xref: /freebsd/contrib/llvm-project/llvm/include/llvm/DebugInfo/DWARF/DWARFDebugFrame.h (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- DWARFDebugFrame.h - Parsing of .debug_frame --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
10 #define LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
11 
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/iterator.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/Triple.h"
16 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
17 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
18 #include "llvm/Support/Error.h"
19 #include <memory>
20 #include <vector>
21 
22 namespace llvm {
23 
24 class raw_ostream;
25 
26 namespace dwarf {
27 
28 /// Represent a sequence of Call Frame Information instructions that, when read
29 /// in order, construct a table mapping PC to frame state. This can also be
30 /// referred to as "CFI rules" in DWARF literature to avoid confusion with
31 /// computer programs in the broader sense, and in this context each instruction
32 /// would be a rule to establish the mapping. Refer to pg. 172 in the DWARF5
33 /// manual, "6.4.1 Structure of Call Frame Information".
34 class CFIProgram {
35 public:
36   typedef SmallVector<uint64_t, 2> Operands;
37 
38   /// An instruction consists of a DWARF CFI opcode and an optional sequence of
39   /// operands. If it refers to an expression, then this expression has its own
40   /// sequence of operations and operands handled separately by DWARFExpression.
41   struct Instruction {
42     Instruction(uint8_t Opcode) : Opcode(Opcode) {}
43 
44     uint8_t Opcode;
45     Operands Ops;
46     // Associated DWARF expression in case this instruction refers to one
47     Optional<DWARFExpression> Expression;
48   };
49 
50   using InstrList = std::vector<Instruction>;
51   using iterator = InstrList::iterator;
52   using const_iterator = InstrList::const_iterator;
53 
54   iterator begin() { return Instructions.begin(); }
55   const_iterator begin() const { return Instructions.begin(); }
56   iterator end() { return Instructions.end(); }
57   const_iterator end() const { return Instructions.end(); }
58 
59   unsigned size() const { return (unsigned)Instructions.size(); }
60   bool empty() const { return Instructions.empty(); }
61 
62   CFIProgram(uint64_t CodeAlignmentFactor, int64_t DataAlignmentFactor,
63              Triple::ArchType Arch)
64       : CodeAlignmentFactor(CodeAlignmentFactor),
65         DataAlignmentFactor(DataAlignmentFactor),
66         Arch(Arch) {}
67 
68   /// Parse and store a sequence of CFI instructions from Data,
69   /// starting at *Offset and ending at EndOffset. *Offset is updated
70   /// to EndOffset upon successful parsing, or indicates the offset
71   /// where a problem occurred in case an error is returned.
72   Error parse(DWARFDataExtractor Data, uint64_t *Offset, uint64_t EndOffset);
73 
74   void dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
75             unsigned IndentLevel = 1) const;
76 
77 private:
78   std::vector<Instruction> Instructions;
79   const uint64_t CodeAlignmentFactor;
80   const int64_t DataAlignmentFactor;
81   Triple::ArchType Arch;
82 
83   /// Convenience method to add a new instruction with the given opcode.
84   void addInstruction(uint8_t Opcode) {
85     Instructions.push_back(Instruction(Opcode));
86   }
87 
88   /// Add a new single-operand instruction.
89   void addInstruction(uint8_t Opcode, uint64_t Operand1) {
90     Instructions.push_back(Instruction(Opcode));
91     Instructions.back().Ops.push_back(Operand1);
92   }
93 
94   /// Add a new instruction that has two operands.
95   void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) {
96     Instructions.push_back(Instruction(Opcode));
97     Instructions.back().Ops.push_back(Operand1);
98     Instructions.back().Ops.push_back(Operand2);
99   }
100 
101   /// Types of operands to CFI instructions
102   /// In DWARF, this type is implicitly tied to a CFI instruction opcode and
103   /// thus this type doesn't need to be explictly written to the file (this is
104   /// not a DWARF encoding). The relationship of instrs to operand types can
105   /// be obtained from getOperandTypes() and is only used to simplify
106   /// instruction printing.
