value *> Args,
3875                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3876     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3877                   IfException, Args, NameStr, InsertAtEnd);
3878   }
3879 
3880   static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3881                             BasicBlock *IfException, ArrayRef<Value *> Args,
3882                             ArrayRef<OperandBundleDef> Bundles,
3883                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
3884     return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3885                   IfException, Args, Bundles, NameStr, InsertAtEnd);
3886   }
3887 
3888   /// Create a clone of \p II with a different set of operand bundles and
3889   /// insert it before \p InsertPt.
3890   ///
3891   /// The returned invoke instruction is identical to \p II in every way except
3892   /// that the operand bundles for the new instruction are set to the operand
3893   /// bundles in \p Bundles.
3894   static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3895                             Instruction *InsertPt = nullptr);
3896 
3897   // get*Dest - Return the destination basic blocks...
3898   BasicBlock *getNormalDest() const {
3899     return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3900   }
3901   BasicBlock *getUnwindDest() const {
3902     return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3903   }
3904   void setNormalDest(BasicBlock *B) {
3905     Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3906   }
3907   void setUnwindDest(BasicBlock *B) {
3908     Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3909   }
3910 
3911   /// Get the landingpad instruction from the landing pad
3912   /// block (the unwind destination).
3913   LandingPadInst *getLandingPadInst() const;
3914 
3915   BasicBlock *getSuccessor(unsigned i) const {
3916     assert(i < 2 && "Successor # out of range for invoke!");
3917     return i == 0 ? getNormalDest() : getUnwindDest();
3918   }
3919 
3920   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3921     assert(i < 2 && "Successor # out of range for invoke!");
3922     if (i == 0)
3923       setNormalDest(NewSucc);
3924     else
3925       setUnwindDest(NewSucc);
3926   }
3927 
3928   unsigned getNumSuccessors() const { return 2; }
3929 
3930   // Methods for support type inquiry through isa, cast, and dyn_cast:
3931   static bool classof(const Instruction *I) {
3932     return (I->getOpcode() == Instruction::Invoke);
3933   }
3934   static bool classof(const Value *V) {
3935     return isa<Instruction>(V) && classof(cast<Instruction>(V));
3936   }
3937 
3938 private:
3939   // Shadow Instruction::setInstructionSubclassData with a private forwarding
3940   // method so that subclasses cannot accidentally use it.
3941   template <typename Bitfield>
3942   void setSubclassData(typename Bitfield::Type Value) {
3943     Instruction::setSubclassData<Bitfield>(Value);
3944   }
3945 };
3946 
3947 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3948                        BasicBlock *IfException, ArrayRef<Value *> Args,
3949                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3950                        const Twine &NameStr, Instruction *InsertBefore)
3951     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3952                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3953                InsertBefore) {
3954   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3955 }
3956 
3957 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3958                        BasicBlock *IfException, ArrayRef<Value *> Args,
3959                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3960                        const Twine &NameStr, BasicBlock *InsertAtEnd)
3961     : CallBase(Ty->getReturnType(), Instruction::Invoke,
3962                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3963                InsertAtEnd) {
3964   init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3965 }
3966 
3967 //===----------------------------------------------------------------------===//
3968 //                              CallBrInst Class
3969 //===----------------------------------------------------------------------===//
3970 
3971 /// CallBr instruction, tracking function calls that may not return control but
3972 /// instead transfer it to a third location. The SubclassData field is used to
3973 /// hold the calling convention of the call.
3974 ///
3975 class CallBrInst : public CallBase {
3976 
3977   unsigned NumIndirectDests;
3978 
3979   CallBrInst(const CallBrInst &BI);
3980 
3981   /// Construct a CallBrInst given a range of arguments.
3982   ///
3983   /// Construct a CallBrInst from a range of arguments
3984   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3985                     ArrayRef<BasicBlock *> IndirectDests,
3986                     ArrayRef<Value *> Args,
3987                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3988                     const Twine &NameStr, Instruction *InsertBefore);
3989 
3990   inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3991                     ArrayRef<BasicBlock *> IndirectDests,
3992                     ArrayRef<Value *> Args,
3993                     ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3994                     const Twine &NameStr, BasicBlock *InsertAtEnd);
3995 
3996   void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3997             ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3998             ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3999 
4000   /// Should the Indirect Destinations change, scan + update the Arg list.
4001   void updateArgBlockAddresses(unsigned i, BasicBlock *B);
4002 
4003   /// Compute the number of operands to allocate.
4004   static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
4005                                 int NumBundleInputs = 0) {
4006     // We need one operand for the called function, plus our extra operands and
4007     // the input operand counts provided.
4008     return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
4009   }
4010 
4011 protected:
4012   // Note: Instruction needs to be a friend here to call cloneImpl.
