xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/SelectionDAGNodes.h (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Support/AlignOf.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <climits>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <iterator>
52 #include <string>
53 #include <tuple>
54 
55 namespace llvm {
56 
57 class APInt;
58 class Constant;
59 template <typename T> struct DenseMapInfo;
60 class GlobalValue;
61 class MachineBasicBlock;
62 class MachineConstantPoolValue;
63 class MCSymbol;
64 class raw_ostream;
65 class SDNode;
66 class SelectionDAG;
67 class Type;
68 class Value;
69 
70 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
71                     bool force = false);
72 
73 /// This represents a list of ValueType's that has been intern'd by
74 /// a SelectionDAG.  Instances of this simple value class are returned by
75 /// SelectionDAG::getVTList(...).
76 ///
77 struct SDVTList {
78   const EVT *VTs;
79   unsigned int NumVTs;
80 };
81 
82 namespace ISD {
83 
84   /// Node predicates
85 
86   /// If N is a BUILD_VECTOR node whose elements are all the same constant or
87   /// undefined, return true and return the constant value in \p SplatValue.
88   bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
89 
90   /// Return true if the specified node is a BUILD_VECTOR where all of the
91   /// elements are ~0 or undef.
92   bool isBuildVectorAllOnes(const SDNode *N);
93 
94   /// Return true if the specified node is a BUILD_VECTOR where all of the
95   /// elements are 0 or undef.
96   bool isBuildVectorAllZeros(const SDNode *N);
97 
98   /// Return true if the specified node is a BUILD_VECTOR node of all
99   /// ConstantSDNode or undef.
100   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
101 
102   /// Return true if the specified node is a BUILD_VECTOR node of all
103   /// ConstantFPSDNode or undef.
104   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
105 
106   /// Return true if the node has at least one operand and all operands of the
107   /// specified node are ISD::UNDEF.
108   bool allOperandsUndef(const SDNode *N);
109 
110 } // end namespace ISD
111 
112 //===----------------------------------------------------------------------===//
113 /// Unlike LLVM values, Selection DAG nodes may return multiple
114 /// values as the result of a computation.  Many nodes return multiple values,
115 /// from loads (which define a token and a return value) to ADDC (which returns
116 /// a result and a carry value), to calls (which may return an arbitrary number
117 /// of values).
118 ///
119 /// As such, each use of a SelectionDAG computation must indicate the node that
120 /// computes it as well as which return value to use from that node.  This pair
121 /// of information is represented with the SDValue value type.
122 ///
123 class SDValue {
124   friend struct DenseMapInfo<SDValue>;
125 
126   SDNode *Node = nullptr; // The node defining the value we are using.
127   unsigned ResNo = 0;     // Which return value of the node we are using.
128 
129 public:
130   SDValue() = default;
131   SDValue(SDNode *node, unsigned resno);
132 
133   /// get the index which selects a specific result in the SDNode
134   unsigned getResNo() const { return ResNo; }
135 
136   /// get the SDNode which holds the desired result
137   SDNode *getNode() const { return Node; }
138 
139   /// set the SDNode
140   void setNode(SDNode *N) { Node = N; }
141 
142   inline SDNode *operator->() const { return Node; }
143 
144   bool operator==(const SDValue &O) const {
145     return Node == O.Node && ResNo == O.ResNo;
146   }
147   bool operator!=(const SDValue &O) const {
148     return !operator==(O);
149   }
150   bool operator<(const SDValue &O) const {
151     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
152   }
153   explicit operator bool() const {
154     return Node != nullptr;
155   }
156 
157   SDValue getValue(unsigned R) const {
158     return SDValue(Node, R);
159   }
160 
161   /// Return true if this node is an operand of N.
162   bool isOperandOf(const SDNode *N) const;
163 
164   /// Return the ValueType of the referenced return value.
165   inline EVT getValueType() const;
166 
167   /// Return the simple ValueType of the referenced return value.
168   MVT getSimpleValueType() const {
169     return getValueType().getSimpleVT();
170   }
171 
172   /// Returns the size of the value in bits.
173   unsigned getValueSizeInBits() const {
174     return getValueType().getSizeInBits();
175   }
176 
177   unsigned getScalarValueSizeInBits() const {
178     return getValueType().getScalarType().getSizeInBits();
179   }
180 
181   // Forwarding methods - These forward to the corresponding methods in SDNode.
182   inline unsigned getOpcode() const;
183   inline unsigned getNumOperands() const;
184   inline const SDValue &getOperand(unsigned i) const;
185   inline uint64_t getConstantOperandVal(unsigned i) const;
186   inline const APInt &getConstantOperandAPInt(unsigned i) const;
187   inline bool isTargetMemoryOpcode() const;
188   inline bool isTargetOpcode() const;
189   inline bool isMachineOpcode() const;
190   inline bool isUndef() const;
191   inline unsigned getMachineOpcode() const;
192   inline const DebugLoc &getDebugLoc() const;
193   inline void dump() const;
194   inline void dump(const SelectionDAG *G) const;
195   inline void dumpr() const;
196   inline void dumpr(const SelectionDAG *G) const;
197 
198   /// Return true if this operand (which must be a chain) reaches the
199   /// specified operand without crossing any side-effecting instructions.
200   /// In practice, this looks through token factors and non-volatile loads.
201   /// In order to remain efficient, this only
202   /// looks a couple of nodes in, it does not do an exhaustive search.
203   bool reachesChainWithoutSideEffects(SDValue Dest,
204                                       unsigned Depth = 2) const;
205 
206   /// Return true if there are no nodes using value ResNo of Node.
207   inline bool use_empty() const;
208 
209   /// Return true if there is exactly one node using value ResNo of Node.
210   inline bool hasOneUse() const;
211 };
212 
213 template<> struct DenseMapInfo<SDValue> {
214   static inline SDValue getEmptyKey() {
215     SDValue V;
216     V.ResNo = -1U;
217     return V;
218   }
219 
220   static inline SDValue getTombstoneKey() {
221     SDValue V;
222     V.ResNo = -2U;
223     return V;
224   }
225 
226   static unsigned getHashValue(const SDValue &Val) {
227     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
228             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
229   }
230 
231   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
232     return LHS == RHS;
233   }
234 };
235 
236 /// Allow casting operators to work directly on
237 /// SDValues as if they were SDNode*'s.
238 template<> struct simplify_type<SDValue> {
239   using SimpleType = SDNode *;
240 
241   static SimpleType getSimplifiedValue(SDValue &Val) {
242     return Val.getNode();
243   }
244 };
245 template<> struct simplify_type<const SDValue> {
246   using SimpleType = /*const*/ SDNode *;
247 
248   static SimpleType getSimplifiedValue(const SDValue &Val) {
249     return Val.getNode();
250   }
251 };
252 
253 /// Represents a use of a SDNode. This class holds an SDValue,
254 /// which records the SDNode being used and the result number, a
255 /// pointer to the SDNode using the value, and Next and Prev pointers,
256 /// which link together all the uses of an SDNode.
257 ///
258 class SDUse {
259   /// Val - The value being used.
260   SDValue Val;
261   /// User - The user of this value.
262   SDNode *User = nullptr;
263   /// Prev, Next - Pointers to the uses list of the SDNode referred by
264   /// this operand.
265   SDUse **Prev = nullptr;
266   SDUse *Next = nullptr;
267 
268 public:
269   SDUse() = default;
270   SDUse(const SDUse &U) = delete;
271   SDUse &operator=(const SDUse &) = delete;
272 
273   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
274   operator const SDValue&() const { return Val; }
275 
276   /// If implicit conversion to SDValue doesn't work, the get() method returns
277   /// the SDValue.
278   const SDValue &get() const { return Val; }
279 
280   /// This returns the SDNode that contains this Use.
281   SDNode *getUser() { return User; }
282 
283   /// Get the next SDUse in the use list.
284   SDUse *getNext() const { return Next; }
285 
286   /// Convenience function for get().getNode().
287   SDNode *getNode() const { return Val.getNode(); }
288   /// Convenience function for get().getResNo().
289   unsigned getResNo() const { return Val.getResNo(); }
290   /// Convenience function for get().getValueType().
291   EVT getValueType() const { return Val.getValueType(); }
292 
293   /// Convenience function for get().operator==
294   bool operator==(const SDValue &V) const {
295     return Val == V;
296   }
297 
298   /// Convenience function for get().operator!=
299   bool operator!=(const SDValue &V) const {
300     return Val != V;
301   }
302 
303   /// Convenience function for get().operator<
304   bool operator<(const SDValue &V) const {
305     return Val < V;
306   }
307 
308 private:
309   friend class SelectionDAG;
310   friend class SDNode;
311   // TODO: unfriend HandleSDNode once we fix its operand handling.
312   friend class HandleSDNode;
313 
314   void setUser(SDNode *p) { User = p; }
315 
316   /// Remove this use from its existing use list, assign it the
317   /// given value, and add it to the new value's node's use list.
318   inline void set(const SDValue &V);
319   /// Like set, but only supports initializing a newly-allocated
320   /// SDUse with a non-null value.
321   inline void setInitial(const SDValue &V);
322   /// Like set, but only sets the Node portion of the value,
323   /// leaving the ResNo portion unmodified.
324   inline void setNode(SDNode *N);
325 
326   void addToList(SDUse **List) {
327     Next = *List;
328     if (Next) Next->Prev = &Next;
329     Prev = List;
330     *List = this;
331   }
332 
333   void removeFromList() {
334     *Prev = Next;
335     if (Next) Next->Prev = Prev;
336   }
337 };
338 
339 /// simplify_type specializations - Allow casting operators to work directly on
340 /// SDValues as if they were SDNode*'s.
341 template<> struct simplify_type<SDUse> {
342   using SimpleType = SDNode *;
343 
344   static SimpleType getSimplifiedValue(SDUse &Val) {
345     return Val.getNode();
346   }
347 };
348 
349 /// These are IR-level optimization flags that may be propagated to SDNodes.
350 /// TODO: This data structure should be shared by the IR optimizer and the
351 /// the backend.
352 struct SDNodeFlags {
353 private:
354   // This bit is used to determine if the flags are in a defined state.
355   // Flag bits can only be masked out during intersection if the masking flags
356   // are defined.
357   bool AnyDefined : 1;
358 
359   bool NoUnsignedWrap : 1;
360   bool NoSignedWrap : 1;
361   bool Exact : 1;
362   bool NoNaNs : 1;
363   bool NoInfs : 1;
364   bool NoSignedZeros : 1;
365   bool AllowReciprocal : 1;
366   bool VectorReduction : 1;
367   bool AllowContract : 1;
368   bool ApproximateFuncs : 1;
369   bool AllowReassociation : 1;
370 
371   // We assume instructions do not raise floating-point exceptions by default,
372   // and only those marked explicitly may do so.  We could choose to represent
373   // this via a positive "FPExcept" flags like on the MI level, but having a
374   // negative "NoFPExcept" flag here (that defaults to true) makes the flag
375   // intersection logic more straightforward.
