xref: /freebsd/contrib/llvm-project/llvm/include/llvm/IR/Dominators.h (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- Dominators.h - Dominator Info Calculation ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DominatorTree class, which provides fast and efficient
10 // dominance queries.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_DOMINATORS_H
15 #define LLVM_IR_DOMINATORS_H
16 
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMapInfo.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/ilist_iterator.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/PassManager.h"
29 #include "llvm/IR/Use.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CFGDiff.h"
32 #include "llvm/Support/CFGUpdate.h"
33 #include "llvm/Support/GenericDomTree.h"
34 #include <algorithm>
35 #include <utility>
36 
37 namespace llvm {
38 
39 class Function;
40 class Instruction;
41 class Module;
42 class Value;
43 class raw_ostream;
44 template <class GraphType> struct GraphTraits;
45 
46 extern template class DomTreeNodeBase<BasicBlock>;
47 extern template class DominatorTreeBase<BasicBlock, false>; // DomTree
48 extern template class DominatorTreeBase<BasicBlock, true>; // PostDomTree
49 
50 extern template class cfg::Update<BasicBlock *>;
51 
52 namespace DomTreeBuilder {
53 using BBDomTree = DomTreeBase<BasicBlock>;
54 using BBPostDomTree = PostDomTreeBase<BasicBlock>;
55 
56 using BBUpdates = ArrayRef<llvm::cfg::Update<BasicBlock *>>;
57 
58 using BBDomTreeGraphDiff = GraphDiff<BasicBlock *, false>;
59 using BBPostDomTreeGraphDiff = GraphDiff<BasicBlock *, true>;
60 
61 extern template void Calculate<BBDomTree>(BBDomTree &DT);
62 extern template void CalculateWithUpdates<BBDomTree>(BBDomTree &DT,
63                                                      BBUpdates U);
64 
65 extern template void Calculate<BBPostDomTree>(BBPostDomTree &DT);
66 
67 extern template void InsertEdge<BBDomTree>(BBDomTree &DT, BasicBlock *From,
68                                            BasicBlock *To);
69 extern template void InsertEdge<BBPostDomTree>(BBPostDomTree &DT,
70                                                BasicBlock *From,
71                                                BasicBlock *To);
72 
73 extern template void DeleteEdge<BBDomTree>(BBDomTree &DT, BasicBlock *From,
74                                            BasicBlock *To);
75 extern template void DeleteEdge<BBPostDomTree>(BBPostDomTree &DT,
76                                                BasicBlock *From,
77                                                BasicBlock *To);
78 
79 extern template void ApplyUpdates<BBDomTree>(BBDomTree &DT,
80                                              BBDomTreeGraphDiff &,
81                                              BBDomTreeGraphDiff *);
82 extern template void ApplyUpdates<BBPostDomTree>(BBPostDomTree &DT,
83                                                  BBPostDomTreeGraphDiff &,
84                                                  BBPostDomTreeGraphDiff *);
85 
86 extern template bool Verify<BBDomTree>(const BBDomTree &DT,
87                                        BBDomTree::VerificationLevel VL);
88 extern template bool Verify<BBPostDomTree>(const BBPostDomTree &DT,
89                                            BBPostDomTree::VerificationLevel VL);
90 }  // namespace DomTreeBuilder
91 
92 using DomTreeNode = DomTreeNodeBase<BasicBlock>;
93 
94 class BasicBlockEdge {
95   const BasicBlock *Start;
96   const BasicBlock *End;
97 
98 public:
99   BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) :
100     Start(Start_), End(End_) {}
101 
102   BasicBlockEdge(const std::pair<BasicBlock *, BasicBlock *> &Pair)
103       : Start(Pair.first), End(Pair.second) {}
104 
105   BasicBlockEdge(const std::pair<const BasicBlock *, const BasicBlock *> &Pair)
106       : Start(Pair.first), End(Pair.second) {}
107 
108   const BasicBlock *getStart() const {
109     return Start;
110   }
111 
112   const BasicBlock *getEnd() const {
113     return End;
114   }
115 
116   /// Check if this is the only edge between Start and End.
