xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/SelectionDAGNodes.h (revision e9e8876a4d6afc1ad5315faaa191b25121a813d7)
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/Register.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/Support/AlignOf.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <climits>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <iterator>
54 #include <string>
55 #include <tuple>
56 
57 namespace llvm {
58 
59 class APInt;
60 class Constant;
61 template <typename T> struct DenseMapInfo;
62 class GlobalValue;
63 class MachineBasicBlock;
64 class MachineConstantPoolValue;
65 class MCSymbol;
66 class raw_ostream;
67 class SDNode;
68 class SelectionDAG;
69 class Type;
70 class Value;
71 
72 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73                     bool force = false);
74 
75 /// This represents a list of ValueType's that has been intern'd by
76 /// a SelectionDAG.  Instances of this simple value class are returned by
77 /// SelectionDAG::getVTList(...).
78 ///
79 struct SDVTList {
80   const EVT *VTs;
81   unsigned int NumVTs;
82 };
83 
84 namespace ISD {
85 
86   /// Node predicates
87 
88 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89 /// same constant or undefined, return true and return the constant value in
90 /// \p SplatValue.
91 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92 
93 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95 /// true, it only checks BUILD_VECTOR.
96 bool isConstantSplatVectorAllOnes(const SDNode *N,
97                                   bool BuildVectorOnly = false);
98 
99 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101 /// only checks BUILD_VECTOR.
102 bool isConstantSplatVectorAllZeros(const SDNode *N,
103                                    bool BuildVectorOnly = false);
104 
105 /// Return true if the specified node is a BUILD_VECTOR where all of the
106 /// elements are ~0 or undef.
107 bool isBuildVectorAllOnes(const SDNode *N);
108 
109 /// Return true if the specified node is a BUILD_VECTOR where all of the
110 /// elements are 0 or undef.
111 bool isBuildVectorAllZeros(const SDNode *N);
112 
113 /// Return true if the specified node is a BUILD_VECTOR node of all
114 /// ConstantSDNode or undef.
115 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116 
117 /// Return true if the specified node is a BUILD_VECTOR node of all
118 /// ConstantFPSDNode or undef.
119 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120 
121 /// Return true if the node has at least one operand and all operands of the
122 /// specified node are ISD::UNDEF.
123 bool allOperandsUndef(const SDNode *N);
124 
125 } // end namespace ISD
126 
127 //===----------------------------------------------------------------------===//
128 /// Unlike LLVM values, Selection DAG nodes may return multiple
129 /// values as the result of a computation.  Many nodes return multiple values,
130 /// from loads (which define a token and a return value) to ADDC (which returns
131 /// a result and a carry value), to calls (which may return an arbitrary number
132 /// of values).
133 ///
134 /// As such, each use of a SelectionDAG computation must indicate the node that
135 /// computes it as well as which return value to use from that node.  This pair
136 /// of information is represented with the SDValue value type.
137 ///
138 class SDValue {
139   friend struct DenseMapInfo<SDValue>;
140 
141   SDNode *Node = nullptr; // The node defining the value we are using.
142   unsigned ResNo = 0;     // Which return value of the node we are using.
143 
144 public:
145   SDValue() = default;
146   SDValue(SDNode *node, unsigned resno);
147 
148   /// get the index which selects a specific result in the SDNode
149   unsigned getResNo() const { return ResNo; }
150 
151   /// get the SDNode which holds the desired result
152   SDNode *getNode() const { return Node; }
153 
154   /// set the SDNode
155   void setNode(SDNode *N) { Node = N; }
156 
157   inline SDNode *operator->() const { return Node; }
158 
159   bool operator==(const SDValue &O) const {
160     return Node == O.Node && ResNo == O.ResNo;
161   }
162   bool operator!=(const SDValue &O) const {
163     return !operator==(O);
164   }
165   bool operator<(const SDValue &O) const {
166     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167   }
168   explicit operator bool() const {
169     return Node != nullptr;
170   }
171 
172   SDValue getValue(unsigned R) const {
173     return SDValue(Node, R);
174   }
175 
176   /// Return true if this node is an operand of N.
177   bool isOperandOf(const SDNode *N) const;
178 
179   /// Return the ValueType of the referenced return value.
180   inline EVT getValueType() const;
181 
182   /// Return the simple ValueType of the referenced return value.
183   MVT getSimpleValueType() const {
184     return getValueType().getSimpleVT();
185   }
186 
187   /// Returns the size of the value in bits.
188   ///
189   /// If the value type is a scalable vector type, the scalable property will
190   /// be set and the runtime size will be a positive integer multiple of the
191   /// base size.
192   TypeSize getValueSizeInBits() const {
193     return getValueType().getSizeInBits();
194   }
195 
196   uint64_t getScalarValueSizeInBits() const {
197     return getValueType().getScalarType().getFixedSizeInBits();
198   }
199 
200   // Forwarding methods - These forward to the corresponding methods in SDNode.
201   inline unsigned getOpcode() const;
202   inline unsigned getNumOperands() const;
203   inline const SDValue &getOperand(unsigned i) const;
204   inline uint64_t getConstantOperandVal(unsigned i) const;
205   inline const APInt &getConstantOperandAPInt(unsigned i) const;
206   inline bool isTargetMemoryOpcode() const;
207   inline bool isTargetOpcode() const;
208   inline bool isMachineOpcode() const;
209   inline bool isUndef() const;
210   inline unsigned getMachineOpcode() const;
211   inline const DebugLoc &getDebugLoc() const;
212   inline void dump() const;
213   inline void dump(const SelectionDAG *G) const;
214   inline void dumpr() const;
215   inline void dumpr(const SelectionDAG *G) const;
216 
217   /// Return true if this operand (which must be a chain) reaches the
218   /// specified operand without crossing any side-effecting instructions.
219   /// In practice, this looks through token factors and non-volatile loads.
220   /// In order to remain efficient, this only
221   /// looks a couple of nodes in, it does not do an exhaustive search.
222   bool reachesChainWithoutSideEffects(SDValue Dest,
223                                       unsigned Depth = 2) const;
224 
225   /// Return true if there are no nodes using value ResNo of Node.
226   inline bool use_empty() const;
227 
228   /// Return true if there is exactly one node using value ResNo of Node.
229   inline bool hasOneUse() const;
230 };
231 
232 template<> struct DenseMapInfo<SDValue> {
233   static inline SDValue getEmptyKey() {
234     SDValue V;
235     V.ResNo = -1U;
236     return V;
237   }
238 
239   static inline SDValue getTombstoneKey() {
240     SDValue V;
241     V.ResNo = -2U;
242     return V;
243   }
244 
245   static unsigned getHashValue(const SDValue &Val) {
246     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248   }
249 
250   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251     return LHS == RHS;
252   }
253 };
254 
255 /// Allow casting operators to work directly on
256 /// SDValues as if they were SDNode*'s.
257 template<> struct simplify_type<SDValue> {
258   using SimpleType = SDNode *;
259 
260   static SimpleType getSimplifiedValue(SDValue &Val) {
261     return Val.getNode();
262   }
263 };
264 template<> struct simplify_type<const SDValue> {
265   using SimpleType = /*const*/ SDNode *;
266 
267   static SimpleType getSimplifiedValue(const SDValue &Val) {
268     return Val.getNode();
269   }
270 };
271 
272 /// Represents a use of a SDNode. This class holds an SDValue,
273 /// which records the SDNode being used and the result number, a
274 /// pointer to the SDNode using the value, and Next and Prev pointers,
275 /// which link together all the uses of an SDNode.
276 ///
277 class SDUse {
278   /// Val - The value being used.
279   SDValue Val;
280   /// User - The user of this value.
281   SDNode *User = nullptr;
282   /// Prev, Next - Pointers to the uses list of the SDNode referred by
283   /// this operand.
284   SDUse **Prev = nullptr;
285   SDUse *Next = nullptr;
286 
287 public:
288   SDUse() = default;
289   SDUse(const SDUse &U) = delete;
290   SDUse &operator=(const SDUse &) = delete;
291 
292   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293   operator const SDValue&() const { return Val; }
294 
295   /// If implicit conversion to SDValue doesn't work, the get() method returns
296   /// the SDValue.
297   const SDValue &get() const { return Val; }
298 
299   /// This returns the SDNode that contains this Use.
300   SDNode *getUser() { return User; }
301 
302   /// Get the next SDUse in the use list.
303   SDUse *getNext() const { return Next; }
304 
305   /// Convenience function for get().getNode().
306   SDNode *getNode() const { return Val.getNode(); }
307   /// Convenience function for get().getResNo().
308   unsigned getResNo() const { return Val.getResNo(); }
309   /// Convenience function for get().getValueType().
310   EVT getValueType() const { return Val.getValueType(); }
311 
312   /// Convenience function for get().operator==
313   bool operator==(const SDValue &V) const {
314     return Val == V;
315   }
316 
317   /// Convenience function for get().operator!=
318   bool operator!=(const SDValue &V) const {
319     return Val != V;
320   }
321 
322   /// Convenience function for get().operator<
323   bool operator<(const SDValue &V) const {
324     return Val < V;
325   }
326 
327 private:
328   friend class SelectionDAG;
329   friend class SDNode;
330   // TODO: unfriend HandleSDNode once we fix its operand handling.
331   friend class HandleSDNode;
332 
333   void setUser(SDNode *p) { User = p; }
334 
335   /// Remove this use from its existing use list, assign it the
336   /// given value, and add it to the new value's node's use list.
337   inline void set(const SDValue &V);
338   /// Like set, but only supports initializing a newly-allocated
339   /// SDUse with a non-null value.
340   inline void setInitial(const SDValue &V);
341   /// Like set, but only sets the Node portion of the value,
342   /// leaving the ResNo portion unmodified.
343   inline void setNode(SDNode *N);
344 
345   void addToList(SDUse **List) {
346     Next = *List;
347     if (Next) Next->Prev = &Next;
348     Prev = List;
349     *List = this;
350   }
351 
352   void removeFromList() {
353     *Prev = Next;
354     if (Next) Next->Prev = Prev;
355   }
356 };
357 
358 /// simplify_type specializations - Allow casting operators to work directly on
359 /// SDValues as if they were SDNode*'s.
360 template<> struct simplify_type<SDUse> {
361   using SimpleType = SDNode *;
362 
363   static SimpleType getSimplifiedValue(SDUse &Val) {
364     return Val.getNode();
365   }
366 };
367 
368 /// These are IR-level optimization flags that may be propagated to SDNodes.
369 /// TODO: This data structure should be shared by the IR optimizer and the
370 /// the backend.
371 struct SDNodeFlags {
372 private:
373   bool NoUnsignedWrap : 1;
374   bool NoSignedWrap : 1;
375   bool Exact : 1;
376   bool NoNaNs : 1;
377   bool NoInfs : 1;
378   bool NoSignedZeros : 1;
379   bool AllowReciprocal : 1;
380   bool AllowContract : 1;
381   bool ApproximateFuncs : 1;
382   bool AllowReassociation : 1;
383 
384   // We assume instructions do not raise floating-point exceptions by default,
385   // and only those marked explicitly may do so.  We could choose to represent
386   // this via a positive "FPExcept" flags like on the MI level, but having a
387   // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388   // intersection logic more straightforward.
