xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/SelectionDAGNodes.h (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/Register.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/Support/AlignOf.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MachineValueType.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <climits>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <iterator>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 
58 namespace llvm {
59 
60 class APInt;
61 class Constant;
62 class GlobalValue;
63 class MachineBasicBlock;
64 class MachineConstantPoolValue;
65 class MCSymbol;
66 class raw_ostream;
67 class SDNode;
68 class SelectionDAG;
69 class Type;
70 class Value;
71 
72 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73                     bool force = false);
74 
75 /// This represents a list of ValueType's that has been intern'd by
76 /// a SelectionDAG.  Instances of this simple value class are returned by
77 /// SelectionDAG::getVTList(...).
78 ///
79 struct SDVTList {
80   const EVT *VTs;
81   unsigned int NumVTs;
82 };
83 
84 namespace ISD {
85 
86   /// Node predicates
87 
88 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89 /// same constant or undefined, return true and return the constant value in
90 /// \p SplatValue.
91 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92 
93 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95 /// true, it only checks BUILD_VECTOR.
96 bool isConstantSplatVectorAllOnes(const SDNode *N,
97                                   bool BuildVectorOnly = false);
98 
99 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101 /// only checks BUILD_VECTOR.
102 bool isConstantSplatVectorAllZeros(const SDNode *N,
103                                    bool BuildVectorOnly = false);
104 
105 /// Return true if the specified node is a BUILD_VECTOR where all of the
106 /// elements are ~0 or undef.
107 bool isBuildVectorAllOnes(const SDNode *N);
108 
109 /// Return true if the specified node is a BUILD_VECTOR where all of the
110 /// elements are 0 or undef.
111 bool isBuildVectorAllZeros(const SDNode *N);
112 
113 /// Return true if the specified node is a BUILD_VECTOR node of all
114 /// ConstantSDNode or undef.
115 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116 
117 /// Return true if the specified node is a BUILD_VECTOR node of all
118 /// ConstantFPSDNode or undef.
119 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120 
121 /// Returns true if the specified node is a vector where all elements can
122 /// be truncated to the specified element size without a loss in meaning.
123 bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed);
124 
125 /// Return true if the node has at least one operand and all operands of the
126 /// specified node are ISD::UNDEF.
127 bool allOperandsUndef(const SDNode *N);
128 
129 /// Return true if the specified node is FREEZE(UNDEF).
130 bool isFreezeUndef(const SDNode *N);
131 
132 } // end namespace ISD
133 
134 //===----------------------------------------------------------------------===//
135 /// Unlike LLVM values, Selection DAG nodes may return multiple
136 /// values as the result of a computation.  Many nodes return multiple values,
137 /// from loads (which define a token and a return value) to ADDC (which returns
138 /// a result and a carry value), to calls (which may return an arbitrary number
139 /// of values).
140 ///
141 /// As such, each use of a SelectionDAG computation must indicate the node that
142 /// computes it as well as which return value to use from that node.  This pair
143 /// of information is represented with the SDValue value type.
144 ///
145 class SDValue {
146   friend struct DenseMapInfo<SDValue>;
147 
148   SDNode *Node = nullptr; // The node defining the value we are using.
149   unsigned ResNo = 0;     // Which return value of the node we are using.
150 
151 public:
152   SDValue() = default;
153   SDValue(SDNode *node, unsigned resno);
154 
155   /// get the index which selects a specific result in the SDNode
156   unsigned getResNo() const { return ResNo; }
157 
158   /// get the SDNode which holds the desired result
159   SDNode *getNode() const { return Node; }
160 
161   /// set the SDNode
162   void setNode(SDNode *N) { Node = N; }
163 
164   inline SDNode *operator->() const { return Node; }
165 
166   bool operator==(const SDValue &O) const {
167     return Node == O.Node && ResNo == O.ResNo;
168   }
169   bool operator!=(const SDValue &O) const {
170     return !operator==(O);
171   }
172   bool operator<(const SDValue &O) const {
173     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
174   }
175   explicit operator bool() const {
176     return Node != nullptr;
177   }
178 
179   SDValue getValue(unsigned R) const {
180     return SDValue(Node, R);
181   }
182 
183   /// Return true if this node is an operand of N.
184   bool isOperandOf(const SDNode *N) const;
185 
186   /// Return the ValueType of the referenced return value.
187   inline EVT getValueType() const;
188 
189   /// Return the simple ValueType of the referenced return value.
190   MVT getSimpleValueType() const {
191     return getValueType().getSimpleVT();
192   }
193 
194   /// Returns the size of the value in bits.
195   ///
196   /// If the value type is a scalable vector type, the scalable property will
197   /// be set and the runtime size will be a positive integer multiple of the
198   /// base size.
199   TypeSize getValueSizeInBits() const {
200     return getValueType().getSizeInBits();
201   }
202 
203   uint64_t getScalarValueSizeInBits() const {
204     return getValueType().getScalarType().getFixedSizeInBits();
205   }
206 
207   // Forwarding methods - These forward to the corresponding methods in SDNode.
208   inline unsigned getOpcode() const;
209   inline unsigned getNumOperands() const;
210   inline const SDValue &getOperand(unsigned i) const;
211   inline uint64_t getConstantOperandVal(unsigned i) const;
212   inline const APInt &getConstantOperandAPInt(unsigned i) const;
213   inline bool isTargetMemoryOpcode() const;
214   inline bool isTargetOpcode() const;
215   inline bool isMachineOpcode() const;
216   inline bool isUndef() const;
217   inline unsigned getMachineOpcode() const;
218   inline const DebugLoc &getDebugLoc() const;
219   inline void dump() const;
220   inline void dump(const SelectionDAG *G) const;
221   inline void dumpr() const;
222   inline void dumpr(const SelectionDAG *G) const;
223 
224   /// Return true if this operand (which must be a chain) reaches the
225   /// specified operand without crossing any side-effecting instructions.
226   /// In practice, this looks through token factors and non-volatile loads.
227   /// In order to remain efficient, this only
228   /// looks a couple of nodes in, it does not do an exhaustive search.
229   bool reachesChainWithoutSideEffects(SDValue Dest,
230                                       unsigned Depth = 2) const;
231 
232   /// Return true if there are no nodes using value ResNo of Node.
233   inline bool use_empty() const;
234 
235   /// Return true if there is exactly one node using value ResNo of Node.
236   inline bool hasOneUse() const;
237 };
238 
239 template<> struct DenseMapInfo<SDValue> {
240   static inline SDValue getEmptyKey() {
241     SDValue V;
242     V.ResNo = -1U;
243     return V;
244   }
245 
246   static inline SDValue getTombstoneKey() {
247     SDValue V;
248     V.ResNo = -2U;
249     return V;
250   }
251 
252   static unsigned getHashValue(const SDValue &Val) {
253     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
254             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
255   }
256 
257   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
258     return LHS == RHS;
259   }
260 };
261 
262 /// Allow casting operators to work directly on
263 /// SDValues as if they were SDNode*'s.
264 template<> struct simplify_type<SDValue> {
265   using SimpleType = SDNode *;
266 
267   static SimpleType getSimplifiedValue(SDValue &Val) {
268     return Val.getNode();
269   }
270 };
271 template<> struct simplify_type<const SDValue> {
272   using SimpleType = /*const*/ SDNode *;
273 
274   static SimpleType getSimplifiedValue(const SDValue &Val) {
275     return Val.getNode();
276   }
277 };
278 
279 /// Represents a use of a SDNode. This class holds an SDValue,
280 /// which records the SDNode being used and the result number, a
281 /// pointer to the SDNode using the value, and Next and Prev pointers,
282 /// which link together all the uses of an SDNode.
283 ///
284 class SDUse {
285   /// Val - The value being used.
286   SDValue Val;
287   /// User - The user of this value.
288   SDNode *User = nullptr;
289   /// Prev, Next - Pointers to the uses list of the SDNode referred by
290   /// this operand.
291   SDUse **Prev = nullptr;
292   SDUse *Next = nullptr;
293 
294 public:
295   SDUse() = default;
296   SDUse(const SDUse &U) = delete;
297   SDUse &operator=(const SDUse &) = delete;
298 
299   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
300   operator const SDValue&() const { return Val; }
301 
302   /// If implicit conversion to SDValue doesn't work, the get() method returns
303   /// the SDValue.
304   const SDValue &get() const { return Val; }
305 
306   /// This returns the SDNode that contains this Use.
307   SDNode *getUser() { return User; }
308   const SDNode *getUser() const { return User; }
309 
310   /// Get the next SDUse in the use list.
311   SDUse *getNext() const { return Next; }
312 
313   /// Convenience function for get().getNode().
314   SDNode *getNode() const { return Val.getNode(); }
315   /// Convenience function for get().getResNo().
316   unsigned getResNo() const { return Val.getResNo(); }
317   /// Convenience function for get().getValueType().
318   EVT getValueType() const { return Val.getValueType(); }
319 
320   /// Convenience function for get().operator==
321   bool operator==(const SDValue &V) const {
322     return Val == V;
323   }
324 
325   /// Convenience function for get().operator!=
326   bool operator!=(const SDValue &V) const {
327     return Val != V;
328   }
329 
330   /// Convenience function for get().operator<
331   bool operator<(const SDValue &V) const {
332     return Val < V;
333   }
334 
335 private:
336   friend class SelectionDAG;
337   friend class SDNode;
338   // TODO: unfriend HandleSDNode once we fix its operand handling.
339   friend class HandleSDNode;
340 
341   void setUser(SDNode *p) { User = p; }
342 
343   /// Remove this use from its existing use list, assign it the
344   /// given value, and add it to the new value's node's use list.
345   inline void set(const SDValue &V);
346   /// Like set, but only supports initializing a newly-allocated
347   /// SDUse with a non-null value.
348   inline void setInitial(const SDValue &V);
349   /// Like set, but only sets the Node portion of the value,
350   /// leaving the ResNo portion unmodified.
351   inline void setNode(SDNode *N);
352 
353   void addToList(SDUse **List) {
354     Next = *List;
355     if (Next) Next->Prev = &Next;
356     Prev = List;
357     *List = this;
358   }
359 
360   void removeFromList() {
361     *Prev = Next;
362     if (Next) Next->Prev = Prev;
363   }
364 };
365 
366 /// simplify_type specializations - Allow casting operators to work directly on
367 /// SDValues as if they were SDNode*'s.
368 template<> struct simplify_type<SDUse> {
369   using SimpleType = SDNode *;
370 
371   static SimpleType getSimplifiedValue(SDUse &Val) {
372     return Val.getNode();
373   }
374 };
375 
376 /// These are IR-level optimization flags that may be propagated to SDNodes.
377 /// TODO: This data structure should be shared by the IR optimizer and the
378 /// the backend.
379 struct SDNodeFlags {
380 private:
381   bool NoUnsignedWrap : 1;
382   bool NoSignedWrap : 1;
383   bool Exact : 1;
384   bool NoNaNs : 1;
385   bool NoInfs : 1;
386   bool NoSignedZeros : 1;
387   bool AllowReciprocal : 1;
388   bool AllowContract : 1;
389   bool ApproximateFuncs : 1;
390   bool AllowReassociation : 1;
391 
392   // We assume instructions do not raise floating-point exceptions by default,
393   // and only those marked explicitly may do so.  We could choose to represent
394   // this via a positive "FPExcept" flags like on the MI level, but having a
395   // negative "NoFPExcept" flag here (that defaults to true) makes the flag
396   // intersection logic more straightforward.
397   bool NoFPExcept : 1;
398 
399 public:
400   /// Default constructor turns off all optimization flags.
401   SDNodeFlags()
402       : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
403         NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
404         AllowContract(false), ApproximateFuncs(false),
405         AllowReassociation(false), NoFPExcept(false) {}
406 
407   /// Propagate the fast-math-flags from an IR FPMathOperator.
408   void copyFMF(const FPMathOperator &FPMO) {
409     setNoNaNs(FPMO.hasNoNaNs());
410     setNoInfs(FPMO.hasNoInfs());
411     setNoSignedZeros(FPMO.hasNoSignedZeros());
412     setAllowReciprocal(FPMO.hasAllowReciprocal());
413     setAllowContract(FPMO.hasAllowContract());
414     setApproximateFuncs(FPMO.hasApproxFunc());
415     setAllowReassociation(FPMO.hasAllowReassoc());
416   }
417 
418   // These are mutators for each flag.
419   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
420   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
421   void setExact(bool b) { Exact = b; }
422   void setNoNaNs(bool b) { NoNaNs = b; }
423   void setNoInfs(bool b) { NoInfs = b; }
424   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
425   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
426   void setAllowContract(bool b) { AllowContract = b; }
427   void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
428   void setAllowReassociation(bool b) { AllowReassociation = b; }
429   void setNoFPExcept(bool b) { NoFPExcept = b; }
430 
431   // These are accessors for each flag.
