xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/SelectionDAGNodes.h (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Support/AlignOf.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include "llvm/Support/TypeSize.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <climits>
49 #include <cstddef>
50 #include <cstdint>
51 #include <cstring>
52 #include <iterator>
53 #include <string>
54 #include <tuple>
55 
56 namespace llvm {
57 
58 class APInt;
59 class Constant;
60 template <typename T> struct DenseMapInfo;
61 class GlobalValue;
62 class MachineBasicBlock;
63 class MachineConstantPoolValue;
64 class MCSymbol;
65 class raw_ostream;
66 class SDNode;
67 class SelectionDAG;
68 class Type;
69 class Value;
70 
71 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
72                     bool force = false);
73 
74 /// This represents a list of ValueType's that has been intern'd by
75 /// a SelectionDAG.  Instances of this simple value class are returned by
76 /// SelectionDAG::getVTList(...).
77 ///
78 struct SDVTList {
79   const EVT *VTs;
80   unsigned int NumVTs;
81 };
82 
83 namespace ISD {
84 
85   /// Node predicates
86 
87   /// If N is a BUILD_VECTOR node whose elements are all the same constant or
88   /// undefined, return true and return the constant value in \p SplatValue.
89   bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
90 
91   /// Return true if the specified node is a BUILD_VECTOR where all of the
92   /// elements are ~0 or undef.
93   bool isBuildVectorAllOnes(const SDNode *N);
94 
95   /// Return true if the specified node is a BUILD_VECTOR where all of the
96   /// elements are 0 or undef.
97   bool isBuildVectorAllZeros(const SDNode *N);
98 
99   /// Return true if the specified node is a BUILD_VECTOR node of all
100   /// ConstantSDNode or undef.
101   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
102 
103   /// Return true if the specified node is a BUILD_VECTOR node of all
104   /// ConstantFPSDNode or undef.
105   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
106 
107   /// Return true if the node has at least one operand and all operands of the
108   /// specified node are ISD::UNDEF.
109   bool allOperandsUndef(const SDNode *N);
110 
111 } // end namespace ISD
112 
113 //===----------------------------------------------------------------------===//
114 /// Unlike LLVM values, Selection DAG nodes may return multiple
115 /// values as the result of a computation.  Many nodes return multiple values,
116 /// from loads (which define a token and a return value) to ADDC (which returns
117 /// a result and a carry value), to calls (which may return an arbitrary number
118 /// of values).
119 ///
120 /// As such, each use of a SelectionDAG computation must indicate the node that
121 /// computes it as well as which return value to use from that node.  This pair
122 /// of information is represented with the SDValue value type.
123 ///
124 class SDValue {
125   friend struct DenseMapInfo<SDValue>;
126 
127   SDNode *Node = nullptr; // The node defining the value we are using.
128   unsigned ResNo = 0;     // Which return value of the node we are using.
129 
130 public:
131   SDValue() = default;
132   SDValue(SDNode *node, unsigned resno);
133 
134   /// get the index which selects a specific result in the SDNode
135   unsigned getResNo() const { return ResNo; }
136 
137   /// get the SDNode which holds the desired result
138   SDNode *getNode() const { return Node; }
139 
140   /// set the SDNode
141   void setNode(SDNode *N) { Node = N; }
142 
143   inline SDNode *operator->() const { return Node; }
144 
145   bool operator==(const SDValue &O) const {
146     return Node == O.Node && ResNo == O.ResNo;
147   }
148   bool operator!=(const SDValue &O) const {
149     return !operator==(O);
150   }
151   bool operator<(const SDValue &O) const {
152     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
153   }
154   explicit operator bool() const {
155     return Node != nullptr;
156   }
157 
158   SDValue getValue(unsigned R) const {
159     return SDValue(Node, R);
160   }
161 
162   /// Return true if this node is an operand of N.
163   bool isOperandOf(const SDNode *N) const;
164 
165   /// Return the ValueType of the referenced return value.
166   inline EVT getValueType() const;
167 
168   /// Return the simple ValueType of the referenced return value.
169   MVT getSimpleValueType() const {
170     return getValueType().getSimpleVT();
171   }
172 
173   /// Returns the size of the value in bits.
174   ///
175   /// If the value type is a scalable vector type, the scalable property will
176   /// be set and the runtime size will be a positive integer multiple of the
177   /// base size.
178   TypeSize getValueSizeInBits() const {
179     return getValueType().getSizeInBits();
180   }
181 
182   TypeSize getScalarValueSizeInBits() const {
183     return getValueType().getScalarType().getSizeInBits();
184   }
185 
186   // Forwarding methods - These forward to the corresponding methods in SDNode.
187   inline unsigned getOpcode() const;
188   inline unsigned getNumOperands() const;
189   inline const SDValue &getOperand(unsigned i) const;
190   inline uint64_t getConstantOperandVal(unsigned i) const;
191   inline const APInt &getConstantOperandAPInt(unsigned i) const;
192   inline bool isTargetMemoryOpcode() const;
193   inline bool isTargetOpcode() const;
194   inline bool isMachineOpcode() const;
195   inline bool isUndef() const;
196   inline unsigned getMachineOpcode() const;
197   inline const DebugLoc &getDebugLoc() const;
198   inline void dump() const;
199   inline void dump(const SelectionDAG *G) const;
200   inline void dumpr() const;
201   inline void dumpr(const SelectionDAG *G) const;
202 
203   /// Return true if this operand (which must be a chain) reaches the
204   /// specified operand without crossing any side-effecting instructions.
205   /// In practice, this looks through token factors and non-volatile loads.
206   /// In order to remain efficient, this only
207   /// looks a couple of nodes in, it does not do an exhaustive search.
208   bool reachesChainWithoutSideEffects(SDValue Dest,
209                                       unsigned Depth = 2) const;
210 
211   /// Return true if there are no nodes using value ResNo of Node.
212   inline bool use_empty() const;
213 
214   /// Return true if there is exactly one node using value ResNo of Node.