389   bool NoFPExcept : 1;
390 
391 public:
392   /// Default constructor turns off all optimization flags.
393   SDNodeFlags()
394       : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395         NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396         AllowContract(false), ApproximateFuncs(false),
397         AllowReassociation(false), NoFPExcept(false) {}
398 
399   /// Propagate the fast-math-flags from an IR FPMathOperator.
400   void copyFMF(const FPMathOperator &FPMO) {
401     setNoNaNs(FPMO.hasNoNaNs());
402     setNoInfs(FPMO.hasNoInfs());
403     setNoSignedZeros(FPMO.hasNoSignedZeros());
404     setAllowReciprocal(FPMO.hasAllowReciprocal());
405     setAllowContract(FPMO.hasAllowContract());
406     setApproximateFuncs(FPMO.hasApproxFunc());
407     setAllowReassociation(FPMO.hasAllowReassoc());
408   }
409 
410   // These are mutators for each flag.
411   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413   void setExact(bool b) { Exact = b; }
414   void setNoNaNs(bool b) { NoNaNs = b; }
415   void setNoInfs(bool b) { NoInfs = b; }
416   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418   void setAllowContract(bool b) { AllowContract = b; }
419   void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420   void setAllowReassociation(bool b) { AllowReassociation = b; }
421   void setNoFPExcept(bool b) { NoFPExcept = b; }
422 
423   // These are accessors for each flag.
424   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425   bool hasNoSignedWrap() const { return NoSignedWrap; }
426   bool hasExact() const { return Exact; }
427   bool hasNoNaNs() const { return NoNaNs; }
428   bool hasNoInfs() const { return NoInfs; }
429   bool hasNoSignedZeros() const { return NoSignedZeros; }
430   bool hasAllowReciprocal() const { return AllowReciprocal; }
431   bool hasAllowContract() const { return AllowContract; }
432   bool hasApproximateFuncs() const { return ApproximateFuncs; }
433   bool hasAllowReassociation() const { return AllowReassociation; }
434   bool hasNoFPExcept() const { return NoFPExcept; }
435 
436   /// Clear any flags in this flag set that aren't also set in Flags. All
437   /// flags will be cleared if Flags are undefined.
438   void intersectWith(const SDNodeFlags Flags) {
439     NoUnsignedWrap &= Flags.NoUnsignedWrap;
440     NoSignedWrap &= Flags.NoSignedWrap;
441     Exact &= Flags.Exact;
442     NoNaNs &= Flags.NoNaNs;
443     NoInfs &= Flags.NoInfs;
444     NoSignedZeros &= Flags.NoSignedZeros;
445     AllowReciprocal &= Flags.AllowReciprocal;
446     AllowContract &= Flags.AllowContract;
447     ApproximateFuncs &= Flags.ApproximateFuncs;
448     AllowReassociation &= Flags.AllowReassociation;
449     NoFPExcept &= Flags.NoFPExcept;
450   }
451 };
452 
453 /// Represents one node in the SelectionDAG.
454 ///
455 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456 private:
457   /// The operation that this node performs.
458   int16_t NodeType;
459 
460 protected:
461   // We define a set of mini-helper classes to help us interpret the bits in our
462   // SubclassData.  These are designed to fit within a uint16_t so they pack
463   // with NodeType.
464 
465 #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
466 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467 // and give the `pack` pragma push semantics.
468 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
469 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
470 #else
471 #define BEGIN_TWO_BYTE_PACK()
472 #define END_TWO_BYTE_PACK()
473 #endif
474 
475 BEGIN_TWO_BYTE_PACK()
476   class SDNodeBitfields {
477     friend class SDNode;
478     friend class MemIntrinsicSDNode;
479     friend class MemSDNode;
480     friend class SelectionDAG;
481 
482     uint16_t HasDebugValue : 1;
483     uint16_t IsMemIntrinsic : 1;
484     uint16_t IsDivergent : 1;
485   };
486   enum { NumSDNodeBits = 3 };
487 
488   class ConstantSDNodeBitfields {
489     friend class ConstantSDNode;
490 
491     uint16_t : NumSDNodeBits;
492 
493     uint16_t IsOpaque : 1;
494   };
495 
496   class MemSDNodeBitfields {
497     friend class MemSDNode;
498     friend class MemIntrinsicSDNode;
499     friend class AtomicSDNode;
500 
501     uint16_t : NumSDNodeBits;
502 
503     uint16_t IsVolatile : 1;
504     uint16_t IsNonTemporal : 1;
505     uint16_t IsDereferenceable : 1;
506     uint16_t IsInvariant : 1;
507   };
508   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509 
510   class LSBaseSDNodeBitfields {
511     friend class LSBaseSDNode;
512     friend class MaskedLoadStoreSDNode;
513     friend class MaskedGatherScatterSDNode;
514 
515     uint16_t : NumMemSDNodeBits;
516 
517     // This storage is shared between disparate class hierarchies to hold an
518     // enumeration specific to the class hierarchy in use.
519     //   LSBaseSDNode => enum ISD::MemIndexedMode
520     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
522     uint16_t AddressingMode : 3;
523   };
524   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525 
526   class LoadSDNodeBitfields {
527     friend class LoadSDNode;
528     friend class MaskedLoadSDNode;
529     friend class MaskedGatherSDNode;
530 
531     uint16_t : NumLSBaseSDNodeBits;
532 
533     uint16_t ExtTy : 2; // enum ISD::LoadExtType
534     uint16_t IsExpanding : 1;
535   };
536 
537   class StoreSDNodeBitfields {
538     friend class StoreSDNode;
539     friend class MaskedStoreSDNode;
540     friend class MaskedScatterSDNode;
541 
542     uint16_t : NumLSBaseSDNodeBits;
543 
544     uint16_t IsTruncating : 1;
545     uint16_t IsCompressing : 1;
546   };
547 
548   union {
549     char RawSDNodeBits[sizeof(uint16_t)];
550     SDNodeBitfields SDNodeBits;
551     ConstantSDNodeBitfields ConstantSDNodeBits;
552     MemSDNodeBitfields MemSDNodeBits;
553     LSBaseSDNodeBitfields LSBaseSDNodeBits;
554     LoadSDNodeBitfields LoadSDNodeBits;
555     StoreSDNodeBitfields StoreSDNodeBits;
556   };
557 END_TWO_BYTE_PACK()
558 #undef BEGIN_TWO_BYTE_PACK
559 #undef END_TWO_BYTE_PACK
560 
561   // RawSDNodeBits must cover the entirety of the union.  This means that all of
562   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
563   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570 
571 private:
572   friend class SelectionDAG;
573   // TODO: unfriend HandleSDNode once we fix its operand handling.
574   friend class HandleSDNode;
575 
576   /// Unique id per SDNode in the DAG.
577   int NodeId = -1;
578 
579   /// The values that are used by this operation.
580   SDUse *OperandList = nullptr;
581 
582   /// The types of the values this node defines.  SDNode's may
583   /// define multiple values simultaneously.
584   const EVT *ValueList;
585 
586   /// List of uses for this SDNode.
587   SDUse *UseList = nullptr;
588 
589   /// The number of entries in the Operand/Value list.
590   unsigned short NumOperands = 0;
591   unsigned short NumValues;
592 
593   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594   // original LLVM instructions.
595   // This is used for turning off scheduling, because we'll forgo
596   // the normal scheduling algorithms and output the instructions according to
597   // this ordering.
598   unsigned IROrder;
599 
600   /// Source line information.
601   DebugLoc debugLoc;
602 
603   /// Return a pointer to the specified value type.
604   static const EVT *getValueTypeList(EVT VT);
605 
606   SDNodeFlags Flags;
607 
608 public:
609   /// Unique and persistent id per SDNode in the DAG.
610   /// Used for debug printing.
611   uint16_t PersistentId;
612 
613   //===--------------------------------------------------------------------===//
614   //  Accessors
615   //
616 
617   /// Return the SelectionDAG opcode value for this node. For
618   /// pre-isel nodes (those for which isMachineOpcode returns false), these
619   /// are the opcode values in the ISD and <target>ISD namespaces. For
620   /// post-isel opcodes, see getMachineOpcode.
621   unsigned getOpcode()  const { return (unsigned short)NodeType; }
622 
623   /// Test if this node has a target-specific opcode (in the
624   /// \<target\>ISD namespace).
625   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626 
627   /// Test if this node has a target-specific opcode that may raise
628   /// FP exceptions (in the \<target\>ISD namespace and greater than
629   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
630   /// opcode are currently automatically considered to possibly raise
631   /// FP exceptions as well.
632   bool isTargetStrictFPOpcode() const {
633     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634   }
635 
636   /// Test if this node has a target-specific
637   /// memory-referencing opcode (in the \<target\>ISD namespace and
638   /// greater than FIRST_TARGET_MEMORY_OPCODE).
639   bool isTargetMemoryOpcode() const {
640     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641   }
642 
643   /// Return true if the type of the node type undefined.
644   bool isUndef() const { return NodeType == ISD::UNDEF; }
645 
646   /// Test if this node is a memory intrinsic (with valid pointer information).
647   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648   /// non-memory intrinsics (with chains) that are not really instances of
649   /// MemSDNode. For such nodes, we need some extra state to determine the
650   /// proper classof relationship.
651   bool isMemIntrinsic() const {
652     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653             NodeType == ISD::INTRINSIC_VOID) &&
654            SDNodeBits.IsMemIntrinsic;
655   }
656 
657   /// Test if this node is a strict floating point pseudo-op.
658   bool isStrictFPOpcode() {
659     switch (NodeType) {
660       default:
661         return false;
662       case ISD::STRICT_FP16_TO_FP:
663       case ISD::STRICT_FP_TO_FP16:
664 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
665       case ISD::STRICT_##DAGN:
666 #include "llvm/IR/ConstrainedOps.def"
667         return true;
668     }
669   }
670 
671   /// Test if this node has a post-isel opcode, directly
672   /// corresponding to a MachineInstr opcode.
673   bool isMachineOpcode() const { return NodeType < 0; }
674 
675   /// This may only be called if isMachineOpcode returns
676   /// true. It returns the MachineInstr opcode value that the node's opcode
677   /// corresponds to.
678   unsigned getMachineOpcode() const {
679     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
680     return ~NodeType;
681   }
682 
683   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685 
686   bool isDivergent() const { return SDNodeBits.IsDivergent; }
687 
688   /// Return true if there are no uses of this node.
689   bool use_empty() const { return UseList == nullptr; }
690 
691   /// Return true if there is exactly one use of this node.
692   bool hasOneUse() const { return hasSingleElement(uses()); }
693 
694   /// Return the number of uses of this node. This method takes
695   /// time proportional to the number of uses.
696   size_t use_size() const { return std::distance(use_begin(), use_end()); }
697 
698   /// Return the unique node id.
699   int getNodeId() const { return NodeId; }
700 
701   /// Set unique node id.
702   void setNodeId(int Id) { NodeId = Id; }
703 
704   /// Return the node ordering.
705   unsigned getIROrder() const { return IROrder; }
706 
707   /// Set the node ordering.
708   void setIROrder(unsigned Order) { IROrder = Order; }
709 
710   /// Return the source location info.
