xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/SelectionDAGNodes.h (revision 7d0873ebb83b19ba1e8a89e679470d885efe12e3)
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/Register.h"
34 #include "llvm/CodeGen/ValueTypes.h"
35 #include "llvm/CodeGenTypes/MachineValueType.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/Support/AlignOf.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <climits>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <iterator>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 
58 namespace llvm {
59 
60 class APInt;
61 class Constant;
62 class GlobalValue;
63 class MachineBasicBlock;
64 class MachineConstantPoolValue;
65 class MCSymbol;
66 class raw_ostream;
67 class SDNode;
68 class SelectionDAG;
69 class Type;
70 class Value;
71 
72 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73                     bool force = false);
74 
75 /// This represents a list of ValueType's that has been intern'd by
76 /// a SelectionDAG.  Instances of this simple value class are returned by
77 /// SelectionDAG::getVTList(...).
78 ///
79 struct SDVTList {
80   const EVT *VTs;
81   unsigned int NumVTs;
82 };
83 
84 namespace ISD {
85 
86   /// Node predicates
87 
88 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89 /// same constant or undefined, return true and return the constant value in
90 /// \p SplatValue.
91 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92 
93 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95 /// true, it only checks BUILD_VECTOR.
96 bool isConstantSplatVectorAllOnes(const SDNode *N,
97                                   bool BuildVectorOnly = false);
98 
99 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101 /// only checks BUILD_VECTOR.
102 bool isConstantSplatVectorAllZeros(const SDNode *N,
103                                    bool BuildVectorOnly = false);
104 
105 /// Return true if the specified node is a BUILD_VECTOR where all of the
106 /// elements are ~0 or undef.
107 bool isBuildVectorAllOnes(const SDNode *N);
108 
109 /// Return true if the specified node is a BUILD_VECTOR where all of the
110 /// elements are 0 or undef.
111 bool isBuildVectorAllZeros(const SDNode *N);
112 
113 /// Return true if the specified node is a BUILD_VECTOR node of all
114 /// ConstantSDNode or undef.
115 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116 
117 /// Return true if the specified node is a BUILD_VECTOR node of all
118 /// ConstantFPSDNode or undef.
119 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120 
121 /// Returns true if the specified node is a vector where all elements can
122 /// be truncated to the specified element size without a loss in meaning.
123 bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed);
124 
125 /// Return true if the node has at least one operand and all operands of the
126 /// specified node are ISD::UNDEF.
127 bool allOperandsUndef(const SDNode *N);
128 
129 /// Return true if the specified node is FREEZE(UNDEF).
130 bool isFreezeUndef(const SDNode *N);
131 
132 } // end namespace ISD
133 
134 //===----------------------------------------------------------------------===//
135 /// Unlike LLVM values, Selection DAG nodes may return multiple
136 /// values as the result of a computation.  Many nodes return multiple values,
137 /// from loads (which define a token and a return value) to ADDC (which returns
138 /// a result and a carry value), to calls (which may return an arbitrary number
139 /// of values).
140 ///
141 /// As such, each use of a SelectionDAG computation must indicate the node that
142 /// computes it as well as which return value to use from that node.  This pair
143 /// of information is represented with the SDValue value type.
144 ///
145 class SDValue {
146   friend struct DenseMapInfo<SDValue>;
147 
148   SDNode *Node = nullptr; // The node defining the value we are using.
149   unsigned ResNo = 0;     // Which return value of the node we are using.
150 
151 public:
152   SDValue() = default;
153   SDValue(SDNode *node, unsigned resno);
154 
155   /// get the index which selects a specific result in the SDNode
156   unsigned getResNo() const { return ResNo; }
157 
158   /// get the SDNode which holds the desired result
159   SDNode *getNode() const { return Node; }
160 
161   /// set the SDNode
162   void setNode(SDNode *N) { Node = N; }
163 
164   inline SDNode *operator->() const { return Node; }
165 
166   bool operator==(const SDValue &O) const {
167     return Node == O.Node && ResNo == O.ResNo;
168   }
169   bool operator!=(const SDValue &O) const {
170     return !operator==(O);
171   }
172   bool operator<(const SDValue &O) const {
173     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
174   }
175   explicit operator bool() const {
176     return Node != nullptr;
177   }
178 
179   SDValue getValue(unsigned R) const {
180     return SDValue(Node, R);
181   }
182 
183   /// Return true if this node is an operand of N.
184   bool isOperandOf(const SDNode *N) const;
185 
186   /// Return the ValueType of the referenced return value.
187   inline EVT getValueType() const;
188 
189   /// Return the simple ValueType of the referenced return value.
190   MVT getSimpleValueType() const {
191     return getValueType().getSimpleVT();
192   }
193 
194   /// Returns the size of the value in bits.
195   ///
196   /// If the value type is a scalable vector type, the scalable property will
197   /// be set and the runtime size will be a positive integer multiple of the
198   /// base size.
199   TypeSize getValueSizeInBits() const {
200     return getValueType().getSizeInBits();
201   }
202 
203   uint64_t getScalarValueSizeInBits() const {
204     return getValueType().getScalarType().getFixedSizeInBits();
205   }
206 
207   // Forwarding methods - These forward to the corresponding methods in SDNode.
208   inline unsigned getOpcode() const;
209   inline unsigned getNumOperands() const;
210   inline const SDValue &getOperand(unsigned i) const;
211   inline uint64_t getConstantOperandVal(unsigned i) const;
212   inline const APInt &getConstantOperandAPInt(unsigned i) const;
213   inline bool isTargetMemoryOpcode() const;
214   inline bool isTargetOpcode() const;
215   inline bool isMachineOpcode() const;
216   inline bool isUndef() const;
217   inline unsigned getMachineOpcode() const;
218   inline const DebugLoc &getDebugLoc() const;
219   inline void dump() const;
220   inline void dump(const SelectionDAG *G) const;
221   inline void dumpr() const;
222   inline void dumpr(const SelectionDAG *G) const;
223 
224   /// Return true if this operand (which must be a chain) reaches the
225   /// specified operand without crossing any side-effecting instructions.
226   /// In practice, this looks through token factors and non-volatile loads.
227   /// In order to remain efficient, this only
228   /// looks a couple of nodes in, it does not do an exhaustive search.
229   bool reachesChainWithoutSideEffects(SDValue Dest,
230                                       unsigned Depth = 2) const;
231 
232   /// Return true if there are no nodes using value ResNo of Node.
233   inline bool use_empty() const;
234 
235   /// Return true if there is exactly one node using value ResNo of Node.
236   inline bool hasOneUse() const;
237 };
238 
239 template<> struct DenseMapInfo<SDValue> {
240   static inline SDValue getEmptyKey() {
241     SDValue V;
242     V.ResNo = -1U;
243     return V;
244   }
245 
246   static inline SDValue getTombstoneKey() {
247     SDValue V;
248     V.ResNo = -2U;
249     return V;
250   }
251 
252   static unsigned getHashValue(const SDValue &Val) {
253     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
254             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
255   }
256 
257   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
258     return LHS == RHS;
259   }
260 };
261 
262 /// Allow casting operators to work directly on
263 /// SDValues as if they were SDNode*'s.
264 template<> struct simplify_type<SDValue> {
265   using SimpleType = SDNode *;
266 
267   static SimpleType getSimplifiedValue(SDValue &Val) {
268     return Val.getNode();
269   }
270 };
271 template<> struct simplify_type<const SDValue> {
272   using SimpleType = /*const*/ SDNode *;
273 
274   static SimpleType getSimplifiedValue(const SDValue &Val) {
275     return Val.getNode();
276   }
277 };
278 
279 /// Represents a use of a SDNode. This class holds an SDValue,
280 /// which records the SDNode being used and the result number, a
281 /// pointer to the SDNode using the value, and Next and Prev pointers,
282 /// which link together all the uses of an SDNode.
283 ///
284 class SDUse {
285   /// Val - The value being used.
286   SDValue Val;
287   /// User - The user of this value.
288   SDNode *User = nullptr;
289   /// Prev, Next - Pointers to the uses list of the SDNode referred by
290   /// this operand.
291   SDUse **Prev = nullptr;
292   SDUse *Next = nullptr;
293 
294 public:
295   SDUse() = default;
296   SDUse(const SDUse &U) = delete;
297   SDUse &operator=(const SDUse &) = delete;
298 
299   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
300   operator const SDValue&() const { return Val; }
301 
302   /// If implicit conversion to SDValue doesn't work, the get() method returns
303   /// the SDValue.
304   const SDValue &get() const { return Val; }
305 
306   /// This returns the SDNode that contains this Use.
307   SDNode *getUser() { return User; }
308   const SDNode *getUser() const { return User; }
309 
310   /// Get the next SDUse in the use list.
311   SDUse *getNext() const { return Next; }
312 
313   /// Convenience function for get().getNode().
314   SDNode *getNode() const { return Val.getNode(); }
315   /// Convenience function for get().getResNo().
316   unsigned getResNo() const { return Val.getResNo(); }
317   /// Convenience function for get().getValueType().
318   EVT getValueType() const { return Val.getValueType(); }
319 
320   /// Convenience function for get().operator==
321   bool operator==(const SDValue &V) const {
322     return Val == V;
323   }
324 
325   /// Convenience function for get().operator!=
326   bool operator!=(const SDValue &V) const {
327     return Val != V;
328   }
329 
330   /// Convenience function for get().operator<
331   bool operator<(const SDValue &V) const {
332     return Val < V;
333   }
334 
335 private:
336   friend class SelectionDAG;
337   friend class SDNode;
338   // TODO: unfriend HandleSDNode once we fix its operand handling.
339   friend class HandleSDNode;
340 
341   void setUser(SDNode *p) { User = p; }
342 
343   /// Remove this use from its existing use list, assign it the
344   /// given value, and add it to the new value's node's use list.
345   inline void set(const SDValue &V);
346   /// Like set, but only supports initializing a newly-allocated
347   /// SDUse with a non-null value.
348   inline void setInitial(const SDValue &V);
349   /// Like set, but only sets the Node portion of the value,
350   /// leaving the ResNo portion unmodified.
351   inline void setNode(SDNode *N);
352 
353   void addToList(SDUse **List) {
354     Next = *List;
355     if (Next) Next->Prev = &Next;
356     Prev = List;
357     *List = this;
358   }
359 
360   void removeFromList() {
361     *Prev = Next;
362     if (Next) Next->Prev = Prev;
363   }
364 };
365 
366 /// simplify_type specializations - Allow casting operators to work directly on
367 /// SDValues as if they were SDNode*'s.
368 template<> struct simplify_type<SDUse> {
369   using SimpleType = SDNode *;
370 
371   static SimpleType getSimplifiedValue(SDUse &Val) {
372     return Val.getNode();
373   }
374 };
375 
376 /// These are IR-level optimization flags that may be propagated to SDNodes.
377 /// TODO: This data structure should be shared by the IR optimizer and the
378 /// the backend.
379 struct SDNodeFlags {
380 private:
381   bool NoUnsignedWrap : 1;
382   bool NoSignedWrap : 1;
383   bool Exact : 1;
384   bool Disjoint : 1;
385   bool NonNeg : 1;
386   bool NoNaNs : 1;
387   bool NoInfs : 1;
388   bool NoSignedZeros : 1;
389   bool AllowReciprocal : 1;
390   bool AllowContract : 1;
391   bool ApproximateFuncs : 1;
392   bool AllowReassociation : 1;
393 
394   // We assume instructions do not raise floating-point exceptions by default,
395   // and only those marked explicitly may do so.  We could choose to represent
396   // this via a positive "FPExcept" flags like on the MI level, but having a
397   // negative "NoFPExcept" flag here makes the flag intersection logic more
398   // straightforward.
399   bool NoFPExcept : 1;
400   // Instructions with attached 'unpredictable' metadata on IR level.
401   bool Unpredictable : 1;
402 
403 public:
404   /// Default constructor turns off all optimization flags.
405   SDNodeFlags()
406       : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false),
407         Disjoint(false), NonNeg(false), NoNaNs(false), NoInfs(false),
408         NoSignedZeros(false), AllowReciprocal(false), AllowContract(false),
409         ApproximateFuncs(false), AllowReassociation(false), NoFPExcept(false),
410         Unpredictable(false) {}
411 
412   /// Propagate the fast-math-flags from an IR FPMathOperator.
413   void copyFMF(const FPMathOperator &FPMO) {
414     setNoNaNs(FPMO.hasNoNaNs());
415     setNoInfs(FPMO.hasNoInfs());
416     setNoSignedZeros(FPMO.hasNoSignedZeros());
417     setAllowReciprocal(FPMO.hasAllowReciprocal());
418     setAllowContract(FPMO.hasAllowContract());
419     setApproximateFuncs(FPMO.hasApproxFunc());
420     setAllowReassociation(FPMO.hasAllowReassoc());
421   }
422 
423   // These are mutators for each flag.
424   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
425   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
426   void setExact(bool b) { Exact = b; }
427   void setDisjoint(bool b) { Disjoint = b; }
428   void setNonNeg(bool b) { NonNeg = b; }
429   void setNoNaNs(bool b) { NoNaNs = b; }
430   void setNoInfs(bool b) { NoInfs = b; }
431   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
432   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
433   void setAllowContract(bool b) { AllowContract = b; }
434   void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
435   void setAllowReassociation(bool b) { AllowReassociation = b; }
436   void setNoFPExcept(bool b) { NoFPExcept = b; }
437   void setUnpredictable(bool b) { Unpredictable = b; }
438 
439   // These are accessors for each flag.