215   inline bool hasOneUse() const;
216 };
217 
218 template<> struct DenseMapInfo<SDValue> {
219   static inline SDValue getEmptyKey() {
220     SDValue V;
221     V.ResNo = -1U;
222     return V;
223   }
224 
225   static inline SDValue getTombstoneKey() {
226     SDValue V;
227     V.ResNo = -2U;
228     return V;
229   }
230 
231   static unsigned getHashValue(const SDValue &Val) {
232     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
233             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
234   }
235 
236   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
237     return LHS == RHS;
238   }
239 };
240 
241 /// Allow casting operators to work directly on
242 /// SDValues as if they were SDNode*'s.
243 template<> struct simplify_type<SDValue> {
244   using SimpleType = SDNode *;
245 
246   static SimpleType getSimplifiedValue(SDValue &Val) {
247     return Val.getNode();
248   }
249 };
250 template<> struct simplify_type<const SDValue> {
251   using SimpleType = /*const*/ SDNode *;
252 
253   static SimpleType getSimplifiedValue(const SDValue &Val) {
254     return Val.getNode();
255   }
256 };
257 
258 /// Represents a use of a SDNode. This class holds an SDValue,
259 /// which records the SDNode being used and the result number, a
260 /// pointer to the SDNode using the value, and Next and Prev pointers,
261 /// which link together all the uses of an SDNode.
262 ///
263 class SDUse {
264   /// Val - The value being used.
265   SDValue Val;
266   /// User - The user of this value.
267   SDNode *User = nullptr;
268   /// Prev, Next - Pointers to the uses list of the SDNode referred by
269   /// this operand.
270   SDUse **Prev = nullptr;
271   SDUse *Next = nullptr;
272 
273 public:
274   SDUse() = default;
275   SDUse(const SDUse &U) = delete;
276   SDUse &operator=(const SDUse &) = delete;
277 
278   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
279   operator const SDValue&() const { return Val; }
280 
281   /// If implicit conversion to SDValue doesn't work, the get() method returns
282   /// the SDValue.
283   const SDValue &get() const { return Val; }
284 
285   /// This returns the SDNode that contains this Use.
286   SDNode *getUser() { return User; }
287 
288   /// Get the next SDUse in the use list.
289   SDUse *getNext() const { return Next; }
290 
291   /// Convenience function for get().getNode().
292   SDNode *getNode() const { return Val.getNode(); }
293   /// Convenience function for get().getResNo().
294   unsigned getResNo() const { return Val.getResNo(); }
295   /// Convenience function for get().getValueType().
296   EVT getValueType() const { return Val.getValueType(); }
297 
298   /// Convenience function for get().operator==
299   bool operator==(const SDValue &V) const {
300     return Val == V;
301   }
302 
303   /// Convenience function for get().operator!=
304   bool operator!=(const SDValue &V) const {
305     return Val != V;
306   }
307 
308   /// Convenience function for get().operator<
309   bool operator<(const SDValue &V) const {
310     return Val < V;
311   }
312 
313 private:
314   friend class SelectionDAG;
315   friend class SDNode;
316   // TODO: unfriend HandleSDNode once we fix its operand handling.
317   friend class HandleSDNode;
318 
319   void setUser(SDNode *p) { User = p; }
320 
321   /// Remove this use from its existing use list, assign it the
322   /// given value, and add it to the new value's node's use list.
323   inline void set(const SDValue &V);
324   /// Like set, but only supports initializing a newly-allocated
325   /// SDUse with a non-null value.
326   inline void setInitial(const SDValue &V);
327   /// Like set, but only sets the Node portion of the value,
328   /// leaving the ResNo portion unmodified.
329   inline void setNode(SDNode *N);
330 
331   void addToList(SDUse **List) {
332     Next = *List;
333     if (Next) Next->Prev = &Next;
334     Prev = List;
335     *List = this;
336   }
337 
338   void removeFromList() {
339     *Prev = Next;
340     if (Next) Next->Prev = Prev;
341   }
342 };
343 
344 /// simplify_type specializations - Allow casting operators to work directly on
345 /// SDValues as if they were SDNode*'s.
346 template<> struct simplify_type<SDUse> {
347   using SimpleType = SDNode *;
348 
349   static SimpleType getSimplifiedValue(SDUse &Val) {
350     return Val.getNode();
351   }
352 };
353 
354 /// These are IR-level optimization flags that may be propagated to SDNodes.
355 /// TODO: This data structure should be shared by the IR optimizer and the
356 /// the backend.
357 struct SDNodeFlags {
358 private:
359   // This bit is used to determine if the flags are in a defined state.
360   // Flag bits can only be masked out during intersection if the masking flags
361   // are defined.
362   bool AnyDefined : 1;
363 
364   bool NoUnsignedWrap : 1;
365   bool NoSignedWrap : 1;
366   bool Exact : 1;
367   bool NoNaNs : 1;
368   bool NoInfs : 1;
369   bool NoSignedZeros : 1;
370   bool AllowReciprocal : 1;
371   bool VectorReduction : 1;
372   bool AllowContract : 1;
373   bool ApproximateFuncs : 1;
374   bool AllowReassociation : 1;
375 
376   // We assume instructions do not raise floating-point exceptions by default,
377   // and only those marked explicitly may do so.  We could choose to represent
378   // this via a positive "FPExcept" flags like on the MI level, but having a
379   // negative "NoFPExcept" flag here (that defaults to true) makes the flag
380   // intersection logic more straightforward.
381   bool NoFPExcept : 1;
382 
383 public:
384   /// Default constructor turns off all optimization flags.
385   SDNodeFlags()
386       : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
387         Exact(false), NoNaNs(false), NoInfs(false),
388         NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
389         AllowContract(false), ApproximateFuncs(false),
390         AllowReassociation(false), NoFPExcept(false) {}
391 
392   /// Propagate the fast-math-flags from an IR FPMathOperator.
393   void copyFMF(const FPMathOperator &FPMO) {
394     setNoNaNs(FPMO.hasNoNaNs());
395     setNoInfs(FPMO.hasNoInfs());
396     setNoSignedZeros(FPMO.hasNoSignedZeros());
397     setAllowReciprocal(FPMO.hasAllowReciprocal());
398     setAllowContract(FPMO.hasAllowContract());
399     setApproximateFuncs(FPMO.hasApproxFunc());
400     setAllowReassociation(FPMO.hasAllowReassoc());
401   }
402 
403   /// Sets the state of the flags to the defined state.
404   void setDefined() { AnyDefined = true; }
405   /// Returns true if the flags are in a defined state.