117   bool isSingleEdge() const;
118 };
119 
120 template <> struct DenseMapInfo<BasicBlockEdge> {
121   using BBInfo = DenseMapInfo<const BasicBlock *>;
122 
123   static unsigned getHashValue(const BasicBlockEdge *V);
124 
125   static inline BasicBlockEdge getEmptyKey() {
126     return BasicBlockEdge(BBInfo::getEmptyKey(), BBInfo::getEmptyKey());
127   }
128 
129   static inline BasicBlockEdge getTombstoneKey() {
130     return BasicBlockEdge(BBInfo::getTombstoneKey(), BBInfo::getTombstoneKey());
131   }
132 
133   static unsigned getHashValue(const BasicBlockEdge &Edge) {
134     return hash_combine(BBInfo::getHashValue(Edge.getStart()),
135                         BBInfo::getHashValue(Edge.getEnd()));
136   }
137 
138   static bool isEqual(const BasicBlockEdge &LHS, const BasicBlockEdge &RHS) {
139     return BBInfo::isEqual(LHS.getStart(), RHS.getStart()) &&
140            BBInfo::isEqual(LHS.getEnd(), RHS.getEnd());
141   }
142 };
143 
144 /// Concrete subclass of DominatorTreeBase that is used to compute a
145 /// normal dominator tree.
146 ///
147 /// Definition: A block is said to be forward statically reachable if there is
148 /// a path from the entry of the function to the block.  A statically reachable
149 /// block may become statically unreachable during optimization.
150 ///
151 /// A forward unreachable block may appear in the dominator tree, or it may
152 /// not.  If it does, dominance queries will return results as if all reachable
153 /// blocks dominate it.  When asking for a Node corresponding to a potentially
154 /// unreachable block, calling code must handle the case where the block was
155 /// unreachable and the result of getNode() is nullptr.
156 ///
157 /// Generally, a block known to be unreachable when the dominator tree is
158 /// constructed will not be in the tree.  One which becomes unreachable after
159 /// the dominator tree is initially constructed may still exist in the tree,
160 /// even if the tree is properly updated. Calling code should not rely on the
161 /// preceding statements; this is stated only to assist human understanding.
162 class DominatorTree : public DominatorTreeBase<BasicBlock, false> {
163  public:
164   using Base = DominatorTreeBase<BasicBlock, false>;
165 
166   DominatorTree() = default;
167   explicit DominatorTree(Function &F) { recalculate(F); }
168   explicit DominatorTree(DominatorTree &DT, DomTreeBuilder::BBUpdates U) {
169     recalculate(*DT.Parent, U);
170   }
171 
172   /// Handle invalidation explicitly.
173   bool invalidate(Function &F, const PreservedAnalyses &PA,
174                   FunctionAnalysisManager::Invalidator &);
175 
176   // Ensure base-class overloads are visible.
177   using Base::dominates;
178 
179   /// Return true if the (end of the) basic block BB dominates the use U.
180   bool dominates(const BasicBlock *BB, const Use &U) const;
181 
182   /// Return true if value Def dominates use U, in the sense that Def is
183   /// available at U, and could be substituted as the used value without
184   /// violating the SSA dominance requirement.
185   ///
186   /// In particular, it is worth noting that:
187   ///  * Non-instruction Defs dominate everything.
188   ///  * Def does not dominate a use in Def itself (outside of degenerate cases
189   ///    like unreachable code or trivial phi cycles).
190   ///  * Invoke Defs only dominate uses in their default destination.
191   bool dominates(const Value *Def, const Use &U) const;
192   /// Return true if value Def dominates all possible uses inside instruction
193   /// User. Same comments as for the Use-based API apply.
194   bool dominates(const Value *Def, const Instruction *User) const;
195 
196   /// Returns true if Def would dominate a use in any instruction in BB.
197   /// If Def is an instruction in BB, then Def does not dominate BB.
198   ///
199   /// Does not accept Value to avoid ambiguity with dominance checks between
200   /// two basic blocks.
201   bool dominates(const Instruction *Def, const BasicBlock *BB) const;
202 
203   /// Return true if an edge dominates a use.
204   ///
205   /// If BBE is not a unique edge between start and end of the edge, it can
206   /// never dominate the use.
207   bool dominates(const BasicBlockEdge &BBE, const Use &U) const;
208   bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
209   /// Returns true if edge \p BBE1 dominates edge \p BBE2.
210   bool dominates(const BasicBlockEdge &BBE1, const BasicBlockEdge &BBE2) const;
211 
212   // Ensure base class overloads are visible.
213   using Base::isReachableFromEntry;
214 
215   /// Provide an overload for a Use.
216   bool isReachableFromEntry(const Use &U) const;
217 
218   // Ensure base class overloads are visible.