440   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
441   bool hasNoSignedWrap() const { return NoSignedWrap; }
442   bool hasExact() const { return Exact; }
443   bool hasDisjoint() const { return Disjoint; }
444   bool hasNonNeg() const { return NonNeg; }
445   bool hasNoNaNs() const { return NoNaNs; }
446   bool hasNoInfs() const { return NoInfs; }
447   bool hasNoSignedZeros() const { return NoSignedZeros; }
448   bool hasAllowReciprocal() const { return AllowReciprocal; }
449   bool hasAllowContract() const { return AllowContract; }
450   bool hasApproximateFuncs() const { return ApproximateFuncs; }
451   bool hasAllowReassociation() const { return AllowReassociation; }
452   bool hasNoFPExcept() const { return NoFPExcept; }
453   bool hasUnpredictable() const { return Unpredictable; }
454 
455   /// Clear any flags in this flag set that aren't also set in Flags. All
456   /// flags will be cleared if Flags are undefined.
457   void intersectWith(const SDNodeFlags Flags) {
458     NoUnsignedWrap &= Flags.NoUnsignedWrap;
459     NoSignedWrap &= Flags.NoSignedWrap;
460     Exact &= Flags.Exact;
461     Disjoint &= Flags.Disjoint;
462     NonNeg &= Flags.NonNeg;
463     NoNaNs &= Flags.NoNaNs;
464     NoInfs &= Flags.NoInfs;
465     NoSignedZeros &= Flags.NoSignedZeros;
466     AllowReciprocal &= Flags.AllowReciprocal;
467     AllowContract &= Flags.AllowContract;
468     ApproximateFuncs &= Flags.ApproximateFuncs;
469     AllowReassociation &= Flags.AllowReassociation;
470     NoFPExcept &= Flags.NoFPExcept;
471     Unpredictable &= Flags.Unpredictable;
472   }
473 };
474 
475 /// Represents one node in the SelectionDAG.
476 ///
477 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
478 private:
479   /// The operation that this node performs.
480   int32_t NodeType;
481 
482   SDNodeFlags Flags;
483 
484 protected:
485   // We define a set of mini-helper classes to help us interpret the bits in our
486   // SubclassData.  These are designed to fit within a uint16_t so they pack
487   // with SDNodeFlags.
488 
489 #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
490 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
491 // and give the `pack` pragma push semantics.
492 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
493 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
494 #else
495 #define BEGIN_TWO_BYTE_PACK()
496 #define END_TWO_BYTE_PACK()
497 #endif
498 
499 BEGIN_TWO_BYTE_PACK()
500   class SDNodeBitfields {
501     friend class SDNode;
502     friend class MemIntrinsicSDNode;
503     friend class MemSDNode;
504     friend class SelectionDAG;
505 
506     uint16_t HasDebugValue : 1;
507     uint16_t IsMemIntrinsic : 1;
508     uint16_t IsDivergent : 1;
509   };
510   enum { NumSDNodeBits = 3 };
511 
512   class ConstantSDNodeBitfields {
513     friend class ConstantSDNode;
514 
515     uint16_t : NumSDNodeBits;
516 
517     uint16_t IsOpaque : 1;
518   };
519 
520   class MemSDNodeBitfields {
521     friend class MemSDNode;
522     friend class MemIntrinsicSDNode;
523     friend class AtomicSDNode;
524 
525     uint16_t : NumSDNodeBits;
526 
527     uint16_t IsVolatile : 1;
528     uint16_t IsNonTemporal : 1;
529     uint16_t IsDereferenceable : 1;
530     uint16_t IsInvariant : 1;
531   };
532   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
533 
534   class LSBaseSDNodeBitfields {
535     friend class LSBaseSDNode;
536     friend class VPBaseLoadStoreSDNode;
537     friend class MaskedLoadStoreSDNode;
538     friend class MaskedGatherScatterSDNode;
539     friend class VPGatherScatterSDNode;
540     friend class MaskedHistogramSDNode;
541 
542     uint16_t : NumMemSDNodeBits;
543 
544     // This storage is shared between disparate class hierarchies to hold an
545     // enumeration specific to the class hierarchy in use.
546     //   LSBaseSDNode => enum ISD::MemIndexedMode
547     //   VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
548     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
549     //   VPGatherScatterSDNode => enum ISD::MemIndexType
550     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
551     //   MaskedHistogramSDNode => enum ISD::MemIndexType
552     uint16_t AddressingMode : 3;
553   };
554   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
555 
556   class LoadSDNodeBitfields {
557     friend class LoadSDNode;
558     friend class AtomicSDNode;
559     friend class VPLoadSDNode;
560     friend class VPStridedLoadSDNode;
561     friend class MaskedLoadSDNode;
562     friend class MaskedGatherSDNode;
563     friend class VPGatherSDNode;
564     friend class MaskedHistogramSDNode;
565 
566     uint16_t : NumLSBaseSDNodeBits;
567 
568     uint16_t ExtTy : 2; // enum ISD::LoadExtType
569     uint16_t IsExpanding : 1;
570   };
571 
572   class StoreSDNodeBitfields {
573     friend class StoreSDNode;
574     friend class VPStoreSDNode;
575     friend class VPStridedStoreSDNode;
576     friend class MaskedStoreSDNode;
577     friend class MaskedScatterSDNode;
578     friend class VPScatterSDNode;
579 
580     uint16_t : NumLSBaseSDNodeBits;
581 
582     uint16_t IsTruncating : 1;
583     uint16_t IsCompressing : 1;
584   };
585 
586   union {
587     char RawSDNodeBits[sizeof(uint16_t)];
588     SDNodeBitfields SDNodeBits;
589     ConstantSDNodeBitfields ConstantSDNodeBits;
590     MemSDNodeBitfields MemSDNodeBits;
591     LSBaseSDNodeBitfields LSBaseSDNodeBits;
592     LoadSDNodeBitfields LoadSDNodeBits;
593     StoreSDNodeBitfields StoreSDNodeBits;
594   };
595 END_TWO_BYTE_PACK()
596 #undef BEGIN_TWO_BYTE_PACK
597 #undef END_TWO_BYTE_PACK
598 
599   // RawSDNodeBits must cover the entirety of the union.  This means that all of
600   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
601   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
602   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
603   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
604   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
605   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
606   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
607   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
608 
609 public:
610   /// Unique and persistent id per SDNode in the DAG. Used for debug printing.
611   /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
612   /// intentionally because it adds unneeded complexity without noticeable
613   /// benefits (see discussion with @thakis in D120714). Currently, there are
614   /// two padding bytes after this field.
615   uint16_t PersistentId = 0xffff;
616 
617 private:
618   friend class SelectionDAG;
619   // TODO: unfriend HandleSDNode once we fix its operand handling.
620   friend class HandleSDNode;
621 
622   /// Unique id per SDNode in the DAG.
623   int NodeId = -1;
624 
625   /// The values that are used by this operation.
626   SDUse *OperandList = nullptr;
627 
628   /// The types of the values this node defines.  SDNode's may
629   /// define multiple values simultaneously.
630   const EVT *ValueList;
631 
632   /// List of uses for this SDNode.
633   SDUse *UseList = nullptr;
634 
635   /// The number of entries in the Operand/Value list.
636   unsigned short NumOperands = 0;
637   unsigned short NumValues;
638 
639   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
640   // original LLVM instructions.
641   // This is used for turning off scheduling, because we'll forgo
642   // the normal scheduling algorithms and output the instructions according to
643   // this ordering.
644   unsigned IROrder;
645 
646   /// Source line information.
647   DebugLoc debugLoc;
648 
649   /// Return a pointer to the specified value type.
650   static const EVT *getValueTypeList(EVT VT);
651 
652   /// Index in worklist of DAGCombiner, or negative if the node is not in the
653   /// worklist. -1 = not in worklist; -2 = not in worklist, but has already been
654   /// combined at least once.
655   int CombinerWorklistIndex = -1;
656 
657   uint32_t CFIType = 0;
658 
659 public:
660   //===--------------------------------------------------------------------===//
661   //  Accessors
662   //
663 
664   /// Return the SelectionDAG opcode value for this node. For
665   /// pre-isel nodes (those for which isMachineOpcode returns false), these
666   /// are the opcode values in the ISD and <target>ISD namespaces. For
667   /// post-isel opcodes, see getMachineOpcode.
668   unsigned getOpcode()  const { return (unsigned)NodeType; }
669 
670   /// Test if this node has a target-specific opcode (in the
671   /// \<target\>ISD namespace).
672   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
673 
674   /// Test if this node has a target-specific opcode that may raise
675   /// FP exceptions (in the \<target\>ISD namespace and greater than
676   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
677   /// opcode are currently automatically considered to possibly raise
678   /// FP exceptions as well.
679   bool isTargetStrictFPOpcode() const {
680     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
681   }
682 
683   /// Test if this node has a target-specific
684   /// memory-referencing opcode (in the \<target\>ISD namespace and
685   /// greater than FIRST_TARGET_MEMORY_OPCODE).
686   bool isTargetMemoryOpcode() const {
687     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
688   }
689 
690   /// Return true if the type of the node type undefined.
691   bool isUndef() const { return NodeType == ISD::UNDEF; }
692 
693   /// Test if this node is a memory intrinsic (with valid pointer information).
694   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
695   /// non-memory intrinsics (with chains) that are not really instances of
696   /// MemSDNode. For such nodes, we need some extra state to determine the
697   /// proper classof relationship.
698   bool isMemIntrinsic() const {
699     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
700             NodeType == ISD::INTRINSIC_VOID) &&
701            SDNodeBits.IsMemIntrinsic;
702   }
703 
704   /// Test if this node is a strict floating point pseudo-op.
705   bool isStrictFPOpcode() {
706     switch (NodeType) {
707       default:
708         return false;
709       case ISD::STRICT_FP16_TO_FP:
710       case ISD::STRICT_FP_TO_FP16:
711       case ISD::STRICT_BF16_TO_FP:
712       case ISD::STRICT_FP_TO_BF16:
713 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
714       case ISD::STRICT_##DAGN:
715 #include "llvm/IR/ConstrainedOps.def"
716         return true;
717     }
718   }
719 
720   /// Test if this node is a vector predication operation.
721   bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
722 
723   /// Test if this node has a post-isel opcode, directly
724   /// corresponding to a MachineInstr opcode.
725   bool isMachineOpcode() const { return NodeType < 0; }
726 
727   /// This may only be called if isMachineOpcode returns
728   /// true. It returns the MachineInstr opcode value that the node's opcode
729   /// corresponds to.
730   unsigned getMachineOpcode() const {
731     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
732     return ~NodeType;
733   }
734 
735   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
736   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
737 
738   bool isDivergent() const { return SDNodeBits.IsDivergent; }
739 
740   /// Return true if there are no uses of this node.
741   bool use_empty() const { return UseList == nullptr; }
742 
743   /// Return true if there is exactly one use of this node.
744   bool hasOneUse() const { return hasSingleElement(uses()); }
745 
746   /// Return the number of uses of this node. This method takes
747   /// time proportional to the number of uses.
748   size_t use_size() const { return std::distance(use_begin(), use_end()); }
749 
750   /// Return the unique node id.
751   int getNodeId() const { return NodeId; }
752 
753   /// Set unique node id.
754   void setNodeId(int Id) { NodeId = Id; }
755 
756   /// Get worklist index for DAGCombiner
757   int getCombinerWorklistIndex() const { return CombinerWorklistIndex; }
758 
759   /// Set worklist index for DAGCombiner
760   void setCombinerWorklistIndex(int Index) { CombinerWorklistIndex = Index; }
761 
762   /// Return the node ordering.
763   unsigned getIROrder() const { return IROrder; }
764 
765   /// Set the node ordering.
766   void setIROrder(unsigned Order) { IROrder = Order; }
767 
768   /// Return the source location info.
769   const DebugLoc &getDebugLoc() const { return debugLoc; }
770 
771   /// Set source location info.  Try to avoid this, putting
772   /// it in the constructor is preferable.
773   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
774 
775   /// This class provides iterator support for SDUse
776   /// operands that use a specific SDNode.
777   class use_iterator {
778     friend class SDNode;
779 
780     SDUse *Op = nullptr;
781 
782     explicit use_iterator(SDUse *op) : Op(op) {}
783 
784   public:
785     using iterator_category = std::forward_iterator_tag;
786     using value_type = SDUse;
787     using difference_type = std::ptrdiff_t;
788     using pointer = value_type *;
789     using reference = value_type &;
790 
791     use_iterator() = default;
792     use_iterator(const use_iterator &I) = default;
793     use_iterator &operator=(const use_iterator &) = default;
794 
795     bool operator==(const use_iterator &x) const { return Op == x.Op; }
796     bool operator!=(const use_iterator &x) const {
797       return !operator==(x);
798     }
799 
800     /// Return true if this iterator is at the end of uses list.
801     bool atEnd() const { return Op == nullptr; }
802 
803     // Iterator traversal: forward iteration only.
804     use_iterator &operator++() {          // Preincrement
805       assert(Op && "Cannot increment end iterator!");
806       Op = Op->getNext();
807       return *this;
808     }
809 
810     use_iterator operator++(int) {        // Postincrement
811       use_iterator tmp = *this; ++*this; return tmp;
812     }
813 
814     /// Retrieve a pointer to the current user node.
815     SDNode *operator*() const {
816       assert(Op && "Cannot dereference end iterator!");
817       return Op->getUser();
818     }
819 
820     SDNode *operator->() const { return operator*(); }
821 
822     SDUse &getUse() const { return *Op; }
823 
824     /// Retrieve the operand # of this use in its user.
825     unsigned getOperandNo() const {
826       assert(Op && "Cannot dereference end iterator!");
827       return (unsigned)(Op - Op->getUser()->OperandList);
828     }
829   };
830 
831   /// Provide iteration support to walk over all uses of an SDNode.
832   use_iterator use_begin() const {
833     return use_iterator(UseList);
834   }
835 
836   static use_iterator use_end() { return use_iterator(nullptr); }
837 
838   inline iterator_range<use_iterator> uses() {
839     return make_range(use_begin(), use_end());
840   }
841   inline iterator_range<use_iterator> uses() const {
842     return make_range(use_begin(), use_end());
843   }
844 
845   /// Return true if there are exactly NUSES uses of the indicated value.