406   bool isDefined() const { return AnyDefined; }
407 
408   // These are mutators for each flag.
409   void setNoUnsignedWrap(bool b) {
410     setDefined();
411     NoUnsignedWrap = b;
412   }
413   void setNoSignedWrap(bool b) {
414     setDefined();
415     NoSignedWrap = b;
416   }
417   void setExact(bool b) {
418     setDefined();
419     Exact = b;
420   }
421   void setNoNaNs(bool b) {
422     setDefined();
423     NoNaNs = b;
424   }
425   void setNoInfs(bool b) {
426     setDefined();
427     NoInfs = b;
428   }
429   void setNoSignedZeros(bool b) {
430     setDefined();
431     NoSignedZeros = b;
432   }
433   void setAllowReciprocal(bool b) {
434     setDefined();
435     AllowReciprocal = b;
436   }
437   void setVectorReduction(bool b) {
438     setDefined();
439     VectorReduction = b;
440   }
441   void setAllowContract(bool b) {
442     setDefined();
443     AllowContract = b;
444   }
445   void setApproximateFuncs(bool b) {
446     setDefined();
447     ApproximateFuncs = b;
448   }
449   void setAllowReassociation(bool b) {
450     setDefined();
451     AllowReassociation = b;
452   }
453   void setNoFPExcept(bool b) {
454     setDefined();
455     NoFPExcept = b;
456   }
457 
458   // These are accessors for each flag.
459   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
460   bool hasNoSignedWrap() const { return NoSignedWrap; }
461   bool hasExact() const { return Exact; }
462   bool hasNoNaNs() const { return NoNaNs; }
463   bool hasNoInfs() const { return NoInfs; }
464   bool hasNoSignedZeros() const { return NoSignedZeros; }
465   bool hasAllowReciprocal() const { return AllowReciprocal; }
466   bool hasVectorReduction() const { return VectorReduction; }
467   bool hasAllowContract() const { return AllowContract; }
468   bool hasApproximateFuncs() const { return ApproximateFuncs; }
469   bool hasAllowReassociation() const { return AllowReassociation; }
470   bool hasNoFPExcept() const { return NoFPExcept; }
471 
472   bool isFast() const {
473     return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs && NoFPExcept &&
474            AllowContract && ApproximateFuncs && AllowReassociation;
475   }
476 
477   /// Clear any flags in this flag set that aren't also set in Flags.
478   /// If the given Flags are undefined then don't do anything.
479   void intersectWith(const SDNodeFlags Flags) {
480     if (!Flags.isDefined())
481       return;
482     NoUnsignedWrap &= Flags.NoUnsignedWrap;
483     NoSignedWrap &= Flags.NoSignedWrap;
484     Exact &= Flags.Exact;
485     NoNaNs &= Flags.NoNaNs;
486     NoInfs &= Flags.NoInfs;
487     NoSignedZeros &= Flags.NoSignedZeros;
488     AllowReciprocal &= Flags.AllowReciprocal;
489     VectorReduction &= Flags.VectorReduction;
490     AllowContract &= Flags.AllowContract;
491     ApproximateFuncs &= Flags.ApproximateFuncs;
492     AllowReassociation &= Flags.AllowReassociation;
493     NoFPExcept &= Flags.NoFPExcept;
494   }
495 };
496 
497 /// Represents one node in the SelectionDAG.
498 ///
499 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
500 private:
501   /// The operation that this node performs.
502   int16_t NodeType;
503 
504 protected:
505   // We define a set of mini-helper classes to help us interpret the bits in our
506   // SubclassData.  These are designed to fit within a uint16_t so they pack
507   // with NodeType.
508 
509 #if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__))
510 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
511 // and give the `pack` pragma push semantics.
512 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
513 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
514 #else
515 #define BEGIN_TWO_BYTE_PACK()
516 #define END_TWO_BYTE_PACK()
517 #endif
518 
519 BEGIN_TWO_BYTE_PACK()
520   class SDNodeBitfields {
521     friend class SDNode;
522     friend class MemIntrinsicSDNode;
523     friend class MemSDNode;
524     friend class SelectionDAG;
525 
526     uint16_t HasDebugValue : 1;
527     uint16_t IsMemIntrinsic : 1;
528     uint16_t IsDivergent : 1;
529   };
530   enum { NumSDNodeBits = 3 };
531 
532   class ConstantSDNodeBitfields {
533     friend class ConstantSDNode;
534 
535     uint16_t : NumSDNodeBits;
536 
537     uint16_t IsOpaque : 1;
538   };
539 
540   class MemSDNodeBitfields {
541     friend class MemSDNode;
542     friend class MemIntrinsicSDNode;
543     friend class AtomicSDNode;
544 
545     uint16_t : NumSDNodeBits;
546 
547     uint16_t IsVolatile : 1;
548     uint16_t IsNonTemporal : 1;
549     uint16_t IsDereferenceable : 1;
550     uint16_t IsInvariant : 1;
551   };
552   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
553 
554   class LSBaseSDNodeBitfields {
555     friend class LSBaseSDNode;
556     friend class MaskedLoadStoreSDNode;
557     friend class MaskedGatherScatterSDNode;
558 
559     uint16_t : NumMemSDNodeBits;
560 
561     // This storage is shared between disparate class hierarchies to hold an
562     // enumeration specific to the class hierarchy in use.
563     //   LSBaseSDNode => enum ISD::MemIndexedMode
564     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
565     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
566     uint16_t AddressingMode : 3;
567   };
568   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
569 
570   class LoadSDNodeBitfields {
571     friend class LoadSDNode;
572     friend class MaskedLoadSDNode;
573 
574     uint16_t : NumLSBaseSDNodeBits;
575 
576     uint16_t ExtTy : 2; // enum ISD::LoadExtType
577     uint16_t IsExpanding : 1;
578   };
579 
580   class StoreSDNodeBitfields {
581     friend class StoreSDNode;
582     friend class MaskedStoreSDNode;
583 
584     uint16_t : NumLSBaseSDNodeBits;
585 
586     uint16_t IsTruncating : 1;
587     uint16_t IsCompressing : 1;
588   };
589 
590   union {
591     char RawSDNodeBits[sizeof(uint16_t)];
592     SDNodeBitfields SDNodeBits;
593     ConstantSDNodeBitfields ConstantSDNodeBits;
594     MemSDNodeBitfields MemSDNodeBits;
595     LSBaseSDNodeBitfields LSBaseSDNodeBits;
596     LoadSDNodeBitfields LoadSDNodeBits;
597     StoreSDNodeBitfields StoreSDNodeBits;
598   };
599 END_TWO_BYTE_PACK()
600 #undef BEGIN_TWO_BYTE_PACK
601 #undef END_TWO_BYTE_PACK
602 
603   // RawSDNodeBits must cover the entirety of the union.  This means that all of
604   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
605   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
606   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
607   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
608   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
609   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
610   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
611   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
612 
613 private:
614   friend class SelectionDAG;
615   // TODO: unfriend HandleSDNode once we fix its operand handling.