432   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
433   bool hasNoSignedWrap() const { return NoSignedWrap; }
434   bool hasExact() const { return Exact; }
435   bool hasNoNaNs() const { return NoNaNs; }
436   bool hasNoInfs() const { return NoInfs; }
437   bool hasNoSignedZeros() const { return NoSignedZeros; }
438   bool hasAllowReciprocal() const { return AllowReciprocal; }
439   bool hasAllowContract() const { return AllowContract; }
440   bool hasApproximateFuncs() const { return ApproximateFuncs; }
441   bool hasAllowReassociation() const { return AllowReassociation; }
442   bool hasNoFPExcept() const { return NoFPExcept; }
443 
444   /// Clear any flags in this flag set that aren't also set in Flags. All
445   /// flags will be cleared if Flags are undefined.
446   void intersectWith(const SDNodeFlags Flags) {
447     NoUnsignedWrap &= Flags.NoUnsignedWrap;
448     NoSignedWrap &= Flags.NoSignedWrap;
449     Exact &= Flags.Exact;
450     NoNaNs &= Flags.NoNaNs;
451     NoInfs &= Flags.NoInfs;
452     NoSignedZeros &= Flags.NoSignedZeros;
453     AllowReciprocal &= Flags.AllowReciprocal;
454     AllowContract &= Flags.AllowContract;
455     ApproximateFuncs &= Flags.ApproximateFuncs;
456     AllowReassociation &= Flags.AllowReassociation;
457     NoFPExcept &= Flags.NoFPExcept;
458   }
459 };
460 
461 /// Represents one node in the SelectionDAG.
462 ///
463 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
464 private:
465   /// The operation that this node performs.
466   int32_t NodeType;
467 
468 public:
469   /// Unique and persistent id per SDNode in the DAG. Used for debug printing.
470   /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
471   /// intentionally because it adds unneeded complexity without noticeable
472   /// benefits (see discussion with @thakis in D120714).
473   uint16_t PersistentId;
474 
475 protected:
476   // We define a set of mini-helper classes to help us interpret the bits in our
477   // SubclassData.  These are designed to fit within a uint16_t so they pack
478   // with PersistentId.
479 
480 #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
481 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
482 // and give the `pack` pragma push semantics.
483 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
484 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
485 #else
486 #define BEGIN_TWO_BYTE_PACK()
487 #define END_TWO_BYTE_PACK()
488 #endif
489 
490 BEGIN_TWO_BYTE_PACK()
491   class SDNodeBitfields {
492     friend class SDNode;
493     friend class MemIntrinsicSDNode;
494     friend class MemSDNode;
495     friend class SelectionDAG;
496 
497     uint16_t HasDebugValue : 1;
498     uint16_t IsMemIntrinsic : 1;
499     uint16_t IsDivergent : 1;
500   };
501   enum { NumSDNodeBits = 3 };
502 
503   class ConstantSDNodeBitfields {
504     friend class ConstantSDNode;
505 
506     uint16_t : NumSDNodeBits;
507 
508     uint16_t IsOpaque : 1;
509   };
510 
511   class MemSDNodeBitfields {
512     friend class MemSDNode;
513     friend class MemIntrinsicSDNode;
514     friend class AtomicSDNode;
515 
516     uint16_t : NumSDNodeBits;
517 
518     uint16_t IsVolatile : 1;
519     uint16_t IsNonTemporal : 1;
520     uint16_t IsDereferenceable : 1;
521     uint16_t IsInvariant : 1;
522   };
523   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
524 
525   class LSBaseSDNodeBitfields {
526     friend class LSBaseSDNode;
527     friend class VPBaseLoadStoreSDNode;
528     friend class MaskedLoadStoreSDNode;
529     friend class MaskedGatherScatterSDNode;
530     friend class VPGatherScatterSDNode;
531 
532     uint16_t : NumMemSDNodeBits;
533 
534     // This storage is shared between disparate class hierarchies to hold an
535     // enumeration specific to the class hierarchy in use.
536     //   LSBaseSDNode => enum ISD::MemIndexedMode
537     //   VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
538     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
539     //   VPGatherScatterSDNode => enum ISD::MemIndexType
540     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
541     uint16_t AddressingMode : 3;
542   };
543   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
544 
545   class LoadSDNodeBitfields {
546     friend class LoadSDNode;
547     friend class VPLoadSDNode;
548     friend class VPStridedLoadSDNode;
549     friend class MaskedLoadSDNode;
550     friend class MaskedGatherSDNode;
551     friend class VPGatherSDNode;
552 
553     uint16_t : NumLSBaseSDNodeBits;
554 
555     uint16_t ExtTy : 2; // enum ISD::LoadExtType
556     uint16_t IsExpanding : 1;
557   };
558 
559   class StoreSDNodeBitfields {
560     friend class StoreSDNode;
561     friend class VPStoreSDNode;
562     friend class VPStridedStoreSDNode;
563     friend class MaskedStoreSDNode;
564     friend class MaskedScatterSDNode;
565     friend class VPScatterSDNode;
566 
567     uint16_t : NumLSBaseSDNodeBits;
568 
569     uint16_t IsTruncating : 1;
570     uint16_t IsCompressing : 1;
571   };
572 
573   union {
574     char RawSDNodeBits[sizeof(uint16_t)];
575     SDNodeBitfields SDNodeBits;
576     ConstantSDNodeBitfields ConstantSDNodeBits;
577     MemSDNodeBitfields MemSDNodeBits;
578     LSBaseSDNodeBitfields LSBaseSDNodeBits;
579     LoadSDNodeBitfields LoadSDNodeBits;
580     StoreSDNodeBitfields StoreSDNodeBits;
581   };
582 END_TWO_BYTE_PACK()
583 #undef BEGIN_TWO_BYTE_PACK
584 #undef END_TWO_BYTE_PACK
585 
586   // RawSDNodeBits must cover the entirety of the union.  This means that all of
587   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
588   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
589   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
590   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
591   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
592   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
593   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
594   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
595 
596 private:
597   friend class SelectionDAG;
598   // TODO: unfriend HandleSDNode once we fix its operand handling.
599   friend class HandleSDNode;
600 
601   /// Unique id per SDNode in the DAG.
602   int NodeId = -1;
603 
604   /// The values that are used by this operation.
605   SDUse *OperandList = nullptr;
606 
607   /// The types of the values this node defines.  SDNode's may
608   /// define multiple values simultaneously.
609   const EVT *ValueList;
610 
611   /// List of uses for this SDNode.
612   SDUse *UseList = nullptr;
613 
614   /// The number of entries in the Operand/Value list.
615   unsigned short NumOperands = 0;
616   unsigned short NumValues;
617 
618   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
619   // original LLVM instructions.
620   // This is used for turning off scheduling, because we'll forgo
621   // the normal scheduling algorithms and output the instructions according to
622   // this ordering.
623   unsigned IROrder;
624 
625   /// Source line information.
626   DebugLoc debugLoc;
627 
628   /// Return a pointer to the specified value type.
629   static const EVT *getValueTypeList(EVT VT);
630 
631   SDNodeFlags Flags;
632 
633   uint32_t CFIType = 0;
634 
635 public:
636   //===--------------------------------------------------------------------===//
637   //  Accessors
638   //
639 
640   /// Return the SelectionDAG opcode value for this node. For
641   /// pre-isel nodes (those for which isMachineOpcode returns false), these
642   /// are the opcode values in the ISD and <target>ISD namespaces. For
643   /// post-isel opcodes, see getMachineOpcode.
644   unsigned getOpcode()  const { return (unsigned)NodeType; }
645 
646   /// Test if this node has a target-specific opcode (in the
647   /// \<target\>ISD namespace).
648   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
649 
650   /// Test if this node has a target-specific opcode that may raise
651   /// FP exceptions (in the \<target\>ISD namespace and greater than
652   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
653   /// opcode are currently automatically considered to possibly raise
654   /// FP exceptions as well.
655   bool isTargetStrictFPOpcode() const {
656     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
657   }
658 
659   /// Test if this node has a target-specific
660   /// memory-referencing opcode (in the \<target\>ISD namespace and
661   /// greater than FIRST_TARGET_MEMORY_OPCODE).
662   bool isTargetMemoryOpcode() const {
663     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
664   }
665 
666   /// Return true if the type of the node type undefined.
667   bool isUndef() const { return NodeType == ISD::UNDEF; }
668 
669   /// Test if this node is a memory intrinsic (with valid pointer information).
670   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
671   /// non-memory intrinsics (with chains) that are not really instances of
672   /// MemSDNode. For such nodes, we need some extra state to determine the
673   /// proper classof relationship.
674   bool isMemIntrinsic() const {
675     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
676             NodeType == ISD::INTRINSIC_VOID) &&
677            SDNodeBits.IsMemIntrinsic;
678   }
679 
680   /// Test if this node is a strict floating point pseudo-op.
681   bool isStrictFPOpcode() {
682     switch (NodeType) {
683       default:
684         return false;
685       case ISD::STRICT_FP16_TO_FP:
686       case ISD::STRICT_FP_TO_FP16:
687 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
688       case ISD::STRICT_##DAGN:
689 #include "llvm/IR/ConstrainedOps.def"
690         return true;
691     }
692   }
693 
694   /// Test if this node is a vector predication operation.
695   bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
696 
697   /// Test if this node has a post-isel opcode, directly
698   /// corresponding to a MachineInstr opcode.
699   bool isMachineOpcode() const { return NodeType < 0; }
700 
701   /// This may only be called if isMachineOpcode returns
702   /// true. It returns the MachineInstr opcode value that the node's opcode
703   /// corresponds to.
704   unsigned getMachineOpcode() const {
705     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
706     return ~NodeType;
707   }
708 
709   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
710   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
711 
712   bool isDivergent() const { return SDNodeBits.IsDivergent; }
713 
714   /// Return true if there are no uses of this node.
715   bool use_empty() const { return UseList == nullptr; }
716 
717   /// Return true if there is exactly one use of this node.
718   bool hasOneUse() const { return hasSingleElement(uses()); }
719 
720   /// Return the number of uses of this node. This method takes
721   /// time proportional to the number of uses.
722   size_t use_size() const { return std::distance(use_begin(), use_end()); }
723 
724   /// Return the unique node id.
725   int getNodeId() const { return NodeId; }
726 
727   /// Set unique node id.
728   void setNodeId(int Id) { NodeId = Id; }
729 
730   /// Return the node ordering.
731   unsigned getIROrder() const { return IROrder; }
732 
733   /// Set the node ordering.
734   void setIROrder(unsigned Order) { IROrder = Order; }
735 
736   /// Return the source location info.
737   const DebugLoc &getDebugLoc() const { return debugLoc; }
738 
739   /// Set source location info.  Try to avoid this, putting
740   /// it in the constructor is preferable.
741   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
742 
743   /// This class provides iterator support for SDUse
744   /// operands that use a specific SDNode.
745   class use_iterator {
746     friend class SDNode;
747 
748     SDUse *Op = nullptr;
749 
750     explicit use_iterator(SDUse *op) : Op(op) {}
751 
752   public:
753     using iterator_category = std::forward_iterator_tag;
754     using value_type = SDUse;
755     using difference_type = std::ptrdiff_t;
756     using pointer = value_type *;
757     using reference = value_type &;
758 
759     use_iterator() = default;
760     use_iterator(const use_iterator &I) = default;
761     use_iterator &operator=(const use_iterator &) = default;
762 
763     bool operator==(const use_iterator &x) const { return Op == x.Op; }
764     bool operator!=(const use_iterator &x) const {
765       return !operator==(x);
766     }
767 
768     /// Return true if this iterator is at the end of uses list.
769     bool atEnd() const { return Op == nullptr; }
770 
771     // Iterator traversal: forward iteration only.
772     use_iterator &operator++() {          // Preincrement
773       assert(Op && "Cannot increment end iterator!");
774       Op = Op->getNext();
775       return *this;
776     }
777 
778     use_iterator operator++(int) {        // Postincrement
779       use_iterator tmp = *this; ++*this; return tmp;
780     }
781 
782     /// Retrieve a pointer to the current user node.
783     SDNode *operator*() const {
784       assert(Op && "Cannot dereference end iterator!");
785       return Op->getUser();
786     }
787 
788     SDNode *operator->() const { return operator*(); }
789 
790     SDUse &getUse() const { return *Op; }
791 
792     /// Retrieve the operand # of this use in its user.
793     unsigned getOperandNo() const {
794       assert(Op && "Cannot dereference end iterator!");
795       return (unsigned)(Op - Op->getUser()->OperandList);
796     }
797   };
798 
799   /// Provide iteration support to walk over all uses of an SDNode.