846   /// This method ignores uses of other values defined by this operation.
847   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
848 
849   /// Return true if there are any use of the indicated value.
850   /// This method ignores uses of other values defined by this operation.
851   bool hasAnyUseOfValue(unsigned Value) const;
852 
853   /// Return true if this node is the only use of N.
854   bool isOnlyUserOf(const SDNode *N) const;
855 
856   /// Return true if this node is an operand of N.
857   bool isOperandOf(const SDNode *N) const;
858 
859   /// Return true if this node is a predecessor of N.
860   /// NOTE: Implemented on top of hasPredecessor and every bit as
861   /// expensive. Use carefully.
862   bool isPredecessorOf(const SDNode *N) const {
863     return N->hasPredecessor(this);
864   }
865 
866   /// Return true if N is a predecessor of this node.
867   /// N is either an operand of this node, or can be reached by recursively
868   /// traversing up the operands.
869   /// NOTE: This is an expensive method. Use it carefully.
870   bool hasPredecessor(const SDNode *N) const;
871 
872   /// Returns true if N is a predecessor of any node in Worklist. This
873   /// helper keeps Visited and Worklist sets externally to allow unions
874   /// searches to be performed in parallel, caching of results across
875   /// queries and incremental addition to Worklist. Stops early if N is
876   /// found but will resume. Remember to clear Visited and Worklists
877   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
878   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
879   /// topologically ordered (Operands have strictly smaller node id) and search
880   /// can be pruned leveraging this.
881   static bool hasPredecessorHelper(const SDNode *N,
882                                    SmallPtrSetImpl<const SDNode *> &Visited,
883                                    SmallVectorImpl<const SDNode *> &Worklist,
884                                    unsigned int MaxSteps = 0,
885                                    bool TopologicalPrune = false) {
886     SmallVector<const SDNode *, 8> DeferredNodes;
887     if (Visited.count(N))
888       return true;
889 
890     // Node Id's are assigned in three places: As a topological
891     // ordering (> 0), during legalization (results in values set to
892     // 0), new nodes (set to -1). If N has a topolgical id then we
893     // know that all nodes with ids smaller than it cannot be
894     // successors and we need not check them. Filter out all node
895     // that can't be matches. We add them to the worklist before exit
896     // in case of multiple calls. Note that during selection the topological id
897     // may be violated if a node's predecessor is selected before it. We mark
898     // this at selection negating the id of unselected successors and
899     // restricting topological pruning to positive ids.
900 
901     int NId = N->getNodeId();
902     // If we Invalidated the Id, reconstruct original NId.
903     if (NId < -1)
904       NId = -(NId + 1);
905 
906     bool Found = false;
907     while (!Worklist.empty()) {
908       const SDNode *M = Worklist.pop_back_val();
909       int MId = M->getNodeId();
910       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
911           (MId > 0) && (MId < NId)) {
912         DeferredNodes.push_back(M);
913         continue;
914       }
915       for (const SDValue &OpV : M->op_values()) {
916         SDNode *Op = OpV.getNode();
917         if (Visited.insert(Op).second)
918           Worklist.push_back(Op);
919         if (Op == N)
920           Found = true;
921       }
922       if (Found)
923         break;
924       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
925         break;
926     }
927     // Push deferred nodes back on worklist.
928     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
929     // If we bailed early, conservatively return found.
930     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
931       return true;
932     return Found;
933   }
934 
935   /// Return true if all the users of N are contained in Nodes.
936   /// NOTE: Requires at least one match, but doesn't require them all.
937   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
938 
939   /// Return the number of values used by this operation.
940   unsigned getNumOperands() const { return NumOperands; }
941 
942   /// Return the maximum number of operands that a SDNode can hold.
943   static constexpr size_t getMaxNumOperands() {
944     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
945   }
946 
947   /// Helper method returns the integer value of a ConstantSDNode operand.
948   inline uint64_t getConstantOperandVal(unsigned Num) const;
949 
950   /// Helper method returns the zero-extended integer value of a ConstantSDNode.
951   inline uint64_t getAsZExtVal() const;
952 
953   /// Helper method returns the APInt of a ConstantSDNode operand.
954   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
955 
956   /// Helper method returns the APInt value of a ConstantSDNode.
957   inline const APInt &getAsAPIntVal() const;
958 
959   const SDValue &getOperand(unsigned Num) const {
960     assert(Num < NumOperands && "Invalid child # of SDNode!");
961     return OperandList[Num];
962   }
963 
964   using op_iterator = SDUse *;
965 
966   op_iterator op_begin() const { return OperandList; }
967   op_iterator op_end() const { return OperandList+NumOperands; }
968   ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
969 
970   /// Iterator for directly iterating over the operand SDValue's.
971   struct value_op_iterator
972       : iterator_adaptor_base<value_op_iterator, op_iterator,
973                               std::random_access_iterator_tag, SDValue,
974                               ptrdiff_t, value_op_iterator *,
975                               value_op_iterator *> {
976     explicit value_op_iterator(SDUse *U = nullptr)
977       : iterator_adaptor_base(U) {}
978 
979     const SDValue &operator*() const { return I->get(); }
980   };
981 
982   iterator_range<value_op_iterator> op_values() const {
983     return make_range(value_op_iterator(op_begin()),
984                       value_op_iterator(op_end()));
985   }
986 
987   SDVTList getVTList() const {
988     SDVTList X = { ValueList, NumValues };
989     return X;
990   }
991 
992   /// If this node has a glue operand, return the node
993   /// to which the glue operand points. Otherwise return NULL.
994   SDNode *getGluedNode() const {
995     if (getNumOperands() != 0 &&
996         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
997       return getOperand(getNumOperands()-1).getNode();
998     return nullptr;
999   }
1000 
1001   /// If this node has a glue value with a user, return
1002   /// the user (there is at most one). Otherwise return NULL.
1003   SDNode *getGluedUser() const {
1004     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
1005       if (UI.getUse().get().getValueType() == MVT::Glue)
1006         return *UI;
1007     return nullptr;
1008   }
1009 
1010   SDNodeFlags getFlags() const { return Flags; }
1011   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
1012 
1013   /// Clear any flags in this node that aren't also set in Flags.
1014   /// If Flags is not in a defined state then this has no effect.
1015   void intersectFlagsWith(const SDNodeFlags Flags);
1016 
1017   bool hasPoisonGeneratingFlags() const {
1018     SDNodeFlags Flags = getFlags();
1019     return Flags.hasNoUnsignedWrap() || Flags.hasNoSignedWrap() ||
1020            Flags.hasExact() || Flags.hasDisjoint() || Flags.hasNonNeg() ||
1021            Flags.hasNoNaNs() || Flags.hasNoInfs();
1022   }
1023 
1024   void setCFIType(uint32_t Type) { CFIType = Type; }
1025   uint32_t getCFIType() const { return CFIType; }
1026 
1027   /// Return the number of values defined/returned by this operator.
1028   unsigned getNumValues() const { return NumValues; }
1029 
1030   /// Return the type of a specified result.
1031   EVT getValueType(unsigned ResNo) const {
1032     assert(ResNo < NumValues && "Illegal result number!");
1033     return ValueList[ResNo];
1034   }
1035 
1036   /// Return the type of a specified result as a simple type.
1037   MVT getSimpleValueType(unsigned ResNo) const {
1038     return getValueType(ResNo).getSimpleVT();
1039   }
1040 
1041   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1042   ///
1043   /// If the value type is a scalable vector type, the scalable property will
1044   /// be set and the runtime size will be a positive integer multiple of the
1045   /// base size.
1046   TypeSize getValueSizeInBits(unsigned ResNo) const {
1047     return getValueType(ResNo).getSizeInBits();
1048   }
1049 
1050   using value_iterator = const EVT *;
1051 
1052   value_iterator value_begin() const { return ValueList; }
1053   value_iterator value_end() const { return ValueList+NumValues; }
1054   iterator_range<value_iterator> values() const {
1055     return llvm::make_range(value_begin(), value_end());
1056   }
1057 
1058   /// Return the opcode of this operation for printing.
1059   std::string getOperationName(const SelectionDAG *G = nullptr) const;
1060   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1061   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1062   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1063   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1064   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1065 
1066   /// Print a SelectionDAG node and all children down to
1067   /// the leaves.  The given SelectionDAG allows target-specific nodes
1068   /// to be printed in human-readable form.  Unlike printr, this will
1069   /// print the whole DAG, including children that appear multiple
1070   /// times.
1071   ///
1072   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1073 
1074   /// Print a SelectionDAG node and children up to
1075   /// depth "depth."  The given SelectionDAG allows target-specific
1076   /// nodes to be printed in human-readable form.  Unlike printr, this
1077   /// will print children that appear multiple times wherever they are
1078   /// used.
1079   ///
1080   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1081                        unsigned depth = 100) const;
1082 
1083   /// Dump this node, for debugging.
1084   void dump() const;
1085 
1086   /// Dump (recursively) this node and its use-def subgraph.
1087   void dumpr() const;
1088 
1089   /// Dump this node, for debugging.
1090   /// The given SelectionDAG allows target-specific nodes to be printed
1091   /// in human-readable form.
1092   void dump(const SelectionDAG *G) const;
1093 
1094   /// Dump (recursively) this node and its use-def subgraph.
1095   /// The given SelectionDAG allows target-specific nodes to be printed
1096   /// in human-readable form.
1097   void dumpr(const SelectionDAG *G) const;
1098 
1099   /// printrFull to dbgs().  The given SelectionDAG allows
1100   /// target-specific nodes to be printed in human-readable form.
1101   /// Unlike dumpr, this will print the whole DAG, including children
1102   /// that appear multiple times.
1103   void dumprFull(const SelectionDAG *G = nullptr) const;
1104 
1105   /// printrWithDepth to dbgs().  The given
1106   /// SelectionDAG allows target-specific nodes to be printed in
1107   /// human-readable form.  Unlike dumpr, this will print children
1108   /// that appear multiple times wherever they are used.
1109   ///
1110   void dumprWithDepth(const SelectionDAG *G = nullptr,
1111                       unsigned depth = 100) const;
1112 
1113   /// Gather unique data for the node.
1114   void Profile(FoldingSetNodeID &ID) const;
1115 
1116   /// This method should only be used by the SDUse class.
1117   void addUse(SDUse &U) { U.addToList(&UseList); }
1118 
1119 protected:
1120   static SDVTList getSDVTList(EVT VT) {
1121     SDVTList Ret = { getValueTypeList(VT), 1 };
1122     return Ret;
1123   }
1124 
1125   /// Create an SDNode.
1126   ///
1127   /// SDNodes are created without any operands, and never own the operand
1128   /// storage. To add operands, see SelectionDAG::createOperands.
1129   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1130       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1131         IROrder(Order), debugLoc(std::move(dl)) {
1132     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1133     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1134     assert(NumValues == VTs.NumVTs &&
1135            "NumValues wasn't wide enough for its operands!");
1136   }
1137 
1138   /// Release the operands and set this node to have zero operands.
1139   void DropOperands();
1140 };
1141 
1142 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1143 /// into SDNode creation functions.
1144 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1145 /// from the original Instruction, and IROrder is the ordinal position of
1146 /// the instruction.
1147 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1148 /// the IROrder are propagated from the original SDNode.
1149 /// So SDLoc class provides two constructors besides the default one, one to
1150 /// be used by the DAGBuilder, the other to be used by others.
1151 class SDLoc {
1152 private:
1153   DebugLoc DL;
1154   int IROrder = 0;
1155 
1156 public:
1157   SDLoc() = default;
1158   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1159   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1160   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1161     assert(Order >= 0 && "bad IROrder");
1162     if (I)
1163       DL = I->getDebugLoc();
1164   }
1165 
1166   unsigned getIROrder() const { return IROrder; }
1167   const DebugLoc &getDebugLoc() const { return DL; }
1168 };
1169 
1170 // Define inline functions from the SDValue class.
1171 
1172 inline SDValue::SDValue(SDNode *node, unsigned resno)
1173     : Node(node), ResNo(resno) {
1174   // Explicitly check for !ResNo to avoid use-after-free, because there are
1175   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1176   // combines.
1177   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1178          "Invalid result number for the given node!");
1179   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1180 }
1181 
1182 inline unsigned SDValue::getOpcode() const {
1183   return Node->getOpcode();
1184 }
1185 
1186 inline EVT SDValue::getValueType() const {
1187   return Node->getValueType(ResNo);
1188 }
1189 
1190 inline unsigned SDValue::getNumOperands() const {
1191   return Node->getNumOperands();
1192 }
1193 
1194 inline const SDValue &SDValue::getOperand(unsigned i) const {
1195   return Node->getOperand(i);
1196 }
1197 
1198 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1199   return Node->getConstantOperandVal(i);
1200 }
1201 
1202 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1203   return Node->getConstantOperandAPInt(i);
1204 }
1205 
1206 inline bool SDValue::isTargetOpcode() const {
1207   return Node->isTargetOpcode();
1208 }
1209 
1210 inline bool SDValue::isTargetMemoryOpcode() const {
1211   return Node->isTargetMemoryOpcode();
1212 }
1213 
1214 inline bool SDValue::isMachineOpcode() const {
1215   return Node->isMachineOpcode();
1216 }
1217 
1218 inline unsigned SDValue::getMachineOpcode() const {
1219   return Node->getMachineOpcode();
1220 }
1221 
1222 inline bool SDValue::isUndef() const {
1223   return Node->isUndef();
1224 }
1225 
1226 inline bool SDValue::use_empty() const {
1227   return !Node->hasAnyUseOfValue(ResNo);
1228 }
1229 
1230 inline bool SDValue::hasOneUse() const {
1231   return Node->hasNUsesOfValue(1, ResNo);
1232 }
1233 
1234 inline const DebugLoc &SDValue::getDebugLoc() const {
1235   return Node->getDebugLoc();
1236 }
1237 
1238 inline void SDValue::dump() const {
1239   return Node->dump();
1240 }
1241 
1242 inline void SDValue::dump(const SelectionDAG *G) const {
1243   return Node->dump(G);
1244 }
1245 
1246 inline void SDValue::dumpr() const {
1247   return Node->dumpr();
1248 }
1249 
1250 inline void SDValue::dumpr(const SelectionDAG *G) const {
1251   return Node->dumpr(G);
1252 }
1253 
1254 // Define inline functions from the SDUse class.