4013   friend class Instruction;
4014 
4015   CallBrInst *cloneImpl() const;
4016 
4017 public:
4018   static CallBrInst *Create(FunctionType *Ty, Value *Func,
4019                             BasicBlock *DefaultDest,
4020                             ArrayRef<BasicBlock *> IndirectDests,
4021                             ArrayRef<Value *> Args, const Twine &NameStr,
4022                             Instruction *InsertBefore = nullptr) {
4023     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4024     return new (NumOperands)
4025         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4026                    NumOperands, NameStr, InsertBefore);
4027   }
4028 
4029   static CallBrInst *Create(FunctionType *Ty, Value *Func,
4030                             BasicBlock *DefaultDest,
4031                             ArrayRef<BasicBlock *> IndirectDests,
4032                             ArrayRef<Value *> Args,
4033                             ArrayRef<OperandBundleDef> Bundles = None,
4034                             const Twine &NameStr = "",
4035                             Instruction *InsertBefore = nullptr) {
4036     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4037                                          CountBundleInputs(Bundles));
4038     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4039 
4040     return new (NumOperands, DescriptorBytes)
4041         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4042                    NumOperands, NameStr, InsertBefore);
4043   }
4044 
4045   static CallBrInst *Create(FunctionType *Ty, Value *Func,
4046                             BasicBlock *DefaultDest,
4047                             ArrayRef<BasicBlock *> IndirectDests,
4048                             ArrayRef<Value *> Args, const Twine &NameStr,
4049                             BasicBlock *InsertAtEnd) {
4050     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4051     return new (NumOperands)
4052         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4053                    NumOperands, NameStr, InsertAtEnd);
4054   }
4055 
4056   static CallBrInst *Create(FunctionType *Ty, Value *Func,
4057                             BasicBlock *DefaultDest,
4058                             ArrayRef<BasicBlock *> IndirectDests,
4059                             ArrayRef<Value *> Args,
4060                             ArrayRef<OperandBundleDef> Bundles,
4061                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
4062     int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4063                                          CountBundleInputs(Bundles));
4064     unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4065 
4066     return new (NumOperands, DescriptorBytes)
4067         CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4068                    NumOperands, NameStr, InsertAtEnd);
4069   }
4070 
4071   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4072                             ArrayRef<BasicBlock *> IndirectDests,
4073                             ArrayRef<Value *> Args, const Twine &NameStr,
4074                             Instruction *InsertBefore = nullptr) {
4075     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4076                   IndirectDests, Args, NameStr, InsertBefore);
4077   }
4078 
4079   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4080                             ArrayRef<BasicBlock *> IndirectDests,
4081                             ArrayRef<Value *> Args,
4082                             ArrayRef<OperandBundleDef> Bundles = None,
4083                             const Twine &NameStr = "",
4084                             Instruction *InsertBefore = nullptr) {
4085     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4086                   IndirectDests, Args, Bundles, NameStr, InsertBefore);
4087   }
4088 
4089   static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4090                             ArrayRef<BasicBlock *> IndirectDests,
4091                             ArrayRef<Value *> Args, const Twine &NameStr,
4092                             BasicBlock *InsertAtEnd) {
4093     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4094                   IndirectDests, Args, NameStr, InsertAtEnd);
4095   }
4096 
4097   static CallBrInst *Create(FunctionCallee Func,
4098                             BasicBlock *DefaultDest,
4099                             ArrayRef<BasicBlock *> IndirectDests,
4100                             ArrayRef<Value *> Args,
4101                             ArrayRef<OperandBundleDef> Bundles,
4102                             const Twine &NameStr, BasicBlock *InsertAtEnd) {
4103     return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4104                   IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4105   }
4106 
4107   /// Create a clone of \p CBI with a different set of operand bundles and
4108   /// insert it before \p InsertPt.
4109   ///
4110   /// The returned callbr instruction is identical to \p CBI in every way
4111   /// except that the operand bundles for the new instruction are set to the
4112   /// operand bundles in \p Bundles.
4113   static CallBrInst *Create(CallBrInst *CBI,
4114                             ArrayRef<OperandBundleDef> Bundles,
4115                             Instruction *InsertPt = nullptr);
4116 
4117   /// Return the number of callbr indirect dest labels.
4118   ///
4119   unsigned getNumIndirectDests() const { return NumIndirectDests; }
4120 
4121   /// getIndirectDestLabel - Return the i-th indirect dest label.
4122   ///
4123   Value *getIndirectDestLabel(unsigned i) const {
4124     assert(i < getNumIndirectDests() && "Out of bounds!");
4125     return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1);
4126   }
4127 
4128   Value *getIndirectDestLabelUse(unsigned i) const {
4129     assert(i < getNumIndirectDests() && "Out of bounds!");
4130     return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1);
4131   }
4132 
4133   // Return the destination basic blocks...
4134   BasicBlock *getDefaultDest() const {
4135     return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4136   }
4137   BasicBlock *getIndirectDest(unsigned i) const {
4138     return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4139   }
4140   SmallVector<BasicBlock *, 16> getIndirectDests() const {
4141     SmallVector<BasicBlock *, 16> IndirectDests;
4142     for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4143       IndirectDests.push_back(getIndirectDest(i));
4144     return IndirectDests;
4145   }
4146   void setDefaultDest(BasicBlock *B) {
4147     *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4148   }
4149   void setIndirectDest(unsigned i, BasicBlock *B) {
4150     updateArgBlockAddresses(i, B);
4151     *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4152   }
4153 
4154   BasicBlock *getSuccessor(unsigned i) const {
4155     assert(i < getNumSuccessors() + 1 &&
4156            "Successor # out of range for callbr!");
4157     return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4158   }
4159 
4160   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4161     assert(i < getNumIndirectDests() + 1 &&
4162            "Successor # out of range for callbr!");
4163     return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4164   }
4165 
4166   unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4167 
4168   // Methods for support type inquiry through isa, cast, and dyn_cast:
4169   static bool classof(const Instruction *I) {
4170     return (I->getOpcode() == Instruction::CallBr);
4171   }
4172   static bool classof(const Value *V) {
4173     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4174   }
4175 
4176 private:
4177   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4178   // method so that subclasses cannot accidentally use it.
4179   template <typename Bitfield>
4180   void setSubclassData(typename Bitfield::Type Value) {
4181     Instruction::setSubclassData<Bitfield>(Value);
4182   }
4183 };
4184 
4185 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4186                        ArrayRef<BasicBlock *> IndirectDests,
4187                        ArrayRef<Value *> Args,
4188                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4189                        const Twine &NameStr, Instruction *InsertBefore)
4190     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4191                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4192                InsertBefore) {
4193   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4194 }
4195 
4196 CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4197                        ArrayRef<BasicBlock *> IndirectDests,
4198                        ArrayRef<Value *> Args,
4199                        ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4200                        const Twine &NameStr, BasicBlock *InsertAtEnd)
4201     : CallBase(Ty->getReturnType(), Instruction::CallBr,
4202                OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4203                InsertAtEnd) {
4204   init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4205 }
4206 
4207 //===----------------------------------------------------------------------===//
4208 //                              ResumeInst Class
4209 //===----------------------------------------------------------------------===//
4210 
4211 //===---------------------------------------------------------------------------
4212 /// Resume the propagation of an exception.
4213 ///
4214 class ResumeInst : public Instruction {
4215   ResumeInst(const ResumeInst &RI);
4216 
4217   explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4218   ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4219 
4220 protected:
4221   // Note: Instruction needs to be a friend here to call cloneImpl.
4222   friend class Instruction;
4223 
4224   ResumeInst *cloneImpl() const;
4225 
4226 public:
4227   static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4228     return new(1) ResumeInst(Exn, InsertBefore);
4229   }
4230 
4231   static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4232     return new(1) ResumeInst(Exn, InsertAtEnd);
4233   }
4234 
4235   /// Provide fast operand accessors
4236   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4237 
4238   /// Convenience accessor.
