1 //===- DWARFDebugFrame.h - Parsing of .debug_frame --------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H 10 #define LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H 11 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/iterator.h" 14 #include "llvm/ADT/SmallString.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 17 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 18 #include "llvm/Support/Error.h" 19 #include <memory> 20 #include <vector> 21 22 namespace llvm { 23 24 class raw_ostream; 25 26 namespace dwarf { 27 28 /// Represent a sequence of Call Frame Information instructions that, when read 29 /// in order, construct a table mapping PC to frame state. This can also be 30 /// referred to as "CFI rules" in DWARF literature to avoid confusion with 31 /// computer programs in the broader sense, and in this context each instruction 32 /// would be a rule to establish the mapping. Refer to pg. 172 in the DWARF5 33 /// manual, "6.4.1 Structure of Call Frame Information". 34 class CFIProgram { 35 public: 36 typedef SmallVector<uint64_t, 2> Operands; 37 38 /// An instruction consists of a DWARF CFI opcode and an optional sequence of 39 /// operands. If it refers to an expression, then this expression has its own 40 /// sequence of operations and operands handled separately by DWARFExpression. 41 struct Instruction { 42 Instruction(uint8_t Opcode) : Opcode(Opcode) {} 43 44 uint8_t Opcode; 45 Operands Ops; 46 // Associated DWARF expression in case this instruction refers to one 47 Optional<DWARFExpression> Expression; 48 }; 49 50 using InstrList = std::vector<Instruction>; 51 using iterator = InstrList::iterator; 52 using const_iterator = InstrList::const_iterator; 53 54 iterator begin() { return Instructions.begin(); } 55 const_iterator begin() const { return Instructions.begin(); } 56 iterator end() { return Instructions.end(); } 57 const_iterator end() const { return Instructions.end(); } 58 59 unsigned size() const { return (unsigned)Instructions.size(); } 60 bool empty() const { return Instructions.empty(); } 61 62 CFIProgram(uint64_t CodeAlignmentFactor, int64_t DataAlignmentFactor, 63 Triple::ArchType Arch) 64 : CodeAlignmentFactor(CodeAlignmentFactor), 65 DataAlignmentFactor(DataAlignmentFactor), 66 Arch(Arch) {} 67 68 /// Parse and store a sequence of CFI instructions from Data, 69 /// starting at *Offset and ending at EndOffset. *Offset is updated 70 /// to EndOffset upon successful parsing, or indicates the offset 71 /// where a problem occurred in case an error is returned. 72 Error parse(DWARFDataExtractor Data, uint64_t *Offset, uint64_t EndOffset); 73 74 void dump(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, 75 unsigned IndentLevel = 1) const; 76 77 private: 78 std::vector<Instruction> Instructions; 79 const uint64_t CodeAlignmentFactor; 80 const int64_t DataAlignmentFactor; 81 Triple::ArchType Arch; 82 83 /// Convenience method to add a new instruction with the given opcode. 84 void addInstruction(uint8_t Opcode) { 85 Instructions.push_back(Instruction(Opcode)); 86 } 87 88 /// Add a new single-operand instruction. 89 void addInstruction(uint8_t Opcode, uint64_t Operand1) { 90 Instructions.push_back(Instruction(Opcode)); 91 Instructions.back().Ops.push_back(Operand1); 92 } 93 94 /// Add a new instruction that has two operands. 95 void addInstruction(uint8_t Opcode, uint64_t Operand1, uint64_t Operand2) { 96 Instructions.push_back(Instruction(Opcode)); 97 Instructions.back().Ops.push_back(Operand1); 98 Instructions.back().Ops.push_back(Operand2); 99 } 100 101 /// Types of operands to CFI instructions 102 /// In DWARF, this type is implicitly tied to a CFI instruction opcode and 103 /// thus this type doesn't need to be explictly written to the file (this is 104 /// not a DWARF encoding). The relationship of instrs to operand types can 105 /// be obtained from getOperandTypes() and is only used to simplify 106 /// instruction printing. 