1255 
1256 inline void SDUse::set(const SDValue &V) {
1257   if (Val.getNode()) removeFromList();
1258   Val = V;
1259   if (V.getNode())
1260     V->addUse(*this);
1261 }
1262 
1263 inline void SDUse::setInitial(const SDValue &V) {
1264   Val = V;
1265   V->addUse(*this);
1266 }
1267 
1268 inline void SDUse::setNode(SDNode *N) {
1269   if (Val.getNode()) removeFromList();
1270   Val.setNode(N);
1271   if (N) N->addUse(*this);
1272 }
1273 
1274 /// This class is used to form a handle around another node that
1275 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1276 /// operand.  This node should be directly created by end-users and not added to
1277 /// the AllNodes list.
1278 class HandleSDNode : public SDNode {
1279   SDUse Op;
1280 
1281 public:
1282   explicit HandleSDNode(SDValue X)
1283     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1284     // HandleSDNodes are never inserted into the DAG, so they won't be
1285     // auto-numbered. Use ID 65535 as a sentinel.
1286     PersistentId = 0xffff;
1287 
1288     // Manually set up the operand list. This node type is special in that it's
1289     // always stack allocated and SelectionDAG does not manage its operands.
1290     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1291     // be so special.
1292     Op.setUser(this);
1293     Op.setInitial(X);
1294     NumOperands = 1;
1295     OperandList = &Op;
1296   }
1297   ~HandleSDNode();
1298 
1299   const SDValue &getValue() const { return Op; }
1300 };
1301 
1302 class AddrSpaceCastSDNode : public SDNode {
1303 private:
1304   unsigned SrcAddrSpace;
1305   unsigned DestAddrSpace;
1306 
1307 public:
1308   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
1309                       unsigned SrcAS, unsigned DestAS)
1310       : SDNode(ISD::ADDRSPACECAST, Order, dl, VTs), SrcAddrSpace(SrcAS),
1311         DestAddrSpace(DestAS) {}
1312 
1313   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1314   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1315 
1316   static bool classof(const SDNode *N) {
1317     return N->getOpcode() == ISD::ADDRSPACECAST;
1318   }
1319 };
1320 
1321 /// This is an abstract virtual class for memory operations.
1322 class MemSDNode : public SDNode {
1323 private:
1324   // VT of in-memory value.
1325   EVT MemoryVT;
1326 
1327 protected:
1328   /// Memory reference information.
1329   MachineMemOperand *MMO;
1330 
1331 public:
1332   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1333             EVT memvt, MachineMemOperand *MMO);
1334 
1335   bool readMem() const { return MMO->isLoad(); }
1336   bool writeMem() const { return MMO->isStore(); }
1337 
1338   /// Returns alignment and volatility of the memory access
1339   Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1340   Align getAlign() const { return MMO->getAlign(); }
1341 
1342   /// Return the SubclassData value, without HasDebugValue. This contains an
1343   /// encoding of the volatile flag, as well as bits used by subclasses. This
1344   /// function should only be used to compute a FoldingSetNodeID value.
1345   /// The HasDebugValue bit is masked out because CSE map needs to match
1346   /// nodes with debug info with nodes without debug info. Same is about
1347   /// isDivergent bit.
1348   unsigned getRawSubclassData() const {
1349     uint16_t Data;
1350     union {
1351       char RawSDNodeBits[sizeof(uint16_t)];
1352       SDNodeBitfields SDNodeBits;
1353     };
1354     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1355     SDNodeBits.HasDebugValue = 0;
1356     SDNodeBits.IsDivergent = false;
1357     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1358     return Data;
1359   }
1360 
1361   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1362   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1363   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1364   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1365 
1366   // Returns the offset from the location of the access.
1367   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1368 
1369   /// Returns the AA info that describes the dereference.
1370   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1371 
1372   /// Returns the Ranges that describes the dereference.
1373   const MDNode *getRanges() const { return MMO->getRanges(); }
1374 
1375   /// Returns the synchronization scope ID for this memory operation.
1376   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1377 
1378   /// Return the atomic ordering requirements for this memory operation. For
1379   /// cmpxchg atomic operations, return the atomic ordering requirements when
1380   /// store occurs.
1381   AtomicOrdering getSuccessOrdering() const {
1382     return MMO->getSuccessOrdering();
1383   }
1384 
1385   /// Return a single atomic ordering that is at least as strong as both the
1386   /// success and failure orderings for an atomic operation.  (For operations
1387   /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1388   AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1389 
1390   /// Return true if the memory operation ordering is Unordered or higher.
1391   bool isAtomic() const { return MMO->isAtomic(); }
1392 
1393   /// Returns true if the memory operation doesn't imply any ordering
1394   /// constraints on surrounding memory operations beyond the normal memory
1395   /// aliasing rules.
1396   bool isUnordered() const { return MMO->isUnordered(); }
1397 
1398   /// Returns true if the memory operation is neither atomic or volatile.
1399   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1400 
1401   /// Return the type of the in-memory value.
1402   EVT getMemoryVT() const { return MemoryVT; }
1403 
1404   /// Return a MachineMemOperand object describing the memory
1405   /// reference performed by operation.
1406   MachineMemOperand *getMemOperand() const { return MMO; }
1407 
1408   const MachinePointerInfo &getPointerInfo() const {
1409     return MMO->getPointerInfo();
1410   }
1411 
1412   /// Return the address space for the associated pointer
1413   unsigned getAddressSpace() const {
1414     return getPointerInfo().getAddrSpace();
1415   }
1416 
1417   /// Update this MemSDNode's MachineMemOperand information
1418   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1419   /// This must only be used when the new alignment applies to all users of
1420   /// this MachineMemOperand.
1421   void refineAlignment(const MachineMemOperand *NewMMO) {
1422     MMO->refineAlignment(NewMMO);
1423   }
1424 
1425   const SDValue &getChain() const { return getOperand(0); }
1426 
1427   const SDValue &getBasePtr() const {
1428     switch (getOpcode()) {
1429     case ISD::STORE:
1430     case ISD::ATOMIC_STORE:
1431     case ISD::VP_STORE:
1432     case ISD::MSTORE:
1433     case ISD::VP_SCATTER:
1434     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1435       return getOperand(2);
1436     case ISD::MGATHER:
1437     case ISD::MSCATTER:
1438     case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
1439       return getOperand(3);
1440     default:
1441       return getOperand(1);
1442     }
1443   }
1444 
1445   // Methods to support isa and dyn_cast
1446   static bool classof(const SDNode *N) {
1447     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1448     // with either an intrinsic or a target opcode.
1449     switch (N->getOpcode()) {
1450     case ISD::LOAD:
1451     case ISD::STORE:
1452     case ISD::PREFETCH:
1453     case ISD::ATOMIC_CMP_SWAP:
1454     case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1455     case ISD::ATOMIC_SWAP:
1456     case ISD::ATOMIC_LOAD_ADD:
1457     case ISD::ATOMIC_LOAD_SUB:
1458     case ISD::ATOMIC_LOAD_AND:
1459     case ISD::ATOMIC_LOAD_CLR:
1460     case ISD::ATOMIC_LOAD_OR:
1461     case ISD::ATOMIC_LOAD_XOR:
1462     case ISD::ATOMIC_LOAD_NAND:
1463     case ISD::ATOMIC_LOAD_MIN:
1464     case ISD::ATOMIC_LOAD_MAX:
1465     case ISD::ATOMIC_LOAD_UMIN:
1466     case ISD::ATOMIC_LOAD_UMAX:
1467     case ISD::ATOMIC_LOAD_FADD:
1468     case ISD::ATOMIC_LOAD_FSUB:
1469     case ISD::ATOMIC_LOAD_FMAX:
1470     case ISD::ATOMIC_LOAD_FMIN:
1471     case ISD::ATOMIC_LOAD_UINC_WRAP:
1472     case ISD::ATOMIC_LOAD_UDEC_WRAP:
1473     case ISD::ATOMIC_LOAD:
1474     case ISD::ATOMIC_STORE:
1475     case ISD::MLOAD:
1476     case ISD::MSTORE:
1477     case ISD::MGATHER:
1478     case ISD::MSCATTER:
1479     case ISD::VP_LOAD:
1480     case ISD::VP_STORE:
1481     case ISD::VP_GATHER:
1482     case ISD::VP_SCATTER:
1483     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1484     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1485     case ISD::GET_FPENV_MEM:
1486     case ISD::SET_FPENV_MEM:
1487     case ISD::EXPERIMENTAL_VECTOR_HISTOGRAM:
1488       return true;
1489     default:
1490       return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1491     }
1492   }
1493 };
1494 
1495 /// This is an SDNode representing atomic operations.
1496 class AtomicSDNode : public MemSDNode {
1497 public:
1498   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1499                EVT MemVT, MachineMemOperand *MMO)
1500     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1501     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1502             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1503   }
1504 
1505   void setExtensionType(ISD::LoadExtType ETy) {
1506     assert(getOpcode() == ISD::ATOMIC_LOAD && "Only used for atomic loads.");
1507     LoadSDNodeBits.ExtTy = ETy;
1508   }
1509 
1510   ISD::LoadExtType getExtensionType() const {
1511     assert(getOpcode() == ISD::ATOMIC_LOAD && "Only used for atomic loads.");
1512     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
1513   }
1514 
1515   const SDValue &getBasePtr() const {
1516     return getOpcode() == ISD::ATOMIC_STORE ? getOperand(2) : getOperand(1);
1517   }
1518   const SDValue &getVal() const {
1519     return getOpcode() == ISD::ATOMIC_STORE ? getOperand(1) : getOperand(2);
1520   }
1521 
1522   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1523   /// otherwise.
1524   bool isCompareAndSwap() const {
1525     unsigned Op = getOpcode();
1526     return Op == ISD::ATOMIC_CMP_SWAP ||
1527            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1528   }
1529 
1530   /// For cmpxchg atomic operations, return the atomic ordering requirements
1531   /// when store does not occur.
1532   AtomicOrdering getFailureOrdering() const {
1533     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1534     return MMO->getFailureOrdering();
1535   }
1536 
1537   // Methods to support isa and dyn_cast
1538   static bool classof(const SDNode *N) {
1539     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1540            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1541            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1542            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1543            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1544            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1545            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1546            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1547            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1548            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1549            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1550            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1551            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1552            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1553            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1554            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1555            N->getOpcode() == ISD::ATOMIC_LOAD_FMAX    ||
1556            N->getOpcode() == ISD::ATOMIC_LOAD_FMIN    ||
1557            N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
1558            N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
1559            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1560            N->getOpcode() == ISD::ATOMIC_STORE;
1561   }
1562 };
1563 
1564 /// This SDNode is used for target intrinsics that touch
1565 /// memory and need an associated MachineMemOperand. Its opcode may be
1566 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1567 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1568 class MemIntrinsicSDNode : public MemSDNode {
1569 public:
1570   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1571                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1572       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1573     SDNodeBits.IsMemIntrinsic = true;
1574   }
1575 
1576   // Methods to support isa and dyn_cast
1577   static bool classof(const SDNode *N) {
1578     // We lower some target intrinsics to their target opcode
1579     // early a node with a target opcode can be of this class
1580     return N->isMemIntrinsic()             ||
1581            N->getOpcode() == ISD::PREFETCH ||
1582            N->isTargetMemoryOpcode();
1583   }
1584 };
1585 
1586 /// This SDNode is used to implement the code generator
1587 /// support for the llvm IR shufflevector instruction.  It combines elements
1588 /// from two input vectors into a new input vector, with the selection and
1589 /// ordering of elements determined by an array of integers, referred to as
1590 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1591 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1592 /// An index of -1 is treated as undef, such that the code generator may put
1593 /// any value in the corresponding element of the result.
1594 class ShuffleVectorSDNode : public SDNode {
1595   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1596   // is freed when the SelectionDAG object is destroyed.
1597   const int *Mask;
1598 
1599 protected:
1600   friend class SelectionDAG;
1601 
1602   ShuffleVectorSDNode(SDVTList VTs, unsigned Order, const DebugLoc &dl,
1603                       const int *M)
1604       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, VTs), Mask(M) {}
1605 
1606 public:
1607   ArrayRef<int> getMask() const {
1608     EVT VT = getValueType(0);
1609     return ArrayRef(Mask, VT.getVectorNumElements());
1610   }
1611 
1612   int getMaskElt(unsigned Idx) const {
1613     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1614     return Mask[Idx];
1615   }
1616 
1617   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1618 
1619   int getSplatIndex() const {
1620     assert(isSplat() && "Cannot get splat index for non-splat!");
1621     EVT VT = getValueType(0);
1622     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1623       if (Mask[i] >= 0)
1624         return Mask[i];
1625 
1626     // We can choose any index value here and be correct because all elements
1627     // are undefined. Return 0 for better potential for callers to simplify.
1628     return 0;
1629   }
1630 
1631   static bool isSplatMask(const int *Mask, EVT VT);
1632 
1633   /// Change values in a shuffle permute mask assuming
1634   /// the two vector operands have swapped position.