4239   Value *getValue() const { return Op<0>(); }
4240 
4241   unsigned getNumSuccessors() const { return 0; }
4242 
4243   // Methods for support type inquiry through isa, cast, and dyn_cast:
4244   static bool classof(const Instruction *I) {
4245     return I->getOpcode() == Instruction::Resume;
4246   }
4247   static bool classof(const Value *V) {
4248     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4249   }
4250 
4251 private:
4252   BasicBlock *getSuccessor(unsigned idx) const {
4253     llvm_unreachable("ResumeInst has no successors!");
4254   }
4255 
4256   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4257     llvm_unreachable("ResumeInst has no successors!");
4258   }
4259 };
4260 
4261 template <>
4262 struct OperandTraits<ResumeInst> :
4263     public FixedNumOperandTraits<ResumeInst, 1> {
4264 };
4265 
4266 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
4267 
4268 //===----------------------------------------------------------------------===//
4269 //                         CatchSwitchInst Class
4270 //===----------------------------------------------------------------------===//
4271 class CatchSwitchInst : public Instruction {
4272   using UnwindDestField = BoolBitfieldElementT<0>;
4273 
4274   /// The number of operands actually allocated.  NumOperands is
4275   /// the number actually in use.
4276   unsigned ReservedSpace;
4277 
4278   // Operand[0] = Outer scope
4279   // Operand[1] = Unwind block destination
4280   // Operand[n] = BasicBlock to go to on match
4281   CatchSwitchInst(const CatchSwitchInst &CSI);
4282 
4283   /// Create a new switch instruction, specifying a
4284   /// default destination.  The number of additional handlers can be specified
4285   /// here to make memory allocation more efficient.
4286   /// This constructor can also autoinsert before another instruction.
4287   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4288                   unsigned NumHandlers, const Twine &NameStr,
4289                   Instruction *InsertBefore);
4290 
4291   /// Create a new switch instruction, specifying a
4292   /// default destination.  The number of additional handlers can be specified
4293   /// here to make memory allocation more efficient.
4294   /// This constructor also autoinserts at the end of the specified BasicBlock.
4295   CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4296                   unsigned NumHandlers, const Twine &NameStr,
4297                   BasicBlock *InsertAtEnd);
4298 
4299   // allocate space for exactly zero operands
4300   void *operator new(size_t S) { return User::operator new(S); }
4301 
4302   void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4303   void growOperands(unsigned Size);
4304 
4305 protected:
4306   // Note: Instruction needs to be a friend here to call cloneImpl.
4307   friend class Instruction;
4308 
4309   CatchSwitchInst *cloneImpl() const;
4310 
4311 public:
4312   void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4313 
4314   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4315                                  unsigned NumHandlers,
4316                                  const Twine &NameStr = "",
4317                                  Instruction *InsertBefore = nullptr) {
4318     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4319                                InsertBefore);
4320   }
4321 
4322   static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4323                                  unsigned NumHandlers, const Twine &NameStr,
4324                                  BasicBlock *InsertAtEnd) {
4325     return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4326                                InsertAtEnd);
4327   }
4328 
4329   /// Provide fast operand accessors
4330   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4331 
4332   // Accessor Methods for CatchSwitch stmt
4333   Value *getParentPad() const { return getOperand(0); }
4334   void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4335 
4336   // Accessor Methods for CatchSwitch stmt
4337   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4338   bool unwindsToCaller() const { return !hasUnwindDest(); }
4339   BasicBlock *getUnwindDest() const {
4340     if (hasUnwindDest())
4341       return cast<BasicBlock>(getOperand(1));
4342     return nullptr;
4343   }
4344   void setUnwindDest(BasicBlock *UnwindDest) {
4345     assert(UnwindDest);
4346     assert(hasUnwindDest());
4347     setOperand(1, UnwindDest);
4348   }
4349 
4350   /// return the number of 'handlers' in this catchswitch
4351   /// instruction, except the default handler
4352   unsigned getNumHandlers() const {
4353     if (hasUnwindDest())
4354       return getNumOperands() - 2;
4355     return getNumOperands() - 1;
4356   }
4357 
4358 private:
4359   static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4360   static const BasicBlock *handler_helper(const Value *V) {
4361     return cast<BasicBlock>(V);
4362   }
4363 
4364 public:
4365   using DerefFnTy = BasicBlock *(*)(Value *);
4366   using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4367   using handler_range = iterator_range<handler_iterator>;
4368   using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4369   using const_handler_iterator =
4370       mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4371   using const_handler_range = iterator_range<const_handler_iterator>;
4372 
4373   /// Returns an iterator that points to the first handler in CatchSwitchInst.
4374   handler_iterator handler_begin() {
4375     op_iterator It = op_begin() + 1;
4376     if (hasUnwindDest())
4377       ++It;
4378     return handler_iterator(It, DerefFnTy(handler_helper));
4379   }
4380 
4381   /// Returns an iterator that points to the first handler in the
4382   /// CatchSwitchInst.
4383   const_handler_iterator handler_begin() const {
4384     const_op_iterator It = op_begin() + 1;
4385     if (hasUnwindDest())
4386       ++It;
4387     return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4388   }
4389 
4390   /// Returns a read-only iterator that points one past the last
4391   /// handler in the CatchSwitchInst.
4392   handler_iterator handler_end() {
4393     return handler_iterator(op_end(), DerefFnTy(handler_helper));
4394   }
4395 
4396   /// Returns an iterator that points one past the last handler in the
4397   /// CatchSwitchInst.
4398   const_handler_iterator handler_end() const {
4399     return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4400   }
4401 
4402   /// iteration adapter for range-for loops.
4403   handler_range handlers() {
4404     return make_range(handler_begin(), handler_end());
4405   }
4406 
4407   /// iteration adapter for range-for loops.
4408   const_handler_range handlers() const {
4409     return make_range(handler_begin(), handler_end());
4410   }
4411 
4412   /// Add an entry to the switch instruction...
4413   /// Note:
4414   /// This action invalidates handler_end(). Old handler_end() iterator will
4415   /// point to the added handler.