376   bool NoFPExcept : 1;
377 
378 public:
379   /// Default constructor turns off all optimization flags.
380   SDNodeFlags()
381       : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
382         Exact(false), NoNaNs(false), NoInfs(false),
383         NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
384         AllowContract(false), ApproximateFuncs(false),
385         AllowReassociation(false), NoFPExcept(true) {}
386 
387   /// Propagate the fast-math-flags from an IR FPMathOperator.
388   void copyFMF(const FPMathOperator &FPMO) {
389     setNoNaNs(FPMO.hasNoNaNs());
390     setNoInfs(FPMO.hasNoInfs());
391     setNoSignedZeros(FPMO.hasNoSignedZeros());
392     setAllowReciprocal(FPMO.hasAllowReciprocal());
393     setAllowContract(FPMO.hasAllowContract());
394     setApproximateFuncs(FPMO.hasApproxFunc());
395     setAllowReassociation(FPMO.hasAllowReassoc());
396   }
397 
398   /// Sets the state of the flags to the defined state.
399   void setDefined() { AnyDefined = true; }
400   /// Returns true if the flags are in a defined state.
401   bool isDefined() const { return AnyDefined; }
402 
403   // These are mutators for each flag.
404   void setNoUnsignedWrap(bool b) {
405     setDefined();
406     NoUnsignedWrap = b;
407   }
408   void setNoSignedWrap(bool b) {
409     setDefined();
410     NoSignedWrap = b;
411   }
412   void setExact(bool b) {
413     setDefined();
414     Exact = b;
415   }
416   void setNoNaNs(bool b) {
417     setDefined();
418     NoNaNs = b;
419   }
420   void setNoInfs(bool b) {
421     setDefined();
422     NoInfs = b;
423   }
424   void setNoSignedZeros(bool b) {
425     setDefined();
426     NoSignedZeros = b;
427   }
428   void setAllowReciprocal(bool b) {
429     setDefined();
430     AllowReciprocal = b;
431   }
432   void setVectorReduction(bool b) {
433     setDefined();
434     VectorReduction = b;
435   }
436   void setAllowContract(bool b) {
437     setDefined();
438     AllowContract = b;
439   }
440   void setApproximateFuncs(bool b) {
441     setDefined();
442     ApproximateFuncs = b;
443   }
444   void setAllowReassociation(bool b) {
445     setDefined();
446     AllowReassociation = b;
447   }
448   void setFPExcept(bool b) {
449     setDefined();
450     NoFPExcept = !b;
451   }
452 
453   // These are accessors for each flag.
454   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
455   bool hasNoSignedWrap() const { return NoSignedWrap; }
456   bool hasExact() const { return Exact; }
457   bool hasNoNaNs() const { return NoNaNs; }
458   bool hasNoInfs() const { return NoInfs; }
459   bool hasNoSignedZeros() const { return NoSignedZeros; }
460   bool hasAllowReciprocal() const { return AllowReciprocal; }
461   bool hasVectorReduction() const { return VectorReduction; }
462   bool hasAllowContract() const { return AllowContract; }
463   bool hasApproximateFuncs() const { return ApproximateFuncs; }
464   bool hasAllowReassociation() const { return AllowReassociation; }
465   bool hasFPExcept() const { return !NoFPExcept; }
466 
467   bool isFast() const {
468     return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs && NoFPExcept &&
469            AllowContract && ApproximateFuncs && AllowReassociation;
470   }
471 
472   /// Clear any flags in this flag set that aren't also set in Flags.
473   /// If the given Flags are undefined then don't do anything.
474   void intersectWith(const SDNodeFlags Flags) {
475     if (!Flags.isDefined())
476       return;
477     NoUnsignedWrap &= Flags.NoUnsignedWrap;
478     NoSignedWrap &= Flags.NoSignedWrap;
479     Exact &= Flags.Exact;
480     NoNaNs &= Flags.NoNaNs;
481     NoInfs &= Flags.NoInfs;
482     NoSignedZeros &= Flags.NoSignedZeros;
483     AllowReciprocal &= Flags.AllowReciprocal;
484     VectorReduction &= Flags.VectorReduction;
485     AllowContract &= Flags.AllowContract;
486     ApproximateFuncs &= Flags.ApproximateFuncs;
487     AllowReassociation &= Flags.AllowReassociation;
488     NoFPExcept &= Flags.NoFPExcept;
489   }
490 };
491 
492 /// Represents one node in the SelectionDAG.
493 ///
494 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
495 private:
496   /// The operation that this node performs.
497   int16_t NodeType;
498 
499 protected:
500   // We define a set of mini-helper classes to help us interpret the bits in our
501   // SubclassData.  These are designed to fit within a uint16_t so they pack
502   // with NodeType.
503 
504 #if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__))
505 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
506 // and give the `pack` pragma push semantics.
507 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
508 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
509 #else
510 #define BEGIN_TWO_BYTE_PACK()
511 #define END_TWO_BYTE_PACK()
512 #endif
513 
514 BEGIN_TWO_BYTE_PACK()
515   class SDNodeBitfields {
516     friend class SDNode;
517     friend class MemIntrinsicSDNode;
518     friend class MemSDNode;
519     friend class SelectionDAG;
520 
521     uint16_t HasDebugValue : 1;
522     uint16_t IsMemIntrinsic : 1;
523     uint16_t IsDivergent : 1;
524   };
525   enum { NumSDNodeBits = 3 };
526 
527   class ConstantSDNodeBitfields {
528     friend class ConstantSDNode;
529 
530     uint16_t : NumSDNodeBits;
531 
532     uint16_t IsOpaque : 1;
533   };
534 
535   class MemSDNodeBitfields {
536     friend class MemSDNode;
537     friend class MemIntrinsicSDNode;
538     friend class AtomicSDNode;
539 
540     uint16_t : NumSDNodeBits;
541 
542     uint16_t IsVolatile : 1;
543     uint16_t IsNonTemporal : 1;
544     uint16_t IsDereferenceable : 1;
545     uint16_t IsInvariant : 1;
546   };
547   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
548 
549   class LSBaseSDNodeBitfields {
550     friend class LSBaseSDNode;
551     friend class MaskedGatherScatterSDNode;
552 
553     uint16_t : NumMemSDNodeBits;
554 
555     // This storage is shared between disparate class hierarchies to hold an
556     // enumeration specific to the class hierarchy in use.
557     //   LSBaseSDNode => enum ISD::MemIndexedMode
558     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
559     uint16_t AddressingMode : 3;
560   };
561   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
562 
563   class LoadSDNodeBitfields {
564     friend class LoadSDNode;
565     friend class MaskedLoadSDNode;
566 
567     uint16_t : NumLSBaseSDNodeBits;
568 
569     uint16_t ExtTy : 2; // enum ISD::LoadExtType
570     uint16_t IsExpanding : 1;
571   };
572 
573   class StoreSDNodeBitfields {
574     friend class StoreSDNode;
575     friend class MaskedStoreSDNode;
576 
577     uint16_t : NumLSBaseSDNodeBits;
578 
579     uint16_t IsTruncating : 1;
580     uint16_t IsCompressing : 1;
581   };
582 
583   union {
584     char RawSDNodeBits[sizeof(uint16_t)];
585     SDNodeBitfields SDNodeBits;
586     ConstantSDNodeBitfields ConstantSDNodeBits;
587     MemSDNodeBitfields MemSDNodeBits;
588     LSBaseSDNodeBitfields LSBaseSDNodeBits;
589     LoadSDNodeBitfields LoadSDNodeBits;
590     StoreSDNodeBitfields StoreSDNodeBits;
591   };
592 END_TWO_BYTE_PACK()
593 #undef BEGIN_TWO_BYTE_PACK
594 #undef END_TWO_BYTE_PACK
595 
596   // RawSDNodeBits must cover the entirety of the union.  This means that all of
597   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
598   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
599   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
600   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
601   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
602   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
603   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
604   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
605 
606 private:
607   friend class SelectionDAG;
608   // TODO: unfriend HandleSDNode once we fix its operand handling.
609   friend class HandleSDNode;
610 
611   /// Unique id per SDNode in the DAG.
612   int NodeId = -1;
613 
614   /// The values that are used by this operation.
615   SDUse *OperandList = nullptr;
616 
617   /// The types of the values this node defines.  SDNode's may
618   /// define multiple values simultaneously.
619   const EVT *ValueList;
620 
621   /// List of uses for this SDNode.
622   SDUse *UseList = nullptr;
623 
624   /// The number of entries in the Operand/Value list.
625   unsigned short NumOperands = 0;
626   unsigned short NumValues;
627 
628   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
629   // original LLVM instructions.
630   // This is used for turning off scheduling, because we'll forgo
631   // the normal scheduling algorithms and output the instructions according to
632   // this ordering.
633   unsigned IROrder;
634 
635   /// Source line information.
636   DebugLoc debugLoc;
637 
638   /// Return a pointer to the specified value type.
639   static const EVT *getValueTypeList(EVT VT);
640 
641   SDNodeFlags Flags;
642 
643 public:
644   /// Unique and persistent id per SDNode in the DAG.
645   /// Used for debug printing.
646   uint16_t PersistentId;
647 
648   //===--------------------------------------------------------------------===//
649   //  Accessors
650   //
651 
652   /// Return the SelectionDAG opcode value for this node. For
653   /// pre-isel nodes (those for which isMachineOpcode returns false), these
654   /// are the opcode values in the ISD and <target>ISD namespaces. For
655   /// post-isel opcodes, see getMachineOpcode.
656   unsigned getOpcode()  const { return (unsigned short)NodeType; }
657 
658   /// Test if this node has a target-specific opcode (in the
659   /// \<target\>ISD namespace).
660   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
661 
662   /// Test if this node has a target-specific
663   /// memory-referencing opcode (in the \<target\>ISD namespace and
664   /// greater than FIRST_TARGET_MEMORY_OPCODE).
665   bool isTargetMemoryOpcode() const {
666     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
667   }
668 
669   /// Return true if the type of the node type undefined.
670   bool isUndef() const { return NodeType == ISD::UNDEF; }
671 
672   /// Test if this node is a memory intrinsic (with valid pointer information).
673   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
674   /// non-memory intrinsics (with chains) that are not really instances of
675   /// MemSDNode. For such nodes, we need some extra state to determine the
676   /// proper classof relationship.
677   bool isMemIntrinsic() const {
678     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
679             NodeType == ISD::INTRINSIC_VOID) &&
680            SDNodeBits.IsMemIntrinsic;
681   }
682 
683   /// Test if this node is a strict floating point pseudo-op.