800   use_iterator use_begin() const {
801     return use_iterator(UseList);
802   }
803 
804   static use_iterator use_end() { return use_iterator(nullptr); }
805 
806   inline iterator_range<use_iterator> uses() {
807     return make_range(use_begin(), use_end());
808   }
809   inline iterator_range<use_iterator> uses() const {
810     return make_range(use_begin(), use_end());
811   }
812 
813   /// Return true if there are exactly NUSES uses of the indicated value.
814   /// This method ignores uses of other values defined by this operation.
815   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
816 
817   /// Return true if there are any use of the indicated value.
818   /// This method ignores uses of other values defined by this operation.
819   bool hasAnyUseOfValue(unsigned Value) const;
820 
821   /// Return true if this node is the only use of N.
822   bool isOnlyUserOf(const SDNode *N) const;
823 
824   /// Return true if this node is an operand of N.
825   bool isOperandOf(const SDNode *N) const;
826 
827   /// Return true if this node is a predecessor of N.
828   /// NOTE: Implemented on top of hasPredecessor and every bit as
829   /// expensive. Use carefully.
830   bool isPredecessorOf(const SDNode *N) const {
831     return N->hasPredecessor(this);
832   }
833 
834   /// Return true if N is a predecessor of this node.
835   /// N is either an operand of this node, or can be reached by recursively
836   /// traversing up the operands.
837   /// NOTE: This is an expensive method. Use it carefully.
838   bool hasPredecessor(const SDNode *N) const;
839 
840   /// Returns true if N is a predecessor of any node in Worklist. This
841   /// helper keeps Visited and Worklist sets externally to allow unions
842   /// searches to be performed in parallel, caching of results across
843   /// queries and incremental addition to Worklist. Stops early if N is
844   /// found but will resume. Remember to clear Visited and Worklists
845   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
846   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
847   /// topologically ordered (Operands have strictly smaller node id) and search
848   /// can be pruned leveraging this.
849   static bool hasPredecessorHelper(const SDNode *N,
850                                    SmallPtrSetImpl<const SDNode *> &Visited,
851                                    SmallVectorImpl<const SDNode *> &Worklist,
852                                    unsigned int MaxSteps = 0,
853                                    bool TopologicalPrune = false) {
854     SmallVector<const SDNode *, 8> DeferredNodes;
855     if (Visited.count(N))
856       return true;
857 
858     // Node Id's are assigned in three places: As a topological
859     // ordering (> 0), during legalization (results in values set to
860     // 0), new nodes (set to -1). If N has a topolgical id then we
861     // know that all nodes with ids smaller than it cannot be
862     // successors and we need not check them. Filter out all node
863     // that can't be matches. We add them to the worklist before exit
864     // in case of multiple calls. Note that during selection the topological id
865     // may be violated if a node's predecessor is selected before it. We mark
866     // this at selection negating the id of unselected successors and
867     // restricting topological pruning to positive ids.
868 
869     int NId = N->getNodeId();
870     // If we Invalidated the Id, reconstruct original NId.
871     if (NId < -1)
872       NId = -(NId + 1);
873 
874     bool Found = false;
875     while (!Worklist.empty()) {
876       const SDNode *M = Worklist.pop_back_val();
877       int MId = M->getNodeId();
878       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
879           (MId > 0) && (MId < NId)) {
880         DeferredNodes.push_back(M);
881         continue;
882       }
883       for (const SDValue &OpV : M->op_values()) {
884         SDNode *Op = OpV.getNode();
885         if (Visited.insert(Op).second)
886           Worklist.push_back(Op);
887         if (Op == N)
888           Found = true;
889       }
890       if (Found)
891         break;
892       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
893         break;
894     }
895     // Push deferred nodes back on worklist.
896     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
897     // If we bailed early, conservatively return found.
898     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
899       return true;
900     return Found;
901   }
902 
903   /// Return true if all the users of N are contained in Nodes.
904   /// NOTE: Requires at least one match, but doesn't require them all.
905   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
906 
907   /// Return the number of values used by this operation.
908   unsigned getNumOperands() const { return NumOperands; }
909 
910   /// Return the maximum number of operands that a SDNode can hold.
911   static constexpr size_t getMaxNumOperands() {
912     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
913   }
914 
915   /// Helper method returns the integer value of a ConstantSDNode operand.
916   inline uint64_t getConstantOperandVal(unsigned Num) const;
917 
918   /// Helper method returns the APInt of a ConstantSDNode operand.
919   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
920 
921   const SDValue &getOperand(unsigned Num) const {
922     assert(Num < NumOperands && "Invalid child # of SDNode!");
923     return OperandList[Num];
924   }
925 
926   using op_iterator = SDUse *;
927 
928   op_iterator op_begin() const { return OperandList; }
929   op_iterator op_end() const { return OperandList+NumOperands; }
930   ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
931 
932   /// Iterator for directly iterating over the operand SDValue's.
933   struct value_op_iterator
934       : iterator_adaptor_base<value_op_iterator, op_iterator,
935                               std::random_access_iterator_tag, SDValue,
936                               ptrdiff_t, value_op_iterator *,
937                               value_op_iterator *> {
938     explicit value_op_iterator(SDUse *U = nullptr)
939       : iterator_adaptor_base(U) {}
940 
941     const SDValue &operator*() const { return I->get(); }
942   };
943 
944   iterator_range<value_op_iterator> op_values() const {
945     return make_range(value_op_iterator(op_begin()),
946                       value_op_iterator(op_end()));
947   }
948 
949   SDVTList getVTList() const {
950     SDVTList X = { ValueList, NumValues };
951     return X;
952   }
953 
954   /// If this node has a glue operand, return the node
955   /// to which the glue operand points. Otherwise return NULL.
956   SDNode *getGluedNode() const {
957     if (getNumOperands() != 0 &&
958         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
959       return getOperand(getNumOperands()-1).getNode();
960     return nullptr;
961   }
962 
963   /// If this node has a glue value with a user, return
964   /// the user (there is at most one). Otherwise return NULL.
965   SDNode *getGluedUser() const {
966     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
967       if (UI.getUse().get().getValueType() == MVT::Glue)
968         return *UI;
969     return nullptr;
970   }
971 
972   SDNodeFlags getFlags() const { return Flags; }
973   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
974 
975   /// Clear any flags in this node that aren't also set in Flags.
976   /// If Flags is not in a defined state then this has no effect.
977   void intersectFlagsWith(const SDNodeFlags Flags);
978 
979   void setCFIType(uint32_t Type) { CFIType = Type; }
980   uint32_t getCFIType() const { return CFIType; }
981 
982   /// Return the number of values defined/returned by this operator.
983   unsigned getNumValues() const { return NumValues; }
984 
985   /// Return the type of a specified result.
986   EVT getValueType(unsigned ResNo) const {
987     assert(ResNo < NumValues && "Illegal result number!");
988     return ValueList[ResNo];
989   }
990 
991   /// Return the type of a specified result as a simple type.
992   MVT getSimpleValueType(unsigned ResNo) const {
993     return getValueType(ResNo).getSimpleVT();
994   }
995 
996   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
997   ///
998   /// If the value type is a scalable vector type, the scalable property will
999   /// be set and the runtime size will be a positive integer multiple of the
1000   /// base size.
1001   TypeSize getValueSizeInBits(unsigned ResNo) const {
1002     return getValueType(ResNo).getSizeInBits();
1003   }
1004 
1005   using value_iterator = const EVT *;
1006 
1007   value_iterator value_begin() const { return ValueList; }
1008   value_iterator value_end() const { return ValueList+NumValues; }
1009   iterator_range<value_iterator> values() const {
1010     return llvm::make_range(value_begin(), value_end());
1011   }
1012 
1013   /// Return the opcode of this operation for printing.
1014   std::string getOperationName(const SelectionDAG *G = nullptr) const;
1015   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1016   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1017   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1018   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1019   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1020 
1021   /// Print a SelectionDAG node and all children down to
1022   /// the leaves.  The given SelectionDAG allows target-specific nodes
1023   /// to be printed in human-readable form.  Unlike printr, this will
1024   /// print the whole DAG, including children that appear multiple
1025   /// times.
1026   ///
1027   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1028 
1029   /// Print a SelectionDAG node and children up to
1030   /// depth "depth."  The given SelectionDAG allows target-specific
1031   /// nodes to be printed in human-readable form.  Unlike printr, this
1032   /// will print children that appear multiple times wherever they are
1033   /// used.
1034   ///
1035   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1036                        unsigned depth = 100) const;
1037 
1038   /// Dump this node, for debugging.
1039   void dump() const;
1040 
1041   /// Dump (recursively) this node and its use-def subgraph.
1042   void dumpr() const;
1043 
1044   /// Dump this node, for debugging.
1045   /// The given SelectionDAG allows target-specific nodes to be printed
1046   /// in human-readable form.
1047   void dump(const SelectionDAG *G) const;
1048 
1049   /// Dump (recursively) this node and its use-def subgraph.
1050   /// The given SelectionDAG allows target-specific nodes to be printed
1051   /// in human-readable form.
1052   void dumpr(const SelectionDAG *G) const;
1053 
1054   /// printrFull to dbgs().  The given SelectionDAG allows
1055   /// target-specific nodes to be printed in human-readable form.
1056   /// Unlike dumpr, this will print the whole DAG, including children
1057   /// that appear multiple times.
1058   void dumprFull(const SelectionDAG *G = nullptr) const;
1059 
1060   /// printrWithDepth to dbgs().  The given
1061   /// SelectionDAG allows target-specific nodes to be printed in
1062   /// human-readable form.  Unlike dumpr, this will print children
1063   /// that appear multiple times wherever they are used.
1064   ///
1065   void dumprWithDepth(const SelectionDAG *G = nullptr,
1066                       unsigned depth = 100) const;
1067 
1068   /// Gather unique data for the node.
1069   void Profile(FoldingSetNodeID &ID) const;
1070 
1071   /// This method should only be used by the SDUse class.
1072   void addUse(SDUse &U) { U.addToList(&UseList); }
1073 
1074 protected:
1075   static SDVTList getSDVTList(EVT VT) {
1076     SDVTList Ret = { getValueTypeList(VT), 1 };
1077     return Ret;
1078   }
1079 
1080   /// Create an SDNode.
1081   ///
1082   /// SDNodes are created without any operands, and never own the operand
1083   /// storage. To add operands, see SelectionDAG::createOperands.
1084   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1085       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1086         IROrder(Order), debugLoc(std::move(dl)) {
1087     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1088     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1089     assert(NumValues == VTs.NumVTs &&
1090            "NumValues wasn't wide enough for its operands!");
1091   }
1092 
1093   /// Release the operands and set this node to have zero operands.
1094   void DropOperands();
1095 };
1096 
1097 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1098 /// into SDNode creation functions.
1099 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1100 /// from the original Instruction, and IROrder is the ordinal position of
1101 /// the instruction.
1102 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1103 /// the IROrder are propagated from the original SDNode.
1104 /// So SDLoc class provides two constructors besides the default one, one to
1105 /// be used by the DAGBuilder, the other to be used by others.
1106 class SDLoc {
1107 private:
1108   DebugLoc DL;
1109   int IROrder = 0;
1110 
1111 public:
1112   SDLoc() = default;
1113   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1114   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1115   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1116     assert(Order >= 0 && "bad IROrder");
1117     if (I)
1118       DL = I->getDebugLoc();
1119   }
1120 
1121   unsigned getIROrder() const { return IROrder; }
1122   const DebugLoc &getDebugLoc() const { return DL; }
1123 };
1124 
1125 // Define inline functions from the SDValue class.
1126 
1127 inline SDValue::SDValue(SDNode *node, unsigned resno)
1128     : Node(node), ResNo(resno) {
1129   // Explicitly check for !ResNo to avoid use-after-free, because there are
1130   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1131   // combines.