4416   void addHandler(BasicBlock *Dest);
4417 
4418   void removeHandler(handler_iterator HI);
4419 
4420   unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4421   BasicBlock *getSuccessor(unsigned Idx) const {
4422     assert(Idx < getNumSuccessors() &&
4423            "Successor # out of range for catchswitch!");
4424     return cast<BasicBlock>(getOperand(Idx + 1));
4425   }
4426   void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4427     assert(Idx < getNumSuccessors() &&
4428            "Successor # out of range for catchswitch!");
4429     setOperand(Idx + 1, NewSucc);
4430   }
4431 
4432   // Methods for support type inquiry through isa, cast, and dyn_cast:
4433   static bool classof(const Instruction *I) {
4434     return I->getOpcode() == Instruction::CatchSwitch;
4435   }
4436   static bool classof(const Value *V) {
4437     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4438   }
4439 };
4440 
4441 template <>
4442 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4443 
4444 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)
4445 
4446 //===----------------------------------------------------------------------===//
4447 //                               CleanupPadInst Class
4448 //===----------------------------------------------------------------------===//
4449 class CleanupPadInst : public FuncletPadInst {
4450 private:
4451   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4452                           unsigned Values, const Twine &NameStr,
4453                           Instruction *InsertBefore)
4454       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4455                        NameStr, InsertBefore) {}
4456   explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4457                           unsigned Values, const Twine &NameStr,
4458                           BasicBlock *InsertAtEnd)
4459       : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4460                        NameStr, InsertAtEnd) {}
4461 
4462 public:
4463   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4464                                 const Twine &NameStr = "",
4465                                 Instruction *InsertBefore = nullptr) {
4466     unsigned Values = 1 + Args.size();
4467     return new (Values)
4468         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4469   }
4470 
4471   static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4472                                 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4473     unsigned Values = 1 + Args.size();
4474     return new (Values)
4475         CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4476   }
4477 
4478   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4479   static bool classof(const Instruction *I) {
4480     return I->getOpcode() == Instruction::CleanupPad;
4481   }
4482   static bool classof(const Value *V) {
4483     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4484   }
4485 };
4486 
4487 //===----------------------------------------------------------------------===//
4488 //                               CatchPadInst Class
4489 //===----------------------------------------------------------------------===//
4490 class CatchPadInst : public FuncletPadInst {
4491 private:
4492   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4493                         unsigned Values, const Twine &NameStr,
4494                         Instruction *InsertBefore)
4495       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4496                        NameStr, InsertBefore) {}
4497   explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4498                         unsigned Values, const Twine &NameStr,
4499                         BasicBlock *InsertAtEnd)
4500       : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4501                        NameStr, InsertAtEnd) {}
4502 
4503 public:
4504   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4505                               const Twine &NameStr = "",
4506                               Instruction *InsertBefore = nullptr) {
4507     unsigned Values = 1 + Args.size();
4508     return new (Values)
4509         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4510   }
4511 
4512   static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4513                               const Twine &NameStr, BasicBlock *InsertAtEnd) {
4514     unsigned Values = 1 + Args.size();
4515     return new (Values)
4516         CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4517   }
4518 
4519   /// Convenience accessors
4520   CatchSwitchInst *getCatchSwitch() const {
4521     return cast<CatchSwitchInst>(Op<-1>());
4522   }
4523   void setCatchSwitch(Value *CatchSwitch) {
4524     assert(CatchSwitch);
4525     Op<-1>() = CatchSwitch;
4526   }
4527 
4528   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4529   static bool classof(const Instruction *I) {
4530     return I->getOpcode() == Instruction::CatchPad;
4531   }
4532   static bool classof(const Value *V) {
4533     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4534   }
4535 };
4536 
4537 //===----------------------------------------------------------------------===//
4538 //                               CatchReturnInst Class
4539 //===----------------------------------------------------------------------===//
4540 
4541 class CatchReturnInst : public Instruction {
4542   CatchReturnInst(const CatchReturnInst &RI);
4543   CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4544   CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4545 
4546   void init(Value *CatchPad, BasicBlock *BB);
4547 
4548 protected:
4549   // Note: Instruction needs to be a friend here to call cloneImpl.
4550   friend class Instruction;
4551 
4552   CatchReturnInst *cloneImpl() const;
4553 
4554 public:
4555   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4556                                  Instruction *InsertBefore = nullptr) {
4557     assert(CatchPad);
4558     assert(BB);
4559     return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4560   }
4561 
4562   static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4563                                  BasicBlock *InsertAtEnd) {
4564     assert(CatchPad);
4565     assert(BB);
4566     return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4567   }
4568 
4569   /// Provide fast operand accessors
4570   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4571 
4572   /// Convenience accessors.
4573   CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4574   void setCatchPad(CatchPadInst *CatchPad) {
4575     assert(CatchPad);
4576     Op<0>() = CatchPad;
4577   }
4578 
4579   BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4580   void setSuccessor(BasicBlock *NewSucc) {
4581     assert(NewSucc);
4582     Op<1>() = NewSucc;
4583   }
4584   unsigned getNumSuccessors() const { return 1; }
4585 
4586   /// Get the parentPad of this catchret's catchpad's catchswitch.
4587   /// The successor block is implicitly a member of this funclet.
4588   Value *getCatchSwitchParentPad() const {
4589     return getCatchPad()->getCatchSwitch()->getParentPad();
4590   }
4591 
4592   // Methods for support type inquiry through isa, cast, and dyn_cast:
4593   static bool classof(const Instruction *I) {
4594     return (I->getOpcode() == Instruction::CatchRet);
4595   }
4596   static bool classof(const Value *V) {
4597     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4598   }
4599 
4600 private:
4601   BasicBlock *getSuccessor(unsigned Idx) const {
4602     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4603     return getSuccessor();
4604   }
4605 
4606   void setSuccessor(unsigned Idx, BasicBlock *B) {
4607     assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
4608     setSuccessor(B);
4609   }
4610 };
4611 
4612 template <>
4613 struct OperandTraits<CatchReturnInst>
4614     : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4615 
4616 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)
4617 
4618 //===----------------------------------------------------------------------===//
4619 //                               CleanupReturnInst Class
4620 //===----------------------------------------------------------------------===//
4621 
4622 class CleanupReturnInst : public Instruction {
4623   using UnwindDestField = BoolBitfieldElementT<0>;
4624 
4625 private:
4626   CleanupReturnInst(const CleanupReturnInst &RI);
4627   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4628                     Instruction *InsertBefore = nullptr);
4629   CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4630                     BasicBlock *InsertAtEnd);
4631 
4632   void init(Value *CleanupPad, BasicBlock *UnwindBB);
4633 
4634 protected:
4635   // Note: Instruction needs to be a friend here to call cloneImpl.
4636   friend class Instruction;
4637 
4638   CleanupReturnInst *cloneImpl() const;
4639 
4640 public:
4641   static CleanupReturnInst *Create(Value *CleanupPad,
4642                                    BasicBlock *UnwindBB = nullptr,
4643                                    Instruction *InsertBefore = nullptr) {
4644     assert(CleanupPad);
4645     unsigned Values = 1;
4646     if (UnwindBB)
4647       ++Values;
4648     return new (Values)
4649         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4650   }
4651 
4652   static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4653                                    BasicBlock *InsertAtEnd) {
4654     assert(CleanupPad);
4655     unsigned Values = 1;
4656     if (UnwindBB)
4657       ++Values;
4658     return new (Values)
4659         CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4660   }
4661 
4662   /// Provide fast operand accessors
4663   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
4664 
4665   bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4666   bool unwindsToCaller() const { return !hasUnwindDest(); }
4667 
4668   /// Convenience accessor.