616   friend class HandleSDNode;
617 
618   /// Unique id per SDNode in the DAG.
619   int NodeId = -1;
620 
621   /// The values that are used by this operation.
622   SDUse *OperandList = nullptr;
623 
624   /// The types of the values this node defines.  SDNode's may
625   /// define multiple values simultaneously.
626   const EVT *ValueList;
627 
628   /// List of uses for this SDNode.
629   SDUse *UseList = nullptr;
630 
631   /// The number of entries in the Operand/Value list.
632   unsigned short NumOperands = 0;
633   unsigned short NumValues;
634 
635   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
636   // original LLVM instructions.
637   // This is used for turning off scheduling, because we'll forgo
638   // the normal scheduling algorithms and output the instructions according to
639   // this ordering.
640   unsigned IROrder;
641 
642   /// Source line information.
643   DebugLoc debugLoc;
644 
645   /// Return a pointer to the specified value type.
646   static const EVT *getValueTypeList(EVT VT);
647 
648   SDNodeFlags Flags;
649 
650 public:
651   /// Unique and persistent id per SDNode in the DAG.
652   /// Used for debug printing.
653   uint16_t PersistentId;
654 
655   //===--------------------------------------------------------------------===//
656   //  Accessors
657   //
658 
659   /// Return the SelectionDAG opcode value for this node. For
660   /// pre-isel nodes (those for which isMachineOpcode returns false), these
661   /// are the opcode values in the ISD and <target>ISD namespaces. For
662   /// post-isel opcodes, see getMachineOpcode.
663   unsigned getOpcode()  const { return (unsigned short)NodeType; }
664 
665   /// Test if this node has a target-specific opcode (in the
666   /// \<target\>ISD namespace).
667   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
668 
669   /// Test if this node has a target-specific opcode that may raise
670   /// FP exceptions (in the \<target\>ISD namespace and greater than
671   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
672   /// opcode are currently automatically considered to possibly raise
673   /// FP exceptions as well.
674   bool isTargetStrictFPOpcode() const {
675     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
676   }
677 
678   /// Test if this node has a target-specific
679   /// memory-referencing opcode (in the \<target\>ISD namespace and
680   /// greater than FIRST_TARGET_MEMORY_OPCODE).
681   bool isTargetMemoryOpcode() const {
682     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
683   }
684 
685   /// Return true if the type of the node type undefined.
686   bool isUndef() const { return NodeType == ISD::UNDEF; }
687 
688   /// Test if this node is a memory intrinsic (with valid pointer information).
689   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
690   /// non-memory intrinsics (with chains) that are not really instances of
691   /// MemSDNode. For such nodes, we need some extra state to determine the
692   /// proper classof relationship.
693   bool isMemIntrinsic() const {
694     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
695             NodeType == ISD::INTRINSIC_VOID) &&
696            SDNodeBits.IsMemIntrinsic;
697   }
698 
699   /// Test if this node is a strict floating point pseudo-op.
700   bool isStrictFPOpcode() {
701     switch (NodeType) {
702       default:
703         return false;
704 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
705       case ISD::STRICT_##DAGN:
706 #include "llvm/IR/ConstrainedOps.def"
707         return true;
708     }
709   }
710 
711   /// Test if this node has a post-isel opcode, directly
712   /// corresponding to a MachineInstr opcode.
713   bool isMachineOpcode() const { return NodeType < 0; }
714 
715   /// This may only be called if isMachineOpcode returns
716   /// true. It returns the MachineInstr opcode value that the node's opcode
717   /// corresponds to.
718   unsigned getMachineOpcode() const {
719     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
720     return ~NodeType;
721   }
722 
723   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
724   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
725 
726   bool isDivergent() const { return SDNodeBits.IsDivergent; }
727 
728   /// Return true if there are no uses of this node.
729   bool use_empty() const { return UseList == nullptr; }
730 
731   /// Return true if there is exactly one use of this node.
732   bool hasOneUse() const {
733     return !use_empty() && std::next(use_begin()) == use_end();
734   }
735 
736   /// Return the number of uses of this node. This method takes
737   /// time proportional to the number of uses.
738   size_t use_size() const { return std::distance(use_begin(), use_end()); }
739 
740   /// Return the unique node id.
741   int getNodeId() const { return NodeId; }
742 
743   /// Set unique node id.
744   void setNodeId(int Id) { NodeId = Id; }
745 
746   /// Return the node ordering.
747   unsigned getIROrder() const { return IROrder; }
748 
749   /// Set the node ordering.
750   void setIROrder(unsigned Order) { IROrder = Order; }
751 
752   /// Return the source location info.
753   const DebugLoc &getDebugLoc() const { return debugLoc; }
754 
755   /// Set source location info.  Try to avoid this, putting
756   /// it in the constructor is preferable.
757   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
758 
759   /// This class provides iterator support for SDUse
760   /// operands that use a specific SDNode.
761   class use_iterator
762     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
763     friend class SDNode;
764 
765     SDUse *Op = nullptr;
766 
767     explicit use_iterator(SDUse *op) : Op(op) {}
768 
769   public:
770     using reference = std::iterator<std::forward_iterator_tag,
771                                     SDUse, ptrdiff_t>::reference;
772     using pointer = std::iterator<std::forward_iterator_tag,
773                                   SDUse, ptrdiff_t>::pointer;
774 
775     use_iterator() = default;
776     use_iterator(const use_iterator &I) : Op(I.Op) {}
777 
778     bool operator==(const use_iterator &x) const {
779       return Op == x.Op;
780     }
781     bool operator!=(const use_iterator &x) const {
782       return !operator==(x);
783     }
784 
785     /// Return true if this iterator is at the end of uses list.