711   const DebugLoc &getDebugLoc() const { return debugLoc; }
712 
713   /// Set source location info.  Try to avoid this, putting
714   /// it in the constructor is preferable.
715   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716 
717   /// This class provides iterator support for SDUse
718   /// operands that use a specific SDNode.
719   class use_iterator {
720     friend class SDNode;
721 
722     SDUse *Op = nullptr;
723 
724     explicit use_iterator(SDUse *op) : Op(op) {}
725 
726   public:
727     using iterator_category = std::forward_iterator_tag;
728     using value_type = SDUse;
729     using difference_type = std::ptrdiff_t;
730     using pointer = value_type *;
731     using reference = value_type &;
732 
733     use_iterator() = default;
734     use_iterator(const use_iterator &I) : Op(I.Op) {}
735 
736     bool operator==(const use_iterator &x) const {
737       return Op == x.Op;
738     }
739     bool operator!=(const use_iterator &x) const {
740       return !operator==(x);
741     }
742 
743     /// Return true if this iterator is at the end of uses list.
744     bool atEnd() const { return Op == nullptr; }
745 
746     // Iterator traversal: forward iteration only.
747     use_iterator &operator++() {          // Preincrement
748       assert(Op && "Cannot increment end iterator!");
749       Op = Op->getNext();
750       return *this;
751     }
752 
753     use_iterator operator++(int) {        // Postincrement
754       use_iterator tmp = *this; ++*this; return tmp;
755     }
756 
757     /// Retrieve a pointer to the current user node.
758     SDNode *operator*() const {
759       assert(Op && "Cannot dereference end iterator!");
760       return Op->getUser();
761     }
762 
763     SDNode *operator->() const { return operator*(); }
764 
765     SDUse &getUse() const { return *Op; }
766 
767     /// Retrieve the operand # of this use in its user.
768     unsigned getOperandNo() const {
769       assert(Op && "Cannot dereference end iterator!");
770       return (unsigned)(Op - Op->getUser()->OperandList);
771     }
772   };
773 
774   /// Provide iteration support to walk over all uses of an SDNode.
775   use_iterator use_begin() const {
776     return use_iterator(UseList);
777   }
778 
779   static use_iterator use_end() { return use_iterator(nullptr); }
780 
781   inline iterator_range<use_iterator> uses() {
782     return make_range(use_begin(), use_end());
783   }
784   inline iterator_range<use_iterator> uses() const {
785     return make_range(use_begin(), use_end());
786   }
787 
788   /// Return true if there are exactly NUSES uses of the indicated value.
789   /// This method ignores uses of other values defined by this operation.
790   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791 
792   /// Return true if there are any use of the indicated value.
793   /// This method ignores uses of other values defined by this operation.
794   bool hasAnyUseOfValue(unsigned Value) const;
795 
796   /// Return true if this node is the only use of N.
797   bool isOnlyUserOf(const SDNode *N) const;
798 
799   /// Return true if this node is an operand of N.
800   bool isOperandOf(const SDNode *N) const;
801 
802   /// Return true if this node is a predecessor of N.
803   /// NOTE: Implemented on top of hasPredecessor and every bit as
804   /// expensive. Use carefully.
805   bool isPredecessorOf(const SDNode *N) const {
806     return N->hasPredecessor(this);
807   }
808 
809   /// Return true if N is a predecessor of this node.
810   /// N is either an operand of this node, or can be reached by recursively
811   /// traversing up the operands.
812   /// NOTE: This is an expensive method. Use it carefully.
813   bool hasPredecessor(const SDNode *N) const;
814 
815   /// Returns true if N is a predecessor of any node in Worklist. This
816   /// helper keeps Visited and Worklist sets externally to allow unions
817   /// searches to be performed in parallel, caching of results across
818   /// queries and incremental addition to Worklist. Stops early if N is
819   /// found but will resume. Remember to clear Visited and Worklists
820   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822   /// topologically ordered (Operands have strictly smaller node id) and search
823   /// can be pruned leveraging this.
824   static bool hasPredecessorHelper(const SDNode *N,
825                                    SmallPtrSetImpl<const SDNode *> &Visited,
826                                    SmallVectorImpl<const SDNode *> &Worklist,
827                                    unsigned int MaxSteps = 0,
828                                    bool TopologicalPrune = false) {
829     SmallVector<const SDNode *, 8> DeferredNodes;
830     if (Visited.count(N))
831       return true;
832 
833     // Node Id's are assigned in three places: As a topological
834     // ordering (> 0), during legalization (results in values set to
835     // 0), new nodes (set to -1). If N has a topolgical id then we
836     // know that all nodes with ids smaller than it cannot be
837     // successors and we need not check them. Filter out all node
838     // that can't be matches. We add them to the worklist before exit
839     // in case of multiple calls. Note that during selection the topological id
840     // may be violated if a node's predecessor is selected before it. We mark
841     // this at selection negating the id of unselected successors and
842     // restricting topological pruning to positive ids.
843 
844     int NId = N->getNodeId();
845     // If we Invalidated the Id, reconstruct original NId.
846     if (NId < -1)
847       NId = -(NId + 1);
848 
849     bool Found = false;
850     while (!Worklist.empty()) {
851       const SDNode *M = Worklist.pop_back_val();
852       int MId = M->getNodeId();
853       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854           (MId > 0) && (MId < NId)) {
855         DeferredNodes.push_back(M);
856         continue;
857       }
858       for (const SDValue &OpV : M->op_values()) {
859         SDNode *Op = OpV.getNode();
860         if (Visited.insert(Op).second)
861           Worklist.push_back(Op);
862         if (Op == N)
863           Found = true;
864       }
865       if (Found)
866         break;
867       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868         break;
869     }
870     // Push deferred nodes back on worklist.
871     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872     // If we bailed early, conservatively return found.
873     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874       return true;
875     return Found;
876   }
877 
878   /// Return true if all the users of N are contained in Nodes.
879   /// NOTE: Requires at least one match, but doesn't require them all.
880   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881 
882   /// Return the number of values used by this operation.
883   unsigned getNumOperands() const { return NumOperands; }
884 
885   /// Return the maximum number of operands that a SDNode can hold.
886   static constexpr size_t getMaxNumOperands() {
887     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888   }
889 
890   /// Helper method returns the integer value of a ConstantSDNode operand.
891   inline uint64_t getConstantOperandVal(unsigned Num) const;
892 
893   /// Helper method returns the APInt of a ConstantSDNode operand.
894   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895 
896   const SDValue &getOperand(unsigned Num) const {
897     assert(Num < NumOperands && "Invalid child # of SDNode!");
898     return OperandList[Num];
899   }
900 
901   using op_iterator = SDUse *;
902 
903   op_iterator op_begin() const { return OperandList; }
904   op_iterator op_end() const { return OperandList+NumOperands; }
905   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906 
907   /// Iterator for directly iterating over the operand SDValue's.
908   struct value_op_iterator
909       : iterator_adaptor_base<value_op_iterator, op_iterator,
910                               std::random_access_iterator_tag, SDValue,
911                               ptrdiff_t, value_op_iterator *,
912                               value_op_iterator *> {
913     explicit value_op_iterator(SDUse *U = nullptr)
914       : iterator_adaptor_base(U) {}
915 
916     const SDValue &operator*() const { return I->get(); }
917   };
918 
919   iterator_range<value_op_iterator> op_values() const {
920     return make_range(value_op_iterator(op_begin()),
921                       value_op_iterator(op_end()));
922   }
923 
924   SDVTList getVTList() const {
925     SDVTList X = { ValueList, NumValues };
926     return X;
927   }
928 
929   /// If this node has a glue operand, return the node
930   /// to which the glue operand points. Otherwise return NULL.
931   SDNode *getGluedNode() const {
932     if (getNumOperands() != 0 &&
933         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934       return getOperand(getNumOperands()-1).getNode();
935     return nullptr;
936   }
937 
938   /// If this node has a glue value with a user, return
939   /// the user (there is at most one). Otherwise return NULL.
940   SDNode *getGluedUser() const {
941     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942       if (UI.getUse().get().getValueType() == MVT::Glue)
943         return *UI;
944     return nullptr;
945   }
946 
947   SDNodeFlags getFlags() const { return Flags; }
948   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949 
950   /// Clear any flags in this node that aren't also set in Flags.
951   /// If Flags is not in a defined state then this has no effect.
952   void intersectFlagsWith(const SDNodeFlags Flags);
953 
954   /// Return the number of values defined/returned by this operator.
955   unsigned getNumValues() const { return NumValues; }
956 
957   /// Return the type of a specified result.
958   EVT getValueType(unsigned ResNo) const {
959     assert(ResNo < NumValues && "Illegal result number!");
960     return ValueList[ResNo];
961   }
962 
963   /// Return the type of a specified result as a simple type.
964   MVT getSimpleValueType(unsigned ResNo) const {
965     return getValueType(ResNo).getSimpleVT();
966   }
967 
968   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969   ///
970   /// If the value type is a scalable vector type, the scalable property will
971   /// be set and the runtime size will be a positive integer multiple of the
972   /// base size.
973   TypeSize getValueSizeInBits(unsigned ResNo) const {
974     return getValueType(ResNo).getSizeInBits();
975   }
976 
977   using value_iterator = const EVT *;
978 
979   value_iterator value_begin() const { return ValueList; }
980   value_iterator value_end() const { return ValueList+NumValues; }
981   iterator_range<value_iterator> values() const {
982     return llvm::make_range(value_begin(), value_end());
983   }
984 
985   /// Return the opcode of this operation for printing.
986   std::string getOperationName(const SelectionDAG *G = nullptr) const;
987   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992 
993   /// Print a SelectionDAG node and all children down to
994   /// the leaves.  The given SelectionDAG allows target-specific nodes
995   /// to be printed in human-readable form.  Unlike printr, this will
996   /// print the whole DAG, including children that appear multiple
997   /// times.
998   ///
999   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000 
1001   /// Print a SelectionDAG node and children up to
1002   /// depth "depth."  The given SelectionDAG allows target-specific
1003   /// nodes to be printed in human-readable form.  Unlike printr, this
1004   /// will print children that appear multiple times wherever they are
1005   /// used.
1006   ///
1007   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008                        unsigned depth = 100) const;
1009 
1010   /// Dump this node, for debugging.
1011   void dump() const;
1012 
1013   /// Dump (recursively) this node and its use-def subgraph.
1014   void dumpr() const;
1015 
1016   /// Dump this node, for debugging.
1017   /// The given SelectionDAG allows target-specific nodes to be printed
1018   /// in human-readable form.
1019   void dump(const SelectionDAG *G) const;
1020 
1021   /// Dump (recursively) this node and its use-def subgraph.
1022   /// The given SelectionDAG allows target-specific nodes to be printed
1023   /// in human-readable form.
1024   void dumpr(const SelectionDAG *G) const;
1025 
1026   /// printrFull to dbgs().  The given SelectionDAG allows
1027   /// target-specific nodes to be printed in human-readable form.
1028   /// Unlike dumpr, this will print the whole DAG, including children
1029   /// that appear multiple times.