4669   CleanupPadInst *getCleanupPad() const {
4670     return cast<CleanupPadInst>(Op<0>());
4671   }
4672   void setCleanupPad(CleanupPadInst *CleanupPad) {
4673     assert(CleanupPad);
4674     Op<0>() = CleanupPad;
4675   }
4676 
4677   unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4678 
4679   BasicBlock *getUnwindDest() const {
4680     return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4681   }
4682   void setUnwindDest(BasicBlock *NewDest) {
4683     assert(NewDest);
4684     assert(hasUnwindDest());
4685     Op<1>() = NewDest;
4686   }
4687 
4688   // Methods for support type inquiry through isa, cast, and dyn_cast:
4689   static bool classof(const Instruction *I) {
4690     return (I->getOpcode() == Instruction::CleanupRet);
4691   }
4692   static bool classof(const Value *V) {
4693     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4694   }
4695 
4696 private:
4697   BasicBlock *getSuccessor(unsigned Idx) const {
4698     assert(Idx == 0);
4699     return getUnwindDest();
4700   }
4701 
4702   void setSuccessor(unsigned Idx, BasicBlock *B) {
4703     assert(Idx == 0);
4704     setUnwindDest(B);
4705   }
4706 
4707   // Shadow Instruction::setInstructionSubclassData with a private forwarding
4708   // method so that subclasses cannot accidentally use it.
4709   template <typename Bitfield>
4710   void setSubclassData(typename Bitfield::Type Value) {
4711     Instruction::setSubclassData<Bitfield>(Value);
4712   }
4713 };
4714 
4715 template <>
4716 struct OperandTraits<CleanupReturnInst>
4717     : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4718 
4719 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)
4720 
4721 //===----------------------------------------------------------------------===//
4722 //                           UnreachableInst Class
4723 //===----------------------------------------------------------------------===//
4724 
4725 //===---------------------------------------------------------------------------
4726 /// This function has undefined behavior.  In particular, the
4727 /// presence of this instruction indicates some higher level knowledge that the
4728 /// end of the block cannot be reached.
4729 ///
4730 class UnreachableInst : public Instruction {
4731 protected:
4732   // Note: Instruction needs to be a friend here to call cloneImpl.
4733   friend class Instruction;
4734 
4735   UnreachableInst *cloneImpl() const;
4736 
4737 public:
4738   explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4739   explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4740 
4741   // allocate space for exactly zero operands
4742   void *operator new(size_t S) { return User::operator new(S, 0); }
4743   void operator delete(void *Ptr) { User::operator delete(Ptr); }
4744 
4745   unsigned getNumSuccessors() const { return 0; }
4746 
4747   // Methods for support type inquiry through isa, cast, and dyn_cast:
4748   static bool classof(const Instruction *I) {
4749     return I->getOpcode() == Instruction::Unreachable;
4750   }
4751   static bool classof(const Value *V) {
4752     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4753   }
4754 
4755 private:
4756   BasicBlock *getSuccessor(unsigned idx) const {
4757     llvm_unreachable("UnreachableInst has no successors!");
4758   }
4759 
4760   void setSuccessor(unsigned idx, BasicBlock *B) {
4761     llvm_unreachable("UnreachableInst has no successors!");
4762   }
4763 };
4764 
4765 //===----------------------------------------------------------------------===//
4766 //                                 TruncInst Class
4767 //===----------------------------------------------------------------------===//
4768 
4769 /// This class represents a truncation of integer types.
4770 class TruncInst : public CastInst {
4771 protected:
4772   // Note: Instruction needs to be a friend here to call cloneImpl.
4773   friend class Instruction;
4774 
4775   /// Clone an identical TruncInst
4776   TruncInst *cloneImpl() const;
4777 
4778 public:
4779   /// Constructor with insert-before-instruction semantics
4780   TruncInst(
4781     Value *S,                           ///< The value to be truncated
4782     Type *Ty,                           ///< The (smaller) type to truncate to
4783     const Twine &NameStr = "",          ///< A name for the new instruction
4784     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4785   );
4786 
4787   /// Constructor with insert-at-end-of-block semantics
4788   TruncInst(
4789     Value *S,                     ///< The value to be truncated
4790     Type *Ty,                     ///< The (smaller) type to truncate to
4791     const Twine &NameStr,         ///< A name for the new instruction
4792     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4793   );
4794 
4795   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4796   static bool classof(const Instruction *I) {
4797     return I->getOpcode() == Trunc;
4798   }
4799   static bool classof(const Value *V) {
4800     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4801   }
4802 };
4803 
4804 //===----------------------------------------------------------------------===//
4805 //                                 ZExtInst Class
4806 //===----------------------------------------------------------------------===//
4807 
4808 /// This class represents zero extension of integer types.
4809 class ZExtInst : public CastInst {
4810 protected:
4811   // Note: Instruction needs to be a friend here to call cloneImpl.
4812   friend class Instruction;
4813 
4814   /// Clone an identical ZExtInst
4815   ZExtInst *cloneImpl() const;
4816 
4817 public:
4818   /// Constructor with insert-before-instruction semantics
4819   ZExtInst(
4820     Value *S,                           ///< The value to be zero extended
4821     Type *Ty,                           ///< The type to zero extend to
4822     const Twine &NameStr = "",          ///< A name for the new instruction
4823     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4824   );
4825 
4826   /// Constructor with insert-at-end semantics.
4827   ZExtInst(
4828     Value *S,                     ///< The value to be zero extended
4829     Type *Ty,                     ///< The type to zero extend to
4830     const Twine &NameStr,         ///< A name for the new instruction
4831     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4832   );
4833 
4834   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4835   static bool classof(const Instruction *I) {
4836     return I->getOpcode() == ZExt;
4837   }
4838   static bool classof(const Value *V) {
4839     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4840   }
4841 };
4842 
4843 //===----------------------------------------------------------------------===//
4844 //                                 SExtInst Class
4845 //===----------------------------------------------------------------------===//
4846 
4847 /// This class represents a sign extension of integer types.