107 enum OperandType { 108 OT_Unset, 109 OT_None, 110 OT_Address, 111 OT_Offset, 112 OT_FactoredCodeOffset, 113 OT_SignedFactDataOffset, 114 OT_UnsignedFactDataOffset, 115 OT_Register, 116 OT_Expression 117 }; 118 119 /// Retrieve the array describing the types of operands according to the enum 120 /// above. This is indexed by opcode. 121 static ArrayRef<OperandType[2]> getOperandTypes(); 122 123 /// Print \p Opcode's operand number \p OperandIdx which has value \p Operand. 124 void printOperand(raw_ostream &OS, const MCRegisterInfo *MRI, bool IsEH, 125 const Instruction &Instr, unsigned OperandIdx, 126 uint64_t Operand) const; 127 }; 128 129 /// An entry in either debug_frame or eh_frame. This entry can be a CIE or an 130 /// FDE. 131 class FrameEntry { 132 public: 133 enum FrameKind { FK_CIE, FK_FDE }; 134 135 FrameEntry(FrameKind K, bool IsDWARF64, uint64_t Offset, uint64_t Length, 136 uint64_t CodeAlign, int64_t DataAlign, Triple::ArchType Arch) 137 : Kind(K), IsDWARF64(IsDWARF64), Offset(Offset), Length(Length), 138 CFIs(CodeAlign, DataAlign, Arch) {} 139 140 virtual ~FrameEntry() {} 141 142 FrameKind getKind() const { return Kind; } 143 uint64_t getOffset() const { return Offset; } 144 uint64_t getLength() const { return Length; } 145 const CFIProgram &cfis() const { return CFIs; } 146 CFIProgram &cfis() { return CFIs; } 147 148 /// Dump the instructions in this CFI fragment 149 virtual void dump(raw_ostream &OS, const MCRegisterInfo *MRI, 150 bool IsEH) const = 0; 151 152 protected: 153 const FrameKind Kind; 154 155 const bool IsDWARF64; 156 157 /// Offset of this entry in the section. 158 const uint64_t Offset; 159 160 /// Entry length as specified in DWARF. 161 const uint64_t Length; 162 163 CFIProgram CFIs; 164 }; 165 166 /// DWARF Common Information Entry (CIE) 167 class CIE : public FrameEntry { 168 public: 169 // CIEs (and FDEs) are simply container classes, so the only sensible way to 170 // create them is by providing the full parsed contents in the constructor. 171 CIE(bool IsDWARF64, uint64_t Offset, uint64_t Length, uint8_t Version, 172 SmallString<8> Augmentation, uint8_t AddressSize, 173 uint8_t SegmentDescriptorSize, uint64_t CodeAlignmentFactor, 174 int64_t DataAlignmentFactor, uint64_t ReturnAddressRegister, 175 SmallString<8> AugmentationData, uint32_t FDEPointerEncoding, 176 uint32_t LSDAPointerEncoding, Optional<uint64_t> Personality, 177 Optional<uint32_t> PersonalityEnc, Triple::ArchType Arch) 178 : FrameEntry(FK_CIE, IsDWARF64, Offset, Length, CodeAlignmentFactor, 179 DataAlignmentFactor, Arch), 180 Version(Version), Augmentation(std::move(Augmentation)), 181 AddressSize(AddressSize), SegmentDescriptorSize(SegmentDescriptorSize), 182 CodeAlignmentFactor(CodeAlignmentFactor), 183 DataAlignmentFactor(DataAlignmentFactor), 184 ReturnAddressRegister(ReturnAddressRegister), 185 AugmentationData(std::move(AugmentationData)), 186 FDEPointerEncoding(FDEPointerEncoding), 187 LSDAPointerEncoding(LSDAPointerEncoding), Personality(Personality), 188 PersonalityEnc(PersonalityEnc) {} 189 190 static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_CIE; } 191 192 StringRef getAugmentationString() const { return Augmentation; } 193 uint64_t getCodeAlignmentFactor() const { return CodeAlignmentFactor; } 194 int64_t getDataAlignmentFactor() const { return DataAlignmentFactor; } 195 uint8_t getVersion() const { return Version; } 196 uint64_t getReturnAddressRegister() const { return ReturnAddressRegister; } 197 Optional<uint64_t> getPersonalityAddress() const { return Personality; } 198 Optional<uint32_t> getPersonalityEncoding() const { return PersonalityEnc; } 199 200 uint32_t getFDEPointerEncoding() const { return FDEPointerEncoding; } 201 202 uint32_t getLSDAPointerEncoding() const { return LSDAPointerEncoding; } 203 204 void dump(raw_ostream &OS, const MCRegisterInfo *MRI, 205 bool IsEH) const override; 206 207 private: 208 /// The following fields are defined in section 6.4.1 of the DWARF standard v4 209 const uint8_t Version; 210 const SmallString<8> Augmentation; 211 const uint8_t AddressSize; 212 const uint8_t SegmentDescriptorSize; 213 const uint64_t CodeAlignmentFactor; 214 const int64_t DataAlignmentFactor; 215 const uint64_t ReturnAddressRegister; 216 217 // The following are used when the CIE represents an EH frame entry. 