1030   void dumprFull(const SelectionDAG *G = nullptr) const;
1031 
1032   /// printrWithDepth to dbgs().  The given
1033   /// SelectionDAG allows target-specific nodes to be printed in
1034   /// human-readable form.  Unlike dumpr, this will print children
1035   /// that appear multiple times wherever they are used.
1036   ///
1037   void dumprWithDepth(const SelectionDAG *G = nullptr,
1038                       unsigned depth = 100) const;
1039 
1040   /// Gather unique data for the node.
1041   void Profile(FoldingSetNodeID &ID) const;
1042 
1043   /// This method should only be used by the SDUse class.
1044   void addUse(SDUse &U) { U.addToList(&UseList); }
1045 
1046 protected:
1047   static SDVTList getSDVTList(EVT VT) {
1048     SDVTList Ret = { getValueTypeList(VT), 1 };
1049     return Ret;
1050   }
1051 
1052   /// Create an SDNode.
1053   ///
1054   /// SDNodes are created without any operands, and never own the operand
1055   /// storage. To add operands, see SelectionDAG::createOperands.
1056   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058         IROrder(Order), debugLoc(std::move(dl)) {
1059     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1061     assert(NumValues == VTs.NumVTs &&
1062            "NumValues wasn't wide enough for its operands!");
1063   }
1064 
1065   /// Release the operands and set this node to have zero operands.
1066   void DropOperands();
1067 };
1068 
1069 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070 /// into SDNode creation functions.
1071 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072 /// from the original Instruction, and IROrder is the ordinal position of
1073 /// the instruction.
1074 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1075 /// the IROrder are propagated from the original SDNode.
1076 /// So SDLoc class provides two constructors besides the default one, one to
1077 /// be used by the DAGBuilder, the other to be used by others.
1078 class SDLoc {
1079 private:
1080   DebugLoc DL;
1081   int IROrder = 0;
1082 
1083 public:
1084   SDLoc() = default;
1085   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088     assert(Order >= 0 && "bad IROrder");
1089     if (I)
1090       DL = I->getDebugLoc();
1091   }
1092 
1093   unsigned getIROrder() const { return IROrder; }
1094   const DebugLoc &getDebugLoc() const { return DL; }
1095 };
1096 
1097 // Define inline functions from the SDValue class.
1098 
1099 inline SDValue::SDValue(SDNode *node, unsigned resno)
1100     : Node(node), ResNo(resno) {
1101   // Explicitly check for !ResNo to avoid use-after-free, because there are
1102   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103   // combines.
1104   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1105          "Invalid result number for the given node!");
1106   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1107 }
1108 
1109 inline unsigned SDValue::getOpcode() const {
1110   return Node->getOpcode();
1111 }
1112 
1113 inline EVT SDValue::getValueType() const {
1114   return Node->getValueType(ResNo);
1115 }
1116 
1117 inline unsigned SDValue::getNumOperands() const {
1118   return Node->getNumOperands();
1119 }
1120 
1121 inline const SDValue &SDValue::getOperand(unsigned i) const {
1122   return Node->getOperand(i);
1123 }
1124 
1125 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126   return Node->getConstantOperandVal(i);
1127 }
1128 
1129 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130   return Node->getConstantOperandAPInt(i);
1131 }
1132 
1133 inline bool SDValue::isTargetOpcode() const {
1134   return Node->isTargetOpcode();
1135 }
1136 
1137 inline bool SDValue::isTargetMemoryOpcode() const {
1138   return Node->isTargetMemoryOpcode();
1139 }
1140 
1141 inline bool SDValue::isMachineOpcode() const {
1142   return Node->isMachineOpcode();
1143 }
1144 
1145 inline unsigned SDValue::getMachineOpcode() const {
1146   return Node->getMachineOpcode();
1147 }
1148 
1149 inline bool SDValue::isUndef() const {
1150   return Node->isUndef();
1151 }
1152 
1153 inline bool SDValue::use_empty() const {
1154   return !Node->hasAnyUseOfValue(ResNo);
1155 }
1156 
1157 inline bool SDValue::hasOneUse() const {
1158   return Node->hasNUsesOfValue(1, ResNo);
1159 }
1160 
1161 inline const DebugLoc &SDValue::getDebugLoc() const {
1162   return Node->getDebugLoc();
1163 }
1164 
1165 inline void SDValue::dump() const {
1166   return Node->dump();
1167 }
1168 
1169 inline void SDValue::dump(const SelectionDAG *G) const {
1170   return Node->dump(G);
1171 }
1172 
1173 inline void SDValue::dumpr() const {
1174   return Node->dumpr();
1175 }
1176 
1177 inline void SDValue::dumpr(const SelectionDAG *G) const {
1178   return Node->dumpr(G);
1179 }
1180 
1181 // Define inline functions from the SDUse class.
1182 
1183 inline void SDUse::set(const SDValue &V) {
1184   if (Val.getNode()) removeFromList();
1185   Val = V;
1186   if (V.getNode()) V.getNode()->addUse(*this);
1187 }
1188 
1189 inline void SDUse::setInitial(const SDValue &V) {
1190   Val = V;
1191   V.getNode()->addUse(*this);
1192 }
1193 
1194 inline void SDUse::setNode(SDNode *N) {
1195   if (Val.getNode()) removeFromList();
1196   Val.setNode(N);
1197   if (N) N->addUse(*this);
1198 }
1199 
1200 /// This class is used to form a handle around another node that
1201 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1202 /// operand.  This node should be directly created by end-users and not added to
1203 /// the AllNodes list.
1204 class HandleSDNode : public SDNode {
1205   SDUse Op;
1206 
1207 public:
1208   explicit HandleSDNode(SDValue X)
1209     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210     // HandleSDNodes are never inserted into the DAG, so they won't be
1211     // auto-numbered. Use ID 65535 as a sentinel.
1212     PersistentId = 0xffff;
1213 
1214     // Manually set up the operand list. This node type is special in that it's
1215     // always stack allocated and SelectionDAG does not manage its operands.
1216     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217     // be so special.
1218     Op.setUser(this);
1219     Op.setInitial(X);
1220     NumOperands = 1;
1221     OperandList = &Op;
1222   }
1223   ~HandleSDNode();
1224 
1225   const SDValue &getValue() const { return Op; }
1226 };
1227 
1228 class AddrSpaceCastSDNode : public SDNode {
1229 private:
1230   unsigned SrcAddrSpace;
1231   unsigned DestAddrSpace;
1232 
1233 public:
1234   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235                       unsigned SrcAS, unsigned DestAS);
1236 
1237   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239 
1240   static bool classof(const SDNode *N) {
1241     return N->getOpcode() == ISD::ADDRSPACECAST;
1242   }
1243 };
1244 
1245 /// This is an abstract virtual class for memory operations.
1246 class MemSDNode : public SDNode {
1247 private:
1248   // VT of in-memory value.
1249   EVT MemoryVT;
1250 
1251 protected:
1252   /// Memory reference information.
1253   MachineMemOperand *MMO;
1254 
1255 public:
1256   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257             EVT memvt, MachineMemOperand *MMO);
1258 
1259   bool readMem() const { return MMO->isLoad(); }
1260   bool writeMem() const { return MMO->isStore(); }
1261 
1262   /// Returns alignment and volatility of the memory access
1263   Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264   Align getAlign() const { return MMO->getAlign(); }
1265   // FIXME: Remove once transition to getAlign is over.
1266   unsigned getAlignment() const { return MMO->getAlign().value(); }
1267 
1268   /// Return the SubclassData value, without HasDebugValue. This contains an
1269   /// encoding of the volatile flag, as well as bits used by subclasses. This
1270   /// function should only be used to compute a FoldingSetNodeID value.
1271   /// The HasDebugValue bit is masked out because CSE map needs to match
1272   /// nodes with debug info with nodes without debug info. Same is about
1273   /// isDivergent bit.
1274   unsigned getRawSubclassData() const {
1275     uint16_t Data;
1276     union {
1277       char RawSDNodeBits[sizeof(uint16_t)];
1278       SDNodeBitfields SDNodeBits;
1279     };
1280     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1281     SDNodeBits.HasDebugValue = 0;
1282     SDNodeBits.IsDivergent = false;
1283     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1284     return Data;
1285   }
1286 
1287   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1288   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1289   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1290   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1291 
1292   // Returns the offset from the location of the access.
1293   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1294 
1295   /// Returns the AA info that describes the dereference.
1296   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1297 
1298   /// Returns the Ranges that describes the dereference.
1299   const MDNode *getRanges() const { return MMO->getRanges(); }
1300 
1301   /// Returns the synchronization scope ID for this memory operation.
1302   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1303 
1304   /// Return the atomic ordering requirements for this memory operation. For
1305   /// cmpxchg atomic operations, return the atomic ordering requirements when
1306   /// store occurs.
1307   AtomicOrdering getSuccessOrdering() const {
1308     return MMO->getSuccessOrdering();
1309   }
1310 
1311   /// Return a single atomic ordering that is at least as strong as both the
1312   /// success and failure orderings for an atomic operation.  (For operations
1313   /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1314   AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1315 
1316   /// Return true if the memory operation ordering is Unordered or higher.
1317   bool isAtomic() const { return MMO->isAtomic(); }
1318 
1319   /// Returns true if the memory operation doesn't imply any ordering
1320   /// constraints on surrounding memory operations beyond the normal memory
1321   /// aliasing rules.
1322   bool isUnordered() const { return MMO->isUnordered(); }
1323 
1324   /// Returns true if the memory operation is neither atomic or volatile.
1325   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1326 
1327   /// Return the type of the in-memory value.
1328   EVT getMemoryVT() const { return MemoryVT; }
1329 
1330   /// Return a MachineMemOperand object describing the memory
1331   /// reference performed by operation.
1332   MachineMemOperand *getMemOperand() const { return MMO; }
1333 
1334   const MachinePointerInfo &getPointerInfo() const {
1335     return MMO->getPointerInfo();
1336   }
1337 
1338   /// Return the address space for the associated pointer
1339   unsigned getAddressSpace() const {
1340     return getPointerInfo().getAddrSpace();
1341   }
1342 
1343   /// Update this MemSDNode's MachineMemOperand information
1344   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1345   /// This must only be used when the new alignment applies to all users of
1346   /// this MachineMemOperand.
1347   void refineAlignment(const MachineMemOperand *NewMMO) {
1348     MMO->refineAlignment(NewMMO);
1349   }
1350 
1351   const SDValue &getChain() const { return getOperand(0); }
1352 
1353   const SDValue &getBasePtr() const {
1354     switch (getOpcode()) {
1355     case ISD::STORE:
1356     case ISD::MSTORE:
1357       return getOperand(2);
1358     case ISD::MGATHER:
1359     case ISD::MSCATTER:
1360       return getOperand(3);
1361     default:
1362       return getOperand(1);
1363     }
1364   }
1365 
1366   // Methods to support isa and dyn_cast
1367   static bool classof(const SDNode *N) {
1368     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1369     // with either an intrinsic or a target opcode.