4848 class SExtInst : public CastInst {
4849 protected:
4850   // Note: Instruction needs to be a friend here to call cloneImpl.
4851   friend class Instruction;
4852 
4853   /// Clone an identical SExtInst
4854   SExtInst *cloneImpl() const;
4855 
4856 public:
4857   /// Constructor with insert-before-instruction semantics
4858   SExtInst(
4859     Value *S,                           ///< The value to be sign extended
4860     Type *Ty,                           ///< The type to sign extend to
4861     const Twine &NameStr = "",          ///< A name for the new instruction
4862     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4863   );
4864 
4865   /// Constructor with insert-at-end-of-block semantics
4866   SExtInst(
4867     Value *S,                     ///< The value to be sign extended
4868     Type *Ty,                     ///< The type to sign extend to
4869     const Twine &NameStr,         ///< A name for the new instruction
4870     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4871   );
4872 
4873   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4874   static bool classof(const Instruction *I) {
4875     return I->getOpcode() == SExt;
4876   }
4877   static bool classof(const Value *V) {
4878     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4879   }
4880 };
4881 
4882 //===----------------------------------------------------------------------===//
4883 //                                 FPTruncInst Class
4884 //===----------------------------------------------------------------------===//
4885 
4886 /// This class represents a truncation of floating point types.
4887 class FPTruncInst : public CastInst {
4888 protected:
4889   // Note: Instruction needs to be a friend here to call cloneImpl.
4890   friend class Instruction;
4891 
4892   /// Clone an identical FPTruncInst
4893   FPTruncInst *cloneImpl() const;
4894 
4895 public:
4896   /// Constructor with insert-before-instruction semantics
4897   FPTruncInst(
4898     Value *S,                           ///< The value to be truncated
4899     Type *Ty,                           ///< The type to truncate to
4900     const Twine &NameStr = "",          ///< A name for the new instruction
4901     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4902   );
4903 
4904   /// Constructor with insert-before-instruction semantics
4905   FPTruncInst(
4906     Value *S,                     ///< The value to be truncated
4907     Type *Ty,                     ///< The type to truncate to
4908     const Twine &NameStr,         ///< A name for the new instruction
4909     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4910   );
4911 
4912   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4913   static bool classof(const Instruction *I) {
4914     return I->getOpcode() == FPTrunc;
4915   }
4916   static bool classof(const Value *V) {
4917     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4918   }
4919 };
4920 
4921 //===----------------------------------------------------------------------===//
4922 //                                 FPExtInst Class
4923 //===----------------------------------------------------------------------===//
4924 
4925 /// This class represents an extension of floating point types.
4926 class FPExtInst : public CastInst {
4927 protected:
4928   // Note: Instruction needs to be a friend here to call cloneImpl.
4929   friend class Instruction;
4930 
4931   /// Clone an identical FPExtInst
4932   FPExtInst *cloneImpl() const;
4933 
4934 public:
4935   /// Constructor with insert-before-instruction semantics
4936   FPExtInst(
4937     Value *S,                           ///< The value to be extended
4938     Type *Ty,                           ///< The type to extend to
4939     const Twine &NameStr = "",          ///< A name for the new instruction
4940     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4941   );
4942 
4943   /// Constructor with insert-at-end-of-block semantics
4944   FPExtInst(
4945     Value *S,                     ///< The value to be extended
4946     Type *Ty,                     ///< The type to extend to
4947     const Twine &NameStr,         ///< A name for the new instruction
4948     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4949   );
4950 
4951   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4952   static bool classof(const Instruction *I) {
4953     return I->getOpcode() == FPExt;
4954   }
4955   static bool classof(const Value *V) {
4956     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4957   }
4958 };
4959 
4960 //===----------------------------------------------------------------------===//
4961 //                                 UIToFPInst Class
4962 //===----------------------------------------------------------------------===//
4963 
4964 /// This class represents a cast unsigned integer to floating point.
4965 class UIToFPInst : public CastInst {
4966 protected:
4967   // Note: Instruction needs to be a friend here to call cloneImpl.
4968   friend class Instruction;
4969 
4970   /// Clone an identical UIToFPInst
4971   UIToFPInst *cloneImpl() const;
4972 
4973 public:
4974   /// Constructor with insert-before-instruction semantics
4975   UIToFPInst(
4976     Value *S,                           ///< The value to be converted
4977     Type *Ty,                           ///< The type to convert to
4978     const Twine &NameStr = "",          ///< A name for the new instruction
4979     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4980   );
4981 
4982   /// Constructor with insert-at-end-of-block semantics
4983   UIToFPInst(
4984     Value *S,                     ///< The value to be converted
4985     Type *Ty,                     ///< The type to convert to
4986     const Twine &NameStr,         ///< A name for the new instruction
4987     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
4988   );
4989 
4990   /// Methods for support type inquiry through isa, cast, and dyn_cast:
4991   static bool classof(const Instruction *I) {
4992     return I->getOpcode() == UIToFP;
4993   }
4994   static bool classof(const Value *V) {
4995     return isa<Instruction>(V) && classof(cast<Instruction>(V));
4996   }
4997 };
4998 
4999 //===----------------------------------------------------------------------===//
5000 //                                 SIToFPInst Class
5001 //===----------------------------------------------------------------------===//
5002 
5003 /// This class represents a cast from signed integer to floating point.
5004 class SIToFPInst : public CastInst {
5005 protected:
5006   // Note: Instruction needs to be a friend here to call cloneImpl.
5007   friend class Instruction;
5008 
5009   /// Clone an identical SIToFPInst
5010   SIToFPInst *cloneImpl() const;
5011 
5012 public:
5013   /// Constructor with insert-before-instruction semantics
5014   SIToFPInst(
5015     Value *S,                           ///< The value to be converted
5016     Type *Ty,                           ///< The type to convert to
5017     const Twine &NameStr = "",          ///< A name for the new instruction
5018     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5019   );
5020 
5021   /// Constructor with insert-at-end-of-block semantics
5022   SIToFPInst(
5023     Value *S,                     ///< The value to be converted
5024     Type *Ty,                     ///< The type to convert to
5025     const Twine &NameStr,         ///< A name for the new instruction
5026     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5027   );
5028 
5029   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5030   static bool classof(const Instruction *I) {
5031     return I->getOpcode() == SIToFP;
5032   }
5033   static bool classof(const Value *V) {
5034     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5035   }
5036 };
5037 
5038 //===----------------------------------------------------------------------===//
5039 //                                 FPToUIInst Class
5040 //===----------------------------------------------------------------------===//
5041 
5042 /// This class represents a cast from floating point to unsigned integer
5043 class FPToUIInst  : public CastInst {
5044 protected:
5045   // Note: Instruction needs to be a friend here to call cloneImpl.