218 const SmallString<8> AugmentationData; 219 const uint32_t FDEPointerEncoding; 220 const uint32_t LSDAPointerEncoding; 221 const Optional<uint64_t> Personality; 222 const Optional<uint32_t> PersonalityEnc; 223 }; 224 225 /// DWARF Frame Description Entry (FDE) 226 class FDE : public FrameEntry { 227 public: 228 FDE(bool IsDWARF64, uint64_t Offset, uint64_t Length, uint64_t CIEPointer, 229 uint64_t InitialLocation, uint64_t AddressRange, CIE *Cie, 230 Optional<uint64_t> LSDAAddress, Triple::ArchType Arch) 231 : FrameEntry(FK_FDE, IsDWARF64, Offset, Length, 232 Cie ? Cie->getCodeAlignmentFactor() : 0, 233 Cie ? Cie->getDataAlignmentFactor() : 0, 234 Arch), 235 CIEPointer(CIEPointer), InitialLocation(InitialLocation), 236 AddressRange(AddressRange), LinkedCIE(Cie), LSDAAddress(LSDAAddress) {} 237 238 ~FDE() override = default; 239 240 const CIE *getLinkedCIE() const { return LinkedCIE; } 241 uint64_t getInitialLocation() const { return InitialLocation; } 242 uint64_t getAddressRange() const { return AddressRange; } 243 Optional<uint64_t> getLSDAAddress() const { return LSDAAddress; } 244 245 void dump(raw_ostream &OS, const MCRegisterInfo *MRI, 246 bool IsEH) const override; 247 248 static bool classof(const FrameEntry *FE) { return FE->getKind() == FK_FDE; } 249 250 private: 251 /// The following fields are defined in section 6.4.1 of the DWARFv3 standard. 252 /// Note that CIE pointers in EH FDEs, unlike DWARF FDEs, contain relative 253 /// offsets to the linked CIEs. See the following link for more info: 254 /// https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html 255 const uint64_t CIEPointer; 256 const uint64_t InitialLocation; 257 const uint64_t AddressRange; 258 const CIE *LinkedCIE; 259 const Optional<uint64_t> LSDAAddress; 260 }; 261 262 } // end namespace dwarf 263 264 /// A parsed .debug_frame or .eh_frame section 265 class DWARFDebugFrame { 266 const Triple::ArchType Arch; 267 // True if this is parsing an eh_frame section. 268 const bool IsEH; 269 // Not zero for sane pointer values coming out of eh_frame 270 const uint64_t EHFrameAddress; 271 272 std::vector<std::unique_ptr<dwarf::FrameEntry>> Entries; 273 using iterator = pointee_iterator<decltype(Entries)::const_iterator>; 274 275 /// Return the entry at the given offset or nullptr. 276 dwarf::FrameEntry *getEntryAtOffset(uint64_t Offset) const; 277 278 public: 279 // If IsEH is true, assume it is a .eh_frame section. Otherwise, 280 // it is a .debug_frame section. EHFrameAddress should be different 281 // than zero for correct parsing of .eh_frame addresses when they 282 // use a PC-relative encoding. 283 DWARFDebugFrame(Triple::ArchType Arch, 284 bool IsEH = false, uint64_t EHFrameAddress = 0); 285 ~DWARFDebugFrame(); 286 287 /// Dump the section data into the given stream. 288 void dump(raw_ostream &OS, const MCRegisterInfo *MRI, 289 Optional<uint64_t> Offset) const; 290 291 /// Parse the section from raw data. \p Data is assumed to contain the whole 292 /// frame section contents to be parsed. 293 Error parse(DWARFDataExtractor Data); 294 295 /// Return whether the section has any entries. 296 bool empty() const { return Entries.empty(); } 297 298 /// DWARF Frame entries accessors 299 iterator begin() const { return Entries.begin(); } 300 iterator end() const { return Entries.end(); } 301 iterator_range<iterator> entries() const { 302 return iterator_range<iterator>(Entries.begin(), Entries.end()); 303 } 304 305 uint64_t getEHFrameAddress() const { return EHFrameAddress; } 306 }; 307 308 } // end namespace llvm 309 310 #endif // LLVM_DEBUGINFO_DWARF_DWARFDEBUGFRAME_H 311