1370     switch (N->getOpcode()) {
1371     case ISD::LOAD:
1372     case ISD::STORE:
1373     case ISD::PREFETCH:
1374     case ISD::ATOMIC_CMP_SWAP:
1375     case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1376     case ISD::ATOMIC_SWAP:
1377     case ISD::ATOMIC_LOAD_ADD:
1378     case ISD::ATOMIC_LOAD_SUB:
1379     case ISD::ATOMIC_LOAD_AND:
1380     case ISD::ATOMIC_LOAD_CLR:
1381     case ISD::ATOMIC_LOAD_OR:
1382     case ISD::ATOMIC_LOAD_XOR:
1383     case ISD::ATOMIC_LOAD_NAND:
1384     case ISD::ATOMIC_LOAD_MIN:
1385     case ISD::ATOMIC_LOAD_MAX:
1386     case ISD::ATOMIC_LOAD_UMIN:
1387     case ISD::ATOMIC_LOAD_UMAX:
1388     case ISD::ATOMIC_LOAD_FADD:
1389     case ISD::ATOMIC_LOAD_FSUB:
1390     case ISD::ATOMIC_LOAD:
1391     case ISD::ATOMIC_STORE:
1392     case ISD::MLOAD:
1393     case ISD::MSTORE:
1394     case ISD::MGATHER:
1395     case ISD::MSCATTER:
1396       return true;
1397     default:
1398       return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1399     }
1400   }
1401 };
1402 
1403 /// This is an SDNode representing atomic operations.
1404 class AtomicSDNode : public MemSDNode {
1405 public:
1406   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1407                EVT MemVT, MachineMemOperand *MMO)
1408     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1409     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1410             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1411   }
1412 
1413   const SDValue &getBasePtr() const { return getOperand(1); }
1414   const SDValue &getVal() const { return getOperand(2); }
1415 
1416   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1417   /// otherwise.
1418   bool isCompareAndSwap() const {
1419     unsigned Op = getOpcode();
1420     return Op == ISD::ATOMIC_CMP_SWAP ||
1421            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1422   }
1423 
1424   /// For cmpxchg atomic operations, return the atomic ordering requirements
1425   /// when store does not occur.
1426   AtomicOrdering getFailureOrdering() const {
1427     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1428     return MMO->getFailureOrdering();
1429   }
1430 
1431   // Methods to support isa and dyn_cast
1432   static bool classof(const SDNode *N) {
1433     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1434            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1435            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1436            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1437            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1438            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1439            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1440            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1441            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1442            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1443            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1444            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1445            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1446            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1447            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1448            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1449            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1450            N->getOpcode() == ISD::ATOMIC_STORE;
1451   }
1452 };
1453 
1454 /// This SDNode is used for target intrinsics that touch
1455 /// memory and need an associated MachineMemOperand. Its opcode may be
1456 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1457 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1458 class MemIntrinsicSDNode : public MemSDNode {
1459 public:
1460   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1461                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1462       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1463     SDNodeBits.IsMemIntrinsic = true;
1464   }
1465 
1466   // Methods to support isa and dyn_cast
1467   static bool classof(const SDNode *N) {
1468     // We lower some target intrinsics to their target opcode
1469     // early a node with a target opcode can be of this class
1470     return N->isMemIntrinsic()             ||
1471            N->getOpcode() == ISD::PREFETCH ||
1472            N->isTargetMemoryOpcode();
1473   }
1474 };
1475 
1476 /// This SDNode is used to implement the code generator
1477 /// support for the llvm IR shufflevector instruction.  It combines elements
1478 /// from two input vectors into a new input vector, with the selection and
1479 /// ordering of elements determined by an array of integers, referred to as
1480 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1481 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1482 /// An index of -1 is treated as undef, such that the code generator may put
1483 /// any value in the corresponding element of the result.
1484 class ShuffleVectorSDNode : public SDNode {
1485   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1486   // is freed when the SelectionDAG object is destroyed.
1487   const int *Mask;
1488 
1489 protected:
1490   friend class SelectionDAG;
1491 
1492   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1493       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1494 
1495 public:
1496   ArrayRef<int> getMask() const {
1497     EVT VT = getValueType(0);
1498     return makeArrayRef(Mask, VT.getVectorNumElements());
1499   }
1500 
1501   int getMaskElt(unsigned Idx) const {
1502     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1503     return Mask[Idx];
1504   }
1505 
1506   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1507 
1508   int getSplatIndex() const {
1509     assert(isSplat() && "Cannot get splat index for non-splat!");
1510     EVT VT = getValueType(0);
1511     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1512       if (Mask[i] >= 0)
1513         return Mask[i];
1514 
1515     // We can choose any index value here and be correct because all elements
1516     // are undefined. Return 0 for better potential for callers to simplify.
1517     return 0;
1518   }
1519 
1520   static bool isSplatMask(const int *Mask, EVT VT);
1521 
1522   /// Change values in a shuffle permute mask assuming
1523   /// the two vector operands have swapped position.
1524   static void commuteMask(MutableArrayRef<int> Mask) {
1525     unsigned NumElems = Mask.size();
1526     for (unsigned i = 0; i != NumElems; ++i) {
1527       int idx = Mask[i];
1528       if (idx < 0)
1529         continue;
1530       else if (idx < (int)NumElems)
1531         Mask[i] = idx + NumElems;
1532       else
1533         Mask[i] = idx - NumElems;
1534     }
1535   }
1536 
1537   static bool classof(const SDNode *N) {
1538     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1539   }
1540 };
1541 
1542 class ConstantSDNode : public SDNode {
1543   friend class SelectionDAG;
1544 
1545   const ConstantInt *Value;
1546 
1547   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1548       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1549                getSDVTList(VT)),
1550         Value(val) {
1551     ConstantSDNodeBits.IsOpaque = isOpaque;
1552   }
1553 
1554 public:
1555   const ConstantInt *getConstantIntValue() const { return Value; }
1556   const APInt &getAPIntValue() const { return Value->getValue(); }
1557   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1558   int64_t getSExtValue() const { return Value->getSExtValue(); }
1559   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1560     return Value->getLimitedValue(Limit);
1561   }
1562   MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1563   Align getAlignValue() const { return Value->getAlignValue(); }
1564 
1565   bool isOne() const { return Value->isOne(); }
1566   bool isNullValue() const { return Value->isZero(); }
1567   bool isAllOnesValue() const { return Value->isMinusOne(); }
1568   bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1569   bool isMinSignedValue() const { return Value->isMinValue(true); }
1570 
1571   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1572 
1573   static bool classof(const SDNode *N) {
1574     return N->getOpcode() == ISD::Constant ||
1575            N->getOpcode() == ISD::TargetConstant;
1576   }
1577 };
1578 
1579 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1580   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1581 }
1582 
1583 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1584   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1585 }
1586 
1587 class ConstantFPSDNode : public SDNode {
1588   friend class SelectionDAG;
1589 
1590   const ConstantFP *Value;
1591 
1592   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1593       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1594                DebugLoc(), getSDVTList(VT)),
1595         Value(val) {}
1596 
1597 public:
1598   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1599   const ConstantFP *getConstantFPValue() const { return Value; }
1600 
1601   /// Return true if the value is positive or negative zero.
1602   bool isZero() const { return Value->isZero(); }
1603 
1604   /// Return true if the value is a NaN.
1605   bool isNaN() const { return Value->isNaN(); }
1606 
1607   /// Return true if the value is an infinity
1608   bool isInfinity() const { return Value->isInfinity(); }
1609 
1610   /// Return true if the value is negative.
1611   bool isNegative() const { return Value->isNegative(); }
1612 
1613   /// We don't rely on operator== working on double values, as
1614   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1615   /// As such, this method can be used to do an exact bit-for-bit comparison of
1616   /// two floating point values.
1617 
1618   /// We leave the version with the double argument here because it's just so
1619   /// convenient to write "2.0" and the like.  Without this function we'd
1620   /// have to duplicate its logic everywhere it's called.
1621   bool isExactlyValue(double V) const {
1622     return Value->getValueAPF().isExactlyValue(V);
1623   }
1624   bool isExactlyValue(const APFloat& V) const;
1625 
1626   static bool isValueValidForType(EVT VT, const APFloat& Val);
1627 
1628   static bool classof(const SDNode *N) {
1629     return N->getOpcode() == ISD::ConstantFP ||
1630            N->getOpcode() == ISD::TargetConstantFP;
1631   }
1632 };
1633 
1634 /// Returns true if \p V is a constant integer zero.
1635 bool isNullConstant(SDValue V);
1636 
1637 /// Returns true if \p V is an FP constant with a value of positive zero.
1638 bool isNullFPConstant(SDValue V);
1639 
1640 /// Returns true if \p V is an integer constant with all bits set.
1641 bool isAllOnesConstant(SDValue V);
1642 
1643 /// Returns true if \p V is a constant integer one.
1644 bool isOneConstant(SDValue V);
1645 
1646 /// Return the non-bitcasted source operand of \p V if it exists.
1647 /// If \p V is not a bitcasted value, it is returned as-is.
1648 SDValue peekThroughBitcasts(SDValue V);
1649 
1650 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1651 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1652 SDValue peekThroughOneUseBitcasts(SDValue V);
1653 
1654 /// Return the non-extracted vector source operand of \p V if it exists.
1655 /// If \p V is not an extracted subvector, it is returned as-is.
1656 SDValue peekThroughExtractSubvectors(SDValue V);
1657 
1658 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1659 /// constant is canonicalized to be operand 1.
1660 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1661 
1662 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1663 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1664                                     bool AllowTruncation = false);
1665 
1666 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1667 /// constant int.
1668 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1669                                     bool AllowUndefs = false,
1670                                     bool AllowTruncation = false);
1671 
1672 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1673 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1674 
1675 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1676 /// constant float.
1677 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1678                                         bool AllowUndefs = false);
1679 
1680 /// Return true if the value is a constant 0 integer or a splatted vector of
1681 /// a constant 0 integer (with no undefs by default).
1682 /// Build vector implicit truncation is not an issue for null values.
1683 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1684 
1685 /// Return true if the value is a constant 1 integer or a splatted vector of a
1686 /// constant 1 integer (with no undefs).
1687 /// Does not permit build vector implicit truncation.
1688 bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1689 
1690 /// Return true if the value is a constant -1 integer or a splatted vector of a
1691 /// constant -1 integer (with no undefs).
1692 /// Does not permit build vector implicit truncation.
1693 bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1694 
1695 /// Return true if \p V is either a integer or FP constant.
1696 inline bool isIntOrFPConstant(SDValue V) {
1697   return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1698 }
1699 
1700 class GlobalAddressSDNode : public SDNode {
1701   friend class SelectionDAG;
1702 
1703   const GlobalValue *TheGlobal;
1704   int64_t Offset;
1705   unsigned TargetFlags;
1706 
1707   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1708                       const GlobalValue *GA, EVT VT, int64_t o,
1709                       unsigned TF);
1710 
1711 public:
1712   const GlobalValue *getGlobal() const { return TheGlobal; }
1713   int64_t getOffset() const { return Offset; }
1714   unsigned getTargetFlags() const { return TargetFlags; }
1715   // Return the address space this GlobalAddress belongs to.