1635   static void commuteMask(MutableArrayRef<int> Mask) {
1636     unsigned NumElems = Mask.size();
1637     for (unsigned i = 0; i != NumElems; ++i) {
1638       int idx = Mask[i];
1639       if (idx < 0)
1640         continue;
1641       else if (idx < (int)NumElems)
1642         Mask[i] = idx + NumElems;
1643       else
1644         Mask[i] = idx - NumElems;
1645     }
1646   }
1647 
1648   static bool classof(const SDNode *N) {
1649     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1650   }
1651 };
1652 
1653 class ConstantSDNode : public SDNode {
1654   friend class SelectionDAG;
1655 
1656   const ConstantInt *Value;
1657 
1658   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
1659                  SDVTList VTs)
1660       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1661                VTs),
1662         Value(val) {
1663     ConstantSDNodeBits.IsOpaque = isOpaque;
1664   }
1665 
1666 public:
1667   const ConstantInt *getConstantIntValue() const { return Value; }
1668   const APInt &getAPIntValue() const { return Value->getValue(); }
1669   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1670   int64_t getSExtValue() const { return Value->getSExtValue(); }
1671   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1672     return Value->getLimitedValue(Limit);
1673   }
1674   MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1675   Align getAlignValue() const { return Value->getAlignValue(); }
1676 
1677   bool isOne() const { return Value->isOne(); }
1678   bool isZero() const { return Value->isZero(); }
1679   bool isAllOnes() const { return Value->isMinusOne(); }
1680   bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1681   bool isMinSignedValue() const { return Value->isMinValue(true); }
1682 
1683   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1684 
1685   static bool classof(const SDNode *N) {
1686     return N->getOpcode() == ISD::Constant ||
1687            N->getOpcode() == ISD::TargetConstant;
1688   }
1689 };
1690 
1691 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1692   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1693 }
1694 
1695 uint64_t SDNode::getAsZExtVal() const {
1696   return cast<ConstantSDNode>(this)->getZExtValue();
1697 }
1698 
1699 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1700   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1701 }
1702 
1703 const APInt &SDNode::getAsAPIntVal() const {
1704   return cast<ConstantSDNode>(this)->getAPIntValue();
1705 }
1706 
1707 class ConstantFPSDNode : public SDNode {
1708   friend class SelectionDAG;
1709 
1710   const ConstantFP *Value;
1711 
1712   ConstantFPSDNode(bool isTarget, const ConstantFP *val, SDVTList VTs)
1713       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1714                DebugLoc(), VTs),
1715         Value(val) {}
1716 
1717 public:
1718   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1719   const ConstantFP *getConstantFPValue() const { return Value; }
1720 
1721   /// Return true if the value is positive or negative zero.
1722   bool isZero() const { return Value->isZero(); }
1723 
1724   /// Return true if the value is a NaN.
1725   bool isNaN() const { return Value->isNaN(); }
1726 
1727   /// Return true if the value is an infinity
1728   bool isInfinity() const { return Value->isInfinity(); }
1729 
1730   /// Return true if the value is negative.
1731   bool isNegative() const { return Value->isNegative(); }
1732 
1733   /// We don't rely on operator== working on double values, as
1734   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1735   /// As such, this method can be used to do an exact bit-for-bit comparison of
1736   /// two floating point values.
1737 
1738   /// We leave the version with the double argument here because it's just so
1739   /// convenient to write "2.0" and the like.  Without this function we'd
1740   /// have to duplicate its logic everywhere it's called.
1741   bool isExactlyValue(double V) const {
1742     return Value->getValueAPF().isExactlyValue(V);
1743   }
1744   bool isExactlyValue(const APFloat& V) const;
1745 
1746   static bool isValueValidForType(EVT VT, const APFloat& Val);
1747 
1748   static bool classof(const SDNode *N) {
1749     return N->getOpcode() == ISD::ConstantFP ||
1750            N->getOpcode() == ISD::TargetConstantFP;
1751   }
1752 };
1753 
1754 /// Returns true if \p V is a constant integer zero.
1755 bool isNullConstant(SDValue V);
1756 
1757 /// Returns true if \p V is a constant integer zero or an UNDEF node.
1758 bool isNullConstantOrUndef(SDValue V);
1759 
1760 /// Returns true if \p V is an FP constant with a value of positive zero.
1761 bool isNullFPConstant(SDValue V);
1762 
1763 /// Returns true if \p V is an integer constant with all bits set.
1764 bool isAllOnesConstant(SDValue V);
1765 
1766 /// Returns true if \p V is a constant integer one.
1767 bool isOneConstant(SDValue V);
1768 
1769 /// Returns true if \p V is a constant min signed integer value.
1770 bool isMinSignedConstant(SDValue V);
1771 
1772 /// Returns true if \p V is a neutral element of Opc with Flags.
1773 /// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
1774 /// checks that V is a right identity.
1775 bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
1776                        unsigned OperandNo);
1777 
1778 /// Return the non-bitcasted source operand of \p V if it exists.
1779 /// If \p V is not a bitcasted value, it is returned as-is.
1780 SDValue peekThroughBitcasts(SDValue V);
1781 
1782 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1783 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1784 SDValue peekThroughOneUseBitcasts(SDValue V);
1785 
1786 /// Return the non-extracted vector source operand of \p V if it exists.
1787 /// If \p V is not an extracted subvector, it is returned as-is.
1788 SDValue peekThroughExtractSubvectors(SDValue V);
1789 
1790 /// Return the non-truncated source operand of \p V if it exists.
1791 /// If \p V is not a truncation, it is returned as-is.
1792 SDValue peekThroughTruncates(SDValue V);
1793 
1794 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1795 /// constant is canonicalized to be operand 1.
1796 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1797 
1798 /// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
1799 /// an empty SDValue. Only bits set in \p Mask are required to be inverted,
1800 /// other bits may be arbitrary.
1801 SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs);
1802 
1803 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1804 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1805                                     bool AllowTruncation = false);
1806 
1807 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1808 /// constant int.
1809 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1810                                     bool AllowUndefs = false,
1811                                     bool AllowTruncation = false);
1812 
1813 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1814 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1815 
1816 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1817 /// constant float.
1818 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1819                                         bool AllowUndefs = false);
1820 
1821 /// Return true if the value is a constant 0 integer or a splatted vector of
1822 /// a constant 0 integer (with no undefs by default).
1823 /// Build vector implicit truncation is not an issue for null values.
1824 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1825 
1826 /// Return true if the value is a constant 1 integer or a splatted vector of a
1827 /// constant 1 integer (with no undefs).
1828 /// Build vector implicit truncation is allowed, but the truncated bits need to
1829 /// be zero.
1830 bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1831 
1832 /// Return true if the value is a constant -1 integer or a splatted vector of a
1833 /// constant -1 integer (with no undefs).
1834 /// Does not permit build vector implicit truncation.
1835 bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1836 
1837 /// Return true if \p V is either a integer or FP constant.
1838 inline bool isIntOrFPConstant(SDValue V) {
1839   return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1840 }
1841 
1842 class GlobalAddressSDNode : public SDNode {
1843   friend class SelectionDAG;
1844 
1845   const GlobalValue *TheGlobal;
1846   int64_t Offset;
1847   unsigned TargetFlags;
1848 
1849   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1850                       const GlobalValue *GA, SDVTList VTs, int64_t o,
1851                       unsigned TF)
1852       : SDNode(Opc, Order, DL, VTs), TheGlobal(GA), Offset(o), TargetFlags(TF) {
1853   }
1854 
1855 public:
1856   const GlobalValue *getGlobal() const { return TheGlobal; }
1857   int64_t getOffset() const { return Offset; }
1858   unsigned getTargetFlags() const { return TargetFlags; }
1859   // Return the address space this GlobalAddress belongs to.
1860   unsigned getAddressSpace() const;
1861 
1862   static bool classof(const SDNode *N) {
1863     return N->getOpcode() == ISD::GlobalAddress ||
1864            N->getOpcode() == ISD::TargetGlobalAddress ||
1865            N->getOpcode() == ISD::GlobalTLSAddress ||
1866            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1867   }
1868 };
1869 
1870 class FrameIndexSDNode : public SDNode {
1871   friend class SelectionDAG;
1872 
1873   int FI;
1874 
1875   FrameIndexSDNode(int fi, SDVTList VTs, bool isTarg)
1876       : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, 0, DebugLoc(),
1877                VTs),
1878         FI(fi) {}
1879 
1880 public:
1881   int getIndex() const { return FI; }
1882 
1883   static bool classof(const SDNode *N) {
1884     return N->getOpcode() == ISD::FrameIndex ||
1885            N->getOpcode() == ISD::TargetFrameIndex;
1886   }
1887 };
1888 
1889 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1890 /// the offet and size that are started/ended in the underlying FrameIndex.
1891 class LifetimeSDNode : public SDNode {
1892   friend class SelectionDAG;
1893   int64_t Size;
1894   int64_t Offset; // -1 if offset is unknown.
1895 
1896   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1897                  SDVTList VTs, int64_t Size, int64_t Offset)
1898       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1899 public:
1900   int64_t getFrameIndex() const {
1901     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1902   }
1903 
1904   bool hasOffset() const { return Offset >= 0; }
1905   int64_t getOffset() const {
1906     assert(hasOffset() && "offset is unknown");
1907     return Offset;
1908   }
1909   int64_t getSize() const {
1910     assert(hasOffset() && "offset is unknown");
1911     return Size;
1912   }
1913 
1914   // Methods to support isa and dyn_cast
1915   static bool classof(const SDNode *N) {
1916     return N->getOpcode() == ISD::LIFETIME_START ||
1917            N->getOpcode() == ISD::LIFETIME_END;
1918   }
1919 };
1920 
1921 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1922 /// the index of the basic block being probed. A pseudo probe serves as a place
1923 /// holder and will be removed at the end of compilation. It does not have any
1924 /// operand because we do not want the instruction selection to deal with any.
1925 class PseudoProbeSDNode : public SDNode {
1926   friend class SelectionDAG;
1927   uint64_t Guid;
1928   uint64_t Index;
1929   uint32_t Attributes;
1930 
1931   PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1932                     SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1933       : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1934         Attributes(Attr) {}
1935 
1936 public:
1937   uint64_t getGuid() const { return Guid; }
1938   uint64_t getIndex() const { return Index; }
1939   uint32_t getAttributes() const { return Attributes; }
1940 
1941   // Methods to support isa and dyn_cast
1942   static bool classof(const SDNode *N) {
1943     return N->getOpcode() == ISD::PSEUDO_PROBE;
1944   }
1945 };
1946 
1947 class JumpTableSDNode : public SDNode {
1948   friend class SelectionDAG;
1949 
1950   int JTI;
1951   unsigned TargetFlags;
1952 
1953   JumpTableSDNode(int jti, SDVTList VTs, bool isTarg, unsigned TF)
1954       : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, 0, DebugLoc(),
1955                VTs),
1956         JTI(jti), TargetFlags(TF) {}
1957 
1958 public:
1959   int getIndex() const { return JTI; }
1960   unsigned getTargetFlags() const { return TargetFlags; }
1961 
1962   static bool classof(const SDNode *N) {
1963     return N->getOpcode() == ISD::JumpTable ||
1964            N->getOpcode() == ISD::TargetJumpTable;
1965   }
1966 };
1967 
1968 class ConstantPoolSDNode : public SDNode {
1969   friend class SelectionDAG;
1970 
1971   union {
1972     const Constant *ConstVal;
1973     MachineConstantPoolValue *MachineCPVal;
1974   } Val;
1975   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1976   Align Alignment; // Minimum alignment requirement of CP.
1977   unsigned TargetFlags;
1978 
1979   ConstantPoolSDNode(bool isTarget, const Constant *c, SDVTList VTs, int o,
1980                      Align Alignment, unsigned TF)
1981       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1982                DebugLoc(), VTs),
1983         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1984     assert(Offset >= 0 && "Offset is too large");
1985     Val.ConstVal = c;
1986   }
1987 
1988   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, SDVTList VTs,
1989                      int o, Align Alignment, unsigned TF)
1990       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1991                DebugLoc(), VTs),
1992         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1993     assert(Offset >= 0 && "Offset is too large");
1994     Val.MachineCPVal = v;
1995     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1996   }
1997 
1998 public:
1999   bool isMachineConstantPoolEntry() const {
2000     return Offset < 0;
2001   }
2002 
2003   const Constant *getConstVal() const {
2004     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
2005     return Val.ConstVal;
2006   }
2007 
2008   MachineConstantPoolValue *getMachineCPVal() const {
2009     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
2010     return Val.MachineCPVal;
2011   }
2012 
2013   int getOffset() const {
2014     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
2015   }
2016 
2017   // Return the alignment of this constant pool object, which is either 0 (for
2018   // default alignment) or the desired value.
2019   Align getAlign() const { return Alignment; }
2020   unsigned getTargetFlags() const { return TargetFlags; }
2021 
2022   Type *getType() const;
2023 
2024   static bool classof(const SDNode *N) {
2025     return N->getOpcode() == ISD::ConstantPool ||
2026            N->getOpcode() == ISD::TargetConstantPool;
2027   }
2028 };
2029 
2030 /// Completely target-dependent object reference.
2031 class TargetIndexSDNode : public SDNode {
2032   friend class SelectionDAG;
2033 
2034   unsigned TargetFlags;
2035   int Index;
2036   int64_t Offset;
2037 
2038 public:
2039   TargetIndexSDNode(int Idx, SDVTList VTs, int64_t Ofs, unsigned TF)
2040       : SDNode(ISD::TargetIndex, 0, DebugLoc(), VTs), TargetFlags(TF),
2041         Index(Idx), Offset(Ofs) {}
2042 
2043   unsigned getTargetFlags() const { return TargetFlags; }
2044   int getIndex() const { return Index; }
2045   int64_t getOffset() const { return Offset; }
2046 
2047   static bool classof(const SDNode *N) {
2048     return N->getOpcode() == ISD::TargetIndex;
2049   }
2050 };
2051 
2052 class BasicBlockSDNode : public SDNode {
2053   friend class SelectionDAG;
2054 
2055   MachineBasicBlock *MBB;
2056 
2057   /// Debug info is meaningful and potentially useful here, but we create
2058   /// blocks out of order when they're jumped to, which makes it a bit
2059   /// harder.  Let's see if we need it first.