107   enum OperandType {
108     OT_Unset,
109     OT_None,
110     OT_Address,
111     OT_Offset,
112     OT_FactoredCodeOffset,
113     OT_SignedFactDataOffset,
114     OT_UnsignedFactDataOffset,
115     OT_Register,
116     OT_Expression
117   };
118 
119   /// Retrieve the array describing the types of operands according to the enum
120   /// above. This is indexed by opcode.
121   static ArrayRef<OperandType[2]> getOperandTypes();
122 
123   /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand.
124   void printOperand(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH,
125                     const Instruction &Instr, unsigned OperandIdx,
126                     uint64_t Operand) const;
127 };
128 
129 /// An entry in either debug_frame or eh_frame. This entry can be a CIE or an
130 /// FDE.
131 class FrameEntry {
132 public:
133   enum FrameKind { FK_CIE, FK_FDE };
134 
135   FrameEntry(FrameKind K, uint64_t Offset, uint64_t Length, uint64_t CodeAlign,
136              int64_t DataAlign, Triple::ArchType Arch)
137       : Kind(K), Offset(Offset), Length(Length),
138         CFIs(CodeAlign, DataAlign, Arch) {}
139 
140   virtual ~FrameEntry() {}
141 
142   FrameKind getKind() const { return Kind; }
143   uint64_t getOffset() const { return Offset; }
144   uint64_t getLength() const { return Length; }
145   const CFIProgram &cfis() const { return CFIs; }
146   CFIProgram &cfis() { return CFIs; }
147 
148   /// Dump the instructions in this CFI fragment
149   virtual void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
150                     bool IsEH) const = 0;
151 
152 protected:
153   const FrameKind Kind;
154 
155   /// Offset of this entry in the section.
156   const uint64_t Offset;
157 
158   /// Entry length as specified in DWARF.
159   const uint64_t Length;
160 
161   CFIProgram CFIs;
162 };
163 
164 /// DWARF Common Information Entry (CIE)
165 class CIE : public FrameEntry {
166 public:
167   // CIEs (and FDEs) are simply container classes, so the only sensible way to
168   // create them is by providing the full parsed contents in the constructor.
169   CIE(uint64_t Offset, uint64_t Length, uint8_t Version,
170       SmallString<8> Augmentation, uint8_t AddressSize,
171       uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor,
172       int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister,
173       SmallString<8> AugmentationData, uint32_t FDEPointerEncoding,
174       uint32_t LSDAPointerEncoding, Optional<uint64_t> Personality,
175       Optional<uint32_t> PersonalityEnc, Triple::ArchType Arch)
176       : FrameEntry(FK_CIE, Offset, Length, CodeAlignmentFactor,
177                    DataAlignmentFactor, Arch),
178         Version(Version), Augmentation(std::move(Augmentation)),
179         AddressSize(AddressSize), SegmentDescriptorSize(SegmentDescriptorSize),
180         CodeAlignmentFactor(CodeAlignmentFactor),
181         DataAlignmentFactor(DataAlignmentFactor),
182         ReturnAddressRegister(ReturnAddressRegister),
183         AugmentationData(std::move(AugmentationData)),
184         FDEPointerEncoding(FDEPointerEncoding),
185         LSDAPointerEncoding(LSDAPointerEncoding), Personality(Personality),
186         PersonalityEnc(PersonalityEnc) {}
187 
188   static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_CIE; }
189 
190   StringRef getAugmentationString() const { return Augmentation; }
191   uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; }
192   int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; }
193   uint8_t getVersion() const { return Version; }
194   uint64_t getReturnAddressRegister() const { return ReturnAddressRegister; }
195   Optional<uint64_t> getPersonalityAddress() const { return Personality; }
196   Optional<uint32_t> getPersonalityEncoding() const { return PersonalityEnc; }
197 
198   uint32_t getFDEPointerEncoding() const { return FDEPointerEncoding; }
199 
200   uint32_t getLSDAPointerEncoding() const { return LSDAPointerEncoding; }
201 
202   void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
203             bool IsEH) const override;
204 
205 private:
206   /// The following fields are defined in section 6.4.1 of the DWARF standard v4
207   const uint8_t Version;
208   const SmallString<8> Augmentation;
209   const uint8_t AddressSize;
210   const uint8_t SegmentDescriptorSize;
211   const uint64_t CodeAlignmentFactor;
212   const int64_t DataAlignmentFactor;
213   const uint64_t ReturnAddressRegister;
214 
215   // The following are used when the CIE represents an EH frame entry.