219   using Base::findNearestCommonDominator;
220 
221   /// Find the nearest instruction I that dominates both I1 and I2, in the sense
222   /// that a result produced before I will be available at both I1 and I2.
223   Instruction *findNearestCommonDominator(Instruction *I1,
224                                           Instruction *I2) const;
225 
226   // Pop up a GraphViz/gv window with the Dominator Tree rendered using `dot`.
227   void viewGraph(const Twine &Name, const Twine &Title);
228   void viewGraph();
229 };
230 
231 //===-------------------------------------
232 // DominatorTree GraphTraits specializations so the DominatorTree can be
233 // iterable by generic graph iterators.
234 
235 template <class Node, class ChildIterator> struct DomTreeGraphTraitsBase {
236   using NodeRef = Node *;
237   using ChildIteratorType = ChildIterator;
238   using nodes_iterator = df_iterator<Node *, df_iterator_default_set<Node*>>;
239 
240   static NodeRef getEntryNode(NodeRef N) { return N; }
241   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
242   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
243 
244   static nodes_iterator nodes_begin(NodeRef N) {
245     return df_begin(getEntryNode(N));
246   }
247 
248   static nodes_iterator nodes_end(NodeRef N) { return df_end(getEntryNode(N)); }
249 };
250 
251 template <>
252 struct GraphTraits<DomTreeNode *>
253     : public DomTreeGraphTraitsBase<DomTreeNode, DomTreeNode::const_iterator> {
254 };
255 
256 template <>
257 struct GraphTraits<const DomTreeNode *>
258     : public DomTreeGraphTraitsBase<const DomTreeNode,
259                                     DomTreeNode::const_iterator> {};
260 
261 template <> struct GraphTraits<DominatorTree*>
262   : public GraphTraits<DomTreeNode*> {
263   static NodeRef getEntryNode(DominatorTree *DT) { return DT->getRootNode(); }
264 
265   static nodes_iterator nodes_begin(DominatorTree *N) {
266     return df_begin(getEntryNode(N));
267   }
268 
269   static nodes_iterator nodes_end(DominatorTree *N) {
270     return df_end(getEntryNode(N));
271   }
272 };
273 
274 /// Analysis pass which computes a \c DominatorTree.
275 class DominatorTreeAnalysis : public AnalysisInfoMixin<DominatorTreeAnalysis> {
276   friend AnalysisInfoMixin<DominatorTreeAnalysis>;
277   static AnalysisKey Key;
278 
279 public:
280   /// Provide the result typedef for this analysis pass.
281   using Result = DominatorTree;
282 
283   /// Run the analysis pass over a function and produce a dominator tree.
284   DominatorTree run(Function &F, FunctionAnalysisManager &);
285 };
286 
287 /// Printer pass for the \c DominatorTree.
288 class DominatorTreePrinterPass
289     : public PassInfoMixin<DominatorTreePrinterPass> {
290   raw_ostream &OS;
291 
292 public:
293   explicit DominatorTreePrinterPass(raw_ostream &OS);
294 
295   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
296 
297   static bool isRequired() { return true; }
298 };
299 
300 /// Verifier pass for the \c DominatorTree.
301 struct DominatorTreeVerifierPass : PassInfoMixin<DominatorTreeVerifierPass> {
302   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
303   static bool isRequired() { return true; }
304 };
305 
306 /// Enables verification of dominator trees.
307 ///
308 /// This check is expensive and is disabled by default.  `-verify-dom-info`
309 /// allows selectively enabling the check without needing to recompile.
310 extern bool VerifyDomInfo;
311 
312 /// Legacy analysis pass which computes a \c DominatorTree.
313 class DominatorTreeWrapperPass : public FunctionPass {
314   DominatorTree DT;
315 
316 public:
317   static char ID;
318 
319   DominatorTreeWrapperPass();
320 
321   DominatorTree &getDomTree() { return DT; }
322   const DominatorTree &getDomTree() const { return DT; }
323 
324   bool runOnFunction(Function &F) override;
325 
326   void verifyAnalysis() const override;
327 
328   void getAnalysisUsage(AnalysisUsage &AU) const override {
329     AU.setPreservesAll();
330   }
331 
332   void releaseMemory() override { DT.reset(); }
333 
334   void print(raw_ostream &OS, const Module *M = nullptr) const override;
335 };
336 } // end namespace llvm
337 
338 #endif // LLVM_IR_DOMINATORS_H
339