5046   friend class Instruction;
5047 
5048   /// Clone an identical FPToUIInst
5049   FPToUIInst *cloneImpl() const;
5050 
5051 public:
5052   /// Constructor with insert-before-instruction semantics
5053   FPToUIInst(
5054     Value *S,                           ///< The value to be converted
5055     Type *Ty,                           ///< The type to convert to
5056     const Twine &NameStr = "",          ///< A name for the new instruction
5057     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5058   );
5059 
5060   /// Constructor with insert-at-end-of-block semantics
5061   FPToUIInst(
5062     Value *S,                     ///< The value to be converted
5063     Type *Ty,                     ///< The type to convert to
5064     const Twine &NameStr,         ///< A name for the new instruction
5065     BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
5066   );
5067 
5068   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5069   static bool classof(const Instruction *I) {
5070     return I->getOpcode() == FPToUI;
5071   }
5072   static bool classof(const Value *V) {
5073     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5074   }
5075 };
5076 
5077 //===----------------------------------------------------------------------===//
5078 //                                 FPToSIInst Class
5079 //===----------------------------------------------------------------------===//
5080 
5081 /// This class represents a cast from floating point to signed integer.
5082 class FPToSIInst  : public CastInst {
5083 protected:
5084   // Note: Instruction needs to be a friend here to call cloneImpl.
5085   friend class Instruction;
5086 
5087   /// Clone an identical FPToSIInst
5088   FPToSIInst *cloneImpl() const;
5089 
5090 public:
5091   /// Constructor with insert-before-instruction semantics
5092   FPToSIInst(
5093     Value *S,                           ///< The value to be converted
5094     Type *Ty,                           ///< The type to convert to
5095     const Twine &NameStr = "",          ///< A name for the new instruction
5096     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5097   );
5098 
5099   /// Constructor with insert-at-end-of-block semantics
5100   FPToSIInst(
5101     Value *S,                     ///< The value to be converted
5102     Type *Ty,                     ///< The type to convert to
5103     const Twine &NameStr,         ///< A name for the new instruction
5104     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5105   );
5106 
5107   /// Methods for support type inquiry through isa, cast, and dyn_cast:
5108   static bool classof(const Instruction *I) {
5109     return I->getOpcode() == FPToSI;
5110   }
5111   static bool classof(const Value *V) {
5112     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5113   }
5114 };
5115 
5116 //===----------------------------------------------------------------------===//
5117 //                                 IntToPtrInst Class
5118 //===----------------------------------------------------------------------===//
5119 
5120 /// This class represents a cast from an integer to a pointer.
5121 class IntToPtrInst : public CastInst {
5122 public:
5123   // Note: Instruction needs to be a friend here to call cloneImpl.
5124   friend class Instruction;
5125 
5126   /// Constructor with insert-before-instruction semantics
5127   IntToPtrInst(
5128     Value *S,                           ///< The value to be converted
5129     Type *Ty,                           ///< The type to convert to
5130     const Twine &NameStr = "",          ///< A name for the new instruction
5131     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5132   );
5133 
5134   /// Constructor with insert-at-end-of-block semantics
5135   IntToPtrInst(
5136     Value *S,                     ///< The value to be converted
5137     Type *Ty,                     ///< The type to convert to
5138     const Twine &NameStr,         ///< A name for the new instruction
5139     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5140   );
5141 
5142   /// Clone an identical IntToPtrInst.
5143   IntToPtrInst *cloneImpl() const;
5144 
5145   /// Returns the address space of this instruction's pointer type.
5146   unsigned getAddressSpace() const {
5147     return getType()->getPointerAddressSpace();
5148   }
5149 
5150   // Methods for support type inquiry through isa, cast, and dyn_cast:
5151   static bool classof(const Instruction *I) {
5152     return I->getOpcode() == IntToPtr;
5153   }
5154   static bool classof(const Value *V) {
5155     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156   }
5157 };
5158 
5159 //===----------------------------------------------------------------------===//
5160 //                                 PtrToIntInst Class
5161 //===----------------------------------------------------------------------===//
5162 
5163 /// This class represents a cast from a pointer to an integer.
5164 class PtrToIntInst : public CastInst {
5165 protected:
5166   // Note: Instruction needs to be a friend here to call cloneImpl.
5167   friend class Instruction;
5168 
5169   /// Clone an identical PtrToIntInst.
5170   PtrToIntInst *cloneImpl() const;
5171 
5172 public:
5173   /// Constructor with insert-before-instruction semantics
5174   PtrToIntInst(
5175     Value *S,                           ///< The value to be converted
5176     Type *Ty,                           ///< The type to convert to
5177     const Twine &NameStr = "",          ///< A name for the new instruction
5178     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179   );
5180 
5181   /// Constructor with insert-at-end-of-block semantics
5182   PtrToIntInst(
5183     Value *S,                     ///< The value to be converted
5184     Type *Ty,                     ///< The type to convert to
5185     const Twine &NameStr,         ///< A name for the new instruction
5186     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5187   );
5188 
5189   /// Gets the pointer operand.
5190   Value *getPointerOperand() { return getOperand(0); }
5191   /// Gets the pointer operand.
5192   const Value *getPointerOperand() const { return getOperand(0); }
5193   /// Gets the operand index of the pointer operand.
5194   static unsigned getPointerOperandIndex() { return 0U; }
5195 
5196   /// Returns the address space of the pointer operand.
5197   unsigned getPointerAddressSpace() const {
5198     return getPointerOperand()->getType()->getPointerAddressSpace();
5199   }
5200 
5201   // Methods for support type inquiry through isa, cast, and dyn_cast:
5202   static bool classof(const Instruction *I) {
5203     return I->getOpcode() == PtrToInt;
5204   }
5205   static bool classof(const Value *V) {
5206     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5207   }
5208 };
5209 
5210 //===----------------------------------------------------------------------===//
5211 //                             BitCastInst Class
5212 //===----------------------------------------------------------------------===//
5213 
5214 /// This class represents a no-op cast from one type to another.
5215 class BitCastInst : public CastInst {
5216 protected:
5217   // Note: Instruction needs to be a friend here to call cloneImpl.
5218   friend class Instruction;
5219 
5220   /// Clone an identical BitCastInst.