684   bool isStrictFPOpcode() {
685     switch (NodeType) {
686       default:
687         return false;
688       case ISD::STRICT_FADD:
689       case ISD::STRICT_FSUB:
690       case ISD::STRICT_FMUL:
691       case ISD::STRICT_FDIV:
692       case ISD::STRICT_FREM:
693       case ISD::STRICT_FMA:
694       case ISD::STRICT_FSQRT:
695       case ISD::STRICT_FPOW:
696       case ISD::STRICT_FPOWI:
697       case ISD::STRICT_FSIN:
698       case ISD::STRICT_FCOS:
699       case ISD::STRICT_FEXP:
700       case ISD::STRICT_FEXP2:
701       case ISD::STRICT_FLOG:
702       case ISD::STRICT_FLOG10:
703       case ISD::STRICT_FLOG2:
704       case ISD::STRICT_LRINT:
705       case ISD::STRICT_LLRINT:
706       case ISD::STRICT_FRINT:
707       case ISD::STRICT_FNEARBYINT:
708       case ISD::STRICT_FMAXNUM:
709       case ISD::STRICT_FMINNUM:
710       case ISD::STRICT_FCEIL:
711       case ISD::STRICT_FFLOOR:
712       case ISD::STRICT_LROUND:
713       case ISD::STRICT_LLROUND:
714       case ISD::STRICT_FROUND:
715       case ISD::STRICT_FTRUNC:
716       case ISD::STRICT_FP_TO_SINT:
717       case ISD::STRICT_FP_TO_UINT:
718       case ISD::STRICT_FP_ROUND:
719       case ISD::STRICT_FP_EXTEND:
720         return true;
721     }
722   }
723 
724   /// Test if this node has a post-isel opcode, directly
725   /// corresponding to a MachineInstr opcode.
726   bool isMachineOpcode() const { return NodeType < 0; }
727 
728   /// This may only be called if isMachineOpcode returns
729   /// true. It returns the MachineInstr opcode value that the node's opcode
730   /// corresponds to.
731   unsigned getMachineOpcode() const {
732     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
733     return ~NodeType;
734   }
735 
736   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
737   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
738 
739   bool isDivergent() const { return SDNodeBits.IsDivergent; }
740 
741   /// Return true if there are no uses of this node.
742   bool use_empty() const { return UseList == nullptr; }
743 
744   /// Return true if there is exactly one use of this node.
745   bool hasOneUse() const {
746     return !use_empty() && std::next(use_begin()) == use_end();
747   }
748 
749   /// Return the number of uses of this node. This method takes
750   /// time proportional to the number of uses.
751   size_t use_size() const { return std::distance(use_begin(), use_end()); }
752 
753   /// Return the unique node id.
754   int getNodeId() const { return NodeId; }
755 
756   /// Set unique node id.
757   void setNodeId(int Id) { NodeId = Id; }
758 
759   /// Return the node ordering.
760   unsigned getIROrder() const { return IROrder; }
761 
762   /// Set the node ordering.
763   void setIROrder(unsigned Order) { IROrder = Order; }
764 
765   /// Return the source location info.
766   const DebugLoc &getDebugLoc() const { return debugLoc; }
767 
768   /// Set source location info.  Try to avoid this, putting
769   /// it in the constructor is preferable.
770   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
771 
772   /// This class provides iterator support for SDUse
773   /// operands that use a specific SDNode.
774   class use_iterator
775     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
776     friend class SDNode;
777 
778     SDUse *Op = nullptr;
779 
780     explicit use_iterator(SDUse *op) : Op(op) {}
781 
782   public:
783     using reference = std::iterator<std::forward_iterator_tag,
784                                     SDUse, ptrdiff_t>::reference;
785     using pointer = std::iterator<std::forward_iterator_tag,
786                                   SDUse, ptrdiff_t>::pointer;
787 
788     use_iterator() = default;
789     use_iterator(const use_iterator &I) : Op(I.Op) {}
790 
791     bool operator==(const use_iterator &x) const {
792       return Op == x.Op;
793     }
794     bool operator!=(const use_iterator &x) const {
795       return !operator==(x);
796     }
797 
798     /// Return true if this iterator is at the end of uses list.
799     bool atEnd() const { return Op == nullptr; }
800 
801     // Iterator traversal: forward iteration only.
802     use_iterator &operator++() {          // Preincrement
803       assert(Op && "Cannot increment end iterator!");
804       Op = Op->getNext();
805       return *this;
806     }
807 
808     use_iterator operator++(int) {        // Postincrement
809       use_iterator tmp = *this; ++*this; return tmp;
810     }
811 
812     /// Retrieve a pointer to the current user node.
813     SDNode *operator*() const {
814       assert(Op && "Cannot dereference end iterator!");
815       return Op->getUser();
816     }
817 
818     SDNode *operator->() const { return operator*(); }
819 
820     SDUse &getUse() const { return *Op; }
821 
822     /// Retrieve the operand # of this use in its user.
823     unsigned getOperandNo() const {
824       assert(Op && "Cannot dereference end iterator!");
825       return (unsigned)(Op - Op->getUser()->OperandList);
826     }
827   };
828 
829   /// Provide iteration support to walk over all uses of an SDNode.
830   use_iterator use_begin() const {
831     return use_iterator(UseList);
832   }
833 
834   static use_iterator use_end() { return use_iterator(nullptr); }
835 
836   inline iterator_range<use_iterator> uses() {
837     return make_range(use_begin(), use_end());
838   }
839   inline iterator_range<use_iterator> uses() const {
840     return make_range(use_begin(), use_end());
841   }
842 
843   /// Return true if there are exactly NUSES uses of the indicated value.
844   /// This method ignores uses of other values defined by this operation.
845   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
846 
847   /// Return true if there are any use of the indicated value.
848   /// This method ignores uses of other values defined by this operation.
849   bool hasAnyUseOfValue(unsigned Value) const;
850 
851   /// Return true if this node is the only use of N.
852   bool isOnlyUserOf(const SDNode *N) const;
853 
854   /// Return true if this node is an operand of N.
855   bool isOperandOf(const SDNode *N) const;
856 
857   /// Return true if this node is a predecessor of N.
858   /// NOTE: Implemented on top of hasPredecessor and every bit as
859   /// expensive. Use carefully.
860   bool isPredecessorOf(const SDNode *N) const {
861     return N->hasPredecessor(this);
862   }
863 
864   /// Return true if N is a predecessor of this node.
865   /// N is either an operand of this node, or can be reached by recursively
866   /// traversing up the operands.
867   /// NOTE: This is an expensive method. Use it carefully.
868   bool hasPredecessor(const SDNode *N) const;
869 
870   /// Returns true if N is a predecessor of any node in Worklist. This
871   /// helper keeps Visited and Worklist sets externally to allow unions
872   /// searches to be performed in parallel, caching of results across
873   /// queries and incremental addition to Worklist. Stops early if N is
874   /// found but will resume. Remember to clear Visited and Worklists
875   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
876   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
877   /// topologically ordered (Operands have strictly smaller node id) and search
878   /// can be pruned leveraging this.
879   static bool hasPredecessorHelper(const SDNode *N,
880                                    SmallPtrSetImpl<const SDNode *> &Visited,
881                                    SmallVectorImpl<const SDNode *> &Worklist,
882                                    unsigned int MaxSteps = 0,
883                                    bool TopologicalPrune = false) {
884     SmallVector<const SDNode *, 8> DeferredNodes;
885     if (Visited.count(N))
886       return true;
887 
888     // Node Id's are assigned in three places: As a topological
889     // ordering (> 0), during legalization (results in values set to
890     // 0), new nodes (set to -1). If N has a topolgical id then we
891     // know that all nodes with ids smaller than it cannot be
892     // successors and we need not check them. Filter out all node
893     // that can't be matches. We add them to the worklist before exit
894     // in case of multiple calls. Note that during selection the topological id
895     // may be violated if a node's predecessor is selected before it. We mark
896     // this at selection negating the id of unselected successors and
897     // restricting topological pruning to positive ids.
898 
899     int NId = N->getNodeId();
900     // If we Invalidated the Id, reconstruct original NId.
901     if (NId < -1)
902       NId = -(NId + 1);
903 
904     bool Found = false;
905     while (!Worklist.empty()) {
906       const SDNode *M = Worklist.pop_back_val();
907       int MId = M->getNodeId();
908       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
909           (MId > 0) && (MId < NId)) {
910         DeferredNodes.push_back(M);
911         continue;
912       }
913       for (const SDValue &OpV : M->op_values()) {
914         SDNode *Op = OpV.getNode();
915         if (Visited.insert(Op).second)
916           Worklist.push_back(Op);
917         if (Op == N)
918           Found = true;
919       }
920       if (Found)
921         break;
922       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
923         break;
924     }
925     // Push deferred nodes back on worklist.
926     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
927     // If we bailed early, conservatively return found.
928     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
929       return true;
930     return Found;
931   }
932 
933   /// Return true if all the users of N are contained in Nodes.
934   /// NOTE: Requires at least one match, but doesn't require them all.
935   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
936 
937   /// Return the number of values used by this operation.
938   unsigned getNumOperands() const { return NumOperands; }
939 
940   /// Return the maximum number of operands that a SDNode can hold.
941   static constexpr size_t getMaxNumOperands() {
942     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
943   }
944 
945   /// Helper method returns the integer value of a ConstantSDNode operand.
946   inline uint64_t getConstantOperandVal(unsigned Num) const;
947 
948   /// Helper method returns the APInt of a ConstantSDNode operand.
949   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
950 
951   const SDValue &getOperand(unsigned Num) const {
952     assert(Num < NumOperands && "Invalid child # of SDNode!");
953     return OperandList[Num];
954   }
955 
956   using op_iterator = SDUse *;
957 
958   op_iterator op_begin() const { return OperandList; }
959   op_iterator op_end() const { return OperandList+NumOperands; }
960   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
961 
962   /// Iterator for directly iterating over the operand SDValue's.
963   struct value_op_iterator
964       : iterator_adaptor_base<value_op_iterator, op_iterator,
965                               std::random_access_iterator_tag, SDValue,
966                               ptrdiff_t, value_op_iterator *,
967                               value_op_iterator *> {
968     explicit value_op_iterator(SDUse *U = nullptr)
969       : iterator_adaptor_base(U) {}
970 
971     const SDValue &operator*() const { return I->get(); }
972   };
973 
974   iterator_range<value_op_iterator> op_values() const {
975     return make_range(value_op_iterator(op_begin()),
976                       value_op_iterator(op_end()));
977   }
978 
979   SDVTList getVTList() const {
980     SDVTList X = { ValueList, NumValues };
981     return X;
982   }
983 
984   /// If this node has a glue operand, return the node
985   /// to which the glue operand points. Otherwise return NULL.
986   SDNode *getGluedNode() const {
987     if (getNumOperands() != 0 &&
988         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
989       return getOperand(getNumOperands()-1).getNode();
990     return nullptr;
991   }
992 
993   /// If this node has a glue value with a user, return
994   /// the user (there is at most one). Otherwise return NULL.