1132   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1133          "Invalid result number for the given node!");
1134   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1135 }
1136 
1137 inline unsigned SDValue::getOpcode() const {
1138   return Node->getOpcode();
1139 }
1140 
1141 inline EVT SDValue::getValueType() const {
1142   return Node->getValueType(ResNo);
1143 }
1144 
1145 inline unsigned SDValue::getNumOperands() const {
1146   return Node->getNumOperands();
1147 }
1148 
1149 inline const SDValue &SDValue::getOperand(unsigned i) const {
1150   return Node->getOperand(i);
1151 }
1152 
1153 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1154   return Node->getConstantOperandVal(i);
1155 }
1156 
1157 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1158   return Node->getConstantOperandAPInt(i);
1159 }
1160 
1161 inline bool SDValue::isTargetOpcode() const {
1162   return Node->isTargetOpcode();
1163 }
1164 
1165 inline bool SDValue::isTargetMemoryOpcode() const {
1166   return Node->isTargetMemoryOpcode();
1167 }
1168 
1169 inline bool SDValue::isMachineOpcode() const {
1170   return Node->isMachineOpcode();
1171 }
1172 
1173 inline unsigned SDValue::getMachineOpcode() const {
1174   return Node->getMachineOpcode();
1175 }
1176 
1177 inline bool SDValue::isUndef() const {
1178   return Node->isUndef();
1179 }
1180 
1181 inline bool SDValue::use_empty() const {
1182   return !Node->hasAnyUseOfValue(ResNo);
1183 }
1184 
1185 inline bool SDValue::hasOneUse() const {
1186   return Node->hasNUsesOfValue(1, ResNo);
1187 }
1188 
1189 inline const DebugLoc &SDValue::getDebugLoc() const {
1190   return Node->getDebugLoc();
1191 }
1192 
1193 inline void SDValue::dump() const {
1194   return Node->dump();
1195 }
1196 
1197 inline void SDValue::dump(const SelectionDAG *G) const {
1198   return Node->dump(G);
1199 }
1200 
1201 inline void SDValue::dumpr() const {
1202   return Node->dumpr();
1203 }
1204 
1205 inline void SDValue::dumpr(const SelectionDAG *G) const {
1206   return Node->dumpr(G);
1207 }
1208 
1209 // Define inline functions from the SDUse class.
1210 
1211 inline void SDUse::set(const SDValue &V) {
1212   if (Val.getNode()) removeFromList();
1213   Val = V;
1214   if (V.getNode())
1215     V->addUse(*this);
1216 }
1217 
1218 inline void SDUse::setInitial(const SDValue &V) {
1219   Val = V;
1220   V->addUse(*this);
1221 }
1222 
1223 inline void SDUse::setNode(SDNode *N) {
1224   if (Val.getNode()) removeFromList();
1225   Val.setNode(N);
1226   if (N) N->addUse(*this);
1227 }
1228 
1229 /// This class is used to form a handle around another node that
1230 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1231 /// operand.  This node should be directly created by end-users and not added to
1232 /// the AllNodes list.
1233 class HandleSDNode : public SDNode {
1234   SDUse Op;
1235 
1236 public:
1237   explicit HandleSDNode(SDValue X)
1238     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1239     // HandleSDNodes are never inserted into the DAG, so they won't be
1240     // auto-numbered. Use ID 65535 as a sentinel.
1241     PersistentId = 0xffff;
1242 
1243     // Manually set up the operand list. This node type is special in that it's
1244     // always stack allocated and SelectionDAG does not manage its operands.
1245     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1246     // be so special.
1247     Op.setUser(this);
1248     Op.setInitial(X);
1249     NumOperands = 1;
1250     OperandList = &Op;
1251   }
1252   ~HandleSDNode();
1253 
1254   const SDValue &getValue() const { return Op; }
1255 };
1256 
1257 class AddrSpaceCastSDNode : public SDNode {
1258 private:
1259   unsigned SrcAddrSpace;
1260   unsigned DestAddrSpace;
1261 
1262 public:
1263   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1264                       unsigned SrcAS, unsigned DestAS);
1265 
1266   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1267   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1268 
1269   static bool classof(const SDNode *N) {
1270     return N->getOpcode() == ISD::ADDRSPACECAST;
1271   }
1272 };
1273 
1274 /// This is an abstract virtual class for memory operations.
1275 class MemSDNode : public SDNode {
1276 private:
1277   // VT of in-memory value.
1278   EVT MemoryVT;
1279 
1280 protected:
1281   /// Memory reference information.
1282   MachineMemOperand *MMO;
1283 
1284 public:
1285   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1286             EVT memvt, MachineMemOperand *MMO);
1287 
1288   bool readMem() const { return MMO->isLoad(); }
1289   bool writeMem() const { return MMO->isStore(); }
1290 
1291   /// Returns alignment and volatility of the memory access
1292   Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1293   Align getAlign() const { return MMO->getAlign(); }
1294 
1295   /// Return the SubclassData value, without HasDebugValue. This contains an
1296   /// encoding of the volatile flag, as well as bits used by subclasses. This
1297   /// function should only be used to compute a FoldingSetNodeID value.
1298   /// The HasDebugValue bit is masked out because CSE map needs to match
1299   /// nodes with debug info with nodes without debug info. Same is about
1300   /// isDivergent bit.
1301   unsigned getRawSubclassData() const {
1302     uint16_t Data;
1303     union {
1304       char RawSDNodeBits[sizeof(uint16_t)];
1305       SDNodeBitfields SDNodeBits;
1306     };
1307     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1308     SDNodeBits.HasDebugValue = 0;
1309     SDNodeBits.IsDivergent = false;
1310     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1311     return Data;
1312   }
1313 
1314   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1315   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1316   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1317   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1318 
1319   // Returns the offset from the location of the access.
1320   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1321 
1322   /// Returns the AA info that describes the dereference.
1323   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1324 
1325   /// Returns the Ranges that describes the dereference.
1326   const MDNode *getRanges() const { return MMO->getRanges(); }
1327 
1328   /// Returns the synchronization scope ID for this memory operation.
1329   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1330 
1331   /// Return the atomic ordering requirements for this memory operation. For
1332   /// cmpxchg atomic operations, return the atomic ordering requirements when
1333   /// store occurs.
1334   AtomicOrdering getSuccessOrdering() const {
1335     return MMO->getSuccessOrdering();
1336   }
1337 
1338   /// Return a single atomic ordering that is at least as strong as both the
1339   /// success and failure orderings for an atomic operation.  (For operations
1340   /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1341   AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1342 
1343   /// Return true if the memory operation ordering is Unordered or higher.
1344   bool isAtomic() const { return MMO->isAtomic(); }
1345 
1346   /// Returns true if the memory operation doesn't imply any ordering
1347   /// constraints on surrounding memory operations beyond the normal memory
1348   /// aliasing rules.
1349   bool isUnordered() const { return MMO->isUnordered(); }
1350 
1351   /// Returns true if the memory operation is neither atomic or volatile.
1352   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1353 
1354   /// Return the type of the in-memory value.
1355   EVT getMemoryVT() const { return MemoryVT; }
1356 
1357   /// Return a MachineMemOperand object describing the memory
1358   /// reference performed by operation.
1359   MachineMemOperand *getMemOperand() const { return MMO; }
1360 
1361   const MachinePointerInfo &getPointerInfo() const {
1362     return MMO->getPointerInfo();
1363   }
1364 
1365   /// Return the address space for the associated pointer
1366   unsigned getAddressSpace() const {
1367     return getPointerInfo().getAddrSpace();
1368   }
1369 
1370   /// Update this MemSDNode's MachineMemOperand information
1371   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1372   /// This must only be used when the new alignment applies to all users of
1373   /// this MachineMemOperand.
1374   void refineAlignment(const MachineMemOperand *NewMMO) {
1375     MMO->refineAlignment(NewMMO);
1376   }
1377 
1378   const SDValue &getChain() const { return getOperand(0); }
1379 
1380   const SDValue &getBasePtr() const {
1381     switch (getOpcode()) {
1382     case ISD::STORE:
1383     case ISD::VP_STORE:
1384     case ISD::MSTORE:
1385     case ISD::VP_SCATTER:
1386     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1387       return getOperand(2);
1388     case ISD::MGATHER:
1389     case ISD::MSCATTER:
1390       return getOperand(3);
1391     default:
1392       return getOperand(1);
1393     }
1394   }
1395 
1396   // Methods to support isa and dyn_cast
1397   static bool classof(const SDNode *N) {
1398     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1399     // with either an intrinsic or a target opcode.
1400     switch (N->getOpcode()) {
1401     case ISD::LOAD:
1402     case ISD::STORE:
1403     case ISD::PREFETCH:
1404     case ISD::ATOMIC_CMP_SWAP:
1405     case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1406     case ISD::ATOMIC_SWAP:
1407     case ISD::ATOMIC_LOAD_ADD:
1408     case ISD::ATOMIC_LOAD_SUB:
1409     case ISD::ATOMIC_LOAD_AND:
1410     case ISD::ATOMIC_LOAD_CLR:
1411     case ISD::ATOMIC_LOAD_OR:
1412     case ISD::ATOMIC_LOAD_XOR:
1413     case ISD::ATOMIC_LOAD_NAND:
1414     case ISD::ATOMIC_LOAD_MIN:
1415     case ISD::ATOMIC_LOAD_MAX:
1416     case ISD::ATOMIC_LOAD_UMIN:
1417     case ISD::ATOMIC_LOAD_UMAX:
1418     case ISD::ATOMIC_LOAD_FADD:
1419     case ISD::ATOMIC_LOAD_FSUB:
1420     case ISD::ATOMIC_LOAD_FMAX:
1421     case ISD::ATOMIC_LOAD_FMIN:
1422     case ISD::ATOMIC_LOAD_UINC_WRAP:
1423     case ISD::ATOMIC_LOAD_UDEC_WRAP:
1424     case ISD::ATOMIC_LOAD:
1425     case ISD::ATOMIC_STORE:
1426     case ISD::MLOAD:
1427     case ISD::MSTORE:
1428     case ISD::MGATHER:
1429     case ISD::MSCATTER:
1430     case ISD::VP_LOAD:
1431     case ISD::VP_STORE:
1432     case ISD::VP_GATHER:
1433     case ISD::VP_SCATTER:
1434     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1435     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1436       return true;
1437     default:
1438       return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1439     }
1440   }
1441 };
1442 
1443 /// This is an SDNode representing atomic operations.
1444 class AtomicSDNode : public MemSDNode {
1445 public:
1446   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1447                EVT MemVT, MachineMemOperand *MMO)
1448     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1449     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1450             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1451   }
1452 
1453   const SDValue &getBasePtr() const { return getOperand(1); }
1454   const SDValue &getVal() const { return getOperand(2); }
1455 
1456   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1457   /// otherwise.
1458   bool isCompareAndSwap() const {
1459     unsigned Op = getOpcode();
1460     return Op == ISD::ATOMIC_CMP_SWAP ||
1461            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1462   }
1463 
1464   /// For cmpxchg atomic operations, return the atomic ordering requirements
1465   /// when store does not occur.
1466   AtomicOrdering getFailureOrdering() const {
1467     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1468     return MMO->getFailureOrdering();
1469   }
1470 
1471   // Methods to support isa and dyn_cast
1472   static bool classof(const SDNode *N) {
1473     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1474            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1475            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1476            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1477            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1478            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1479            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1480            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1481            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1482            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1483            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1484            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1485            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1486            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1487            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1488            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1489            N->getOpcode() == ISD::ATOMIC_LOAD_FMAX    ||
1490            N->getOpcode() == ISD::ATOMIC_LOAD_FMIN    ||
1491            N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
1492            N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
1493            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1494            N->getOpcode() == ISD::ATOMIC_STORE;
1495   }
1496 };
1497 
1498 /// This SDNode is used for target intrinsics that touch
1499 /// memory and need an associated MachineMemOperand. Its opcode may be
1500 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1501 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1502 class MemIntrinsicSDNode : public MemSDNode {
1503 public:
1504   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1505                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1506       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1507     SDNodeBits.IsMemIntrinsic = true;
1508   }
1509 
1510   // Methods to support isa and dyn_cast
1511   static bool classof(const SDNode *N) {
1512     // We lower some target intrinsics to their target opcode
1513     // early a node with a target opcode can be of this class
1514     return N->isMemIntrinsic()             ||
1515            N->getOpcode() == ISD::PREFETCH ||
1516            N->isTargetMemoryOpcode();
1517   }
1518 };
1519 
1520 /// This SDNode is used to implement the code generator
1521 /// support for the llvm IR shufflevector instruction.  It combines elements
1522 /// from two input vectors into a new input vector, with the selection and
1523 /// ordering of elements determined by an array of integers, referred to as
1524 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1525 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1526 /// An index of -1 is treated as undef, such that the code generator may put
1527 /// any value in the corresponding element of the result.
1528 class ShuffleVectorSDNode : public SDNode {
1529   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1530   // is freed when the SelectionDAG object is destroyed.
1531   const int *Mask;
1532 
1533 protected:
1534   friend class SelectionDAG;
1535 
1536   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1537       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1538 
1539 public:
1540   ArrayRef<int> getMask() const {
1541     EVT VT = getValueType(0);
1542     return ArrayRef(Mask, VT.getVectorNumElements());
1543   }
1544 
1545   int getMaskElt(unsigned Idx) const {
1546     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1547     return Mask[Idx];
1548   }
1549 
1550   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1551 
1552   int getSplatIndex() const {
1553     assert(isSplat() && "Cannot get splat index for non-splat!");
1554     EVT VT = getValueType(0);
1555     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1556       if (Mask[i] >= 0)
1557         return Mask[i];
1558 
1559     // We can choose any index value here and be correct because all elements
1560     // are undefined. Return 0 for better potential for callers to simplify.