2060   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2061     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
2062   {}
2063 
2064 public:
2065   MachineBasicBlock *getBasicBlock() const { return MBB; }
2066 
2067   static bool classof(const SDNode *N) {
2068     return N->getOpcode() == ISD::BasicBlock;
2069   }
2070 };
2071 
2072 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
2073 class BuildVectorSDNode : public SDNode {
2074 public:
2075   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
2076   explicit BuildVectorSDNode() = delete;
2077 
2078   /// Check if this is a constant splat, and if so, find the
2079   /// smallest element size that splats the vector.  If MinSplatBits is
2080   /// nonzero, the element size must be at least that large.  Note that the
2081   /// splat element may be the entire vector (i.e., a one element vector).
2082   /// Returns the splat element value in SplatValue.  Any undefined bits in
2083   /// that value are zero, and the corresponding bits in the SplatUndef mask
2084   /// are set.  The SplatBitSize value is set to the splat element size in
2085   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
2086   /// undefined.  isBigEndian describes the endianness of the target.
2087   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
2088                        unsigned &SplatBitSize, bool &HasAnyUndefs,
2089                        unsigned MinSplatBits = 0,
2090                        bool isBigEndian = false) const;
2091 
2092   /// Returns the demanded splatted value or a null value if this is not a
2093   /// splat.
2094   ///
2095   /// The DemandedElts mask indicates the elements that must be in the splat.
2096   /// If passed a non-null UndefElements bitvector, it will resize it to match
2097   /// the vector width and set the bits where elements are undef.
2098   SDValue getSplatValue(const APInt &DemandedElts,
2099                         BitVector *UndefElements = nullptr) const;
2100 
2101   /// Returns the splatted value or a null value if this is not a splat.
2102   ///
2103   /// If passed a non-null UndefElements bitvector, it will resize it to match
2104   /// the vector width and set the bits where elements are undef.
2105   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
2106 
2107   /// Find the shortest repeating sequence of values in the build vector.
2108   ///
2109   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2110   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2111   ///
2112   /// Currently this must be a power-of-2 build vector.
2113   /// The DemandedElts mask indicates the elements that must be present,
2114   /// undemanded elements in Sequence may be null (SDValue()). If passed a
2115   /// non-null UndefElements bitvector, it will resize it to match the original
2116   /// vector width and set the bits where elements are undef. If result is
2117   /// false, Sequence will be empty.
2118   bool getRepeatedSequence(const APInt &DemandedElts,
2119                            SmallVectorImpl<SDValue> &Sequence,
2120                            BitVector *UndefElements = nullptr) const;
2121 
2122   /// Find the shortest repeating sequence of values in the build vector.
2123   ///
2124   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2125   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2126   ///
2127   /// Currently this must be a power-of-2 build vector.
2128   /// If passed a non-null UndefElements bitvector, it will resize it to match
2129   /// the original vector width and set the bits where elements are undef.
2130   /// If result is false, Sequence will be empty.
2131   bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
2132                            BitVector *UndefElements = nullptr) const;
2133 
2134   /// Returns the demanded splatted constant or null if this is not a constant
2135   /// splat.
2136   ///
2137   /// The DemandedElts mask indicates the elements that must be in the splat.
2138   /// If passed a non-null UndefElements bitvector, it will resize it to match
2139   /// the vector width and set the bits where elements are undef.
2140   ConstantSDNode *
2141   getConstantSplatNode(const APInt &DemandedElts,
2142                        BitVector *UndefElements = nullptr) const;
2143 
2144   /// Returns the splatted constant or null if this is not a constant
2145   /// splat.
2146   ///
2147   /// If passed a non-null UndefElements bitvector, it will resize it to match
2148   /// the vector width and set the bits where elements are undef.
2149   ConstantSDNode *
2150   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2151 
2152   /// Returns the demanded splatted constant FP or null if this is not a
2153   /// constant FP splat.
2154   ///
2155   /// The DemandedElts mask indicates the elements that must be in the splat.
2156   /// If passed a non-null UndefElements bitvector, it will resize it to match
2157   /// the vector width and set the bits where elements are undef.
2158   ConstantFPSDNode *
2159   getConstantFPSplatNode(const APInt &DemandedElts,
2160                          BitVector *UndefElements = nullptr) const;
2161 
2162   /// Returns the splatted constant FP or null if this is not a constant
2163   /// FP splat.
2164   ///
2165   /// If passed a non-null UndefElements bitvector, it will resize it to match
2166   /// the vector width and set the bits where elements are undef.
2167   ConstantFPSDNode *
2168   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2169 
2170   /// If this is a constant FP splat and the splatted constant FP is an
2171   /// exact power or 2, return the log base 2 integer value.  Otherwise,
2172   /// return -1.
2173   ///
2174   /// The BitWidth specifies the necessary bit precision.
2175   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2176                                           uint32_t BitWidth) const;
2177 
2178   /// Extract the raw bit data from a build vector of Undef, Constant or
2179   /// ConstantFP node elements. Each raw bit element will be \p
2180   /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
2181   /// undefined elements are flagged in \p UndefElements.
2182   bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2183                           SmallVectorImpl<APInt> &RawBitElements,
2184                           BitVector &UndefElements) const;
2185 
2186   bool isConstant() const;
2187 
2188   /// If this BuildVector is constant and represents the numerical series
2189   /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
2190   /// the value "<a,n>" is returned.
2191   std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
2192 
2193   /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
2194   /// Undef elements are treated as zero, and entirely undefined elements are
2195   /// flagged in \p DstUndefElements.
2196   static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2197                             SmallVectorImpl<APInt> &DstBitElements,
2198                             ArrayRef<APInt> SrcBitElements,
2199                             BitVector &DstUndefElements,
2200                             const BitVector &SrcUndefElements);
2201 
2202   static bool classof(const SDNode *N) {
2203     return N->getOpcode() == ISD::BUILD_VECTOR;
2204   }
2205 };
2206 
2207 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2208 /// used when the SelectionDAG needs to make a simple reference to something
2209 /// in the LLVM IR representation.
2210 ///
2211 class SrcValueSDNode : public SDNode {
2212   friend class SelectionDAG;
2213 
2214   const Value *V;
2215 
2216   /// Create a SrcValue for a general value.
2217   explicit SrcValueSDNode(const Value *v)
2218     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2219 
2220 public:
2221   /// Return the contained Value.
2222   const Value *getValue() const { return V; }
2223 
2224   static bool classof(const SDNode *N) {
2225     return N->getOpcode() == ISD::SRCVALUE;
2226   }
2227 };
2228 
2229 class MDNodeSDNode : public SDNode {
2230   friend class SelectionDAG;
2231 
2232   const MDNode *MD;
2233 
2234   explicit MDNodeSDNode(const MDNode *md)
2235   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2236   {}
2237 
2238 public:
2239   const MDNode *getMD() const { return MD; }
2240 
2241   static bool classof(const SDNode *N) {
2242     return N->getOpcode() == ISD::MDNODE_SDNODE;
2243   }
2244 };
2245 
2246 class RegisterSDNode : public SDNode {
2247   friend class SelectionDAG;
2248 
2249   Register Reg;
2250 
2251   RegisterSDNode(Register reg, SDVTList VTs)
2252       : SDNode(ISD::Register, 0, DebugLoc(), VTs), Reg(reg) {}
2253 
2254 public:
2255   Register getReg() const { return Reg; }
2256 
2257   static bool classof(const SDNode *N) {
2258     return N->getOpcode() == ISD::Register;
2259   }
2260 };
2261 
2262 class RegisterMaskSDNode : public SDNode {
2263   friend class SelectionDAG;
2264 
2265   // The memory for RegMask is not owned by the node.
2266   const uint32_t *RegMask;
2267 
2268   RegisterMaskSDNode(const uint32_t *mask)
2269     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2270       RegMask(mask) {}
2271 
2272 public:
2273   const uint32_t *getRegMask() const { return RegMask; }
2274 
2275   static bool classof(const SDNode *N) {
2276     return N->getOpcode() == ISD::RegisterMask;
2277   }
2278 };
2279 
2280 class BlockAddressSDNode : public SDNode {
2281   friend class SelectionDAG;
2282 
2283   const BlockAddress *BA;
2284   int64_t Offset;
2285   unsigned TargetFlags;
2286 
2287   BlockAddressSDNode(unsigned NodeTy, SDVTList VTs, const BlockAddress *ba,
2288                      int64_t o, unsigned Flags)
2289       : SDNode(NodeTy, 0, DebugLoc(), VTs), BA(ba), Offset(o),
2290         TargetFlags(Flags) {}
2291 
2292 public:
2293   const BlockAddress *getBlockAddress() const { return BA; }
2294   int64_t getOffset() const { return Offset; }
2295   unsigned getTargetFlags() const { return TargetFlags; }
2296 
2297   static bool classof(const SDNode *N) {
2298     return N->getOpcode() == ISD::BlockAddress ||
2299            N->getOpcode() == ISD::TargetBlockAddress;
2300   }
2301 };
2302 
2303 class LabelSDNode : public SDNode {
2304   friend class SelectionDAG;
2305 
2306   MCSymbol *Label;
2307 
2308   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2309       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2310     assert(LabelSDNode::classof(this) && "not a label opcode");
2311   }
2312 
2313 public:
2314   MCSymbol *getLabel() const { return Label; }
2315 
2316   static bool classof(const SDNode *N) {
2317     return N->getOpcode() == ISD::EH_LABEL ||
2318            N->getOpcode() == ISD::ANNOTATION_LABEL;
2319   }
2320 };
2321 
2322 class ExternalSymbolSDNode : public SDNode {
2323   friend class SelectionDAG;
2324 
2325   const char *Symbol;
2326   unsigned TargetFlags;
2327 
2328   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF,
2329                        SDVTList VTs)
2330       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2331                DebugLoc(), VTs),
2332         Symbol(Sym), TargetFlags(TF) {}
2333 
2334 public:
2335   const char *getSymbol() const { return Symbol; }
2336   unsigned getTargetFlags() const { return TargetFlags; }
2337 
2338   static bool classof(const SDNode *N) {
2339     return N->getOpcode() == ISD::ExternalSymbol ||
2340            N->getOpcode() == ISD::TargetExternalSymbol;
2341   }
2342 };
2343 
2344 class MCSymbolSDNode : public SDNode {
2345   friend class SelectionDAG;
2346 
2347   MCSymbol *Symbol;
2348 
2349   MCSymbolSDNode(MCSymbol *Symbol, SDVTList VTs)
2350       : SDNode(ISD::MCSymbol, 0, DebugLoc(), VTs), Symbol(Symbol) {}
2351 
2352 public:
2353   MCSymbol *getMCSymbol() const { return Symbol; }
2354 
2355   static bool classof(const SDNode *N) {
2356     return N->getOpcode() == ISD::MCSymbol;
2357   }
2358 };
2359 
2360 class CondCodeSDNode : public SDNode {
2361   friend class SelectionDAG;
2362 
2363   ISD::CondCode Condition;
2364 
2365   explicit CondCodeSDNode(ISD::CondCode Cond)
2366     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2367       Condition(Cond) {}
2368 
2369 public:
2370   ISD::CondCode get() const { return Condition; }
2371 
2372   static bool classof(const SDNode *N) {
2373     return N->getOpcode() == ISD::CONDCODE;
2374   }
2375 };
2376 
2377 /// This class is used to represent EVT's, which are used
2378 /// to parameterize some operations.
2379 class VTSDNode : public SDNode {
2380   friend class SelectionDAG;
2381 
2382   EVT ValueType;
2383 
2384   explicit VTSDNode(EVT VT)
2385     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2386       ValueType(VT) {}
2387 
2388 public:
2389   EVT getVT() const { return ValueType; }
2390 
2391   static bool classof(const SDNode *N) {
2392     return N->getOpcode() == ISD::VALUETYPE;
2393   }
2394 };
2395 
2396 /// Base class for LoadSDNode and StoreSDNode
2397 class LSBaseSDNode : public MemSDNode {
2398 public:
2399   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2400                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2401                MachineMemOperand *MMO)
2402       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2403     LSBaseSDNodeBits.AddressingMode = AM;
2404     assert(getAddressingMode() == AM && "Value truncated");
2405   }
2406 
2407   const SDValue &getOffset() const {
2408     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2409   }
2410 
2411   /// Return the addressing mode for this load or store:
2412   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2413   ISD::MemIndexedMode getAddressingMode() const {
2414     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2415   }
2416 
2417   /// Return true if this is a pre/post inc/dec load/store.
2418   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2419 
2420   /// Return true if this is NOT a pre/post inc/dec load/store.
2421   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2422 
2423   static bool classof(const SDNode *N) {
2424     return N->getOpcode() == ISD::LOAD ||
2425            N->getOpcode() == ISD::STORE;
2426   }
2427 };
2428 
2429 /// This class is used to represent ISD::LOAD nodes.
2430 class LoadSDNode : public LSBaseSDNode {
2431   friend class SelectionDAG;
2432 
2433   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2434              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2435              MachineMemOperand *MMO)
2436       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2437     LoadSDNodeBits.ExtTy = ETy;
2438     assert(readMem() && "Load MachineMemOperand is not a load!");
2439     assert(!writeMem() && "Load MachineMemOperand is a store!");
2440   }
2441 
2442 public:
2443   /// Return whether this is a plain node,
2444   /// or one of the varieties of value-extending loads.
2445   ISD::LoadExtType getExtensionType() const {
2446     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2447   }
2448 
2449   const SDValue &getBasePtr() const { return getOperand(1); }
2450   const SDValue &getOffset() const { return getOperand(2); }
2451 
2452   static bool classof(const SDNode *N) {
2453     return N->getOpcode() == ISD::LOAD;
2454   }
2455 };
2456 
2457 /// This class is used to represent ISD::STORE nodes.