995   SDNode *getGluedUser() const {
996     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
997       if (UI.getUse().get().getValueType() == MVT::Glue)
998         return *UI;
999     return nullptr;
1000   }
1001 
1002   const SDNodeFlags getFlags() const { return Flags; }
1003   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
1004   bool isFast() { return Flags.isFast(); }
1005 
1006   /// Clear any flags in this node that aren't also set in Flags.
1007   /// If Flags is not in a defined state then this has no effect.
1008   void intersectFlagsWith(const SDNodeFlags Flags);
1009 
1010   /// Return the number of values defined/returned by this operator.
1011   unsigned getNumValues() const { return NumValues; }
1012 
1013   /// Return the type of a specified result.
1014   EVT getValueType(unsigned ResNo) const {
1015     assert(ResNo < NumValues && "Illegal result number!");
1016     return ValueList[ResNo];
1017   }
1018 
1019   /// Return the type of a specified result as a simple type.
1020   MVT getSimpleValueType(unsigned ResNo) const {
1021     return getValueType(ResNo).getSimpleVT();
1022   }
1023 
1024   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1025   unsigned getValueSizeInBits(unsigned ResNo) const {
1026     return getValueType(ResNo).getSizeInBits();
1027   }
1028 
1029   using value_iterator = const EVT *;
1030 
1031   value_iterator value_begin() const { return ValueList; }
1032   value_iterator value_end() const { return ValueList+NumValues; }
1033 
1034   /// Return the opcode of this operation for printing.
1035   std::string getOperationName(const SelectionDAG *G = nullptr) const;
1036   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1037   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1038   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1039   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1040   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1041 
1042   /// Print a SelectionDAG node and all children down to
1043   /// the leaves.  The given SelectionDAG allows target-specific nodes
1044   /// to be printed in human-readable form.  Unlike printr, this will
1045   /// print the whole DAG, including children that appear multiple
1046   /// times.
1047   ///
1048   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1049 
1050   /// Print a SelectionDAG node and children up to
1051   /// depth "depth."  The given SelectionDAG allows target-specific
1052   /// nodes to be printed in human-readable form.  Unlike printr, this
1053   /// will print children that appear multiple times wherever they are
1054   /// used.
1055   ///
1056   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1057                        unsigned depth = 100) const;
1058 
1059   /// Dump this node, for debugging.
1060   void dump() const;
1061 
1062   /// Dump (recursively) this node and its use-def subgraph.
1063   void dumpr() const;
1064 
1065   /// Dump this node, for debugging.
1066   /// The given SelectionDAG allows target-specific nodes to be printed
1067   /// in human-readable form.
1068   void dump(const SelectionDAG *G) const;
1069 
1070   /// Dump (recursively) this node and its use-def subgraph.
1071   /// The given SelectionDAG allows target-specific nodes to be printed
1072   /// in human-readable form.
1073   void dumpr(const SelectionDAG *G) const;
1074 
1075   /// printrFull to dbgs().  The given SelectionDAG allows
1076   /// target-specific nodes to be printed in human-readable form.
1077   /// Unlike dumpr, this will print the whole DAG, including children
1078   /// that appear multiple times.
1079   void dumprFull(const SelectionDAG *G = nullptr) const;
1080 
1081   /// printrWithDepth to dbgs().  The given
1082   /// SelectionDAG allows target-specific nodes to be printed in
1083   /// human-readable form.  Unlike dumpr, this will print children
1084   /// that appear multiple times wherever they are used.
1085   ///
1086   void dumprWithDepth(const SelectionDAG *G = nullptr,
1087                       unsigned depth = 100) const;
1088 
1089   /// Gather unique data for the node.
1090   void Profile(FoldingSetNodeID &ID) const;
1091 
1092   /// This method should only be used by the SDUse class.
1093   void addUse(SDUse &U) { U.addToList(&UseList); }
1094 
1095 protected:
1096   static SDVTList getSDVTList(EVT VT) {
1097     SDVTList Ret = { getValueTypeList(VT), 1 };
1098     return Ret;
1099   }
1100 
1101   /// Create an SDNode.
1102   ///
1103   /// SDNodes are created without any operands, and never own the operand
1104   /// storage. To add operands, see SelectionDAG::createOperands.
1105   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1106       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1107         IROrder(Order), debugLoc(std::move(dl)) {
1108     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1109     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1110     assert(NumValues == VTs.NumVTs &&
1111            "NumValues wasn't wide enough for its operands!");
1112   }
1113 
1114   /// Release the operands and set this node to have zero operands.
1115   void DropOperands();
1116 };
1117 
1118 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1119 /// into SDNode creation functions.
1120 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1121 /// from the original Instruction, and IROrder is the ordinal position of
1122 /// the instruction.
1123 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1124 /// the IROrder are propagated from the original SDNode.
1125 /// So SDLoc class provides two constructors besides the default one, one to
1126 /// be used by the DAGBuilder, the other to be used by others.
1127 class SDLoc {
1128 private:
1129   DebugLoc DL;
1130   int IROrder = 0;
1131 
1132 public:
1133   SDLoc() = default;
1134   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1135   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1136   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1137     assert(Order >= 0 && "bad IROrder");
1138     if (I)
1139       DL = I->getDebugLoc();
1140   }
1141 
1142   unsigned getIROrder() const { return IROrder; }
1143   const DebugLoc &getDebugLoc() const { return DL; }
1144 };
1145 
1146 // Define inline functions from the SDValue class.
1147 
1148 inline SDValue::SDValue(SDNode *node, unsigned resno)
1149     : Node(node), ResNo(resno) {
1150   // Explicitly check for !ResNo to avoid use-after-free, because there are
1151   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1152   // combines.
1153   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1154          "Invalid result number for the given node!");
1155   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1156 }
1157 
1158 inline unsigned SDValue::getOpcode() const {
1159   return Node->getOpcode();
1160 }
1161 
1162 inline EVT SDValue::getValueType() const {
1163   return Node->getValueType(ResNo);
1164 }
1165 
1166 inline unsigned SDValue::getNumOperands() const {
1167   return Node->getNumOperands();
1168 }
1169 
1170 inline const SDValue &SDValue::getOperand(unsigned i) const {
1171   return Node->getOperand(i);
1172 }
1173 
1174 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1175   return Node->getConstantOperandVal(i);
1176 }
1177 
1178 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1179   return Node->getConstantOperandAPInt(i);
1180 }
1181 
1182 inline bool SDValue::isTargetOpcode() const {
1183   return Node->isTargetOpcode();
1184 }
1185 
1186 inline bool SDValue::isTargetMemoryOpcode() const {
1187   return Node->isTargetMemoryOpcode();
1188 }
1189 
1190 inline bool SDValue::isMachineOpcode() const {
1191   return Node->isMachineOpcode();
1192 }
1193 
1194 inline unsigned SDValue::getMachineOpcode() const {
1195   return Node->getMachineOpcode();
1196 }
1197 
1198 inline bool SDValue::isUndef() const {
1199   return Node->isUndef();
1200 }
1201 
1202 inline bool SDValue::use_empty() const {
1203   return !Node->hasAnyUseOfValue(ResNo);
1204 }
1205 
1206 inline bool SDValue::hasOneUse() const {
1207   return Node->hasNUsesOfValue(1, ResNo);
1208 }
1209 
1210 inline const DebugLoc &SDValue::getDebugLoc() const {
1211   return Node->getDebugLoc();
1212 }
1213 
1214 inline void SDValue::dump() const {
1215   return Node->dump();
1216 }
1217 
1218 inline void SDValue::dump(const SelectionDAG *G) const {
1219   return Node->dump(G);
1220 }
1221 
1222 inline void SDValue::dumpr() const {
1223   return Node->dumpr();
1224 }
1225 
1226 inline void SDValue::dumpr(const SelectionDAG *G) const {
1227   return Node->dumpr(G);
1228 }
1229 
1230 // Define inline functions from the SDUse class.
1231 
1232 inline void SDUse::set(const SDValue &V) {
1233   if (Val.getNode()) removeFromList();
1234   Val = V;
1235   if (V.getNode()) V.getNode()->addUse(*this);
1236 }
1237 
1238 inline void SDUse::setInitial(const SDValue &V) {
1239   Val = V;
1240   V.getNode()->addUse(*this);
1241 }
1242 
1243 inline void SDUse::setNode(SDNode *N) {
1244   if (Val.getNode()) removeFromList();
1245   Val.setNode(N);
1246   if (N) N->addUse(*this);
1247 }
1248 
1249 /// This class is used to form a handle around another node that
1250 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1251 /// operand.  This node should be directly created by end-users and not added to
1252 /// the AllNodes list.
1253 class HandleSDNode : public SDNode {
1254   SDUse Op;
1255 
1256 public:
1257   explicit HandleSDNode(SDValue X)
1258     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1259     // HandleSDNodes are never inserted into the DAG, so they won't be
1260     // auto-numbered. Use ID 65535 as a sentinel.
1261     PersistentId = 0xffff;
1262 
1263     // Manually set up the operand list. This node type is special in that it's
1264     // always stack allocated and SelectionDAG does not manage its operands.
1265     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1266     // be so special.
1267     Op.setUser(this);
1268     Op.setInitial(X);
1269     NumOperands = 1;
1270     OperandList = &Op;
1271   }
1272   ~HandleSDNode();
1273 
1274   const SDValue &getValue() const { return Op; }
1275 };
1276 
1277 class AddrSpaceCastSDNode : public SDNode {
1278 private:
1279   unsigned SrcAddrSpace;
1280   unsigned DestAddrSpace;
1281 
1282 public:
1283   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1284                       unsigned SrcAS, unsigned DestAS);
1285 
1286   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1287   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1288 
1289   static bool classof(const SDNode *N) {
1290     return N->getOpcode() == ISD::ADDRSPACECAST;
1291   }
1292 };
1293 
1294 /// This is an abstract virtual class for memory operations.
1295 class MemSDNode : public SDNode {
1296 private:
1297   // VT of in-memory value.
1298   EVT MemoryVT;
1299 
1300 protected:
1301   /// Memory reference information.
1302   MachineMemOperand *MMO;
1303 
1304 public:
1305   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1306             EVT memvt, MachineMemOperand *MMO);
1307 
1308   bool readMem() const { return MMO->isLoad(); }
1309   bool writeMem() const { return MMO->isStore(); }
1310 
1311   /// Returns alignment and volatility of the memory access
1312   unsigned getOriginalAlignment() const {
1313     return MMO->getBaseAlignment();
1314   }
1315   unsigned getAlignment() const {
1316     return MMO->getAlignment();
1317   }
1318 
1319   /// Return the SubclassData value, without HasDebugValue. This contains an
1320   /// encoding of the volatile flag, as well as bits used by subclasses. This
1321   /// function should only be used to compute a FoldingSetNodeID value.