1561     return 0;
1562   }
1563 
1564   static bool isSplatMask(const int *Mask, EVT VT);
1565 
1566   /// Change values in a shuffle permute mask assuming
1567   /// the two vector operands have swapped position.
1568   static void commuteMask(MutableArrayRef<int> Mask) {
1569     unsigned NumElems = Mask.size();
1570     for (unsigned i = 0; i != NumElems; ++i) {
1571       int idx = Mask[i];
1572       if (idx < 0)
1573         continue;
1574       else if (idx < (int)NumElems)
1575         Mask[i] = idx + NumElems;
1576       else
1577         Mask[i] = idx - NumElems;
1578     }
1579   }
1580 
1581   static bool classof(const SDNode *N) {
1582     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1583   }
1584 };
1585 
1586 class ConstantSDNode : public SDNode {
1587   friend class SelectionDAG;
1588 
1589   const ConstantInt *Value;
1590 
1591   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1592       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1593                getSDVTList(VT)),
1594         Value(val) {
1595     ConstantSDNodeBits.IsOpaque = isOpaque;
1596   }
1597 
1598 public:
1599   const ConstantInt *getConstantIntValue() const { return Value; }
1600   const APInt &getAPIntValue() const { return Value->getValue(); }
1601   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1602   int64_t getSExtValue() const { return Value->getSExtValue(); }
1603   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1604     return Value->getLimitedValue(Limit);
1605   }
1606   MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1607   Align getAlignValue() const { return Value->getAlignValue(); }
1608 
1609   bool isOne() const { return Value->isOne(); }
1610   bool isZero() const { return Value->isZero(); }
1611   // NOTE: This is soft-deprecated.  Please use `isZero()` instead.
1612   bool isNullValue() const { return isZero(); }
1613   bool isAllOnes() const { return Value->isMinusOne(); }
1614   // NOTE: This is soft-deprecated.  Please use `isAllOnes()` instead.
1615   bool isAllOnesValue() const { return isAllOnes(); }
1616   bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1617   bool isMinSignedValue() const { return Value->isMinValue(true); }
1618 
1619   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1620 
1621   static bool classof(const SDNode *N) {
1622     return N->getOpcode() == ISD::Constant ||
1623            N->getOpcode() == ISD::TargetConstant;
1624   }
1625 };
1626 
1627 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1628   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1629 }
1630 
1631 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1632   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1633 }
1634 
1635 class ConstantFPSDNode : public SDNode {
1636   friend class SelectionDAG;
1637 
1638   const ConstantFP *Value;
1639 
1640   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1641       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1642                DebugLoc(), getSDVTList(VT)),
1643         Value(val) {}
1644 
1645 public:
1646   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1647   const ConstantFP *getConstantFPValue() const { return Value; }
1648 
1649   /// Return true if the value is positive or negative zero.
1650   bool isZero() const { return Value->isZero(); }
1651 
1652   /// Return true if the value is a NaN.
1653   bool isNaN() const { return Value->isNaN(); }
1654 
1655   /// Return true if the value is an infinity
1656   bool isInfinity() const { return Value->isInfinity(); }
1657 
1658   /// Return true if the value is negative.
1659   bool isNegative() const { return Value->isNegative(); }
1660 
1661   /// We don't rely on operator== working on double values, as
1662   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1663   /// As such, this method can be used to do an exact bit-for-bit comparison of
1664   /// two floating point values.
1665 
1666   /// We leave the version with the double argument here because it's just so
1667   /// convenient to write "2.0" and the like.  Without this function we'd
1668   /// have to duplicate its logic everywhere it's called.
1669   bool isExactlyValue(double V) const {
1670     return Value->getValueAPF().isExactlyValue(V);
1671   }
1672   bool isExactlyValue(const APFloat& V) const;
1673 
1674   static bool isValueValidForType(EVT VT, const APFloat& Val);
1675 
1676   static bool classof(const SDNode *N) {
1677     return N->getOpcode() == ISD::ConstantFP ||
1678            N->getOpcode() == ISD::TargetConstantFP;
1679   }
1680 };
1681 
1682 /// Returns true if \p V is a constant integer zero.
1683 bool isNullConstant(SDValue V);
1684 
1685 /// Returns true if \p V is an FP constant with a value of positive zero.
1686 bool isNullFPConstant(SDValue V);
1687 
1688 /// Returns true if \p V is an integer constant with all bits set.
1689 bool isAllOnesConstant(SDValue V);
1690 
1691 /// Returns true if \p V is a constant integer one.
1692 bool isOneConstant(SDValue V);
1693 
1694 /// Returns true if \p V is a constant min signed integer value.
1695 bool isMinSignedConstant(SDValue V);
1696 
1697 /// Returns true if \p V is a neutral element of Opc with Flags.
1698 /// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
1699 /// checks that V is a right identity.
1700 bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
1701                        unsigned OperandNo);
1702 
1703 /// Return the non-bitcasted source operand of \p V if it exists.
1704 /// If \p V is not a bitcasted value, it is returned as-is.
1705 SDValue peekThroughBitcasts(SDValue V);
1706 
1707 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1708 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1709 SDValue peekThroughOneUseBitcasts(SDValue V);
1710 
1711 /// Return the non-extracted vector source operand of \p V if it exists.
1712 /// If \p V is not an extracted subvector, it is returned as-is.
1713 SDValue peekThroughExtractSubvectors(SDValue V);
1714 
1715 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1716 /// constant is canonicalized to be operand 1.
1717 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1718 
1719 /// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
1720 /// an empty SDValue. Only bits set in \p Mask are required to be inverted,
1721 /// other bits may be arbitrary.
1722 SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs);
1723 
1724 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1725 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1726                                     bool AllowTruncation = false);
1727 
1728 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1729 /// constant int.
1730 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1731                                     bool AllowUndefs = false,
1732                                     bool AllowTruncation = false);
1733 
1734 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1735 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1736 
1737 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1738 /// constant float.
1739 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1740                                         bool AllowUndefs = false);
1741 
1742 /// Return true if the value is a constant 0 integer or a splatted vector of
1743 /// a constant 0 integer (with no undefs by default).
1744 /// Build vector implicit truncation is not an issue for null values.
1745 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1746 
1747 /// Return true if the value is a constant 1 integer or a splatted vector of a
1748 /// constant 1 integer (with no undefs).
1749 /// Build vector implicit truncation is allowed, but the truncated bits need to
1750 /// be zero.
1751 bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1752 
1753 /// Return true if the value is a constant -1 integer or a splatted vector of a
1754 /// constant -1 integer (with no undefs).
1755 /// Does not permit build vector implicit truncation.
1756 bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1757 
1758 /// Return true if \p V is either a integer or FP constant.
1759 inline bool isIntOrFPConstant(SDValue V) {
1760   return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1761 }
1762 
1763 class GlobalAddressSDNode : public SDNode {
1764   friend class SelectionDAG;
1765 
1766   const GlobalValue *TheGlobal;
1767   int64_t Offset;
1768   unsigned TargetFlags;
1769 
1770   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1771                       const GlobalValue *GA, EVT VT, int64_t o,
1772                       unsigned TF);
1773 
1774 public:
1775   const GlobalValue *getGlobal() const { return TheGlobal; }
1776   int64_t getOffset() const { return Offset; }
1777   unsigned getTargetFlags() const { return TargetFlags; }
1778   // Return the address space this GlobalAddress belongs to.
1779   unsigned getAddressSpace() const;
1780 
1781   static bool classof(const SDNode *N) {
1782     return N->getOpcode() == ISD::GlobalAddress ||
1783            N->getOpcode() == ISD::TargetGlobalAddress ||
1784            N->getOpcode() == ISD::GlobalTLSAddress ||
1785            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1786   }
1787 };
1788 
1789 class FrameIndexSDNode : public SDNode {
1790   friend class SelectionDAG;
1791 
1792   int FI;
1793 
1794   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1795     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1796       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1797   }
1798 
1799 public:
1800   int getIndex() const { return FI; }
1801 
1802   static bool classof(const SDNode *N) {
1803     return N->getOpcode() == ISD::FrameIndex ||
1804            N->getOpcode() == ISD::TargetFrameIndex;
1805   }
1806 };
1807 
1808 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1809 /// the offet and size that are started/ended in the underlying FrameIndex.
1810 class LifetimeSDNode : public SDNode {
1811   friend class SelectionDAG;
1812   int64_t Size;
1813   int64_t Offset; // -1 if offset is unknown.
1814 
1815   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1816                  SDVTList VTs, int64_t Size, int64_t Offset)
1817       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1818 public:
1819   int64_t getFrameIndex() const {
1820     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1821   }
1822 
1823   bool hasOffset() const { return Offset >= 0; }
1824   int64_t getOffset() const {
1825     assert(hasOffset() && "offset is unknown");
1826     return Offset;
1827   }
1828   int64_t getSize() const {
1829     assert(hasOffset() && "offset is unknown");
1830     return Size;
1831   }
1832 
1833   // Methods to support isa and dyn_cast
1834   static bool classof(const SDNode *N) {
1835     return N->getOpcode() == ISD::LIFETIME_START ||
1836            N->getOpcode() == ISD::LIFETIME_END;
1837   }
1838 };
1839 
1840 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1841 /// the index of the basic block being probed. A pseudo probe serves as a place
1842 /// holder and will be removed at the end of compilation. It does not have any
1843 /// operand because we do not want the instruction selection to deal with any.
1844 class PseudoProbeSDNode : public SDNode {
1845   friend class SelectionDAG;
1846   uint64_t Guid;
1847   uint64_t Index;
1848   uint32_t Attributes;
1849 
1850   PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1851                     SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1852       : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1853         Attributes(Attr) {}
1854 
1855 public:
1856   uint64_t getGuid() const { return Guid; }
1857   uint64_t getIndex() const { return Index; }
1858   uint32_t getAttributes() const { return Attributes; }
1859 
1860   // Methods to support isa and dyn_cast
1861   static bool classof(const SDNode *N) {
1862     return N->getOpcode() == ISD::PSEUDO_PROBE;
1863   }
1864 };
1865 
1866 class JumpTableSDNode : public SDNode {
1867   friend class SelectionDAG;
1868 
1869   int JTI;
1870   unsigned TargetFlags;
1871 
1872   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1873     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1874       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1875   }
1876 
1877 public:
1878   int getIndex() const { return JTI; }
1879   unsigned getTargetFlags() const { return TargetFlags; }
1880 
1881   static bool classof(const SDNode *N) {
1882     return N->getOpcode() == ISD::JumpTable ||
1883            N->getOpcode() == ISD::TargetJumpTable;
1884   }
1885 };
1886 
1887 class ConstantPoolSDNode : public SDNode {
1888   friend class SelectionDAG;
1889 
1890   union {
1891     const Constant *ConstVal;
1892     MachineConstantPoolValue *MachineCPVal;
1893   } Val;
1894   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1895   Align Alignment; // Minimum alignment requirement of CP.
1896   unsigned TargetFlags;
1897 
1898   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1899                      Align Alignment, unsigned TF)
1900       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1901                DebugLoc(), getSDVTList(VT)),
1902         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1903     assert(Offset >= 0 && "Offset is too large");
1904     Val.ConstVal = c;
1905   }
1906 
1907   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1908                      Align Alignment, unsigned TF)
1909       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1910                DebugLoc(), getSDVTList(VT)),
1911         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1912     assert(Offset >= 0 && "Offset is too large");
1913     Val.MachineCPVal = v;
1914     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1915   }
1916 
1917 public:
1918   bool isMachineConstantPoolEntry() const {
1919     return Offset < 0;
1920   }
1921 
1922   const Constant *getConstVal() const {
1923     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1924     return Val.ConstVal;
1925   }
1926 
1927   MachineConstantPoolValue *getMachineCPVal() const {
1928     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1929     return Val.MachineCPVal;
1930   }
1931 
1932   int getOffset() const {
1933     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1934   }
1935 
1936   // Return the alignment of this constant pool object, which is either 0 (for
1937   // default alignment) or the desired value.
1938   Align getAlign() const { return Alignment; }
1939   unsigned getTargetFlags() const { return TargetFlags; }
1940 
1941   Type *getType() const;
1942 
1943   static bool classof(const SDNode *N) {
1944     return N->getOpcode() == ISD::ConstantPool ||
1945            N->getOpcode() == ISD::TargetConstantPool;
1946   }
1947 };
1948 
1949 /// Completely target-dependent object reference.
1950 class TargetIndexSDNode : public SDNode {
1951   friend class SelectionDAG;
1952 
1953   unsigned TargetFlags;
1954   int Index;
1955   int64_t Offset;
1956 
1957 public:
1958   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1959       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1960         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1961 
1962   unsigned getTargetFlags() const { return TargetFlags; }
1963   int getIndex() const { return Index; }
1964   int64_t getOffset() const { return Offset; }
1965 
1966   static bool classof(const SDNode *N) {
1967     return N->getOpcode() == ISD::TargetIndex;
1968   }
1969 };
1970 
1971 class BasicBlockSDNode : public SDNode {
1972   friend class SelectionDAG;
1973 
1974   MachineBasicBlock *MBB;
1975 
1976   /// Debug info is meaningful and potentially useful here, but we create
1977   /// blocks out of order when they're jumped to, which makes it a bit
1978   /// harder.  Let's see if we need it first.