786     bool atEnd() const { return Op == nullptr; }
787 
788     // Iterator traversal: forward iteration only.
789     use_iterator &operator++() {          // Preincrement
790       assert(Op && "Cannot increment end iterator!");
791       Op = Op->getNext();
792       return *this;
793     }
794 
795     use_iterator operator++(int) {        // Postincrement
796       use_iterator tmp = *this; ++*this; return tmp;
797     }
798 
799     /// Retrieve a pointer to the current user node.
800     SDNode *operator*() const {
801       assert(Op && "Cannot dereference end iterator!");
802       return Op->getUser();
803     }
804 
805     SDNode *operator->() const { return operator*(); }
806 
807     SDUse &getUse() const { return *Op; }
808 
809     /// Retrieve the operand # of this use in its user.
810     unsigned getOperandNo() const {
811       assert(Op && "Cannot dereference end iterator!");
812       return (unsigned)(Op - Op->getUser()->OperandList);
813     }
814   };
815 
816   /// Provide iteration support to walk over all uses of an SDNode.
817   use_iterator use_begin() const {
818     return use_iterator(UseList);
819   }
820 
821   static use_iterator use_end() { return use_iterator(nullptr); }
822 
823   inline iterator_range<use_iterator> uses() {
824     return make_range(use_begin(), use_end());
825   }
826   inline iterator_range<use_iterator> uses() const {
827     return make_range(use_begin(), use_end());
828   }
829 
830   /// Return true if there are exactly NUSES uses of the indicated value.
831   /// This method ignores uses of other values defined by this operation.
832   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
833 
834   /// Return true if there are any use of the indicated value.
835   /// This method ignores uses of other values defined by this operation.
836   bool hasAnyUseOfValue(unsigned Value) const;
837 
838   /// Return true if this node is the only use of N.
839   bool isOnlyUserOf(const SDNode *N) const;
840 
841   /// Return true if this node is an operand of N.
842   bool isOperandOf(const SDNode *N) const;
843 
844   /// Return true if this node is a predecessor of N.
845   /// NOTE: Implemented on top of hasPredecessor and every bit as
846   /// expensive. Use carefully.
847   bool isPredecessorOf(const SDNode *N) const {
848     return N->hasPredecessor(this);
849   }
850 
851   /// Return true if N is a predecessor of this node.
852   /// N is either an operand of this node, or can be reached by recursively
853   /// traversing up the operands.
854   /// NOTE: This is an expensive method. Use it carefully.
855   bool hasPredecessor(const SDNode *N) const;
856 
857   /// Returns true if N is a predecessor of any node in Worklist. This
858   /// helper keeps Visited and Worklist sets externally to allow unions
859   /// searches to be performed in parallel, caching of results across
860   /// queries and incremental addition to Worklist. Stops early if N is
861   /// found but will resume. Remember to clear Visited and Worklists
862   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
863   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
864   /// topologically ordered (Operands have strictly smaller node id) and search
865   /// can be pruned leveraging this.
866   static bool hasPredecessorHelper(const SDNode *N,
867                                    SmallPtrSetImpl<const SDNode *> &Visited,
868                                    SmallVectorImpl<const SDNode *> &Worklist,
869                                    unsigned int MaxSteps = 0,
870                                    bool TopologicalPrune = false) {
871     SmallVector<const SDNode *, 8> DeferredNodes;
872     if (Visited.count(N))
873       return true;
874 
875     // Node Id's are assigned in three places: As a topological
876     // ordering (> 0), during legalization (results in values set to
877     // 0), new nodes (set to -1). If N has a topolgical id then we
878     // know that all nodes with ids smaller than it cannot be
879     // successors and we need not check them. Filter out all node
880     // that can't be matches. We add them to the worklist before exit
881     // in case of multiple calls. Note that during selection the topological id
882     // may be violated if a node's predecessor is selected before it. We mark
883     // this at selection negating the id of unselected successors and
884     // restricting topological pruning to positive ids.
885 
886     int NId = N->getNodeId();
887     // If we Invalidated the Id, reconstruct original NId.
888     if (NId < -1)
889       NId = -(NId + 1);
890 
891     bool Found = false;
892     while (!Worklist.empty()) {
893       const SDNode *M = Worklist.pop_back_val();
894       int MId = M->getNodeId();
895       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
896           (MId > 0) && (MId < NId)) {
897         DeferredNodes.push_back(M);
898         continue;
899       }
900       for (const SDValue &OpV : M->op_values()) {
901         SDNode *Op = OpV.getNode();
902         if (Visited.insert(Op).second)
903           Worklist.push_back(Op);
904         if (Op == N)
905           Found = true;
906       }
907       if (Found)
908         break;
909       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
910         break;
911     }
912     // Push deferred nodes back on worklist.
913     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
914     // If we bailed early, conservatively return found.
915     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
916       return true;
917     return Found;
918   }
919 
920   /// Return true if all the users of N are contained in Nodes.
921   /// NOTE: Requires at least one match, but doesn't require them all.
922   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
923 
924   /// Return the number of values used by this operation.
925   unsigned getNumOperands() const { return NumOperands; }
926 
927   /// Return the maximum number of operands that a SDNode can hold.
928   static constexpr size_t getMaxNumOperands() {
929     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
930   }
931 
932   /// Helper method returns the integer value of a ConstantSDNode operand.
933   inline uint64_t getConstantOperandVal(unsigned Num) const;
934 
935   /// Helper method returns the APInt of a ConstantSDNode operand.
936   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
937 
938   const SDValue &getOperand(unsigned Num) const {
939     assert(Num < NumOperands && "Invalid child # of SDNode!");
940     return OperandList[Num];
941   }
942 
943   using op_iterator = SDUse *;
944 
945   op_iterator op_begin() const { return OperandList; }
946   op_iterator op_end() const { return OperandList+NumOperands; }
947   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
948 
949   /// Iterator for directly iterating over the operand SDValue's.