1322   /// The HasDebugValue bit is masked out because CSE map needs to match
1323   /// nodes with debug info with nodes without debug info. Same is about
1324   /// isDivergent bit.
1325   unsigned getRawSubclassData() const {
1326     uint16_t Data;
1327     union {
1328       char RawSDNodeBits[sizeof(uint16_t)];
1329       SDNodeBitfields SDNodeBits;
1330     };
1331     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1332     SDNodeBits.HasDebugValue = 0;
1333     SDNodeBits.IsDivergent = false;
1334     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1335     return Data;
1336   }
1337 
1338   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1339   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1340   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1341   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1342 
1343   // Returns the offset from the location of the access.
1344   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1345 
1346   /// Returns the AA info that describes the dereference.
1347   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1348 
1349   /// Returns the Ranges that describes the dereference.
1350   const MDNode *getRanges() const { return MMO->getRanges(); }
1351 
1352   /// Returns the synchronization scope ID for this memory operation.
1353   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1354 
1355   /// Return the atomic ordering requirements for this memory operation. For
1356   /// cmpxchg atomic operations, return the atomic ordering requirements when
1357   /// store occurs.
1358   AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1359 
1360   /// Return true if the memory operation ordering is Unordered or higher.
1361   bool isAtomic() const { return MMO->isAtomic(); }
1362 
1363   /// Returns true if the memory operation doesn't imply any ordering
1364   /// constraints on surrounding memory operations beyond the normal memory
1365   /// aliasing rules.
1366   bool isUnordered() const { return MMO->isUnordered(); }
1367 
1368   /// Returns true if the memory operation is neither atomic or volatile.
1369   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1370 
1371   /// Return the type of the in-memory value.
1372   EVT getMemoryVT() const { return MemoryVT; }
1373 
1374   /// Return a MachineMemOperand object describing the memory
1375   /// reference performed by operation.
1376   MachineMemOperand *getMemOperand() const { return MMO; }
1377 
1378   const MachinePointerInfo &getPointerInfo() const {
1379     return MMO->getPointerInfo();
1380   }
1381 
1382   /// Return the address space for the associated pointer
1383   unsigned getAddressSpace() const {
1384     return getPointerInfo().getAddrSpace();
1385   }
1386 
1387   /// Update this MemSDNode's MachineMemOperand information
1388   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1389   /// This must only be used when the new alignment applies to all users of
1390   /// this MachineMemOperand.
1391   void refineAlignment(const MachineMemOperand *NewMMO) {
1392     MMO->refineAlignment(NewMMO);
1393   }
1394 
1395   const SDValue &getChain() const { return getOperand(0); }
1396   const SDValue &getBasePtr() const {
1397     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1398   }
1399 
1400   // Methods to support isa and dyn_cast
1401   static bool classof(const SDNode *N) {
1402     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1403     // with either an intrinsic or a target opcode.
1404     return N->getOpcode() == ISD::LOAD                ||
1405            N->getOpcode() == ISD::STORE               ||
1406            N->getOpcode() == ISD::PREFETCH            ||
1407            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1408            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1409            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1410            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1411            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1412            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1413            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1414            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1415            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1416            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1417            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1418            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1419            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1420            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1421            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1422            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1423            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1424            N->getOpcode() == ISD::ATOMIC_STORE        ||
1425            N->getOpcode() == ISD::MLOAD               ||
1426            N->getOpcode() == ISD::MSTORE              ||
1427            N->getOpcode() == ISD::MGATHER             ||
1428            N->getOpcode() == ISD::MSCATTER            ||
1429            N->isMemIntrinsic()                        ||
1430            N->isTargetMemoryOpcode();
1431   }
1432 };
1433 
1434 /// This is an SDNode representing atomic operations.
1435 class AtomicSDNode : public MemSDNode {
1436 public:
1437   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1438                EVT MemVT, MachineMemOperand *MMO)
1439     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1440     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1441             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1442   }
1443 
1444   const SDValue &getBasePtr() const { return getOperand(1); }
1445   const SDValue &getVal() const { return getOperand(2); }
1446 
1447   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1448   /// otherwise.
1449   bool isCompareAndSwap() const {
1450     unsigned Op = getOpcode();
1451     return Op == ISD::ATOMIC_CMP_SWAP ||
1452            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1453   }
1454 
1455   /// For cmpxchg atomic operations, return the atomic ordering requirements
1456   /// when store does not occur.
1457   AtomicOrdering getFailureOrdering() const {
1458     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1459     return MMO->getFailureOrdering();
1460   }
1461 
1462   // Methods to support isa and dyn_cast
1463   static bool classof(const SDNode *N) {
1464     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1465            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1466            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1467            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1468            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1469            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1470            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1471            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1472            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1473            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1474            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1475            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1476            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1477            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1478            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1479            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1480            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1481            N->getOpcode() == ISD::ATOMIC_STORE;
1482   }
1483 };
1484 
1485 /// This SDNode is used for target intrinsics that touch
1486 /// memory and need an associated MachineMemOperand. Its opcode may be
1487 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1488 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1489 class MemIntrinsicSDNode : public MemSDNode {
1490 public:
1491   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1492                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1493       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1494     SDNodeBits.IsMemIntrinsic = true;
1495   }
1496 
1497   // Methods to support isa and dyn_cast
1498   static bool classof(const SDNode *N) {
1499     // We lower some target intrinsics to their target opcode
1500     // early a node with a target opcode can be of this class
1501     return N->isMemIntrinsic()             ||
1502            N->getOpcode() == ISD::PREFETCH ||
1503            N->isTargetMemoryOpcode();
1504   }
1505 };
1506 
1507 /// This SDNode is used to implement the code generator
1508 /// support for the llvm IR shufflevector instruction.  It combines elements
1509 /// from two input vectors into a new input vector, with the selection and
1510 /// ordering of elements determined by an array of integers, referred to as
1511 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1512 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1513 /// An index of -1 is treated as undef, such that the code generator may put
1514 /// any value in the corresponding element of the result.
1515 class ShuffleVectorSDNode : public SDNode {
1516   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1517   // is freed when the SelectionDAG object is destroyed.
1518   const int *Mask;
1519 
1520 protected:
1521   friend class SelectionDAG;
1522 
1523   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1524       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1525 
1526 public:
1527   ArrayRef<int> getMask() const {
1528     EVT VT = getValueType(0);
1529     return makeArrayRef(Mask, VT.getVectorNumElements());
1530   }
1531 
1532   int getMaskElt(unsigned Idx) const {
1533     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1534     return Mask[Idx];
1535   }
1536 
1537   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1538 
1539   int getSplatIndex() const {
1540     assert(isSplat() && "Cannot get splat index for non-splat!");
1541     EVT VT = getValueType(0);
1542     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1543       if (Mask[i] >= 0)
1544         return Mask[i];
1545 
1546     // We can choose any index value here and be correct because all elements
1547     // are undefined. Return 0 for better potential for callers to simplify.
1548     return 0;
1549   }
1550 
1551   static bool isSplatMask(const int *Mask, EVT VT);
1552 
1553   /// Change values in a shuffle permute mask assuming
1554   /// the two vector operands have swapped position.
1555   static void commuteMask(MutableArrayRef<int> Mask) {
1556     unsigned NumElems = Mask.size();
1557     for (unsigned i = 0; i != NumElems; ++i) {
1558       int idx = Mask[i];
1559       if (idx < 0)
1560         continue;
1561       else if (idx < (int)NumElems)
1562         Mask[i] = idx + NumElems;
1563       else
1564         Mask[i] = idx - NumElems;
1565     }
1566   }
1567 
1568   static bool classof(const SDNode *N) {
1569     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1570   }
1571 };
1572 
1573 class ConstantSDNode : public SDNode {
1574   friend class SelectionDAG;
1575 
1576   const ConstantInt *Value;
1577 
1578   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1579       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1580                getSDVTList(VT)),
1581         Value(val) {
1582     ConstantSDNodeBits.IsOpaque = isOpaque;
1583   }
1584 
1585 public:
1586   const ConstantInt *getConstantIntValue() const { return Value; }
1587   const APInt &getAPIntValue() const { return Value->getValue(); }
1588   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1589   int64_t getSExtValue() const { return Value->getSExtValue(); }
1590   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1591     return Value->getLimitedValue(Limit);
1592   }
1593 
1594   bool isOne() const { return Value->isOne(); }
1595   bool isNullValue() const { return Value->isZero(); }
1596   bool isAllOnesValue() const { return Value->isMinusOne(); }
1597 
1598   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1599 
1600   static bool classof(const SDNode *N) {
1601     return N->getOpcode() == ISD::Constant ||
1602            N->getOpcode() == ISD::TargetConstant;
1603   }
1604 };
1605 
1606 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1607   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1608 }
1609 
1610 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1611   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1612 }
1613 
1614 class ConstantFPSDNode : public SDNode {
1615   friend class SelectionDAG;
1616 
1617   const ConstantFP *Value;
1618 
1619   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1620       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1621                DebugLoc(), getSDVTList(VT)),
1622         Value(val) {}
1623 
1624 public:
1625   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1626   const ConstantFP *getConstantFPValue() const { return Value; }
1627 
1628   /// Return true if the value is positive or negative zero.
1629   bool isZero() const { return Value->isZero(); }
1630 
1631   /// Return true if the value is a NaN.
1632   bool isNaN() const { return Value->isNaN(); }
1633 
1634   /// Return true if the value is an infinity
1635   bool isInfinity() const { return Value->isInfinity(); }
1636 
1637   /// Return true if the value is negative.
1638   bool isNegative() const { return Value->isNegative(); }
1639 
1640   /// We don't rely on operator== working on double values, as
1641   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1642   /// As such, this method can be used to do an exact bit-for-bit comparison of
1643   /// two floating point values.
1644 
1645   /// We leave the version with the double argument here because it's just so
1646   /// convenient to write "2.0" and the like.  Without this function we'd
1647   /// have to duplicate its logic everywhere it's called.
1648   bool isExactlyValue(double V) const {
1649     return Value->getValueAPF().isExactlyValue(V);
1650   }
1651   bool isExactlyValue(const APFloat& V) const;
1652 
1653   static bool isValueValidForType(EVT VT, const APFloat& Val);
1654 
1655   static bool classof(const SDNode *N) {
1656     return N->getOpcode() == ISD::ConstantFP ||
1657            N->getOpcode() == ISD::TargetConstantFP;
1658   }
1659 };
1660 
1661 /// Returns true if \p V is a constant integer zero.
1662 bool isNullConstant(SDValue V);
1663 
1664 /// Returns true if \p V is an FP constant with a value of positive zero.
1665 bool isNullFPConstant(SDValue V);
1666 
1667 /// Returns true if \p V is an integer constant with all bits set.
1668 bool isAllOnesConstant(SDValue V);
1669 
1670 /// Returns true if \p V is a constant integer one.