1979   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1980     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1981   {}
1982 
1983 public:
1984   MachineBasicBlock *getBasicBlock() const { return MBB; }
1985 
1986   static bool classof(const SDNode *N) {
1987     return N->getOpcode() == ISD::BasicBlock;
1988   }
1989 };
1990 
1991 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1992 class BuildVectorSDNode : public SDNode {
1993 public:
1994   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1995   explicit BuildVectorSDNode() = delete;
1996 
1997   /// Check if this is a constant splat, and if so, find the
1998   /// smallest element size that splats the vector.  If MinSplatBits is
1999   /// nonzero, the element size must be at least that large.  Note that the
2000   /// splat element may be the entire vector (i.e., a one element vector).
2001   /// Returns the splat element value in SplatValue.  Any undefined bits in
2002   /// that value are zero, and the corresponding bits in the SplatUndef mask
2003   /// are set.  The SplatBitSize value is set to the splat element size in
2004   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
2005   /// undefined.  isBigEndian describes the endianness of the target.
2006   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
2007                        unsigned &SplatBitSize, bool &HasAnyUndefs,
2008                        unsigned MinSplatBits = 0,
2009                        bool isBigEndian = false) const;
2010 
2011   /// Returns the demanded splatted value or a null value if this is not a
2012   /// splat.
2013   ///
2014   /// The DemandedElts mask indicates the elements that must be in the splat.
2015   /// If passed a non-null UndefElements bitvector, it will resize it to match
2016   /// the vector width and set the bits where elements are undef.
2017   SDValue getSplatValue(const APInt &DemandedElts,
2018                         BitVector *UndefElements = nullptr) const;
2019 
2020   /// Returns the splatted value or a null value if this is not a splat.
2021   ///
2022   /// If passed a non-null UndefElements bitvector, it will resize it to match
2023   /// the vector width and set the bits where elements are undef.
2024   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
2025 
2026   /// Find the shortest repeating sequence of values in the build vector.
2027   ///
2028   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2029   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2030   ///
2031   /// Currently this must be a power-of-2 build vector.
2032   /// The DemandedElts mask indicates the elements that must be present,
2033   /// undemanded elements in Sequence may be null (SDValue()). If passed a
2034   /// non-null UndefElements bitvector, it will resize it to match the original
2035   /// vector width and set the bits where elements are undef. If result is
2036   /// false, Sequence will be empty.
2037   bool getRepeatedSequence(const APInt &DemandedElts,
2038                            SmallVectorImpl<SDValue> &Sequence,
2039                            BitVector *UndefElements = nullptr) const;
2040 
2041   /// Find the shortest repeating sequence of values in the build vector.
2042   ///
2043   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2044   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2045   ///
2046   /// Currently this must be a power-of-2 build vector.
2047   /// If passed a non-null UndefElements bitvector, it will resize it to match
2048   /// the original vector width and set the bits where elements are undef.
2049   /// If result is false, Sequence will be empty.
2050   bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
2051                            BitVector *UndefElements = nullptr) const;
2052 
2053   /// Returns the demanded splatted constant or null if this is not a constant
2054   /// splat.
2055   ///
2056   /// The DemandedElts mask indicates the elements that must be in the splat.
2057   /// If passed a non-null UndefElements bitvector, it will resize it to match
2058   /// the vector width and set the bits where elements are undef.
2059   ConstantSDNode *
2060   getConstantSplatNode(const APInt &DemandedElts,
2061                        BitVector *UndefElements = nullptr) const;
2062 
2063   /// Returns the splatted constant or null if this is not a constant
2064   /// splat.
2065   ///
2066   /// If passed a non-null UndefElements bitvector, it will resize it to match
2067   /// the vector width and set the bits where elements are undef.
2068   ConstantSDNode *
2069   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2070 
2071   /// Returns the demanded splatted constant FP or null if this is not a
2072   /// constant FP splat.
2073   ///
2074   /// The DemandedElts mask indicates the elements that must be in the splat.
2075   /// If passed a non-null UndefElements bitvector, it will resize it to match
2076   /// the vector width and set the bits where elements are undef.
2077   ConstantFPSDNode *
2078   getConstantFPSplatNode(const APInt &DemandedElts,
2079                          BitVector *UndefElements = nullptr) const;
2080 
2081   /// Returns the splatted constant FP or null if this is not a constant
2082   /// FP splat.
2083   ///
2084   /// If passed a non-null UndefElements bitvector, it will resize it to match
2085   /// the vector width and set the bits where elements are undef.
2086   ConstantFPSDNode *
2087   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2088 
2089   /// If this is a constant FP splat and the splatted constant FP is an
2090   /// exact power or 2, return the log base 2 integer value.  Otherwise,
2091   /// return -1.
2092   ///
2093   /// The BitWidth specifies the necessary bit precision.
2094   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2095                                           uint32_t BitWidth) const;
2096 
2097   /// Extract the raw bit data from a build vector of Undef, Constant or
2098   /// ConstantFP node elements. Each raw bit element will be \p
2099   /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
2100   /// undefined elements are flagged in \p UndefElements.
2101   bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2102                           SmallVectorImpl<APInt> &RawBitElements,
2103                           BitVector &UndefElements) const;
2104 
2105   bool isConstant() const;
2106 
2107   /// If this BuildVector is constant and represents the numerical series
2108   /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
2109   /// the value "<a,n>" is returned.
2110   std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
2111 
2112   /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
2113   /// Undef elements are treated as zero, and entirely undefined elements are
2114   /// flagged in \p DstUndefElements.
2115   static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2116                             SmallVectorImpl<APInt> &DstBitElements,
2117                             ArrayRef<APInt> SrcBitElements,
2118                             BitVector &DstUndefElements,
2119                             const BitVector &SrcUndefElements);
2120 
2121   static bool classof(const SDNode *N) {
2122     return N->getOpcode() == ISD::BUILD_VECTOR;
2123   }
2124 };
2125 
2126 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2127 /// used when the SelectionDAG needs to make a simple reference to something
2128 /// in the LLVM IR representation.
2129 ///
2130 class SrcValueSDNode : public SDNode {
2131   friend class SelectionDAG;
2132 
2133   const Value *V;
2134 
2135   /// Create a SrcValue for a general value.
2136   explicit SrcValueSDNode(const Value *v)
2137     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2138 
2139 public:
2140   /// Return the contained Value.
2141   const Value *getValue() const { return V; }
2142 
2143   static bool classof(const SDNode *N) {
2144     return N->getOpcode() == ISD::SRCVALUE;
2145   }
2146 };
2147 
2148 class MDNodeSDNode : public SDNode {
2149   friend class SelectionDAG;
2150 
2151   const MDNode *MD;
2152 
2153   explicit MDNodeSDNode(const MDNode *md)
2154   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2155   {}
2156 
2157 public:
2158   const MDNode *getMD() const { return MD; }
2159 
2160   static bool classof(const SDNode *N) {
2161     return N->getOpcode() == ISD::MDNODE_SDNODE;
2162   }
2163 };
2164 
2165 class RegisterSDNode : public SDNode {
2166   friend class SelectionDAG;
2167 
2168   Register Reg;
2169 
2170   RegisterSDNode(Register reg, EVT VT)
2171     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2172 
2173 public:
2174   Register getReg() const { return Reg; }
2175 
2176   static bool classof(const SDNode *N) {
2177     return N->getOpcode() == ISD::Register;
2178   }
2179 };
2180 
2181 class RegisterMaskSDNode : public SDNode {
2182   friend class SelectionDAG;
2183 
2184   // The memory for RegMask is not owned by the node.
2185   const uint32_t *RegMask;
2186 
2187   RegisterMaskSDNode(const uint32_t *mask)
2188     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2189       RegMask(mask) {}
2190 
2191 public:
2192   const uint32_t *getRegMask() const { return RegMask; }
2193 
2194   static bool classof(const SDNode *N) {
2195     return N->getOpcode() == ISD::RegisterMask;
2196   }
2197 };
2198 
2199 class BlockAddressSDNode : public SDNode {
2200   friend class SelectionDAG;
2201 
2202   const BlockAddress *BA;
2203   int64_t Offset;
2204   unsigned TargetFlags;
2205 
2206   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2207                      int64_t o, unsigned Flags)
2208     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2209              BA(ba), Offset(o), TargetFlags(Flags) {}
2210 
2211 public:
2212   const BlockAddress *getBlockAddress() const { return BA; }
2213   int64_t getOffset() const { return Offset; }
2214   unsigned getTargetFlags() const { return TargetFlags; }
2215 
2216   static bool classof(const SDNode *N) {
2217     return N->getOpcode() == ISD::BlockAddress ||
2218            N->getOpcode() == ISD::TargetBlockAddress;
2219   }
2220 };
2221 
2222 class LabelSDNode : public SDNode {
2223   friend class SelectionDAG;
2224 
2225   MCSymbol *Label;
2226 
2227   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2228       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2229     assert(LabelSDNode::classof(this) && "not a label opcode");
2230   }
2231 
2232 public:
2233   MCSymbol *getLabel() const { return Label; }
2234 
2235   static bool classof(const SDNode *N) {
2236     return N->getOpcode() == ISD::EH_LABEL ||
2237            N->getOpcode() == ISD::ANNOTATION_LABEL;
2238   }
2239 };
2240 
2241 class ExternalSymbolSDNode : public SDNode {
2242   friend class SelectionDAG;
2243 
2244   const char *Symbol;
2245   unsigned TargetFlags;
2246 
2247   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2248       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2249                DebugLoc(), getSDVTList(VT)),
2250         Symbol(Sym), TargetFlags(TF) {}
2251 
2252 public:
2253   const char *getSymbol() const { return Symbol; }
2254   unsigned getTargetFlags() const { return TargetFlags; }
2255 
2256   static bool classof(const SDNode *N) {
2257     return N->getOpcode() == ISD::ExternalSymbol ||
2258            N->getOpcode() == ISD::TargetExternalSymbol;
2259   }
2260 };
2261 
2262 class MCSymbolSDNode : public SDNode {
2263   friend class SelectionDAG;
2264 
2265   MCSymbol *Symbol;
2266 
2267   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2268       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2269 
2270 public:
2271   MCSymbol *getMCSymbol() const { return Symbol; }
2272 
2273   static bool classof(const SDNode *N) {
2274     return N->getOpcode() == ISD::MCSymbol;
2275   }
2276 };
2277 
2278 class CondCodeSDNode : public SDNode {
2279   friend class SelectionDAG;
2280 
2281   ISD::CondCode Condition;
2282 
2283   explicit CondCodeSDNode(ISD::CondCode Cond)
2284     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2285       Condition(Cond) {}
2286 
2287 public:
2288   ISD::CondCode get() const { return Condition; }
2289 
2290   static bool classof(const SDNode *N) {
2291     return N->getOpcode() == ISD::CONDCODE;
2292   }
2293 };
2294 
2295 /// This class is used to represent EVT's, which are used
2296 /// to parameterize some operations.
2297 class VTSDNode : public SDNode {
2298   friend class SelectionDAG;
2299 
2300   EVT ValueType;
2301 
2302   explicit VTSDNode(EVT VT)
2303     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2304       ValueType(VT) {}
2305 
2306 public:
2307   EVT getVT() const { return ValueType; }
2308 
2309   static bool classof(const SDNode *N) {
2310     return N->getOpcode() == ISD::VALUETYPE;
2311   }
2312 };
2313 
2314 /// Base class for LoadSDNode and StoreSDNode
2315 class LSBaseSDNode : public MemSDNode {
2316 public:
2317   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2318                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2319                MachineMemOperand *MMO)
2320       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2321     LSBaseSDNodeBits.AddressingMode = AM;
2322     assert(getAddressingMode() == AM && "Value truncated");
2323   }
2324 
2325   const SDValue &getOffset() const {
2326     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2327   }
2328 
2329   /// Return the addressing mode for this load or store:
2330   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2331   ISD::MemIndexedMode getAddressingMode() const {
2332     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2333   }
2334 
2335   /// Return true if this is a pre/post inc/dec load/store.
2336   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2337 
2338   /// Return true if this is NOT a pre/post inc/dec load/store.
2339   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2340 
2341   static bool classof(const SDNode *N) {
2342     return N->getOpcode() == ISD::LOAD ||
2343            N->getOpcode() == ISD::STORE;
2344   }
2345 };
2346 
2347 /// This class is used to represent ISD::LOAD nodes.