2458 class StoreSDNode : public LSBaseSDNode {
2459   friend class SelectionDAG;
2460 
2461   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2462               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2463               MachineMemOperand *MMO)
2464       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2465     StoreSDNodeBits.IsTruncating = isTrunc;
2466     assert(!readMem() && "Store MachineMemOperand is a load!");
2467     assert(writeMem() && "Store MachineMemOperand is not a store!");
2468   }
2469 
2470 public:
2471   /// Return true if the op does a truncation before store.
2472   /// For integers this is the same as doing a TRUNCATE and storing the result.
2473   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2474   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2475   void setTruncatingStore(bool Truncating) {
2476     StoreSDNodeBits.IsTruncating = Truncating;
2477   }
2478 
2479   const SDValue &getValue() const { return getOperand(1); }
2480   const SDValue &getBasePtr() const { return getOperand(2); }
2481   const SDValue &getOffset() const { return getOperand(3); }
2482 
2483   static bool classof(const SDNode *N) {
2484     return N->getOpcode() == ISD::STORE;
2485   }
2486 };
2487 
2488 /// This base class is used to represent VP_LOAD, VP_STORE,
2489 /// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
2490 class VPBaseLoadStoreSDNode : public MemSDNode {
2491 public:
2492   friend class SelectionDAG;
2493 
2494   VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2495                         const DebugLoc &DL, SDVTList VTs,
2496                         ISD::MemIndexedMode AM, EVT MemVT,
2497                         MachineMemOperand *MMO)
2498       : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
2499     LSBaseSDNodeBits.AddressingMode = AM;
2500     assert(getAddressingMode() == AM && "Value truncated");
2501   }
2502 
2503   // VPStridedStoreSDNode (Chain, Data, Ptr,    Offset, Stride, Mask, EVL)
2504   // VPStoreSDNode        (Chain, Data, Ptr,    Offset, Mask,   EVL)
2505   // VPStridedLoadSDNode  (Chain, Ptr,  Offset, Stride, Mask,   EVL)
2506   // VPLoadSDNode         (Chain, Ptr,  Offset, Mask,   EVL)
2507   // Mask is a vector of i1 elements;
2508   // the type of EVL is TLI.getVPExplicitVectorLengthTy().
2509   const SDValue &getOffset() const {
2510     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2511                        getOpcode() == ISD::VP_LOAD)
2512                           ? 2
2513                           : 3);
2514   }
2515   const SDValue &getBasePtr() const {
2516     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2517                        getOpcode() == ISD::VP_LOAD)
2518                           ? 1
2519                           : 2);
2520   }
2521   const SDValue &getMask() const {
2522     switch (getOpcode()) {
2523     default:
2524       llvm_unreachable("Invalid opcode");
2525     case ISD::VP_LOAD:
2526       return getOperand(3);
2527     case ISD::VP_STORE:
2528     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2529       return getOperand(4);
2530     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2531       return getOperand(5);
2532     }
2533   }
2534   const SDValue &getVectorLength() const {
2535     switch (getOpcode()) {
2536     default:
2537       llvm_unreachable("Invalid opcode");
2538     case ISD::VP_LOAD:
2539       return getOperand(4);
2540     case ISD::VP_STORE:
2541     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2542       return getOperand(5);
2543     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2544       return getOperand(6);
2545     }
2546   }
2547 
2548   /// Return the addressing mode for this load or store:
2549   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2550   ISD::MemIndexedMode getAddressingMode() const {
2551     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2552   }
2553 
2554   /// Return true if this is a pre/post inc/dec load/store.
2555   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2556 
2557   /// Return true if this is NOT a pre/post inc/dec load/store.
2558   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2559 
2560   static bool classof(const SDNode *N) {
2561     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2562            N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
2563            N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
2564   }
2565 };
2566 
2567 /// This class is used to represent a VP_LOAD node
2568 class VPLoadSDNode : public VPBaseLoadStoreSDNode {
2569 public:
2570   friend class SelectionDAG;
2571 
2572   VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2573                ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
2574                EVT MemVT, MachineMemOperand *MMO)
2575       : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2576     LoadSDNodeBits.ExtTy = ETy;
2577     LoadSDNodeBits.IsExpanding = isExpanding;
2578   }
2579 
2580   ISD::LoadExtType getExtensionType() const {
2581     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2582   }
2583 
2584   const SDValue &getBasePtr() const { return getOperand(1); }
2585   const SDValue &getOffset() const { return getOperand(2); }
2586   const SDValue &getMask() const { return getOperand(3); }
2587   const SDValue &getVectorLength() const { return getOperand(4); }
2588 
2589   static bool classof(const SDNode *N) {
2590     return N->getOpcode() == ISD::VP_LOAD;
2591   }
2592   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2593 };
2594 
2595 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
2596 class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode {
2597 public:
2598   friend class SelectionDAG;
2599 
2600   VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2601                       ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2602                       bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2603       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
2604                               AM, MemVT, MMO) {
2605     LoadSDNodeBits.ExtTy = ETy;
2606     LoadSDNodeBits.IsExpanding = IsExpanding;
2607   }
2608 
2609   ISD::LoadExtType getExtensionType() const {
2610     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2611   }
2612 
2613   const SDValue &getBasePtr() const { return getOperand(1); }
2614   const SDValue &getOffset() const { return getOperand(2); }
2615   const SDValue &getStride() const { return getOperand(3); }
2616   const SDValue &getMask() const { return getOperand(4); }
2617   const SDValue &getVectorLength() const { return getOperand(5); }
2618 
2619   static bool classof(const SDNode *N) {
2620     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
2621   }
2622   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2623 };
2624 
2625 /// This class is used to represent a VP_STORE node
2626 class VPStoreSDNode : public VPBaseLoadStoreSDNode {
2627 public:
2628   friend class SelectionDAG;
2629 
2630   VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2631                 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2632                 EVT MemVT, MachineMemOperand *MMO)
2633       : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
2634     StoreSDNodeBits.IsTruncating = isTrunc;
2635     StoreSDNodeBits.IsCompressing = isCompressing;
2636   }
2637 
2638   /// Return true if this is a truncating store.
2639   /// For integers this is the same as doing a TRUNCATE and storing the result.
2640   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2641   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2642 
2643   /// Returns true if the op does a compression to the vector before storing.
2644   /// The node contiguously stores the active elements (integers or floats)
2645   /// in src (those with their respective bit set in writemask k) to unaligned
2646   /// memory at base_addr.
2647   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2648 
2649   const SDValue &getValue() const { return getOperand(1); }
2650   const SDValue &getBasePtr() const { return getOperand(2); }
2651   const SDValue &getOffset() const { return getOperand(3); }
2652   const SDValue &getMask() const { return getOperand(4); }
2653   const SDValue &getVectorLength() const { return getOperand(5); }
2654 
2655   static bool classof(const SDNode *N) {
2656     return N->getOpcode() == ISD::VP_STORE;
2657   }
2658 };
2659 
2660 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
2661 class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode {
2662 public:
2663   friend class SelectionDAG;
2664 
2665   VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2666                        ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
2667                        EVT MemVT, MachineMemOperand *MMO)
2668       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
2669                               VTs, AM, MemVT, MMO) {
2670     StoreSDNodeBits.IsTruncating = IsTrunc;
2671     StoreSDNodeBits.IsCompressing = IsCompressing;
2672   }
2673 
2674   /// Return true if this is a truncating store.
2675   /// For integers this is the same as doing a TRUNCATE and storing the result.
2676   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2677   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2678 
2679   /// Returns true if the op does a compression to the vector before storing.
2680   /// The node contiguously stores the active elements (integers or floats)
2681   /// in src (those with their respective bit set in writemask k) to unaligned
2682   /// memory at base_addr.
2683   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2684 
2685   const SDValue &getValue() const { return getOperand(1); }
2686   const SDValue &getBasePtr() const { return getOperand(2); }
2687   const SDValue &getOffset() const { return getOperand(3); }
2688   const SDValue &getStride() const { return getOperand(4); }
2689   const SDValue &getMask() const { return getOperand(5); }
2690   const SDValue &getVectorLength() const { return getOperand(6); }
2691 
2692   static bool classof(const SDNode *N) {
2693     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
2694   }
2695 };
2696 
2697 /// This base class is used to represent MLOAD and MSTORE nodes
2698 class MaskedLoadStoreSDNode : public MemSDNode {
2699 public:
2700   friend class SelectionDAG;
2701 
2702   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2703                         const DebugLoc &dl, SDVTList VTs,
2704                         ISD::MemIndexedMode AM, EVT MemVT,
2705                         MachineMemOperand *MMO)
2706       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2707     LSBaseSDNodeBits.AddressingMode = AM;
2708     assert(getAddressingMode() == AM && "Value truncated");
2709   }
2710 
2711   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2712   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2713   // Mask is a vector of i1 elements
2714   const SDValue &getOffset() const {
2715     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2716   }
2717   const SDValue &getMask() const {
2718     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2719   }
2720 
2721   /// Return the addressing mode for this load or store:
2722   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2723   ISD::MemIndexedMode getAddressingMode() const {
2724     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2725   }
2726 
2727   /// Return true if this is a pre/post inc/dec load/store.
2728   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2729 
2730   /// Return true if this is NOT a pre/post inc/dec load/store.
2731   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2732 
2733   static bool classof(const SDNode *N) {
2734     return N->getOpcode() == ISD::MLOAD ||
2735            N->getOpcode() == ISD::MSTORE;
2736   }
2737 };
2738 
2739 /// This class is used to represent an MLOAD node
2740 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2741 public:
2742   friend class SelectionDAG;
2743 
2744   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2745                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2746                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2747       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2748     LoadSDNodeBits.ExtTy = ETy;
2749     LoadSDNodeBits.IsExpanding = IsExpanding;
2750   }
2751 
2752   ISD::LoadExtType getExtensionType() const {
2753     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2754   }
2755 
2756   const SDValue &getBasePtr() const { return getOperand(1); }
2757   const SDValue &getOffset() const { return getOperand(2); }
2758   const SDValue &getMask() const { return getOperand(3); }
2759   const SDValue &getPassThru() const { return getOperand(4); }
2760 
2761   static bool classof(const SDNode *N) {
2762     return N->getOpcode() == ISD::MLOAD;
2763   }
2764 
2765   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2766 };
2767 
2768 /// This class is used to represent an MSTORE node
2769 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2770 public:
2771   friend class SelectionDAG;
2772 
2773   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2774                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2775                     EVT MemVT, MachineMemOperand *MMO)
2776       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2777     StoreSDNodeBits.IsTruncating = isTrunc;
2778     StoreSDNodeBits.IsCompressing = isCompressing;
2779   }
2780 
2781   /// Return true if the op does a truncation before store.
2782   /// For integers this is the same as doing a TRUNCATE and storing the result.
2783   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2784   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2785 
2786   /// Returns true if the op does a compression to the vector before storing.
2787   /// The node contiguously stores the active elements (integers or floats)
2788   /// in src (those with their respective bit set in writemask k) to unaligned
2789   /// memory at base_addr.
2790   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2791 
2792   const SDValue &getValue() const { return getOperand(1); }
2793   const SDValue &getBasePtr() const { return getOperand(2); }
2794   const SDValue &getOffset() const { return getOperand(3); }
2795   const SDValue &getMask() const { return getOperand(4); }
2796 
2797   static bool classof(const SDNode *N) {
2798     return N->getOpcode() == ISD::MSTORE;
2799   }
2800 };
2801 
2802 /// This is a base class used to represent
2803 /// VP_GATHER and VP_SCATTER nodes
2804 ///
2805 class VPGatherScatterSDNode : public MemSDNode {
2806 public:
2807   friend class SelectionDAG;
2808 
2809   VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2810                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2811                         MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2812       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2813     LSBaseSDNodeBits.AddressingMode = IndexType;
2814     assert(getIndexType() == IndexType && "Value truncated");
2815   }
2816 
2817   /// How is Index applied to BasePtr when computing addresses.
2818   ISD::MemIndexType getIndexType() const {
2819     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2820   }
2821   bool isIndexScaled() const {
2822     return !cast<ConstantSDNode>(getScale())->isOne();
2823   }
2824   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2825 
2826   // In the both nodes address is Op1, mask is Op2:
2827   // VPGatherSDNode  (Chain, base, index, scale, mask, vlen)
2828   // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
2829   // Mask is a vector of i1 elements
2830   const SDValue &getBasePtr() const {
2831     return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
2832   }
2833   const SDValue &getIndex() const {
2834     return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
2835   }
2836   const SDValue &getScale() const {
2837     return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
2838   }
2839   const SDValue &getMask() const {
2840     return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
2841   }
2842   const SDValue &getVectorLength() const {
2843     return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
2844   }
2845 
2846   static bool classof(const SDNode *N) {
2847     return N->getOpcode() == ISD::VP_GATHER ||
2848            N->getOpcode() == ISD::VP_SCATTER;
2849   }
2850 };
2851 
2852 /// This class is used to represent an VP_GATHER node
2853 ///
2854 class VPGatherSDNode : public VPGatherScatterSDNode {
2855 public:
2856   friend class SelectionDAG;
2857 
2858   VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2859                  MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2860       : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
2861                               IndexType) {}
2862 
2863   static bool classof(const SDNode *N) {
2864     return N->getOpcode() == ISD::VP_GATHER;
2865   }
2866 };
2867 
2868 /// This class is used to represent an VP_SCATTER node
2869 ///
2870 class VPScatterSDNode : public VPGatherScatterSDNode {
2871 public:
2872   friend class SelectionDAG;
2873 
2874   VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2875                   MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2876       : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
2877                               IndexType) {}
2878 
2879   const SDValue &getValue() const { return getOperand(1); }
2880 
2881   static bool classof(const SDNode *N) {
2882     return N->getOpcode() == ISD::VP_SCATTER;
2883   }
2884 };
2885 
2886 /// This is a base class used to represent
2887 /// MGATHER and MSCATTER nodes
2888 ///
2889 class MaskedGatherScatterSDNode : public MemSDNode {
2890 public:
2891   friend class SelectionDAG;
2892 
2893   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2894                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2895                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2896       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2897     LSBaseSDNodeBits.AddressingMode = IndexType;
2898     assert(getIndexType() == IndexType && "Value truncated");
2899   }
2900 
2901   /// How is Index applied to BasePtr when computing addresses.