1671 bool isOneConstant(SDValue V);
1672 
1673 /// Return the non-bitcasted source operand of \p V if it exists.
1674 /// If \p V is not a bitcasted value, it is returned as-is.
1675 SDValue peekThroughBitcasts(SDValue V);
1676 
1677 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1678 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1679 SDValue peekThroughOneUseBitcasts(SDValue V);
1680 
1681 /// Return the non-extracted vector source operand of \p V if it exists.
1682 /// If \p V is not an extracted subvector, it is returned as-is.
1683 SDValue peekThroughExtractSubvectors(SDValue V);
1684 
1685 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1686 /// constant is canonicalized to be operand 1.
1687 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1688 
1689 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1690 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1691                                     bool AllowTruncation = false);
1692 
1693 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1694 /// constant int.
1695 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1696                                     bool AllowUndefs = false,
1697                                     bool AllowTruncation = false);
1698 
1699 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1700 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1701 
1702 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1703 /// constant float.
1704 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1705                                         bool AllowUndefs = false);
1706 
1707 /// Return true if the value is a constant 0 integer or a splatted vector of
1708 /// a constant 0 integer (with no undefs by default).
1709 /// Build vector implicit truncation is not an issue for null values.
1710 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1711 
1712 /// Return true if the value is a constant 1 integer or a splatted vector of a
1713 /// constant 1 integer (with no undefs).
1714 /// Does not permit build vector implicit truncation.
1715 bool isOneOrOneSplat(SDValue V);
1716 
1717 /// Return true if the value is a constant -1 integer or a splatted vector of a
1718 /// constant -1 integer (with no undefs).
1719 /// Does not permit build vector implicit truncation.
1720 bool isAllOnesOrAllOnesSplat(SDValue V);
1721 
1722 class GlobalAddressSDNode : public SDNode {
1723   friend class SelectionDAG;
1724 
1725   const GlobalValue *TheGlobal;
1726   int64_t Offset;
1727   unsigned TargetFlags;
1728 
1729   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1730                       const GlobalValue *GA, EVT VT, int64_t o,
1731                       unsigned TF);
1732 
1733 public:
1734   const GlobalValue *getGlobal() const { return TheGlobal; }
1735   int64_t getOffset() const { return Offset; }
1736   unsigned getTargetFlags() const { return TargetFlags; }
1737   // Return the address space this GlobalAddress belongs to.
1738   unsigned getAddressSpace() const;
1739 
1740   static bool classof(const SDNode *N) {
1741     return N->getOpcode() == ISD::GlobalAddress ||
1742            N->getOpcode() == ISD::TargetGlobalAddress ||
1743            N->getOpcode() == ISD::GlobalTLSAddress ||
1744            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1745   }
1746 };
1747 
1748 class FrameIndexSDNode : public SDNode {
1749   friend class SelectionDAG;
1750 
1751   int FI;
1752 
1753   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1754     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1755       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1756   }
1757 
1758 public:
1759   int getIndex() const { return FI; }
1760 
1761   static bool classof(const SDNode *N) {
1762     return N->getOpcode() == ISD::FrameIndex ||
1763            N->getOpcode() == ISD::TargetFrameIndex;
1764   }
1765 };
1766 
1767 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1768 /// the offet and size that are started/ended in the underlying FrameIndex.
1769 class LifetimeSDNode : public SDNode {
1770   friend class SelectionDAG;
1771   int64_t Size;
1772   int64_t Offset; // -1 if offset is unknown.
1773 
1774   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1775                  SDVTList VTs, int64_t Size, int64_t Offset)
1776       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1777 public:
1778   int64_t getFrameIndex() const {
1779     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1780   }
1781 
1782   bool hasOffset() const { return Offset >= 0; }
1783   int64_t getOffset() const {
1784     assert(hasOffset() && "offset is unknown");
1785     return Offset;
1786   }
1787   int64_t getSize() const {
1788     assert(hasOffset() && "offset is unknown");
1789     return Size;
1790   }
1791 
1792   // Methods to support isa and dyn_cast
1793   static bool classof(const SDNode *N) {
1794     return N->getOpcode() == ISD::LIFETIME_START ||
1795            N->getOpcode() == ISD::LIFETIME_END;
1796   }
1797 };
1798 
1799 class JumpTableSDNode : public SDNode {
1800   friend class SelectionDAG;
1801 
1802   int JTI;
1803   unsigned TargetFlags;
1804 
1805   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1806     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1807       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1808   }
1809 
1810 public:
1811   int getIndex() const { return JTI; }
1812   unsigned getTargetFlags() const { return TargetFlags; }
1813 
1814   static bool classof(const SDNode *N) {
1815     return N->getOpcode() == ISD::JumpTable ||
1816            N->getOpcode() == ISD::TargetJumpTable;
1817   }
1818 };
1819 
1820 class ConstantPoolSDNode : public SDNode {
1821   friend class SelectionDAG;
1822 
1823   union {
1824     const Constant *ConstVal;
1825     MachineConstantPoolValue *MachineCPVal;
1826   } Val;
1827   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1828   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1829   unsigned TargetFlags;
1830 
1831   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1832                      unsigned Align, unsigned TF)
1833     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1834              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1835              TargetFlags(TF) {
1836     assert(Offset >= 0 && "Offset is too large");
1837     Val.ConstVal = c;
1838   }
1839 
1840   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1841                      EVT VT, int o, unsigned Align, unsigned TF)
1842     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1843              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1844              TargetFlags(TF) {
1845     assert(Offset >= 0 && "Offset is too large");
1846     Val.MachineCPVal = v;
1847     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1848   }
1849 
1850 public:
1851   bool isMachineConstantPoolEntry() const {
1852     return Offset < 0;
1853   }
1854 
1855   const Constant *getConstVal() const {
1856     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1857     return Val.ConstVal;
1858   }
1859 
1860   MachineConstantPoolValue *getMachineCPVal() const {
1861     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1862     return Val.MachineCPVal;
1863   }
1864 
1865   int getOffset() const {
1866     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1867   }
1868 
1869   // Return the alignment of this constant pool object, which is either 0 (for
1870   // default alignment) or the desired value.
1871   unsigned getAlignment() const { return Alignment; }
1872   unsigned getTargetFlags() const { return TargetFlags; }
1873 
1874   Type *getType() const;
1875 
1876   static bool classof(const SDNode *N) {
1877     return N->getOpcode() == ISD::ConstantPool ||
1878            N->getOpcode() == ISD::TargetConstantPool;
1879   }
1880 };
1881 
1882 /// Completely target-dependent object reference.
1883 class TargetIndexSDNode : public SDNode {
1884   friend class SelectionDAG;
1885 
1886   unsigned TargetFlags;
1887   int Index;
1888   int64_t Offset;
1889 
1890 public:
1891   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1892       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1893         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1894 
1895   unsigned getTargetFlags() const { return TargetFlags; }
1896   int getIndex() const { return Index; }
1897   int64_t getOffset() const { return Offset; }
1898 
1899   static bool classof(const SDNode *N) {
1900     return N->getOpcode() == ISD::TargetIndex;
1901   }
1902 };
1903 
1904 class BasicBlockSDNode : public SDNode {
1905   friend class SelectionDAG;
1906 
1907   MachineBasicBlock *MBB;
1908 
1909   /// Debug info is meaningful and potentially useful here, but we create
1910   /// blocks out of order when they're jumped to, which makes it a bit
1911   /// harder.  Let's see if we need it first.
1912   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1913     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1914   {}
1915 
1916 public:
1917   MachineBasicBlock *getBasicBlock() const { return MBB; }
1918 
1919   static bool classof(const SDNode *N) {
1920     return N->getOpcode() == ISD::BasicBlock;
1921   }
1922 };
1923 
1924 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1925 class BuildVectorSDNode : public SDNode {
1926 public:
1927   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1928   explicit BuildVectorSDNode() = delete;
1929 
1930   /// Check if this is a constant splat, and if so, find the
1931   /// smallest element size that splats the vector.  If MinSplatBits is
1932   /// nonzero, the element size must be at least that large.  Note that the
1933   /// splat element may be the entire vector (i.e., a one element vector).
1934   /// Returns the splat element value in SplatValue.  Any undefined bits in
1935   /// that value are zero, and the corresponding bits in the SplatUndef mask
1936   /// are set.  The SplatBitSize value is set to the splat element size in
1937   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1938   /// undefined.  isBigEndian describes the endianness of the target.
1939   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1940                        unsigned &SplatBitSize, bool &HasAnyUndefs,
1941                        unsigned MinSplatBits = 0,
1942                        bool isBigEndian = false) const;
1943 
1944   /// Returns the demanded splatted value or a null value if this is not a
1945   /// splat.
1946   ///
1947   /// The DemandedElts mask indicates the elements that must be in the splat.
1948   /// If passed a non-null UndefElements bitvector, it will resize it to match
1949   /// the vector width and set the bits where elements are undef.
1950   SDValue getSplatValue(const APInt &DemandedElts,
1951                         BitVector *UndefElements = nullptr) const;
1952 
1953   /// Returns the splatted value or a null value if this is not a splat.
1954   ///
1955   /// If passed a non-null UndefElements bitvector, it will resize it to match
1956   /// the vector width and set the bits where elements are undef.
1957   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1958 
1959   /// Returns the demanded splatted constant or null if this is not a constant
1960   /// splat.
1961   ///
1962   /// The DemandedElts mask indicates the elements that must be in the splat.
1963   /// If passed a non-null UndefElements bitvector, it will resize it to match
1964   /// the vector width and set the bits where elements are undef.
1965   ConstantSDNode *
1966   getConstantSplatNode(const APInt &DemandedElts,
1967                        BitVector *UndefElements = nullptr) const;
1968 
1969   /// Returns the splatted constant or null if this is not a constant
1970   /// splat.
1971   ///
1972   /// If passed a non-null UndefElements bitvector, it will resize it to match
1973   /// the vector width and set the bits where elements are undef.
1974   ConstantSDNode *
1975   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1976 
1977   /// Returns the demanded splatted constant FP or null if this is not a
1978   /// constant FP splat.
1979   ///
1980   /// The DemandedElts mask indicates the elements that must be in the splat.
1981   /// If passed a non-null UndefElements bitvector, it will resize it to match
1982   /// the vector width and set the bits where elements are undef.
1983   ConstantFPSDNode *
1984   getConstantFPSplatNode(const APInt &DemandedElts,
1985                          BitVector *UndefElements = nullptr) const;
1986 
1987   /// Returns the splatted constant FP or null if this is not a constant
1988   /// FP splat.
1989   ///
1990   /// If passed a non-null UndefElements bitvector, it will resize it to match
1991   /// the vector width and set the bits where elements are undef.
1992   ConstantFPSDNode *
1993   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1994 
1995   /// If this is a constant FP splat and the splatted constant FP is an
1996   /// exact power or 2, return the log base 2 integer value.  Otherwise,
1997   /// return -1.