1716   unsigned getAddressSpace() const;
1717 
1718   static bool classof(const SDNode *N) {
1719     return N->getOpcode() == ISD::GlobalAddress ||
1720            N->getOpcode() == ISD::TargetGlobalAddress ||
1721            N->getOpcode() == ISD::GlobalTLSAddress ||
1722            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1723   }
1724 };
1725 
1726 class FrameIndexSDNode : public SDNode {
1727   friend class SelectionDAG;
1728 
1729   int FI;
1730 
1731   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1732     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1733       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1734   }
1735 
1736 public:
1737   int getIndex() const { return FI; }
1738 
1739   static bool classof(const SDNode *N) {
1740     return N->getOpcode() == ISD::FrameIndex ||
1741            N->getOpcode() == ISD::TargetFrameIndex;
1742   }
1743 };
1744 
1745 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1746 /// the offet and size that are started/ended in the underlying FrameIndex.
1747 class LifetimeSDNode : public SDNode {
1748   friend class SelectionDAG;
1749   int64_t Size;
1750   int64_t Offset; // -1 if offset is unknown.
1751 
1752   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1753                  SDVTList VTs, int64_t Size, int64_t Offset)
1754       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1755 public:
1756   int64_t getFrameIndex() const {
1757     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1758   }
1759 
1760   bool hasOffset() const { return Offset >= 0; }
1761   int64_t getOffset() const {
1762     assert(hasOffset() && "offset is unknown");
1763     return Offset;
1764   }
1765   int64_t getSize() const {
1766     assert(hasOffset() && "offset is unknown");
1767     return Size;
1768   }
1769 
1770   // Methods to support isa and dyn_cast
1771   static bool classof(const SDNode *N) {
1772     return N->getOpcode() == ISD::LIFETIME_START ||
1773            N->getOpcode() == ISD::LIFETIME_END;
1774   }
1775 };
1776 
1777 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1778 /// the index of the basic block being probed. A pseudo probe serves as a place
1779 /// holder and will be removed at the end of compilation. It does not have any
1780 /// operand because we do not want the instruction selection to deal with any.
1781 class PseudoProbeSDNode : public SDNode {
1782   friend class SelectionDAG;
1783   uint64_t Guid;
1784   uint64_t Index;
1785   uint32_t Attributes;
1786 
1787   PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1788                     SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1789       : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1790         Attributes(Attr) {}
1791 
1792 public:
1793   uint64_t getGuid() const { return Guid; }
1794   uint64_t getIndex() const { return Index; }
1795   uint32_t getAttributes() const { return Attributes; }
1796 
1797   // Methods to support isa and dyn_cast
1798   static bool classof(const SDNode *N) {
1799     return N->getOpcode() == ISD::PSEUDO_PROBE;
1800   }
1801 };
1802 
1803 class JumpTableSDNode : public SDNode {
1804   friend class SelectionDAG;
1805 
1806   int JTI;
1807   unsigned TargetFlags;
1808 
1809   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1810     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1811       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1812   }
1813 
1814 public:
1815   int getIndex() const { return JTI; }
1816   unsigned getTargetFlags() const { return TargetFlags; }
1817 
1818   static bool classof(const SDNode *N) {
1819     return N->getOpcode() == ISD::JumpTable ||
1820            N->getOpcode() == ISD::TargetJumpTable;
1821   }
1822 };
1823 
1824 class ConstantPoolSDNode : public SDNode {
1825   friend class SelectionDAG;
1826 
1827   union {
1828     const Constant *ConstVal;
1829     MachineConstantPoolValue *MachineCPVal;
1830   } Val;
1831   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1832   Align Alignment; // Minimum alignment requirement of CP.
1833   unsigned TargetFlags;
1834 
1835   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1836                      Align Alignment, unsigned TF)
1837       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1838                DebugLoc(), getSDVTList(VT)),
1839         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1840     assert(Offset >= 0 && "Offset is too large");
1841     Val.ConstVal = c;
1842   }
1843 
1844   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1845                      Align Alignment, unsigned TF)
1846       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1847                DebugLoc(), getSDVTList(VT)),
1848         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1849     assert(Offset >= 0 && "Offset is too large");
1850     Val.MachineCPVal = v;
1851     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1852   }
1853 
1854 public:
1855   bool isMachineConstantPoolEntry() const {
1856     return Offset < 0;
1857   }
1858 
1859   const Constant *getConstVal() const {
1860     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1861     return Val.ConstVal;
1862   }
1863 
1864   MachineConstantPoolValue *getMachineCPVal() const {
1865     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1866     return Val.MachineCPVal;
1867   }
1868 
1869   int getOffset() const {
1870     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1871   }
1872 
1873   // Return the alignment of this constant pool object, which is either 0 (for
1874   // default alignment) or the desired value.
1875   Align getAlign() const { return Alignment; }
1876   unsigned getTargetFlags() const { return TargetFlags; }
1877 
1878   Type *getType() const;
1879 
1880   static bool classof(const SDNode *N) {
1881     return N->getOpcode() == ISD::ConstantPool ||
1882            N->getOpcode() == ISD::TargetConstantPool;
1883   }
1884 };
1885 
1886 /// Completely target-dependent object reference.
1887 class TargetIndexSDNode : public SDNode {
1888   friend class SelectionDAG;
1889 
1890   unsigned TargetFlags;
1891   int Index;
1892   int64_t Offset;
1893 
1894 public:
1895   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1896       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1897         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1898 
1899   unsigned getTargetFlags() const { return TargetFlags; }
1900   int getIndex() const { return Index; }
1901   int64_t getOffset() const { return Offset; }
1902 
1903   static bool classof(const SDNode *N) {
1904     return N->getOpcode() == ISD::TargetIndex;
1905   }
1906 };
1907 
1908 class BasicBlockSDNode : public SDNode {
1909   friend class SelectionDAG;
1910 
1911   MachineBasicBlock *MBB;
1912 
1913   /// Debug info is meaningful and potentially useful here, but we create
1914   /// blocks out of order when they're jumped to, which makes it a bit
1915   /// harder.  Let's see if we need it first.
1916   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1917     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1918   {}
1919 
1920 public:
1921   MachineBasicBlock *getBasicBlock() const { return MBB; }
1922 
1923   static bool classof(const SDNode *N) {
1924     return N->getOpcode() == ISD::BasicBlock;
1925   }
1926 };
1927 
1928 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1929 class BuildVectorSDNode : public SDNode {
1930 public:
1931   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1932   explicit BuildVectorSDNode() = delete;
1933 
1934   /// Check if this is a constant splat, and if so, find the
1935   /// smallest element size that splats the vector.  If MinSplatBits is
1936   /// nonzero, the element size must be at least that large.  Note that the
1937   /// splat element may be the entire vector (i.e., a one element vector).
1938   /// Returns the splat element value in SplatValue.  Any undefined bits in
1939   /// that value are zero, and the corresponding bits in the SplatUndef mask
1940   /// are set.  The SplatBitSize value is set to the splat element size in
1941   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1942   /// undefined.  isBigEndian describes the endianness of the target.
1943   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1944                        unsigned &SplatBitSize, bool &HasAnyUndefs,
1945                        unsigned MinSplatBits = 0,
1946                        bool isBigEndian = false) const;
1947 
1948   /// Returns the demanded splatted value or a null value if this is not a
1949   /// splat.
1950   ///
1951   /// The DemandedElts mask indicates the elements that must be in the splat.
1952   /// If passed a non-null UndefElements bitvector, it will resize it to match
1953   /// the vector width and set the bits where elements are undef.
1954   SDValue getSplatValue(const APInt &DemandedElts,
1955                         BitVector *UndefElements = nullptr) const;
1956 
1957   /// Returns the splatted value or a null value if this is not a splat.
1958   ///
1959   /// If passed a non-null UndefElements bitvector, it will resize it to match
1960   /// the vector width and set the bits where elements are undef.
1961   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1962 
1963   /// Find the shortest repeating sequence of values in the build vector.
1964   ///
1965   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1966   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
1967   ///
1968   /// Currently this must be a power-of-2 build vector.
1969   /// The DemandedElts mask indicates the elements that must be present,
1970   /// undemanded elements in Sequence may be null (SDValue()). If passed a
1971   /// non-null UndefElements bitvector, it will resize it to match the original
1972   /// vector width and set the bits where elements are undef. If result is
1973   /// false, Sequence will be empty.
1974   bool getRepeatedSequence(const APInt &DemandedElts,
1975                            SmallVectorImpl<SDValue> &Sequence,
1976                            BitVector *UndefElements = nullptr) const;
1977 
1978   /// Find the shortest repeating sequence of values in the build vector.
1979   ///
1980   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1981   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
1982   ///
1983   /// Currently this must be a power-of-2 build vector.
1984   /// If passed a non-null UndefElements bitvector, it will resize it to match
1985   /// the original vector width and set the bits where elements are undef.
1986   /// If result is false, Sequence will be empty.
1987   bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1988                            BitVector *UndefElements = nullptr) const;
1989 
1990   /// Returns the demanded splatted constant or null if this is not a constant
1991   /// splat.
1992   ///
1993   /// The DemandedElts mask indicates the elements that must be in the splat.
1994   /// If passed a non-null UndefElements bitvector, it will resize it to match
1995   /// the vector width and set the bits where elements are undef.
1996   ConstantSDNode *
1997   getConstantSplatNode(const APInt &DemandedElts,
1998                        BitVector *UndefElements = nullptr) const;
1999 
2000   /// Returns the splatted constant or null if this is not a constant
2001   /// splat.
2002   ///
2003   /// If passed a non-null UndefElements bitvector, it will resize it to match
2004   /// the vector width and set the bits where elements are undef.
2005   ConstantSDNode *
2006   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2007 
2008   /// Returns the demanded splatted constant FP or null if this is not a
2009   /// constant FP splat.
2010   ///
2011   /// The DemandedElts mask indicates the elements that must be in the splat.
2012   /// If passed a non-null UndefElements bitvector, it will resize it to match
2013   /// the vector width and set the bits where elements are undef.
2014   ConstantFPSDNode *
2015   getConstantFPSplatNode(const APInt &DemandedElts,
2016                          BitVector *UndefElements = nullptr) const;
2017 
2018   /// Returns the splatted constant FP or null if this is not a constant
2019   /// FP splat.
2020   ///
2021   /// If passed a non-null UndefElements bitvector, it will resize it to match
2022   /// the vector width and set the bits where elements are undef.
2023   ConstantFPSDNode *
2024   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2025 
2026   /// If this is a constant FP splat and the splatted constant FP is an
2027   /// exact power or 2, return the log base 2 integer value.  Otherwise,
2028   /// return -1.
2029   ///
2030   /// The BitWidth specifies the necessary bit precision.
2031   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2032                                           uint32_t BitWidth) const;
2033 
2034   bool isConstant() const;
2035 
2036   static bool classof(const SDNode *N) {
2037     return N->getOpcode() == ISD::BUILD_VECTOR;
2038   }
2039 };
2040 
2041 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2042 /// used when the SelectionDAG needs to make a simple reference to something
2043 /// in the LLVM IR representation.
2044 ///
2045 class SrcValueSDNode : public SDNode {
2046   friend class SelectionDAG;
2047 
2048   const Value *V;
2049 
2050   /// Create a SrcValue for a general value.
2051   explicit SrcValueSDNode(const Value *v)
2052     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2053 
2054 public:
2055   /// Return the contained Value.