2348 class LoadSDNode : public LSBaseSDNode {
2349   friend class SelectionDAG;
2350 
2351   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2352              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2353              MachineMemOperand *MMO)
2354       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2355     LoadSDNodeBits.ExtTy = ETy;
2356     assert(readMem() && "Load MachineMemOperand is not a load!");
2357     assert(!writeMem() && "Load MachineMemOperand is a store!");
2358   }
2359 
2360 public:
2361   /// Return whether this is a plain node,
2362   /// or one of the varieties of value-extending loads.
2363   ISD::LoadExtType getExtensionType() const {
2364     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2365   }
2366 
2367   const SDValue &getBasePtr() const { return getOperand(1); }
2368   const SDValue &getOffset() const { return getOperand(2); }
2369 
2370   static bool classof(const SDNode *N) {
2371     return N->getOpcode() == ISD::LOAD;
2372   }
2373 };
2374 
2375 /// This class is used to represent ISD::STORE nodes.
2376 class StoreSDNode : public LSBaseSDNode {
2377   friend class SelectionDAG;
2378 
2379   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2380               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2381               MachineMemOperand *MMO)
2382       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2383     StoreSDNodeBits.IsTruncating = isTrunc;
2384     assert(!readMem() && "Store MachineMemOperand is a load!");
2385     assert(writeMem() && "Store MachineMemOperand is not a store!");
2386   }
2387 
2388 public:
2389   /// Return true if the op does a truncation before store.
2390   /// For integers this is the same as doing a TRUNCATE and storing the result.
2391   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2392   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2393   void setTruncatingStore(bool Truncating) {
2394     StoreSDNodeBits.IsTruncating = Truncating;
2395   }
2396 
2397   const SDValue &getValue() const { return getOperand(1); }
2398   const SDValue &getBasePtr() const { return getOperand(2); }
2399   const SDValue &getOffset() const { return getOperand(3); }
2400 
2401   static bool classof(const SDNode *N) {
2402     return N->getOpcode() == ISD::STORE;
2403   }
2404 };
2405 
2406 /// This base class is used to represent VP_LOAD, VP_STORE,
2407 /// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
2408 class VPBaseLoadStoreSDNode : public MemSDNode {
2409 public:
2410   friend class SelectionDAG;
2411 
2412   VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2413                         const DebugLoc &DL, SDVTList VTs,
2414                         ISD::MemIndexedMode AM, EVT MemVT,
2415                         MachineMemOperand *MMO)
2416       : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
2417     LSBaseSDNodeBits.AddressingMode = AM;
2418     assert(getAddressingMode() == AM && "Value truncated");
2419   }
2420 
2421   // VPStridedStoreSDNode (Chain, Data, Ptr,    Offset, Stride, Mask, EVL)
2422   // VPStoreSDNode        (Chain, Data, Ptr,    Offset, Mask,   EVL)
2423   // VPStridedLoadSDNode  (Chain, Ptr,  Offset, Stride, Mask,   EVL)
2424   // VPLoadSDNode         (Chain, Ptr,  Offset, Mask,   EVL)
2425   // Mask is a vector of i1 elements;
2426   // the type of EVL is TLI.getVPExplicitVectorLengthTy().
2427   const SDValue &getOffset() const {
2428     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2429                        getOpcode() == ISD::VP_LOAD)
2430                           ? 2
2431                           : 3);
2432   }
2433   const SDValue &getBasePtr() const {
2434     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2435                        getOpcode() == ISD::VP_LOAD)
2436                           ? 1
2437                           : 2);
2438   }
2439   const SDValue &getMask() const {
2440     switch (getOpcode()) {
2441     default:
2442       llvm_unreachable("Invalid opcode");
2443     case ISD::VP_LOAD:
2444       return getOperand(3);
2445     case ISD::VP_STORE:
2446     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2447       return getOperand(4);
2448     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2449       return getOperand(5);
2450     }
2451   }
2452   const SDValue &getVectorLength() const {
2453     switch (getOpcode()) {
2454     default:
2455       llvm_unreachable("Invalid opcode");
2456     case ISD::VP_LOAD:
2457       return getOperand(4);
2458     case ISD::VP_STORE:
2459     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2460       return getOperand(5);
2461     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2462       return getOperand(6);
2463     }
2464   }
2465 
2466   /// Return the addressing mode for this load or store:
2467   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2468   ISD::MemIndexedMode getAddressingMode() const {
2469     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2470   }
2471 
2472   /// Return true if this is a pre/post inc/dec load/store.
2473   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2474 
2475   /// Return true if this is NOT a pre/post inc/dec load/store.
2476   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2477 
2478   static bool classof(const SDNode *N) {
2479     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2480            N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
2481            N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
2482   }
2483 };
2484 
2485 /// This class is used to represent a VP_LOAD node
2486 class VPLoadSDNode : public VPBaseLoadStoreSDNode {
2487 public:
2488   friend class SelectionDAG;
2489 
2490   VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2491                ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
2492                EVT MemVT, MachineMemOperand *MMO)
2493       : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2494     LoadSDNodeBits.ExtTy = ETy;
2495     LoadSDNodeBits.IsExpanding = isExpanding;
2496   }
2497 
2498   ISD::LoadExtType getExtensionType() const {
2499     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2500   }
2501 
2502   const SDValue &getBasePtr() const { return getOperand(1); }
2503   const SDValue &getOffset() const { return getOperand(2); }
2504   const SDValue &getMask() const { return getOperand(3); }
2505   const SDValue &getVectorLength() const { return getOperand(4); }
2506 
2507   static bool classof(const SDNode *N) {
2508     return N->getOpcode() == ISD::VP_LOAD;
2509   }
2510   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2511 };
2512 
2513 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
2514 class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode {
2515 public:
2516   friend class SelectionDAG;
2517 
2518   VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2519                       ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2520                       bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2521       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
2522                               AM, MemVT, MMO) {
2523     LoadSDNodeBits.ExtTy = ETy;
2524     LoadSDNodeBits.IsExpanding = IsExpanding;
2525   }
2526 
2527   ISD::LoadExtType getExtensionType() const {
2528     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2529   }
2530 
2531   const SDValue &getBasePtr() const { return getOperand(1); }
2532   const SDValue &getOffset() const { return getOperand(2); }
2533   const SDValue &getStride() const { return getOperand(3); }
2534   const SDValue &getMask() const { return getOperand(4); }
2535   const SDValue &getVectorLength() const { return getOperand(5); }
2536 
2537   static bool classof(const SDNode *N) {
2538     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
2539   }
2540   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2541 };
2542 
2543 /// This class is used to represent a VP_STORE node
2544 class VPStoreSDNode : public VPBaseLoadStoreSDNode {
2545 public:
2546   friend class SelectionDAG;
2547 
2548   VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2549                 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2550                 EVT MemVT, MachineMemOperand *MMO)
2551       : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
2552     StoreSDNodeBits.IsTruncating = isTrunc;
2553     StoreSDNodeBits.IsCompressing = isCompressing;
2554   }
2555 
2556   /// Return true if this is a truncating store.
2557   /// For integers this is the same as doing a TRUNCATE and storing the result.
2558   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2559   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2560 
2561   /// Returns true if the op does a compression to the vector before storing.
2562   /// The node contiguously stores the active elements (integers or floats)
2563   /// in src (those with their respective bit set in writemask k) to unaligned
2564   /// memory at base_addr.
2565   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2566 
2567   const SDValue &getValue() const { return getOperand(1); }
2568   const SDValue &getBasePtr() const { return getOperand(2); }
2569   const SDValue &getOffset() const { return getOperand(3); }
2570   const SDValue &getMask() const { return getOperand(4); }
2571   const SDValue &getVectorLength() const { return getOperand(5); }
2572 
2573   static bool classof(const SDNode *N) {
2574     return N->getOpcode() == ISD::VP_STORE;
2575   }
2576 };
2577 
2578 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
2579 class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode {
2580 public:
2581   friend class SelectionDAG;
2582 
2583   VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2584                        ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
2585                        EVT MemVT, MachineMemOperand *MMO)
2586       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
2587                               VTs, AM, MemVT, MMO) {
2588     StoreSDNodeBits.IsTruncating = IsTrunc;
2589     StoreSDNodeBits.IsCompressing = IsCompressing;
2590   }
2591 
2592   /// Return true if this is a truncating store.
2593   /// For integers this is the same as doing a TRUNCATE and storing the result.
2594   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2595   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2596 
2597   /// Returns true if the op does a compression to the vector before storing.
2598   /// The node contiguously stores the active elements (integers or floats)
2599   /// in src (those with their respective bit set in writemask k) to unaligned
2600   /// memory at base_addr.
2601   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2602 
2603   const SDValue &getValue() const { return getOperand(1); }
2604   const SDValue &getBasePtr() const { return getOperand(2); }
2605   const SDValue &getOffset() const { return getOperand(3); }
2606   const SDValue &getStride() const { return getOperand(4); }
2607   const SDValue &getMask() const { return getOperand(5); }
2608   const SDValue &getVectorLength() const { return getOperand(6); }
2609 
2610   static bool classof(const SDNode *N) {
2611     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
2612   }
2613 };
2614 
2615 /// This base class is used to represent MLOAD and MSTORE nodes
2616 class MaskedLoadStoreSDNode : public MemSDNode {
2617 public:
2618   friend class SelectionDAG;
2619 
2620   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2621                         const DebugLoc &dl, SDVTList VTs,
2622                         ISD::MemIndexedMode AM, EVT MemVT,
2623                         MachineMemOperand *MMO)
2624       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2625     LSBaseSDNodeBits.AddressingMode = AM;
2626     assert(getAddressingMode() == AM && "Value truncated");
2627   }
2628 
2629   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2630   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2631   // Mask is a vector of i1 elements
2632   const SDValue &getOffset() const {
2633     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2634   }
2635   const SDValue &getMask() const {
2636     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2637   }
2638 
2639   /// Return the addressing mode for this load or store:
2640   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2641   ISD::MemIndexedMode getAddressingMode() const {
2642     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2643   }
2644 
2645   /// Return true if this is a pre/post inc/dec load/store.
2646   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2647 
2648   /// Return true if this is NOT a pre/post inc/dec load/store.
2649   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2650 
2651   static bool classof(const SDNode *N) {
2652     return N->getOpcode() == ISD::MLOAD ||
2653            N->getOpcode() == ISD::MSTORE;
2654   }
2655 };
2656 
2657 /// This class is used to represent an MLOAD node
2658 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2659 public:
2660   friend class SelectionDAG;
2661 
2662   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2663                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2664                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2665       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2666     LoadSDNodeBits.ExtTy = ETy;
2667     LoadSDNodeBits.IsExpanding = IsExpanding;
2668   }
2669 
2670   ISD::LoadExtType getExtensionType() const {
2671     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2672   }
2673 
2674   const SDValue &getBasePtr() const { return getOperand(1); }
2675   const SDValue &getOffset() const { return getOperand(2); }
2676   const SDValue &getMask() const { return getOperand(3); }
2677   const SDValue &getPassThru() const { return getOperand(4); }
2678 
2679   static bool classof(const SDNode *N) {
2680     return N->getOpcode() == ISD::MLOAD;
2681   }
2682 
2683   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2684 };
2685 
2686 /// This class is used to represent an MSTORE node
2687 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2688 public:
2689   friend class SelectionDAG;
2690 
2691   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2692                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2693                     EVT MemVT, MachineMemOperand *MMO)
2694       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2695     StoreSDNodeBits.IsTruncating = isTrunc;
2696     StoreSDNodeBits.IsCompressing = isCompressing;
2697   }
2698 
2699   /// Return true if the op does a truncation before store.
2700   /// For integers this is the same as doing a TRUNCATE and storing the result.
2701   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2702   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2703 
2704   /// Returns true if the op does a compression to the vector before storing.
2705   /// The node contiguously stores the active elements (integers or floats)
2706   /// in src (those with their respective bit set in writemask k) to unaligned
2707   /// memory at base_addr.
2708   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2709 
2710   const SDValue &getValue() const { return getOperand(1); }
2711   const SDValue &getBasePtr() const { return getOperand(2); }
2712   const SDValue &getOffset() const { return getOperand(3); }
2713   const SDValue &getMask() const { return getOperand(4); }
2714 
2715   static bool classof(const SDNode *N) {
2716     return N->getOpcode() == ISD::MSTORE;
2717   }
2718 };
2719 
2720 /// This is a base class used to represent
2721 /// VP_GATHER and VP_SCATTER nodes
2722 ///
2723 class VPGatherScatterSDNode : public MemSDNode {
2724 public:
2725   friend class SelectionDAG;
2726 
2727   VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2728                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2729                         MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2730       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2731     LSBaseSDNodeBits.AddressingMode = IndexType;
2732     assert(getIndexType() == IndexType && "Value truncated");
2733   }
2734 
2735   /// How is Index applied to BasePtr when computing addresses.