216   const SmallString<8> AugmentationData;
217   const uint32_t FDEPointerEncoding;
218   const uint32_t LSDAPointerEncoding;
219   const Optional<uint64_t> Personality;
220   const Optional<uint32_t> PersonalityEnc;
221 };
222 
223 /// DWARF Frame Description Entry (FDE)
224 class FDE : public FrameEntry {
225 public:
226   // Each FDE has a CIE it's "linked to". Our FDE contains is constructed with
227   // an offset to the CIE (provided by parsing the FDE header). The CIE itself
228   // is obtained lazily once it's actually required.
229   FDE(uint64_t Offset, uint64_t Length, int64_t LinkedCIEOffset,
230       uint64_t InitialLocation, uint64_t AddressRange, CIE *Cie,
231       Optional<uint64_t> LSDAAddress, Triple::ArchType Arch)
232       : FrameEntry(FK_FDE, Offset, Length,
233                    Cie ? Cie->getCodeAlignmentFactor() : 0,
234                    Cie ? Cie->getDataAlignmentFactor() : 0,
235                    Arch),
236         LinkedCIEOffset(LinkedCIEOffset), InitialLocation(InitialLocation),
237         AddressRange(AddressRange), LinkedCIE(Cie), LSDAAddress(LSDAAddress) {}
238 
239   ~FDE() override = default;
240 
241   const CIE *getLinkedCIE() const { return LinkedCIE; }
242   uint64_t getInitialLocation() const { return InitialLocation; }
243   uint64_t getAddressRange() const { return AddressRange; }
244   Optional<uint64_t> getLSDAAddress() const { return LSDAAddress; }
245 
246   void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
247             bool IsEH) const override;
248 
249   static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_FDE; }
250 
251 private:
252   /// The following fields are defined in section 6.4.1 of the DWARF standard v3
253   const uint64_t LinkedCIEOffset;
254   const uint64_t InitialLocation;
255   const uint64_t AddressRange;
256   const CIE *LinkedCIE;
257   const Optional<uint64_t> LSDAAddress;
258 };
259 
260 } // end namespace dwarf
261 
262 /// A parsed .debug_frame or .eh_frame section
263 class DWARFDebugFrame {
264   const Triple::ArchType Arch;
265   // True if this is parsing an eh_frame section.
266   const bool IsEH;
267   // Not zero for sane pointer values coming out of eh_frame
268   const uint64_t EHFrameAddress;
269 
270   std::vector<std::unique_ptr<dwarf::FrameEntry>> Entries;
271   using iterator = pointee_iterator<decltype(Entries)::const_iterator>;
272 
273   /// Return the entry at the given offset or nullptr.
274   dwarf::FrameEntry *getEntryAtOffset(uint64_t Offset) const;
275 
276 public:
277   // If IsEH is true, assume it is a .eh_frame section. Otherwise,
278   // it is a .debug_frame section. EHFrameAddress should be different
279   // than zero for correct parsing of .eh_frame addresses when they
280   // use a PC-relative encoding.
281   DWARFDebugFrame(Triple::ArchType Arch,
282                   bool IsEH = false, uint64_t EHFrameAddress = 0);
283   ~DWARFDebugFrame();
284 
285   /// Dump the section data into the given stream.
286   void dump(raw_ostream &OS, const MCRegisterInfo *MRI,
287             Optional<uint64_t> Offset) const;
288 
289   /// Parse the section from raw data. \p Data is assumed to contain the whole
290   /// frame section contents to be parsed.
291   void parse(DWARFDataExtractor Data);
292 
293   /// Return whether the section has any entries.
294   bool empty() const { return Entries.empty(); }
295 
296   /// DWARF Frame entries accessors
297   iterator begin() const { return Entries.begin(); }
298   iterator end() const { return Entries.end(); }
299   iterator_range<iterator> entries() const {
300     return iterator_range<iterator>(Entries.begin(), Entries.end());
301   }
302 
303   uint64_t getEHFrameAddress() const { return EHFrameAddress; }
304 };
305 
306 } // end namespace llvm
307 
308 #endif // LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H
309