2056   const Value *getValue() const { return V; }
2057 
2058   static bool classof(const SDNode *N) {
2059     return N->getOpcode() == ISD::SRCVALUE;
2060   }
2061 };
2062 
2063 class MDNodeSDNode : public SDNode {
2064   friend class SelectionDAG;
2065 
2066   const MDNode *MD;
2067 
2068   explicit MDNodeSDNode(const MDNode *md)
2069   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2070   {}
2071 
2072 public:
2073   const MDNode *getMD() const { return MD; }
2074 
2075   static bool classof(const SDNode *N) {
2076     return N->getOpcode() == ISD::MDNODE_SDNODE;
2077   }
2078 };
2079 
2080 class RegisterSDNode : public SDNode {
2081   friend class SelectionDAG;
2082 
2083   Register Reg;
2084 
2085   RegisterSDNode(Register reg, EVT VT)
2086     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2087 
2088 public:
2089   Register getReg() const { return Reg; }
2090 
2091   static bool classof(const SDNode *N) {
2092     return N->getOpcode() == ISD::Register;
2093   }
2094 };
2095 
2096 class RegisterMaskSDNode : public SDNode {
2097   friend class SelectionDAG;
2098 
2099   // The memory for RegMask is not owned by the node.
2100   const uint32_t *RegMask;
2101 
2102   RegisterMaskSDNode(const uint32_t *mask)
2103     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2104       RegMask(mask) {}
2105 
2106 public:
2107   const uint32_t *getRegMask() const { return RegMask; }
2108 
2109   static bool classof(const SDNode *N) {
2110     return N->getOpcode() == ISD::RegisterMask;
2111   }
2112 };
2113 
2114 class BlockAddressSDNode : public SDNode {
2115   friend class SelectionDAG;
2116 
2117   const BlockAddress *BA;
2118   int64_t Offset;
2119   unsigned TargetFlags;
2120 
2121   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2122                      int64_t o, unsigned Flags)
2123     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2124              BA(ba), Offset(o), TargetFlags(Flags) {}
2125 
2126 public:
2127   const BlockAddress *getBlockAddress() const { return BA; }
2128   int64_t getOffset() const { return Offset; }
2129   unsigned getTargetFlags() const { return TargetFlags; }
2130 
2131   static bool classof(const SDNode *N) {
2132     return N->getOpcode() == ISD::BlockAddress ||
2133            N->getOpcode() == ISD::TargetBlockAddress;
2134   }
2135 };
2136 
2137 class LabelSDNode : public SDNode {
2138   friend class SelectionDAG;
2139 
2140   MCSymbol *Label;
2141 
2142   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2143       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2144     assert(LabelSDNode::classof(this) && "not a label opcode");
2145   }
2146 
2147 public:
2148   MCSymbol *getLabel() const { return Label; }
2149 
2150   static bool classof(const SDNode *N) {
2151     return N->getOpcode() == ISD::EH_LABEL ||
2152            N->getOpcode() == ISD::ANNOTATION_LABEL;
2153   }
2154 };
2155 
2156 class ExternalSymbolSDNode : public SDNode {
2157   friend class SelectionDAG;
2158 
2159   const char *Symbol;
2160   unsigned TargetFlags;
2161 
2162   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2163       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2164                DebugLoc(), getSDVTList(VT)),
2165         Symbol(Sym), TargetFlags(TF) {}
2166 
2167 public:
2168   const char *getSymbol() const { return Symbol; }
2169   unsigned getTargetFlags() const { return TargetFlags; }
2170 
2171   static bool classof(const SDNode *N) {
2172     return N->getOpcode() == ISD::ExternalSymbol ||
2173            N->getOpcode() == ISD::TargetExternalSymbol;
2174   }
2175 };
2176 
2177 class MCSymbolSDNode : public SDNode {
2178   friend class SelectionDAG;
2179 
2180   MCSymbol *Symbol;
2181 
2182   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2183       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2184 
2185 public:
2186   MCSymbol *getMCSymbol() const { return Symbol; }
2187 
2188   static bool classof(const SDNode *N) {
2189     return N->getOpcode() == ISD::MCSymbol;
2190   }
2191 };
2192 
2193 class CondCodeSDNode : public SDNode {
2194   friend class SelectionDAG;
2195 
2196   ISD::CondCode Condition;
2197 
2198   explicit CondCodeSDNode(ISD::CondCode Cond)
2199     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2200       Condition(Cond) {}
2201 
2202 public:
2203   ISD::CondCode get() const { return Condition; }
2204 
2205   static bool classof(const SDNode *N) {
2206     return N->getOpcode() == ISD::CONDCODE;
2207   }
2208 };
2209 
2210 /// This class is used to represent EVT's, which are used
2211 /// to parameterize some operations.
2212 class VTSDNode : public SDNode {
2213   friend class SelectionDAG;
2214 
2215   EVT ValueType;
2216 
2217   explicit VTSDNode(EVT VT)
2218     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2219       ValueType(VT) {}
2220 
2221 public:
2222   EVT getVT() const { return ValueType; }
2223 
2224   static bool classof(const SDNode *N) {
2225     return N->getOpcode() == ISD::VALUETYPE;
2226   }
2227 };
2228 
2229 /// Base class for LoadSDNode and StoreSDNode
2230 class LSBaseSDNode : public MemSDNode {
2231 public:
2232   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2233                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2234                MachineMemOperand *MMO)
2235       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2236     LSBaseSDNodeBits.AddressingMode = AM;
2237     assert(getAddressingMode() == AM && "Value truncated");
2238   }
2239 
2240   const SDValue &getOffset() const {
2241     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2242   }
2243 
2244   /// Return the addressing mode for this load or store:
2245   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2246   ISD::MemIndexedMode getAddressingMode() const {
2247     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2248   }
2249 
2250   /// Return true if this is a pre/post inc/dec load/store.
2251   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2252 
2253   /// Return true if this is NOT a pre/post inc/dec load/store.
2254   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2255 
2256   static bool classof(const SDNode *N) {
2257     return N->getOpcode() == ISD::LOAD ||
2258            N->getOpcode() == ISD::STORE;
2259   }
2260 };
2261 
2262 /// This class is used to represent ISD::LOAD nodes.
2263 class LoadSDNode : public LSBaseSDNode {
2264   friend class SelectionDAG;
2265 
2266   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2267              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2268              MachineMemOperand *MMO)
2269       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2270     LoadSDNodeBits.ExtTy = ETy;
2271     assert(readMem() && "Load MachineMemOperand is not a load!");
2272     assert(!writeMem() && "Load MachineMemOperand is a store!");
2273   }
2274 
2275 public:
2276   /// Return whether this is a plain node,
2277   /// or one of the varieties of value-extending loads.
2278   ISD::LoadExtType getExtensionType() const {
2279     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2280   }
2281 
2282   const SDValue &getBasePtr() const { return getOperand(1); }
2283   const SDValue &getOffset() const { return getOperand(2); }
2284 
2285   static bool classof(const SDNode *N) {
2286     return N->getOpcode() == ISD::LOAD;
2287   }
2288 };
2289 
2290 /// This class is used to represent ISD::STORE nodes.
2291 class StoreSDNode : public LSBaseSDNode {
2292   friend class SelectionDAG;
2293 
2294   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2295               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2296               MachineMemOperand *MMO)
2297       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2298     StoreSDNodeBits.IsTruncating = isTrunc;
2299     assert(!readMem() && "Store MachineMemOperand is a load!");
2300     assert(writeMem() && "Store MachineMemOperand is not a store!");
2301   }
2302 
2303 public:
2304   /// Return true if the op does a truncation before store.
2305   /// For integers this is the same as doing a TRUNCATE and storing the result.
2306   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2307   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2308   void setTruncatingStore(bool Truncating) {
2309     StoreSDNodeBits.IsTruncating = Truncating;
2310   }
2311 
2312   const SDValue &getValue() const { return getOperand(1); }
2313   const SDValue &getBasePtr() const { return getOperand(2); }
2314   const SDValue &getOffset() const { return getOperand(3); }
2315 
2316   static bool classof(const SDNode *N) {
2317     return N->getOpcode() == ISD::STORE;
2318   }
2319 };
2320 
2321 /// This base class is used to represent MLOAD and MSTORE nodes
2322 class MaskedLoadStoreSDNode : public MemSDNode {
2323 public:
2324   friend class SelectionDAG;
2325 
2326   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2327                         const DebugLoc &dl, SDVTList VTs,
2328                         ISD::MemIndexedMode AM, EVT MemVT,
2329                         MachineMemOperand *MMO)
2330       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2331     LSBaseSDNodeBits.AddressingMode = AM;
2332     assert(getAddressingMode() == AM && "Value truncated");
2333   }
2334 
2335   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2336   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2337   // Mask is a vector of i1 elements
2338   const SDValue &getOffset() const {
2339     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2340   }
2341   const SDValue &getMask() const {
2342     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2343   }
2344 
2345   /// Return the addressing mode for this load or store:
2346   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2347   ISD::MemIndexedMode getAddressingMode() const {
2348     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2349   }
2350 
2351   /// Return true if this is a pre/post inc/dec load/store.
2352   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2353 
2354   /// Return true if this is NOT a pre/post inc/dec load/store.
2355   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2356 
2357   static bool classof(const SDNode *N) {
2358     return N->getOpcode() == ISD::MLOAD ||
2359            N->getOpcode() == ISD::MSTORE;
2360   }
2361 };
2362 
2363 /// This class is used to represent an MLOAD node
2364 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2365 public:
2366   friend class SelectionDAG;
2367 
2368   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2369                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2370                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2371       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2372     LoadSDNodeBits.ExtTy = ETy;
2373     LoadSDNodeBits.IsExpanding = IsExpanding;
2374   }
2375 
2376   ISD::LoadExtType getExtensionType() const {
2377     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2378   }
2379 
2380   const SDValue &getBasePtr() const { return getOperand(1); }
2381   const SDValue &getOffset() const { return getOperand(2); }
2382   const SDValue &getMask() const { return getOperand(3); }
2383   const SDValue &getPassThru() const { return getOperand(4); }
2384 
2385   static bool classof(const SDNode *N) {
2386     return N->getOpcode() == ISD::MLOAD;
2387   }
2388 
2389   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2390 };
2391 
2392 /// This class is used to represent an MSTORE node
2393 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2394 public:
2395   friend class SelectionDAG;
2396 
2397   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2398                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2399                     EVT MemVT, MachineMemOperand *MMO)
2400       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2401     StoreSDNodeBits.IsTruncating = isTrunc;
2402     StoreSDNodeBits.IsCompressing = isCompressing;
2403   }
2404 
2405   /// Return true if the op does a truncation before store.
2406   /// For integers this is the same as doing a TRUNCATE and storing the result.
2407   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2408   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2409 
2410   /// Returns true if the op does a compression to the vector before storing.
2411   /// The node contiguously stores the active elements (integers or floats)
2412   /// in src (those with their respective bit set in writemask k) to unaligned
2413   /// memory at base_addr.