2736   ISD::MemIndexType getIndexType() const {
2737     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2738   }
2739   bool isIndexScaled() const {
2740     return !cast<ConstantSDNode>(getScale())->isOne();
2741   }
2742   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2743 
2744   // In the both nodes address is Op1, mask is Op2:
2745   // VPGatherSDNode  (Chain, base, index, scale, mask, vlen)
2746   // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
2747   // Mask is a vector of i1 elements
2748   const SDValue &getBasePtr() const {
2749     return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
2750   }
2751   const SDValue &getIndex() const {
2752     return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
2753   }
2754   const SDValue &getScale() const {
2755     return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
2756   }
2757   const SDValue &getMask() const {
2758     return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
2759   }
2760   const SDValue &getVectorLength() const {
2761     return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
2762   }
2763 
2764   static bool classof(const SDNode *N) {
2765     return N->getOpcode() == ISD::VP_GATHER ||
2766            N->getOpcode() == ISD::VP_SCATTER;
2767   }
2768 };
2769 
2770 /// This class is used to represent an VP_GATHER node
2771 ///
2772 class VPGatherSDNode : public VPGatherScatterSDNode {
2773 public:
2774   friend class SelectionDAG;
2775 
2776   VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2777                  MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2778       : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
2779                               IndexType) {}
2780 
2781   static bool classof(const SDNode *N) {
2782     return N->getOpcode() == ISD::VP_GATHER;
2783   }
2784 };
2785 
2786 /// This class is used to represent an VP_SCATTER node
2787 ///
2788 class VPScatterSDNode : public VPGatherScatterSDNode {
2789 public:
2790   friend class SelectionDAG;
2791 
2792   VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2793                   MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2794       : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
2795                               IndexType) {}
2796 
2797   const SDValue &getValue() const { return getOperand(1); }
2798 
2799   static bool classof(const SDNode *N) {
2800     return N->getOpcode() == ISD::VP_SCATTER;
2801   }
2802 };
2803 
2804 /// This is a base class used to represent
2805 /// MGATHER and MSCATTER nodes
2806 ///
2807 class MaskedGatherScatterSDNode : public MemSDNode {
2808 public:
2809   friend class SelectionDAG;
2810 
2811   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2812                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2813                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2814       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2815     LSBaseSDNodeBits.AddressingMode = IndexType;
2816     assert(getIndexType() == IndexType && "Value truncated");
2817   }
2818 
2819   /// How is Index applied to BasePtr when computing addresses.
2820   ISD::MemIndexType getIndexType() const {
2821     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2822   }
2823   bool isIndexScaled() const {
2824     return !cast<ConstantSDNode>(getScale())->isOne();
2825   }
2826   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2827 
2828   // In the both nodes address is Op1, mask is Op2:
2829   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2830   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2831   // Mask is a vector of i1 elements
2832   const SDValue &getBasePtr() const { return getOperand(3); }
2833   const SDValue &getIndex()   const { return getOperand(4); }
2834   const SDValue &getMask()    const { return getOperand(2); }
2835   const SDValue &getScale()   const { return getOperand(5); }
2836 
2837   static bool classof(const SDNode *N) {
2838     return N->getOpcode() == ISD::MGATHER ||
2839            N->getOpcode() == ISD::MSCATTER;
2840   }
2841 };
2842 
2843 /// This class is used to represent an MGATHER node
2844 ///
2845 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2846 public:
2847   friend class SelectionDAG;
2848 
2849   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2850                      EVT MemVT, MachineMemOperand *MMO,
2851                      ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2852       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2853                                   IndexType) {
2854     LoadSDNodeBits.ExtTy = ETy;
2855   }
2856 
2857   const SDValue &getPassThru() const { return getOperand(1); }
2858 
2859   ISD::LoadExtType getExtensionType() const {
2860     return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2861   }
2862 
2863   static bool classof(const SDNode *N) {
2864     return N->getOpcode() == ISD::MGATHER;
2865   }
2866 };
2867 
2868 /// This class is used to represent an MSCATTER node
2869 ///
2870 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2871 public:
2872   friend class SelectionDAG;
2873 
2874   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2875                       EVT MemVT, MachineMemOperand *MMO,
2876                       ISD::MemIndexType IndexType, bool IsTrunc)
2877       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2878                                   IndexType) {
2879     StoreSDNodeBits.IsTruncating = IsTrunc;
2880   }
2881 
2882   /// Return true if the op does a truncation before store.
2883   /// For integers this is the same as doing a TRUNCATE and storing the result.
2884   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2885   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2886 
2887   const SDValue &getValue() const { return getOperand(1); }
2888 
2889   static bool classof(const SDNode *N) {
2890     return N->getOpcode() == ISD::MSCATTER;
2891   }
2892 };
2893 
2894 /// An SDNode that represents everything that will be needed
2895 /// to construct a MachineInstr. These nodes are created during the
2896 /// instruction selection proper phase.
2897 ///
2898 /// Note that the only supported way to set the `memoperands` is by calling the
2899 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2900 /// inside the DAG rather than in the node.
2901 class MachineSDNode : public SDNode {
2902 private:
2903   friend class SelectionDAG;
2904 
2905   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2906       : SDNode(Opc, Order, DL, VTs) {}
2907 
2908   // We use a pointer union between a single `MachineMemOperand` pointer and
2909   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2910   // the number of these is zero, the single pointer variant used when the
2911   // number is one, and the array is used for larger numbers.
2912   //
2913   // The array is allocated via the `SelectionDAG`'s allocator and so will
2914   // always live until the DAG is cleaned up and doesn't require ownership here.
2915   //
2916   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2917   // subclasses aren't managed in a conforming C++ manner. See the comments on
2918   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2919   // constraint here is that these don't manage memory with their constructor or
2920   // destructor and can be initialized to a good state even if they start off
2921   // uninitialized.
2922   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2923 
2924   // Note that this could be folded into the above `MemRefs` member if doing so
2925   // is advantageous at some point. We don't need to store this in most cases.
2926   // However, at the moment this doesn't appear to make the allocation any
2927   // smaller and makes the code somewhat simpler to read.
2928   int NumMemRefs = 0;
2929 
2930 public:
2931   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2932 
2933   ArrayRef<MachineMemOperand *> memoperands() const {
2934     // Special case the common cases.
2935     if (NumMemRefs == 0)
2936       return {};
2937     if (NumMemRefs == 1)
2938       return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
2939 
2940     // Otherwise we have an actual array.
2941     return ArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2942   }
2943   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2944   mmo_iterator memoperands_end() const { return memoperands().end(); }
2945   bool memoperands_empty() const { return memoperands().empty(); }
2946 
2947   /// Clear out the memory reference descriptor list.
2948   void clearMemRefs() {
2949     MemRefs = nullptr;
2950     NumMemRefs = 0;
2951   }
2952 
2953   static bool classof(const SDNode *N) {
2954     return N->isMachineOpcode();
2955   }
2956 };
2957 
2958 /// An SDNode that records if a register contains a value that is guaranteed to
2959 /// be aligned accordingly.
2960 class AssertAlignSDNode : public SDNode {
2961   Align Alignment;
2962 
2963 public:
2964   AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2965       : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2966 
2967   Align getAlign() const { return Alignment; }
2968 
2969   static bool classof(const SDNode *N) {
2970     return N->getOpcode() == ISD::AssertAlign;
2971   }
2972 };
2973 
2974 class SDNodeIterator {
2975   const SDNode *Node;
2976   unsigned Operand;
2977 
2978   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2979 
2980 public:
2981   using iterator_category = std::forward_iterator_tag;
2982   using value_type = SDNode;
2983   using difference_type = std::ptrdiff_t;
2984   using pointer = value_type *;
2985   using reference = value_type &;
2986 
2987   bool operator==(const SDNodeIterator& x) const {
2988     return Operand == x.Operand;
2989   }
2990   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2991 
2992   pointer operator*() const {
2993     return Node->getOperand(Operand).getNode();
2994   }
2995   pointer operator->() const { return operator*(); }
2996 
2997   SDNodeIterator& operator++() {                // Preincrement
2998     ++Operand;
2999     return *this;
3000   }
3001   SDNodeIterator operator++(int) { // Postincrement
3002     SDNodeIterator tmp = *this; ++*this; return tmp;
3003   }
3004   size_t operator-(SDNodeIterator Other) const {
3005     assert(Node == Other.Node &&
3006            "Cannot compare iterators of two different nodes!");
3007     return Operand - Other.Operand;
3008   }
3009 
3010   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
3011   static SDNodeIterator end  (const SDNode *N) {
3012     return SDNodeIterator(N, N->getNumOperands());
3013   }
3014 
3015   unsigned getOperand() const { return Operand; }
3016   const SDNode *getNode() const { return Node; }
3017 };
3018 
3019 template <> struct GraphTraits<SDNode*> {
3020   using NodeRef = SDNode *;
3021   using ChildIteratorType = SDNodeIterator;
3022 
3023   static NodeRef getEntryNode(SDNode *N) { return N; }
3024 
3025   static ChildIteratorType child_begin(NodeRef N) {
3026     return SDNodeIterator::begin(N);
3027   }
3028 
3029   static ChildIteratorType child_end(NodeRef N) {
3030     return SDNodeIterator::end(N);
3031   }
3032 };
3033 
3034 /// A representation of the largest SDNode, for use in sizeof().
3035 ///
3036 /// This needs to be a union because the largest node differs on 32 bit systems
3037 /// with 4 and 8 byte pointer alignment, respectively.
3038 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
3039                                             BlockAddressSDNode,
3040                                             GlobalAddressSDNode,
3041                                             PseudoProbeSDNode>;
3042 
3043 /// The SDNode class with the greatest alignment requirement.
3044 using MostAlignedSDNode = GlobalAddressSDNode;
3045 
3046 namespace ISD {
3047 
3048   /// Returns true if the specified node is a non-extending and unindexed load.
3049   inline bool isNormalLoad(const SDNode *N) {
3050     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
3051     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3052       Ld->getAddressingMode() == ISD::UNINDEXED;
3053   }
3054 
3055   /// Returns true if the specified node is a non-extending load.
3056   inline bool isNON_EXTLoad(const SDNode *N) {
3057     return isa<LoadSDNode>(N) &&
3058       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
3059   }
3060 
3061   /// Returns true if the specified node is a EXTLOAD.
3062   inline bool isEXTLoad(const SDNode *N) {
3063     return isa<LoadSDNode>(N) &&
3064       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
3065   }
3066 
3067   /// Returns true if the specified node is a SEXTLOAD.
3068   inline bool isSEXTLoad(const SDNode *N) {
3069     return isa<LoadSDNode>(N) &&
3070       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
3071   }
3072 
3073   /// Returns true if the specified node is a ZEXTLOAD.
3074   inline bool isZEXTLoad(const SDNode *N) {
3075     return isa<LoadSDNode>(N) &&
3076       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
3077   }
3078 
3079   /// Returns true if the specified node is an unindexed load.
3080   inline bool isUNINDEXEDLoad(const SDNode *N) {
3081     return isa<LoadSDNode>(N) &&
3082       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
3083   }
3084 
3085   /// Returns true if the specified node is a non-truncating
3086   /// and unindexed store.
3087   inline bool isNormalStore(const SDNode *N) {
3088     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
3089     return St && !St->isTruncatingStore() &&
3090       St->getAddressingMode() == ISD::UNINDEXED;
3091   }
3092 
3093   /// Returns true if the specified node is an unindexed store.
3094   inline bool isUNINDEXEDStore(const SDNode *N) {
3095     return isa<StoreSDNode>(N) &&
3096       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
3097   }
3098 
3099   /// Attempt to match a unary predicate against a scalar/splat constant or
3100   /// every element of a constant BUILD_VECTOR.
3101   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3102   bool matchUnaryPredicate(SDValue Op,
3103                            std::function<bool(ConstantSDNode *)> Match,
3104                            bool AllowUndefs = false);
3105 
3106   /// Attempt to match a binary predicate against a pair of scalar/splat
3107   /// constants or every element of a pair of constant BUILD_VECTORs.
3108   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3109   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
3110   bool matchBinaryPredicate(
3111       SDValue LHS, SDValue RHS,
3112       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
3113       bool AllowUndefs = false, bool AllowTypeMismatch = false);
3114 
3115   /// Returns true if the specified value is the overflow result from one
3116   /// of the overflow intrinsic nodes.
3117   inline bool isOverflowIntrOpRes(SDValue Op) {
3118     unsigned Opc = Op.getOpcode();
3119     return (Op.getResNo() == 1 &&
3120             (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3121              Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
3122   }
3123 
3124 } // end namespace ISD
3125 
3126 } // end namespace llvm
3127 
3128 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
3129