1998   ///
1999   /// The BitWidth specifies the necessary bit precision.
2000   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2001                                           uint32_t BitWidth) const;
2002 
2003   bool isConstant() const;
2004 
2005   static bool classof(const SDNode *N) {
2006     return N->getOpcode() == ISD::BUILD_VECTOR;
2007   }
2008 };
2009 
2010 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2011 /// used when the SelectionDAG needs to make a simple reference to something
2012 /// in the LLVM IR representation.
2013 ///
2014 class SrcValueSDNode : public SDNode {
2015   friend class SelectionDAG;
2016 
2017   const Value *V;
2018 
2019   /// Create a SrcValue for a general value.
2020   explicit SrcValueSDNode(const Value *v)
2021     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2022 
2023 public:
2024   /// Return the contained Value.
2025   const Value *getValue() const { return V; }
2026 
2027   static bool classof(const SDNode *N) {
2028     return N->getOpcode() == ISD::SRCVALUE;
2029   }
2030 };
2031 
2032 class MDNodeSDNode : public SDNode {
2033   friend class SelectionDAG;
2034 
2035   const MDNode *MD;
2036 
2037   explicit MDNodeSDNode(const MDNode *md)
2038   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2039   {}
2040 
2041 public:
2042   const MDNode *getMD() const { return MD; }
2043 
2044   static bool classof(const SDNode *N) {
2045     return N->getOpcode() == ISD::MDNODE_SDNODE;
2046   }
2047 };
2048 
2049 class RegisterSDNode : public SDNode {
2050   friend class SelectionDAG;
2051 
2052   unsigned Reg;
2053 
2054   RegisterSDNode(unsigned reg, EVT VT)
2055     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2056 
2057 public:
2058   unsigned getReg() const { return Reg; }
2059 
2060   static bool classof(const SDNode *N) {
2061     return N->getOpcode() == ISD::Register;
2062   }
2063 };
2064 
2065 class RegisterMaskSDNode : public SDNode {
2066   friend class SelectionDAG;
2067 
2068   // The memory for RegMask is not owned by the node.
2069   const uint32_t *RegMask;
2070 
2071   RegisterMaskSDNode(const uint32_t *mask)
2072     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2073       RegMask(mask) {}
2074 
2075 public:
2076   const uint32_t *getRegMask() const { return RegMask; }
2077 
2078   static bool classof(const SDNode *N) {
2079     return N->getOpcode() == ISD::RegisterMask;
2080   }
2081 };
2082 
2083 class BlockAddressSDNode : public SDNode {
2084   friend class SelectionDAG;
2085 
2086   const BlockAddress *BA;
2087   int64_t Offset;
2088   unsigned TargetFlags;
2089 
2090   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2091                      int64_t o, unsigned Flags)
2092     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2093              BA(ba), Offset(o), TargetFlags(Flags) {}
2094 
2095 public:
2096   const BlockAddress *getBlockAddress() const { return BA; }
2097   int64_t getOffset() const { return Offset; }
2098   unsigned getTargetFlags() const { return TargetFlags; }
2099 
2100   static bool classof(const SDNode *N) {
2101     return N->getOpcode() == ISD::BlockAddress ||
2102            N->getOpcode() == ISD::TargetBlockAddress;
2103   }
2104 };
2105 
2106 class LabelSDNode : public SDNode {
2107   friend class SelectionDAG;
2108 
2109   MCSymbol *Label;
2110 
2111   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2112       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2113     assert(LabelSDNode::classof(this) && "not a label opcode");
2114   }
2115 
2116 public:
2117   MCSymbol *getLabel() const { return Label; }
2118 
2119   static bool classof(const SDNode *N) {
2120     return N->getOpcode() == ISD::EH_LABEL ||
2121            N->getOpcode() == ISD::ANNOTATION_LABEL;
2122   }
2123 };
2124 
2125 class ExternalSymbolSDNode : public SDNode {
2126   friend class SelectionDAG;
2127 
2128   const char *Symbol;
2129   unsigned TargetFlags;
2130 
2131   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2132       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2133                DebugLoc(), getSDVTList(VT)),
2134         Symbol(Sym), TargetFlags(TF) {}
2135 
2136 public:
2137   const char *getSymbol() const { return Symbol; }
2138   unsigned getTargetFlags() const { return TargetFlags; }
2139 
2140   static bool classof(const SDNode *N) {
2141     return N->getOpcode() == ISD::ExternalSymbol ||
2142            N->getOpcode() == ISD::TargetExternalSymbol;
2143   }
2144 };
2145 
2146 class MCSymbolSDNode : public SDNode {
2147   friend class SelectionDAG;
2148 
2149   MCSymbol *Symbol;
2150 
2151   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2152       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2153 
2154 public:
2155   MCSymbol *getMCSymbol() const { return Symbol; }
2156 
2157   static bool classof(const SDNode *N) {
2158     return N->getOpcode() == ISD::MCSymbol;
2159   }
2160 };
2161 
2162 class CondCodeSDNode : public SDNode {
2163   friend class SelectionDAG;
2164 
2165   ISD::CondCode Condition;
2166 
2167   explicit CondCodeSDNode(ISD::CondCode Cond)
2168     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2169       Condition(Cond) {}
2170 
2171 public:
2172   ISD::CondCode get() const { return Condition; }
2173 
2174   static bool classof(const SDNode *N) {
2175     return N->getOpcode() == ISD::CONDCODE;
2176   }
2177 };
2178 
2179 /// This class is used to represent EVT's, which are used
2180 /// to parameterize some operations.
2181 class VTSDNode : public SDNode {
2182   friend class SelectionDAG;
2183 
2184   EVT ValueType;
2185 
2186   explicit VTSDNode(EVT VT)
2187     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2188       ValueType(VT) {}
2189 
2190 public:
2191   EVT getVT() const { return ValueType; }
2192 
2193   static bool classof(const SDNode *N) {
2194     return N->getOpcode() == ISD::VALUETYPE;
2195   }
2196 };
2197 
2198 /// Base class for LoadSDNode and StoreSDNode
2199 class LSBaseSDNode : public MemSDNode {
2200 public:
2201   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2202                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2203                MachineMemOperand *MMO)
2204       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2205     LSBaseSDNodeBits.AddressingMode = AM;
2206     assert(getAddressingMode() == AM && "Value truncated");
2207   }
2208 
2209   const SDValue &getOffset() const {
2210     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2211   }
2212 
2213   /// Return the addressing mode for this load or store:
2214   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2215   ISD::MemIndexedMode getAddressingMode() const {
2216     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2217   }
2218 
2219   /// Return true if this is a pre/post inc/dec load/store.
2220   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2221 
2222   /// Return true if this is NOT a pre/post inc/dec load/store.
2223   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2224 
2225   static bool classof(const SDNode *N) {
2226     return N->getOpcode() == ISD::LOAD ||
2227            N->getOpcode() == ISD::STORE;
2228   }
2229 };
2230 
2231 /// This class is used to represent ISD::LOAD nodes.
2232 class LoadSDNode : public LSBaseSDNode {
2233   friend class SelectionDAG;
2234 
2235   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2236              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2237              MachineMemOperand *MMO)
2238       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2239     LoadSDNodeBits.ExtTy = ETy;
2240     assert(readMem() && "Load MachineMemOperand is not a load!");
2241     assert(!writeMem() && "Load MachineMemOperand is a store!");
2242   }
2243 
2244 public:
2245   /// Return whether this is a plain node,
2246   /// or one of the varieties of value-extending loads.
2247   ISD::LoadExtType getExtensionType() const {
2248     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2249   }
2250 
2251   const SDValue &getBasePtr() const { return getOperand(1); }
2252   const SDValue &getOffset() const { return getOperand(2); }
2253 
2254   static bool classof(const SDNode *N) {
2255     return N->getOpcode() == ISD::LOAD;
2256   }
2257 };
2258 
2259 /// This class is used to represent ISD::STORE nodes.
2260 class StoreSDNode : public LSBaseSDNode {
2261   friend class SelectionDAG;
2262 
2263   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2264               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2265               MachineMemOperand *MMO)
2266       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2267     StoreSDNodeBits.IsTruncating = isTrunc;
2268     assert(!readMem() && "Store MachineMemOperand is a load!");
2269     assert(writeMem() && "Store MachineMemOperand is not a store!");
2270   }
2271 
2272 public:
2273   /// Return true if the op does a truncation before store.
2274   /// For integers this is the same as doing a TRUNCATE and storing the result.
2275   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2276   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2277   void setTruncatingStore(bool Truncating) {
2278     StoreSDNodeBits.IsTruncating = Truncating;
2279   }
2280 
2281   const SDValue &getValue() const { return getOperand(1); }
2282   const SDValue &getBasePtr() const { return getOperand(2); }
2283   const SDValue &getOffset() const { return getOperand(3); }
2284 
2285   static bool classof(const SDNode *N) {
2286     return N->getOpcode() == ISD::STORE;
2287   }
2288 };
2289 
2290 /// This base class is used to represent MLOAD and MSTORE nodes
2291 class MaskedLoadStoreSDNode : public MemSDNode {
2292 public:
2293   friend class SelectionDAG;
2294 
2295   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2296                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2297                         MachineMemOperand *MMO)
2298       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2299 
2300   // MaskedLoadSDNode (Chain, ptr, mask, passthru)
2301   // MaskedStoreSDNode (Chain, data, ptr, mask)
2302   // Mask is a vector of i1 elements
2303   const SDValue &getBasePtr() const {
2304     return getOperand(getOpcode() == ISD::MLOAD ? 1 : 2);
2305   }
2306   const SDValue &getMask() const {
2307     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2308   }
2309 
2310   static bool classof(const SDNode *N) {
2311     return N->getOpcode() == ISD::MLOAD ||
2312            N->getOpcode() == ISD::MSTORE;
2313   }
2314 };
2315 
2316 /// This class is used to represent an MLOAD node
2317 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2318 public:
2319   friend class SelectionDAG;
2320 
2321   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2322                    ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
2323                    MachineMemOperand *MMO)
2324       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
2325     LoadSDNodeBits.ExtTy = ETy;
2326     LoadSDNodeBits.IsExpanding = IsExpanding;
2327   }
2328 
2329   ISD::LoadExtType getExtensionType() const {
2330     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2331   }
2332 
2333   const SDValue &getBasePtr() const { return getOperand(1); }
2334   const SDValue &getMask() const    { return getOperand(2); }
2335   const SDValue &getPassThru() const { return getOperand(3); }
2336 
2337   static bool classof(const SDNode *N) {
2338     return N->getOpcode() == ISD::MLOAD;
2339   }
2340 
2341   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2342 };
2343 
2344 /// This class is used to represent an MSTORE node
2345 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2346 public:
2347   friend class SelectionDAG;
2348 
2349   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2350                     bool isTrunc, bool isCompressing, EVT MemVT,
2351                     MachineMemOperand *MMO)
2352       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
2353     StoreSDNodeBits.IsTruncating = isTrunc;
2354     StoreSDNodeBits.IsCompressing = isCompressing;
2355   }
2356 
2357   /// Return true if the op does a truncation before store.