5221   BitCastInst *cloneImpl() const;
5222 
5223 public:
5224   /// Constructor with insert-before-instruction semantics
5225   BitCastInst(
5226     Value *S,                           ///< The value to be casted
5227     Type *Ty,                           ///< The type to casted to
5228     const Twine &NameStr = "",          ///< A name for the new instruction
5229     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5230   );
5231 
5232   /// Constructor with insert-at-end-of-block semantics
5233   BitCastInst(
5234     Value *S,                     ///< The value to be casted
5235     Type *Ty,                     ///< The type to casted to
5236     const Twine &NameStr,         ///< A name for the new instruction
5237     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5238   );
5239 
5240   // Methods for support type inquiry through isa, cast, and dyn_cast:
5241   static bool classof(const Instruction *I) {
5242     return I->getOpcode() == BitCast;
5243   }
5244   static bool classof(const Value *V) {
5245     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5246   }
5247 };
5248 
5249 //===----------------------------------------------------------------------===//
5250 //                          AddrSpaceCastInst Class
5251 //===----------------------------------------------------------------------===//
5252 
5253 /// This class represents a conversion between pointers from one address space
5254 /// to another.
5255 class AddrSpaceCastInst : public CastInst {
5256 protected:
5257   // Note: Instruction needs to be a friend here to call cloneImpl.
5258   friend class Instruction;
5259 
5260   /// Clone an identical AddrSpaceCastInst.
5261   AddrSpaceCastInst *cloneImpl() const;
5262 
5263 public:
5264   /// Constructor with insert-before-instruction semantics
5265   AddrSpaceCastInst(
5266     Value *S,                           ///< The value to be casted
5267     Type *Ty,                           ///< The type to casted to
5268     const Twine &NameStr = "",          ///< A name for the new instruction
5269     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5270   );
5271 
5272   /// Constructor with insert-at-end-of-block semantics
5273   AddrSpaceCastInst(
5274     Value *S,                     ///< The value to be casted
5275     Type *Ty,                     ///< The type to casted to
5276     const Twine &NameStr,         ///< A name for the new instruction
5277     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
5278   );
5279 
5280   // Methods for support type inquiry through isa, cast, and dyn_cast:
5281   static bool classof(const Instruction *I) {
5282     return I->getOpcode() == AddrSpaceCast;
5283   }
5284   static bool classof(const Value *V) {
5285     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5286   }
5287 
5288   /// Gets the pointer operand.
5289   Value *getPointerOperand() {
5290     return getOperand(0);
5291   }
5292 
5293   /// Gets the pointer operand.
5294   const Value *getPointerOperand() const {
5295     return getOperand(0);
5296   }
5297 
5298   /// Gets the operand index of the pointer operand.
5299   static unsigned getPointerOperandIndex() {
5300     return 0U;
5301   }
5302 
5303   /// Returns the address space of the pointer operand.
5304   unsigned getSrcAddressSpace() const {
5305     return getPointerOperand()->getType()->getPointerAddressSpace();
5306   }
5307 
5308   /// Returns the address space of the result.
5309   unsigned getDestAddressSpace() const {
5310     return getType()->getPointerAddressSpace();
5311   }
5312 };
5313 
5314 /// A helper function that returns the pointer operand of a load or store
5315 /// instruction. Returns nullptr if not load or store.
5316 inline const Value *getLoadStorePointerOperand(const Value *V) {
5317   if (auto *Load = dyn_cast<LoadInst>(V))
5318     return Load->getPointerOperand();
5319   if (auto *Store = dyn_cast<StoreInst>(V))
5320     return Store->getPointerOperand();
5321   return nullptr;
5322 }
5323 inline Value *getLoadStorePointerOperand(Value *V) {
5324   return const_cast<Value *>(
5325       getLoadStorePointerOperand(static_cast<const Value *>(V)));
5326 }
5327 
5328 /// A helper function that returns the pointer operand of a load, store
5329 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5330 inline const Value *getPointerOperand(const Value *V) {
5331   if (auto *Ptr = getLoadStorePointerOperand(V))
5332     return Ptr;
5333   if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5334     return Gep->getPointerOperand();
5335   return nullptr;
5336 }
5337 inline Value *getPointerOperand(Value *V) {
5338   return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5339 }
5340 
5341 /// A helper function that returns the alignment of load or store instruction.
5342 inline Align getLoadStoreAlignment(Value *I) {
5343   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5344          "Expected Load or Store instruction");
5345   if (auto *LI = dyn_cast<LoadInst>(I))
5346     return LI->getAlign();
5347   return cast<StoreInst>(I)->getAlign();
5348 }
5349 
5350 /// A helper function that returns the address space of the pointer operand of
5351 /// load or store instruction.
5352 inline unsigned getLoadStoreAddressSpace(Value *I) {
5353   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5354          "Expected Load or Store instruction");
5355   if (auto *LI = dyn_cast<LoadInst>(I))
5356     return LI->getPointerAddressSpace();
5357   return cast<StoreInst>(I)->getPointerAddressSpace();
5358 }
5359 
5360 /// A helper function that returns the type of a load or store instruction.
5361 inline Type *getLoadStoreType(Value *I) {
5362   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
5363          "Expected Load or Store instruction");
5364   if (auto *LI = dyn_cast<LoadInst>(I))
5365     return LI->getType();
5366   return cast<StoreInst>(I)->getValueOperand()->getType();
5367 }
5368 
5369 //===----------------------------------------------------------------------===//
5370 //                              FreezeInst Class
5371 //===----------------------------------------------------------------------===//
5372 
5373 /// This class represents a freeze function that returns random concrete
5374 /// value if an operand is either a poison value or an undef value
5375 class FreezeInst : public UnaryInstruction {
5376 protected:
5377   // Note: Instruction needs to be a friend here to call cloneImpl.
5378   friend class Instruction;
5379 
5380   /// Clone an identical FreezeInst
5381   FreezeInst *cloneImpl() const;
5382 
5383 public:
5384   explicit FreezeInst(Value *S,
5385                       const Twine &NameStr = "",
5386                       Instruction *InsertBefore = nullptr);
5387   FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5388 
5389   // Methods for support type inquiry through isa, cast, and dyn_cast:
5390   static inline bool classof(const Instruction *I) {
5391     return I->getOpcode() == Freeze;
5392   }
5393   static inline bool classof(const Value *V) {
5394     return isa<Instruction>(V) && classof(cast<Instruction>(V));
5395   }
5396 };
5397 
5398 } // end namespace llvm
5399 
5400 #endif // LLVM_IR_INSTRUCTIONS_H
5401