950   struct value_op_iterator
951       : iterator_adaptor_base<value_op_iterator, op_iterator,
952                               std::random_access_iterator_tag, SDValue,
953                               ptrdiff_t, value_op_iterator *,
954                               value_op_iterator *> {
955     explicit value_op_iterator(SDUse *U = nullptr)
956       : iterator_adaptor_base(U) {}
957 
958     const SDValue &operator*() const { return I->get(); }
959   };
960 
961   iterator_range<value_op_iterator> op_values() const {
962     return make_range(value_op_iterator(op_begin()),
963                       value_op_iterator(op_end()));
964   }
965 
966   SDVTList getVTList() const {
967     SDVTList X = { ValueList, NumValues };
968     return X;
969   }
970 
971   /// If this node has a glue operand, return the node
972   /// to which the glue operand points. Otherwise return NULL.
973   SDNode *getGluedNode() const {
974     if (getNumOperands() != 0 &&
975         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
976       return getOperand(getNumOperands()-1).getNode();
977     return nullptr;
978   }
979 
980   /// If this node has a glue value with a user, return
981   /// the user (there is at most one). Otherwise return NULL.
982   SDNode *getGluedUser() const {
983     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
984       if (UI.getUse().get().getValueType() == MVT::Glue)
985         return *UI;
986     return nullptr;
987   }
988 
989   const SDNodeFlags getFlags() const { return Flags; }
990   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
991   bool isFast() { return Flags.isFast(); }
992 
993   /// Clear any flags in this node that aren't also set in Flags.
994   /// If Flags is not in a defined state then this has no effect.
995   void intersectFlagsWith(const SDNodeFlags Flags);
996 
997   /// Return the number of values defined/returned by this operator.
998   unsigned getNumValues() const { return NumValues; }
999 
1000   /// Return the type of a specified result.
1001   EVT getValueType(unsigned ResNo) const {
1002     assert(ResNo < NumValues && "Illegal result number!");
1003     return ValueList[ResNo];
1004   }
1005 
1006   /// Return the type of a specified result as a simple type.
1007   MVT getSimpleValueType(unsigned ResNo) const {
1008     return getValueType(ResNo).getSimpleVT();
1009   }
1010 
1011   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1012   ///
1013   /// If the value type is a scalable vector type, the scalable property will
1014   /// be set and the runtime size will be a positive integer multiple of the
1015   /// base size.
1016   TypeSize getValueSizeInBits(unsigned ResNo) const {
1017     return getValueType(ResNo).getSizeInBits();
1018   }
1019 
1020   using value_iterator = const EVT *;
1021 
1022   value_iterator value_begin() const { return ValueList; }
1023   value_iterator value_end() const { return ValueList+NumValues; }
1024 
1025   /// Return the opcode of this operation for printing.
1026   std::string getOperationName(const SelectionDAG *G = nullptr) const;
1027   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1028   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1029   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1030   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1031   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1032 
1033   /// Print a SelectionDAG node and all children down to
1034   /// the leaves.  The given SelectionDAG allows target-specific nodes
1035   /// to be printed in human-readable form.  Unlike printr, this will
1036   /// print the whole DAG, including children that appear multiple
1037   /// times.
1038   ///
1039   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1040 
1041   /// Print a SelectionDAG node and children up to
1042   /// depth "depth."  The given SelectionDAG allows target-specific
1043   /// nodes to be printed in human-readable form.  Unlike printr, this
1044   /// will print children that appear multiple times wherever they are
1045   /// used.
1046   ///
1047   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1048                        unsigned depth = 100) const;
1049 
1050   /// Dump this node, for debugging.
1051   void dump() const;
1052 
1053   /// Dump (recursively) this node and its use-def subgraph.
1054   void dumpr() const;
1055 
1056   /// Dump this node, for debugging.
1057   /// The given SelectionDAG allows target-specific nodes to be printed
1058   /// in human-readable form.
1059   void dump(const SelectionDAG *G) const;
1060 
1061   /// Dump (recursively) this node and its use-def subgraph.
1062   /// The given SelectionDAG allows target-specific nodes to be printed
1063   /// in human-readable form.
1064   void dumpr(const SelectionDAG *G) const;
1065 
1066   /// printrFull to dbgs().  The given SelectionDAG allows
1067   /// target-specific nodes to be printed in human-readable form.
1068   /// Unlike dumpr, this will print the whole DAG, including children
1069   /// that appear multiple times.
1070   void dumprFull(const SelectionDAG *G = nullptr) const;
1071 
1072   /// printrWithDepth to dbgs().  The given
1073   /// SelectionDAG allows target-specific nodes to be printed in
1074   /// human-readable form.  Unlike dumpr, this will print children
1075   /// that appear multiple times wherever they are used.
1076   ///
1077   void dumprWithDepth(const SelectionDAG *G = nullptr,
1078                       unsigned depth = 100) const;
1079 
1080   /// Gather unique data for the node.
1081   void Profile(FoldingSetNodeID &ID) const;
1082 
1083   /// This method should only be used by the SDUse class.
1084   void addUse(SDUse &U) { U.addToList(&UseList); }
1085 
1086 protected:
1087   static SDVTList getSDVTList(EVT VT) {
1088     SDVTList Ret = { getValueTypeList(VT), 1 };
1089     return Ret;
1090   }
1091 
1092   /// Create an SDNode.
1093   ///
1094   /// SDNodes are created without any operands, and never own the operand
1095   /// storage. To add operands, see SelectionDAG::createOperands.
1096   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1097       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1098         IROrder(Order), debugLoc(std::move(dl)) {
1099     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1100     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1101     assert(NumValues == VTs.NumVTs &&
1102            "NumValues wasn't wide enough for its operands!");
1103   }
1104 
1105   /// Release the operands and set this node to have zero operands.
1106   void DropOperands();
1107 };
1108 
1109 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1110 /// into SDNode creation functions.
1111 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1112 /// from the original Instruction, and IROrder is the ordinal position of
1113 /// the instruction.
1114 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1115 /// the IROrder are propagated from the original SDNode.
1116 /// So SDLoc class provides two constructors besides the default one, one to
1117 /// be used by the DAGBuilder, the other to be used by others.
1118 class SDLoc {
1119 private:
1120   DebugLoc DL;
1121   int IROrder = 0;
1122 
1123 public:
1124   SDLoc() = default;
1125   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1126   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1127   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1128     assert(Order >= 0 && "bad IROrder");
1129     if (I)
1130       DL = I->getDebugLoc();
1131   }
1132 
1133   unsigned getIROrder() const { return IROrder; }
1134   const DebugLoc &getDebugLoc() const { return DL; }
1135 };
1136 
1137 // Define inline functions from the SDValue class.