2358   /// For integers this is the same as doing a TRUNCATE and storing the result.
2359   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2360   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2361 
2362   /// Returns true if the op does a compression to the vector before storing.
2363   /// The node contiguously stores the active elements (integers or floats)
2364   /// in src (those with their respective bit set in writemask k) to unaligned
2365   /// memory at base_addr.
2366   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2367 
2368   const SDValue &getValue() const   { return getOperand(1); }
2369   const SDValue &getBasePtr() const { return getOperand(2); }
2370   const SDValue &getMask() const    { return getOperand(3); }
2371 
2372   static bool classof(const SDNode *N) {
2373     return N->getOpcode() == ISD::MSTORE;
2374   }
2375 };
2376 
2377 /// This is a base class used to represent
2378 /// MGATHER and MSCATTER nodes
2379 ///
2380 class MaskedGatherScatterSDNode : public MemSDNode {
2381 public:
2382   friend class SelectionDAG;
2383 
2384   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2385                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2386                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2387       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2388     LSBaseSDNodeBits.AddressingMode = IndexType;
2389     assert(getIndexType() == IndexType && "Value truncated");
2390   }
2391 
2392   /// How is Index applied to BasePtr when computing addresses.
2393   ISD::MemIndexType getIndexType() const {
2394     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2395   }
2396   bool isIndexScaled() const {
2397     return (getIndexType() == ISD::SIGNED_SCALED) ||
2398            (getIndexType() == ISD::UNSIGNED_SCALED);
2399   }
2400   bool isIndexSigned() const {
2401     return (getIndexType() == ISD::SIGNED_SCALED) ||
2402            (getIndexType() == ISD::SIGNED_UNSCALED);
2403   }
2404 
2405   // In the both nodes address is Op1, mask is Op2:
2406   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2407   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2408   // Mask is a vector of i1 elements
2409   const SDValue &getBasePtr() const { return getOperand(3); }
2410   const SDValue &getIndex()   const { return getOperand(4); }
2411   const SDValue &getMask()    const { return getOperand(2); }
2412   const SDValue &getScale()   const { return getOperand(5); }
2413 
2414   static bool classof(const SDNode *N) {
2415     return N->getOpcode() == ISD::MGATHER ||
2416            N->getOpcode() == ISD::MSCATTER;
2417   }
2418 };
2419 
2420 /// This class is used to represent an MGATHER node
2421 ///
2422 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2423 public:
2424   friend class SelectionDAG;
2425 
2426   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2427                      EVT MemVT, MachineMemOperand *MMO,
2428                      ISD::MemIndexType IndexType)
2429       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2430                                   IndexType) {}
2431 
2432   const SDValue &getPassThru() const { return getOperand(1); }
2433 
2434   static bool classof(const SDNode *N) {
2435     return N->getOpcode() == ISD::MGATHER;
2436   }
2437 };
2438 
2439 /// This class is used to represent an MSCATTER node
2440 ///
2441 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2442 public:
2443   friend class SelectionDAG;
2444 
2445   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2446                       EVT MemVT, MachineMemOperand *MMO,
2447                       ISD::MemIndexType IndexType)
2448       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2449                                   IndexType) {}
2450 
2451   const SDValue &getValue() const { return getOperand(1); }
2452 
2453   static bool classof(const SDNode *N) {
2454     return N->getOpcode() == ISD::MSCATTER;
2455   }
2456 };
2457 
2458 /// An SDNode that represents everything that will be needed
2459 /// to construct a MachineInstr. These nodes are created during the
2460 /// instruction selection proper phase.
2461 ///
2462 /// Note that the only supported way to set the `memoperands` is by calling the
2463 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2464 /// inside the DAG rather than in the node.
2465 class MachineSDNode : public SDNode {
2466 private:
2467   friend class SelectionDAG;
2468 
2469   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2470       : SDNode(Opc, Order, DL, VTs) {}
2471 
2472   // We use a pointer union between a single `MachineMemOperand` pointer and
2473   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2474   // the number of these is zero, the single pointer variant used when the
2475   // number is one, and the array is used for larger numbers.
2476   //
2477   // The array is allocated via the `SelectionDAG`'s allocator and so will
2478   // always live until the DAG is cleaned up and doesn't require ownership here.
2479   //
2480   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2481   // subclasses aren't managed in a conforming C++ manner. See the comments on
2482   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2483   // constraint here is that these don't manage memory with their constructor or
2484   // destructor and can be initialized to a good state even if they start off
2485   // uninitialized.
2486   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2487 
2488   // Note that this could be folded into the above `MemRefs` member if doing so
2489   // is advantageous at some point. We don't need to store this in most cases.
2490   // However, at the moment this doesn't appear to make the allocation any
2491   // smaller and makes the code somewhat simpler to read.
2492   int NumMemRefs = 0;
2493 
2494 public:
2495   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2496 
2497   ArrayRef<MachineMemOperand *> memoperands() const {
2498     // Special case the common cases.
2499     if (NumMemRefs == 0)
2500       return {};
2501     if (NumMemRefs == 1)
2502       return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2503 
2504     // Otherwise we have an actual array.
2505     return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2506   }
2507   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2508   mmo_iterator memoperands_end() const { return memoperands().end(); }
2509   bool memoperands_empty() const { return memoperands().empty(); }
2510 
2511   /// Clear out the memory reference descriptor list.
2512   void clearMemRefs() {
2513     MemRefs = nullptr;
2514     NumMemRefs = 0;
2515   }
2516 
2517   static bool classof(const SDNode *N) {
2518     return N->isMachineOpcode();
2519   }
2520 };
2521 
2522 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2523                                             SDNode, ptrdiff_t> {
2524   const SDNode *Node;
2525   unsigned Operand;
2526 
2527   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2528 
2529 public:
2530   bool operator==(const SDNodeIterator& x) const {
2531     return Operand == x.Operand;
2532   }
2533   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2534 
2535   pointer operator*() const {
2536     return Node->getOperand(Operand).getNode();
2537   }
2538   pointer operator->() const { return operator*(); }
2539 
2540   SDNodeIterator& operator++() {                // Preincrement
2541     ++Operand;
2542     return *this;
2543   }
2544   SDNodeIterator operator++(int) { // Postincrement
2545     SDNodeIterator tmp = *this; ++*this; return tmp;
2546   }
2547   size_t operator-(SDNodeIterator Other) const {
2548     assert(Node == Other.Node &&
2549            "Cannot compare iterators of two different nodes!");
2550     return Operand - Other.Operand;
2551   }
2552 
2553   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2554   static SDNodeIterator end  (const SDNode *N) {
2555     return SDNodeIterator(N, N->getNumOperands());
2556   }
2557 
2558   unsigned getOperand() const { return Operand; }
2559   const SDNode *getNode() const { return Node; }
2560 };
2561 
2562 template <> struct GraphTraits<SDNode*> {
2563   using NodeRef = SDNode *;
2564   using ChildIteratorType = SDNodeIterator;
2565 
2566   static NodeRef getEntryNode(SDNode *N) { return N; }
2567 
2568   static ChildIteratorType child_begin(NodeRef N) {
2569     return SDNodeIterator::begin(N);
2570   }
2571 
2572   static ChildIteratorType child_end(NodeRef N) {
2573     return SDNodeIterator::end(N);
2574   }
2575 };
2576 
2577 /// A representation of the largest SDNode, for use in sizeof().
2578 ///
2579 /// This needs to be a union because the largest node differs on 32 bit systems
2580 /// with 4 and 8 byte pointer alignment, respectively.
2581 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2582                                             BlockAddressSDNode,
2583                                             GlobalAddressSDNode>;
2584 
2585 /// The SDNode class with the greatest alignment requirement.
2586 using MostAlignedSDNode = GlobalAddressSDNode;
2587 
2588 namespace ISD {
2589 
2590   /// Returns true if the specified node is a non-extending and unindexed load.
2591   inline bool isNormalLoad(const SDNode *N) {
2592     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2593     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2594       Ld->getAddressingMode() == ISD::UNINDEXED;
2595   }
2596 
2597   /// Returns true if the specified node is a non-extending load.
2598   inline bool isNON_EXTLoad(const SDNode *N) {
2599     return isa<LoadSDNode>(N) &&
2600       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2601   }
2602 
2603   /// Returns true if the specified node is a EXTLOAD.
2604   inline bool isEXTLoad(const SDNode *N) {
2605     return isa<LoadSDNode>(N) &&
2606       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2607   }
2608 
2609   /// Returns true if the specified node is a SEXTLOAD.
2610   inline bool isSEXTLoad(const SDNode *N) {
2611     return isa<LoadSDNode>(N) &&
2612       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2613   }
2614 
2615   /// Returns true if the specified node is a ZEXTLOAD.
2616   inline bool isZEXTLoad(const SDNode *N) {
2617     return isa<LoadSDNode>(N) &&
2618       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2619   }
2620 
2621   /// Returns true if the specified node is an unindexed load.
2622   inline bool isUNINDEXEDLoad(const SDNode *N) {
2623     return isa<LoadSDNode>(N) &&
2624       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2625   }
2626 
2627   /// Returns true if the specified node is a non-truncating
2628   /// and unindexed store.
2629   inline bool isNormalStore(const SDNode *N) {
2630     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2631     return St && !St->isTruncatingStore() &&
2632       St->getAddressingMode() == ISD::UNINDEXED;
2633   }
2634 
2635   /// Returns true if the specified node is a non-truncating store.
2636   inline bool isNON_TRUNCStore(const SDNode *N) {
2637     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2638   }
2639 
2640   /// Returns true if the specified node is a truncating store.
2641   inline bool isTRUNCStore(const SDNode *N) {
2642     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2643   }
2644 
2645   /// Returns true if the specified node is an unindexed store.
2646   inline bool isUNINDEXEDStore(const SDNode *N) {
2647     return isa<StoreSDNode>(N) &&
2648       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2649   }
2650 
2651   /// Attempt to match a unary predicate against a scalar/splat constant or
2652   /// every element of a constant BUILD_VECTOR.
2653   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2654   bool matchUnaryPredicate(SDValue Op,
2655                            std::function<bool(ConstantSDNode *)> Match,
2656                            bool AllowUndefs = false);
2657 
2658   /// Attempt to match a binary predicate against a pair of scalar/splat
2659   /// constants or every element of a pair of constant BUILD_VECTORs.
2660   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2661   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2662   bool matchBinaryPredicate(
2663       SDValue LHS, SDValue RHS,
2664       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2665       bool AllowUndefs = false, bool AllowTypeMismatch = false);
2666 } // end namespace ISD
2667 
2668 } // end namespace llvm
2669 
2670 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
2671