2902   ISD::MemIndexType getIndexType() const {
2903     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2904   }
2905   bool isIndexScaled() const {
2906     return !cast<ConstantSDNode>(getScale())->isOne();
2907   }
2908   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2909 
2910   // In the both nodes address is Op1, mask is Op2:
2911   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2912   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2913   // Mask is a vector of i1 elements
2914   const SDValue &getBasePtr() const { return getOperand(3); }
2915   const SDValue &getIndex()   const { return getOperand(4); }
2916   const SDValue &getMask()    const { return getOperand(2); }
2917   const SDValue &getScale()   const { return getOperand(5); }
2918 
2919   static bool classof(const SDNode *N) {
2920     return N->getOpcode() == ISD::MGATHER ||
2921            N->getOpcode() == ISD::MSCATTER;
2922   }
2923 };
2924 
2925 /// This class is used to represent an MGATHER node
2926 ///
2927 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2928 public:
2929   friend class SelectionDAG;
2930 
2931   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2932                      EVT MemVT, MachineMemOperand *MMO,
2933                      ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2934       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2935                                   IndexType) {
2936     LoadSDNodeBits.ExtTy = ETy;
2937   }
2938 
2939   const SDValue &getPassThru() const { return getOperand(1); }
2940 
2941   ISD::LoadExtType getExtensionType() const {
2942     return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2943   }
2944 
2945   static bool classof(const SDNode *N) {
2946     return N->getOpcode() == ISD::MGATHER;
2947   }
2948 };
2949 
2950 /// This class is used to represent an MSCATTER node
2951 ///
2952 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2953 public:
2954   friend class SelectionDAG;
2955 
2956   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2957                       EVT MemVT, MachineMemOperand *MMO,
2958                       ISD::MemIndexType IndexType, bool IsTrunc)
2959       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2960                                   IndexType) {
2961     StoreSDNodeBits.IsTruncating = IsTrunc;
2962   }
2963 
2964   /// Return true if the op does a truncation before store.
2965   /// For integers this is the same as doing a TRUNCATE and storing the result.
2966   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2967   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2968 
2969   const SDValue &getValue() const { return getOperand(1); }
2970 
2971   static bool classof(const SDNode *N) {
2972     return N->getOpcode() == ISD::MSCATTER;
2973   }
2974 };
2975 
2976 class MaskedHistogramSDNode : public MemSDNode {
2977 public:
2978   friend class SelectionDAG;
2979 
2980   MaskedHistogramSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2981                         EVT MemVT, MachineMemOperand *MMO,
2982                         ISD::MemIndexType IndexType)
2983       : MemSDNode(ISD::EXPERIMENTAL_VECTOR_HISTOGRAM, Order, DL, VTs, MemVT,
2984                   MMO) {
2985     LSBaseSDNodeBits.AddressingMode = IndexType;
2986   }
2987 
2988   ISD::MemIndexType getIndexType() const {
2989     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2990   }
2991 
2992   const SDValue &getBasePtr() const { return getOperand(3); }
2993   const SDValue &getIndex() const { return getOperand(4); }
2994   const SDValue &getMask() const { return getOperand(2); }
2995   const SDValue &getScale() const { return getOperand(5); }
2996   const SDValue &getInc() const { return getOperand(1); }
2997   const SDValue &getIntID() const { return getOperand(6); }
2998 
2999   static bool classof(const SDNode *N) {
3000     return N->getOpcode() == ISD::EXPERIMENTAL_VECTOR_HISTOGRAM;
3001   }
3002 };
3003 
3004 class FPStateAccessSDNode : public MemSDNode {
3005 public:
3006   friend class SelectionDAG;
3007 
3008   FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl,
3009                       SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
3010       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
3011     assert((NodeTy == ISD::GET_FPENV_MEM || NodeTy == ISD::SET_FPENV_MEM) &&
3012            "Expected FP state access node");
3013   }
3014 
3015   static bool classof(const SDNode *N) {
3016     return N->getOpcode() == ISD::GET_FPENV_MEM ||
3017            N->getOpcode() == ISD::SET_FPENV_MEM;
3018   }
3019 };
3020 
3021 /// An SDNode that represents everything that will be needed
3022 /// to construct a MachineInstr. These nodes are created during the
3023 /// instruction selection proper phase.
3024 ///
3025 /// Note that the only supported way to set the `memoperands` is by calling the
3026 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
3027 /// inside the DAG rather than in the node.
3028 class MachineSDNode : public SDNode {
3029 private:
3030   friend class SelectionDAG;
3031 
3032   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
3033       : SDNode(Opc, Order, DL, VTs) {}
3034 
3035   // We use a pointer union between a single `MachineMemOperand` pointer and
3036   // a pointer to an array of `MachineMemOperand` pointers. This is null when
3037   // the number of these is zero, the single pointer variant used when the
3038   // number is one, and the array is used for larger numbers.
3039   //
3040   // The array is allocated via the `SelectionDAG`'s allocator and so will
3041   // always live until the DAG is cleaned up and doesn't require ownership here.
3042   //
3043   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
3044   // subclasses aren't managed in a conforming C++ manner. See the comments on
3045   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
3046   // constraint here is that these don't manage memory with their constructor or
3047   // destructor and can be initialized to a good state even if they start off
3048   // uninitialized.
3049   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
3050 
3051   // Note that this could be folded into the above `MemRefs` member if doing so
3052   // is advantageous at some point. We don't need to store this in most cases.
3053   // However, at the moment this doesn't appear to make the allocation any
3054   // smaller and makes the code somewhat simpler to read.
3055   int NumMemRefs = 0;
3056 
3057 public:
3058   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
3059 
3060   ArrayRef<MachineMemOperand *> memoperands() const {
3061     // Special case the common cases.
3062     if (NumMemRefs == 0)
3063       return {};
3064     if (NumMemRefs == 1)
3065       return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
3066 
3067     // Otherwise we have an actual array.
3068     return ArrayRef(cast<MachineMemOperand **>(MemRefs), NumMemRefs);
3069   }
3070   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
3071   mmo_iterator memoperands_end() const { return memoperands().end(); }
3072   bool memoperands_empty() const { return memoperands().empty(); }
3073 
3074   /// Clear out the memory reference descriptor list.
3075   void clearMemRefs() {
3076     MemRefs = nullptr;
3077     NumMemRefs = 0;
3078   }
3079 
3080   static bool classof(const SDNode *N) {
3081     return N->isMachineOpcode();
3082   }
3083 };
3084 
3085 /// An SDNode that records if a register contains a value that is guaranteed to
3086 /// be aligned accordingly.
3087 class AssertAlignSDNode : public SDNode {
3088   Align Alignment;
3089 
3090 public:
3091   AssertAlignSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, Align A)
3092       : SDNode(ISD::AssertAlign, Order, DL, VTs), Alignment(A) {}
3093 
3094   Align getAlign() const { return Alignment; }
3095 
3096   static bool classof(const SDNode *N) {
3097     return N->getOpcode() == ISD::AssertAlign;
3098   }
3099 };
3100 
3101 class SDNodeIterator {
3102   const SDNode *Node;
3103   unsigned Operand;
3104 
3105   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
3106 
3107 public:
3108   using iterator_category = std::forward_iterator_tag;
3109   using value_type = SDNode;
3110   using difference_type = std::ptrdiff_t;
3111   using pointer = value_type *;
3112   using reference = value_type &;
3113 
3114   bool operator==(const SDNodeIterator& x) const {
3115     return Operand == x.Operand;
3116   }
3117   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
3118 
3119   pointer operator*() const {
3120     return Node->getOperand(Operand).getNode();
3121   }
3122   pointer operator->() const { return operator*(); }
3123 
3124   SDNodeIterator& operator++() {                // Preincrement
3125     ++Operand;
3126     return *this;
3127   }
3128   SDNodeIterator operator++(int) { // Postincrement
3129     SDNodeIterator tmp = *this; ++*this; return tmp;
3130   }
3131   size_t operator-(SDNodeIterator Other) const {
3132     assert(Node == Other.Node &&
3133            "Cannot compare iterators of two different nodes!");
3134     return Operand - Other.Operand;
3135   }
3136 
3137   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
3138   static SDNodeIterator end  (const SDNode *N) {
3139     return SDNodeIterator(N, N->getNumOperands());
3140   }
3141 
3142   unsigned getOperand() const { return Operand; }
3143   const SDNode *getNode() const { return Node; }
3144 };
3145 
3146 template <> struct GraphTraits<SDNode*> {
3147   using NodeRef = SDNode *;
3148   using ChildIteratorType = SDNodeIterator;
3149 
3150   static NodeRef getEntryNode(SDNode *N) { return N; }
3151 
3152   static ChildIteratorType child_begin(NodeRef N) {
3153     return SDNodeIterator::begin(N);
3154   }
3155 
3156   static ChildIteratorType child_end(NodeRef N) {
3157     return SDNodeIterator::end(N);
3158   }
3159 };
3160 
3161 /// A representation of the largest SDNode, for use in sizeof().
3162 ///
3163 /// This needs to be a union because the largest node differs on 32 bit systems
3164 /// with 4 and 8 byte pointer alignment, respectively.
3165 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
3166                                             BlockAddressSDNode,
3167                                             GlobalAddressSDNode,
3168                                             PseudoProbeSDNode>;
3169 
3170 /// The SDNode class with the greatest alignment requirement.
3171 using MostAlignedSDNode = GlobalAddressSDNode;
3172 
3173 namespace ISD {
3174 
3175   /// Returns true if the specified node is a non-extending and unindexed load.
3176   inline bool isNormalLoad(const SDNode *N) {
3177     auto *Ld = dyn_cast<LoadSDNode>(N);
3178     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3179            Ld->getAddressingMode() == ISD::UNINDEXED;
3180   }
3181 
3182   /// Returns true if the specified node is a non-extending load.
3183   inline bool isNON_EXTLoad(const SDNode *N) {
3184     auto *Ld = dyn_cast<LoadSDNode>(N);
3185     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD;
3186   }
3187 
3188   /// Returns true if the specified node is a EXTLOAD.
3189   inline bool isEXTLoad(const SDNode *N) {
3190     auto *Ld = dyn_cast<LoadSDNode>(N);
3191     return Ld && Ld->getExtensionType() == ISD::EXTLOAD;
3192   }
3193 
3194   /// Returns true if the specified node is a SEXTLOAD.
3195   inline bool isSEXTLoad(const SDNode *N) {
3196     auto *Ld = dyn_cast<LoadSDNode>(N);
3197     return Ld && Ld->getExtensionType() == ISD::SEXTLOAD;
3198   }
3199 
3200   /// Returns true if the specified node is a ZEXTLOAD.
3201   inline bool isZEXTLoad(const SDNode *N) {
3202     auto *Ld = dyn_cast<LoadSDNode>(N);
3203     return Ld && Ld->getExtensionType() == ISD::ZEXTLOAD;
3204   }
3205 
3206   /// Returns true if the specified node is an unindexed load.
3207   inline bool isUNINDEXEDLoad(const SDNode *N) {
3208     auto *Ld = dyn_cast<LoadSDNode>(N);
3209     return Ld && Ld->getAddressingMode() == ISD::UNINDEXED;
3210   }
3211 
3212   /// Returns true if the specified node is a non-truncating
3213   /// and unindexed store.
3214   inline bool isNormalStore(const SDNode *N) {
3215     auto *St = dyn_cast<StoreSDNode>(N);
3216     return St && !St->isTruncatingStore() &&
3217            St->getAddressingMode() == ISD::UNINDEXED;
3218   }
3219 
3220   /// Returns true if the specified node is an unindexed store.
3221   inline bool isUNINDEXEDStore(const SDNode *N) {
3222     auto *St = dyn_cast<StoreSDNode>(N);
3223     return St && St->getAddressingMode() == ISD::UNINDEXED;
3224   }
3225 
3226   /// Attempt to match a unary predicate against a scalar/splat constant or
3227   /// every element of a constant BUILD_VECTOR.
3228   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3229   template <typename ConstNodeType>
3230   bool matchUnaryPredicateImpl(SDValue Op,
3231                                std::function<bool(ConstNodeType *)> Match,
3232                                bool AllowUndefs = false);
3233 
3234   /// Hook for matching ConstantSDNode predicate
3235   inline bool matchUnaryPredicate(SDValue Op,
3236                                   std::function<bool(ConstantSDNode *)> Match,
3237                                   bool AllowUndefs = false) {
3238     return matchUnaryPredicateImpl<ConstantSDNode>(Op, Match, AllowUndefs);
3239   }
3240 
3241   /// Hook for matching ConstantFPSDNode predicate
3242   inline bool
3243   matchUnaryFpPredicate(SDValue Op,
3244                         std::function<bool(ConstantFPSDNode *)> Match,
3245                         bool AllowUndefs = false) {
3246     return matchUnaryPredicateImpl<ConstantFPSDNode>(Op, Match, AllowUndefs);
3247   }
3248 
3249   /// Attempt to match a binary predicate against a pair of scalar/splat
3250   /// constants or every element of a pair of constant BUILD_VECTORs.
3251   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3252   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
3253   bool matchBinaryPredicate(
3254       SDValue LHS, SDValue RHS,
3255       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
3256       bool AllowUndefs = false, bool AllowTypeMismatch = false);
3257 
3258   /// Returns true if the specified value is the overflow result from one
3259   /// of the overflow intrinsic nodes.
3260   inline bool isOverflowIntrOpRes(SDValue Op) {
3261     unsigned Opc = Op.getOpcode();
3262     return (Op.getResNo() == 1 &&
3263             (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3264              Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
3265   }
3266 
3267 } // end namespace ISD
3268 
3269 } // end namespace llvm
3270 
3271 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
3272