1138 
1139 inline SDValue::SDValue(SDNode *node, unsigned resno)
1140     : Node(node), ResNo(resno) {
1141   // Explicitly check for !ResNo to avoid use-after-free, because there are
1142   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1143   // combines.
1144   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1145          "Invalid result number for the given node!");
1146   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1147 }
1148 
1149 inline unsigned SDValue::getOpcode() const {
1150   return Node->getOpcode();
1151 }
1152 
1153 inline EVT SDValue::getValueType() const {
1154   return Node->getValueType(ResNo);
1155 }
1156 
1157 inline unsigned SDValue::getNumOperands() const {
1158   return Node->getNumOperands();
1159 }
1160 
1161 inline const SDValue &SDValue::getOperand(unsigned i) const {
1162   return Node->getOperand(i);
1163 }
1164 
1165 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1166   return Node->getConstantOperandVal(i);
1167 }
1168 
1169 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1170   return Node->getConstantOperandAPInt(i);
1171 }
1172 
1173 inline bool SDValue::isTargetOpcode() const {
1174   return Node->isTargetOpcode();
1175 }
1176 
1177 inline bool SDValue::isTargetMemoryOpcode() const {
1178   return Node->isTargetMemoryOpcode();
1179 }
1180 
1181 inline bool SDValue::isMachineOpcode() const {
1182   return Node->isMachineOpcode();
1183 }
1184 
1185 inline unsigned SDValue::getMachineOpcode() const {
1186   return Node->getMachineOpcode();
1187 }
1188 
1189 inline bool SDValue::isUndef() const {
1190   return Node->isUndef();
1191 }
1192 
1193 inline bool SDValue::use_empty() const {
1194   return !Node->hasAnyUseOfValue(ResNo);
1195 }
1196 
1197 inline bool SDValue::hasOneUse() const {
1198   return Node->hasNUsesOfValue(1, ResNo);
1199 }
1200 
1201 inline const DebugLoc &SDValue::getDebugLoc() const {
1202   return Node->getDebugLoc();
1203 }
1204 
1205 inline void SDValue::dump() const {
1206   return Node->dump();
1207 }
1208 
1209 inline void SDValue::dump(const SelectionDAG *G) const {
1210   return Node->dump(G);
1211 }
1212 
1213 inline void SDValue::dumpr() const {
1214   return Node->dumpr();
1215 }
1216 
1217 inline void SDValue::dumpr(const SelectionDAG *G) const {
1218   return Node->dumpr(G);
1219 }
1220 
1221 // Define inline functions from the SDUse class.
1222 
1223 inline void SDUse::set(const SDValue &V) {
1224   if (Val.getNode()) removeFromList();
1225   Val = V;
1226   if (V.getNode()) V.getNode()->addUse(*this);
1227 }
1228 
1229 inline void SDUse::setInitial(const SDValue &V) {
1230   Val = V;
1231   V.getNode()->addUse(*this);
1232 }
1233 
1234 inline void SDUse::setNode(SDNode *N) {
1235   if (Val.getNode()) removeFromList();
1236   Val.setNode(N);
1237   if (N) N->addUse(*this);
1238 }
1239 
1240 /// This class is used to form a handle around another node that
1241 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1242 /// operand.  This node should be directly created by end-users and not added to
1243 /// the AllNodes list.
1244 class HandleSDNode : public SDNode {
1245   SDUse Op;
1246 
1247 public:
1248   explicit HandleSDNode(SDValue X)
1249     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1250     // HandleSDNodes are never inserted into the DAG, so they won't be
1251     // auto-numbered. Use ID 65535 as a sentinel.
1252     PersistentId = 0xffff;
1253 
1254     // Manually set up the operand list. This node type is special in that it's
1255     // always stack allocated and SelectionDAG does not manage its operands.
1256     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1257     // be so special.
1258     Op.setUser(this);
1259     Op.setInitial(X);
1260     NumOperands = 1;
1261     OperandList = &Op;
1262   }
1263   ~HandleSDNode();
1264 
1265   const SDValue &getValue() const { return Op; }
1266 };
1267 
1268 class AddrSpaceCastSDNode : public SDNode {
1269 private:
1270   unsigned SrcAddrSpace;
1271   unsigned DestAddrSpace;
1272 
1273 public:
1274   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1275                       unsigned SrcAS, unsigned DestAS);
1276 
1277   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1278   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1279 
1280   static bool classof(const SDNode *N) {
1281     return N->getOpcode() == ISD::ADDRSPACECAST;
1282   }
1283 };
1284 
1285 /// This is an abstract virtual class for memory operations.
1286 class MemSDNode : public SDNode {
1287 private:
1288   // VT of in-memory value.
1289   EVT MemoryVT;
1290 
1291 protected:
1292   /// Memory reference information.
1293   MachineMemOperand *MMO;
1294 
1295 public:
1296   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1297             EVT memvt, MachineMemOperand *MMO);
1298 
1299   bool readMem() const { return MMO->isLoad(); }
1300   bool writeMem() const { return MMO->isStore(); }
1301 
1302   /// Returns alignment and volatility of the memory access
1303   unsigned getOriginalAlignment() const {
1304     return MMO->getBaseAlignment();
1305   }
1306   unsigned getAlignment() const {
1307     return MMO->getAlignment();
1308   }
1309 
1310   /// Return the SubclassData value, without HasDebugValue. This contains an
1311   /// encoding of the volatile flag, as well as bits used by subclasses. This
1312   /// function should only be used to compute a FoldingSetNodeID value.
1313   /// The HasDebugValue bit is masked out because CSE map needs to match
1314   /// nodes with debug info with nodes without debug info. Same is about
1315   /// isDivergent bit.
1316   unsigned getRawSubclassData() const {
1317     uint16_t Data;
1318     union {
1319       char RawSDNodeBits[sizeof(uint16_t)];
1320       SDNodeBitfields SDNodeBits;
1321     };
1322     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1323     SDNodeBits.HasDebugValue = 0;
1324     SDNodeBits.IsDivergent = false;
1325     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1326     return Data;
1327   }
1328 
1329   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1330   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1331   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1332   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1333 
1334   // Returns the offset from the location of the access.