2414   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2415 
2416   const SDValue &getValue() const { return getOperand(1); }
2417   const SDValue &getBasePtr() const { return getOperand(2); }
2418   const SDValue &getOffset() const { return getOperand(3); }
2419   const SDValue &getMask() const { return getOperand(4); }
2420 
2421   static bool classof(const SDNode *N) {
2422     return N->getOpcode() == ISD::MSTORE;
2423   }
2424 };
2425 
2426 /// This is a base class used to represent
2427 /// MGATHER and MSCATTER nodes
2428 ///
2429 class MaskedGatherScatterSDNode : public MemSDNode {
2430 public:
2431   friend class SelectionDAG;
2432 
2433   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2434                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2435                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2436       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2437     LSBaseSDNodeBits.AddressingMode = IndexType;
2438     assert(getIndexType() == IndexType && "Value truncated");
2439   }
2440 
2441   /// How is Index applied to BasePtr when computing addresses.
2442   ISD::MemIndexType getIndexType() const {
2443     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2444   }
2445   void setIndexType(ISD::MemIndexType IndexType) {
2446     LSBaseSDNodeBits.AddressingMode = IndexType;
2447   }
2448   bool isIndexScaled() const {
2449     return (getIndexType() == ISD::SIGNED_SCALED) ||
2450            (getIndexType() == ISD::UNSIGNED_SCALED);
2451   }
2452   bool isIndexSigned() const {
2453     return (getIndexType() == ISD::SIGNED_SCALED) ||
2454            (getIndexType() == ISD::SIGNED_UNSCALED);
2455   }
2456 
2457   // In the both nodes address is Op1, mask is Op2:
2458   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2459   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2460   // Mask is a vector of i1 elements
2461   const SDValue &getBasePtr() const { return getOperand(3); }
2462   const SDValue &getIndex()   const { return getOperand(4); }
2463   const SDValue &getMask()    const { return getOperand(2); }
2464   const SDValue &getScale()   const { return getOperand(5); }
2465 
2466   static bool classof(const SDNode *N) {
2467     return N->getOpcode() == ISD::MGATHER ||
2468            N->getOpcode() == ISD::MSCATTER;
2469   }
2470 };
2471 
2472 /// This class is used to represent an MGATHER node
2473 ///
2474 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2475 public:
2476   friend class SelectionDAG;
2477 
2478   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2479                      EVT MemVT, MachineMemOperand *MMO,
2480                      ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2481       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2482                                   IndexType) {
2483     LoadSDNodeBits.ExtTy = ETy;
2484   }
2485 
2486   const SDValue &getPassThru() const { return getOperand(1); }
2487 
2488   ISD::LoadExtType getExtensionType() const {
2489     return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2490   }
2491 
2492   static bool classof(const SDNode *N) {
2493     return N->getOpcode() == ISD::MGATHER;
2494   }
2495 };
2496 
2497 /// This class is used to represent an MSCATTER node
2498 ///
2499 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2500 public:
2501   friend class SelectionDAG;
2502 
2503   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2504                       EVT MemVT, MachineMemOperand *MMO,
2505                       ISD::MemIndexType IndexType, bool IsTrunc)
2506       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2507                                   IndexType) {
2508     StoreSDNodeBits.IsTruncating = IsTrunc;
2509   }
2510 
2511   /// Return true if the op does a truncation before store.
2512   /// For integers this is the same as doing a TRUNCATE and storing the result.
2513   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2514   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2515 
2516   const SDValue &getValue() const { return getOperand(1); }
2517 
2518   static bool classof(const SDNode *N) {
2519     return N->getOpcode() == ISD::MSCATTER;
2520   }
2521 };
2522 
2523 /// An SDNode that represents everything that will be needed
2524 /// to construct a MachineInstr. These nodes are created during the
2525 /// instruction selection proper phase.
2526 ///
2527 /// Note that the only supported way to set the `memoperands` is by calling the
2528 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2529 /// inside the DAG rather than in the node.
2530 class MachineSDNode : public SDNode {
2531 private:
2532   friend class SelectionDAG;
2533 
2534   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2535       : SDNode(Opc, Order, DL, VTs) {}
2536 
2537   // We use a pointer union between a single `MachineMemOperand` pointer and
2538   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2539   // the number of these is zero, the single pointer variant used when the
2540   // number is one, and the array is used for larger numbers.
2541   //
2542   // The array is allocated via the `SelectionDAG`'s allocator and so will
2543   // always live until the DAG is cleaned up and doesn't require ownership here.
2544   //
2545   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2546   // subclasses aren't managed in a conforming C++ manner. See the comments on
2547   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2548   // constraint here is that these don't manage memory with their constructor or
2549   // destructor and can be initialized to a good state even if they start off
2550   // uninitialized.
2551   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2552 
2553   // Note that this could be folded into the above `MemRefs` member if doing so
2554   // is advantageous at some point. We don't need to store this in most cases.
2555   // However, at the moment this doesn't appear to make the allocation any
2556   // smaller and makes the code somewhat simpler to read.
2557   int NumMemRefs = 0;
2558 
2559 public:
2560   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2561 
2562   ArrayRef<MachineMemOperand *> memoperands() const {
2563     // Special case the common cases.
2564     if (NumMemRefs == 0)
2565       return {};
2566     if (NumMemRefs == 1)
2567       return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2568 
2569     // Otherwise we have an actual array.
2570     return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2571   }
2572   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2573   mmo_iterator memoperands_end() const { return memoperands().end(); }
2574   bool memoperands_empty() const { return memoperands().empty(); }
2575 
2576   /// Clear out the memory reference descriptor list.
2577   void clearMemRefs() {
2578     MemRefs = nullptr;
2579     NumMemRefs = 0;
2580   }
2581 
2582   static bool classof(const SDNode *N) {
2583     return N->isMachineOpcode();
2584   }
2585 };
2586 
2587 /// An SDNode that records if a register contains a value that is guaranteed to
2588 /// be aligned accordingly.
2589 class AssertAlignSDNode : public SDNode {
2590   Align Alignment;
2591 
2592 public:
2593   AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2594       : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2595 
2596   Align getAlign() const { return Alignment; }
2597 
2598   static bool classof(const SDNode *N) {
2599     return N->getOpcode() == ISD::AssertAlign;
2600   }
2601 };
2602 
2603 class SDNodeIterator {
2604   const SDNode *Node;
2605   unsigned Operand;
2606 
2607   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2608 
2609 public:
2610   using iterator_category = std::forward_iterator_tag;
2611   using value_type = SDNode;
2612   using difference_type = std::ptrdiff_t;
2613   using pointer = value_type *;
2614   using reference = value_type &;
2615 
2616   bool operator==(const SDNodeIterator& x) const {
2617     return Operand == x.Operand;
2618   }
2619   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2620 
2621   pointer operator*() const {
2622     return Node->getOperand(Operand).getNode();
2623   }
2624   pointer operator->() const { return operator*(); }
2625 
2626   SDNodeIterator& operator++() {                // Preincrement
2627     ++Operand;
2628     return *this;
2629   }
2630   SDNodeIterator operator++(int) { // Postincrement
2631     SDNodeIterator tmp = *this; ++*this; return tmp;
2632   }
2633   size_t operator-(SDNodeIterator Other) const {
2634     assert(Node == Other.Node &&
2635            "Cannot compare iterators of two different nodes!");
2636     return Operand - Other.Operand;
2637   }
2638 
2639   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2640   static SDNodeIterator end  (const SDNode *N) {
2641     return SDNodeIterator(N, N->getNumOperands());
2642   }
2643 
2644   unsigned getOperand() const { return Operand; }
2645   const SDNode *getNode() const { return Node; }
2646 };
2647 
2648 template <> struct GraphTraits<SDNode*> {
2649   using NodeRef = SDNode *;
2650   using ChildIteratorType = SDNodeIterator;
2651 
2652   static NodeRef getEntryNode(SDNode *N) { return N; }
2653 
2654   static ChildIteratorType child_begin(NodeRef N) {
2655     return SDNodeIterator::begin(N);
2656   }
2657 
2658   static ChildIteratorType child_end(NodeRef N) {
2659     return SDNodeIterator::end(N);
2660   }
2661 };
2662 
2663 /// A representation of the largest SDNode, for use in sizeof().
2664 ///
2665 /// This needs to be a union because the largest node differs on 32 bit systems
2666 /// with 4 and 8 byte pointer alignment, respectively.
2667 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2668                                             BlockAddressSDNode,
2669                                             GlobalAddressSDNode,
2670                                             PseudoProbeSDNode>;
2671 
2672 /// The SDNode class with the greatest alignment requirement.
2673 using MostAlignedSDNode = GlobalAddressSDNode;
2674 
2675 namespace ISD {
2676 
2677   /// Returns true if the specified node is a non-extending and unindexed load.
2678   inline bool isNormalLoad(const SDNode *N) {
2679     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2680     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2681       Ld->getAddressingMode() == ISD::UNINDEXED;
2682   }
2683 
2684   /// Returns true if the specified node is a non-extending load.
2685   inline bool isNON_EXTLoad(const SDNode *N) {
2686     return isa<LoadSDNode>(N) &&
2687       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2688   }
2689 
2690   /// Returns true if the specified node is a EXTLOAD.
2691   inline bool isEXTLoad(const SDNode *N) {
2692     return isa<LoadSDNode>(N) &&
2693       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2694   }
2695 
2696   /// Returns true if the specified node is a SEXTLOAD.
2697   inline bool isSEXTLoad(const SDNode *N) {
2698     return isa<LoadSDNode>(N) &&
2699       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2700   }
2701 
2702   /// Returns true if the specified node is a ZEXTLOAD.
2703   inline bool isZEXTLoad(const SDNode *N) {
2704     return isa<LoadSDNode>(N) &&
2705       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2706   }
2707 
2708   /// Returns true if the specified node is an unindexed load.
2709   inline bool isUNINDEXEDLoad(const SDNode *N) {
2710     return isa<LoadSDNode>(N) &&
2711       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2712   }
2713 
2714   /// Returns true if the specified node is a non-truncating
2715   /// and unindexed store.
2716   inline bool isNormalStore(const SDNode *N) {
2717     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2718     return St && !St->isTruncatingStore() &&
2719       St->getAddressingMode() == ISD::UNINDEXED;
2720   }
2721 
2722   /// Returns true if the specified node is an unindexed store.
2723   inline bool isUNINDEXEDStore(const SDNode *N) {
2724     return isa<StoreSDNode>(N) &&
2725       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2726   }
2727 
2728   /// Attempt to match a unary predicate against a scalar/splat constant or
2729   /// every element of a constant BUILD_VECTOR.
2730   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2731   bool matchUnaryPredicate(SDValue Op,
2732                            std::function<bool(ConstantSDNode *)> Match,
2733                            bool AllowUndefs = false);
2734 
2735   /// Attempt to match a binary predicate against a pair of scalar/splat
2736   /// constants or every element of a pair of constant BUILD_VECTORs.
2737   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2738   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2739   bool matchBinaryPredicate(
2740       SDValue LHS, SDValue RHS,
2741       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2742       bool AllowUndefs = false, bool AllowTypeMismatch = false);
2743 
2744   /// Returns true if the specified value is the overflow result from one
2745   /// of the overflow intrinsic nodes.
2746   inline bool isOverflowIntrOpRes(SDValue Op) {
2747     unsigned Opc = Op.getOpcode();
2748     return (Op.getResNo() == 1 &&
2749             (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2750              Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2751   }
2752 
2753 } // end namespace ISD
2754 
2755 } // end namespace llvm
2756 
2757 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
2758