1335   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1336 
1337   /// Returns the AA info that describes the dereference.
1338   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1339 
1340   /// Returns the Ranges that describes the dereference.
1341   const MDNode *getRanges() const { return MMO->getRanges(); }
1342 
1343   /// Returns the synchronization scope ID for this memory operation.
1344   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1345 
1346   /// Return the atomic ordering requirements for this memory operation. For
1347   /// cmpxchg atomic operations, return the atomic ordering requirements when
1348   /// store occurs.
1349   AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1350 
1351   /// Return true if the memory operation ordering is Unordered or higher.
1352   bool isAtomic() const { return MMO->isAtomic(); }
1353 
1354   /// Returns true if the memory operation doesn't imply any ordering
1355   /// constraints on surrounding memory operations beyond the normal memory
1356   /// aliasing rules.
1357   bool isUnordered() const { return MMO->isUnordered(); }
1358 
1359   /// Returns true if the memory operation is neither atomic or volatile.
1360   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1361 
1362   /// Return the type of the in-memory value.
1363   EVT getMemoryVT() const { return MemoryVT; }
1364 
1365   /// Return a MachineMemOperand object describing the memory
1366   /// reference performed by operation.
1367   MachineMemOperand *getMemOperand() const { return MMO; }
1368 
1369   const MachinePointerInfo &getPointerInfo() const {
1370     return MMO->getPointerInfo();
1371   }
1372 
1373   /// Return the address space for the associated pointer
1374   unsigned getAddressSpace() const {
1375     return getPointerInfo().getAddrSpace();
1376   }
1377 
1378   /// Update this MemSDNode's MachineMemOperand information
1379   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1380   /// This must only be used when the new alignment applies to all users of
1381   /// this MachineMemOperand.
1382   void refineAlignment(const MachineMemOperand *NewMMO) {
1383     MMO->refineAlignment(NewMMO);
1384   }
1385 
1386   const SDValue &getChain() const { return getOperand(0); }
1387   const SDValue &getBasePtr() const {
1388     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1389   }
1390 
1391   // Methods to support isa and dyn_cast
1392   static bool classof(const SDNode *N) {
1393     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1394     // with either an intrinsic or a target opcode.
1395     return N->getOpcode() == ISD::LOAD                ||
1396            N->getOpcode() == ISD::STORE               ||
1397            N->getOpcode() == ISD::PREFETCH            ||
1398            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1399            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1400            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1401            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1402            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1403            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1404            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1405            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1406            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1407            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1408            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1409            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1410            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1411            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1412            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1413            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1414            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1415            N->getOpcode() == ISD::ATOMIC_STORE        ||
1416            N->getOpcode() == ISD::MLOAD               ||
1417            N->getOpcode() == ISD::MSTORE              ||
1418            N->getOpcode() == ISD::MGATHER             ||
1419            N->getOpcode() == ISD::MSCATTER            ||
1420            N->isMemIntrinsic()                        ||
1421            N->isTargetMemoryOpcode();
1422   }
1423 };
1424 
1425 /// This is an SDNode representing atomic operations.
1426 class AtomicSDNode : public MemSDNode {
1427 public:
1428   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1429                EVT MemVT, MachineMemOperand *MMO)
1430     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1431     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1432             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1433   }
1434 
1435   const SDValue &getBasePtr() const { return getOperand(1); }
1436   const SDValue &getVal() const { return getOperand(2); }
1437 
1438   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1439   /// otherwise.
1440   bool isCompareAndSwap() const {
1441     unsigned Op = getOpcode();
1442     return Op == ISD::ATOMIC_CMP_SWAP ||
1443            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1444   }
1445 
1446   /// For cmpxchg atomic operations, return the atomic ordering requirements
1447   /// when store does not occur.
1448   AtomicOrdering getFailureOrdering() const {
1449     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1450     return MMO->getFailureOrdering();
1451   }
1452 
1453   // Methods to support isa and dyn_cast
1454   static bool classof(const SDNode *N) {
1455     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1456            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1457            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1458            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1459            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1460            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1461            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1462            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1463            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1464            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1465            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1466            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1467            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1468            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1469            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1470            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1471            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1472            N->getOpcode() == ISD::ATOMIC_STORE;
1473   }
1474 };
1475 
1476 /// This SDNode is used for target intrinsics that touch
1477 /// memory and need an associated MachineMemOperand. Its opcode may be
1478 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1479 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1480 class MemIntrinsicSDNode : public MemSDNode {
1481 public:
1482   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1483                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1484       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1485     SDNodeBits.IsMemIntrinsic = true;
1486   }
1487 
1488   // Methods to support isa and dyn_cast
1489   static bool classof(const SDNode *N) {
1490     // We lower some target intrinsics to their target opcode
1491     // early a node with a target opcode can be of this class
1492     return N->isMemIntrinsic()             ||
1493            N->getOpcode() == ISD::PREFETCH ||
1494            N->isTargetMemoryOpcode();
1495   }
1496 };
1497 
1498 /// This SDNode is used to implement the code generator
1499 /// support for the llvm IR shufflevector instruction.  It combines elements
1500 /// from two input vectors into a new input vector, with the selection and
1501 /// ordering of elements determined by an array of integers, referred to as
1502 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1503 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1504 /// An index of -1 is treated as undef, such that the code generator may put
1505 /// any value in the corresponding element of the result.
1506 class ShuffleVectorSDNode : public SDNode {
1507   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1508   // is freed when the SelectionDAG object is destroyed.
1509   const int *Mask;
1510 
1511 protected:
1512   friend class SelectionDAG;
1513 
1514   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1515       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1516 
1517 public:
1518   ArrayRef<int> getMask() const {
1519     EVT VT = getValueType(0);
1520     return makeArrayRef(Mask, VT.getVectorNumElements());
1521   }
1522 
1523   int getMaskElt(unsigned Idx) const {
1524     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1525     return Mask[Idx];
1526   }
1527 
1528   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1529 
1530   int getSplatIndex() const {
1531     assert(isSplat() && "Cannot get splat index for non-splat!");
1532     EVT VT = getValueType(0);
1533     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1534       if (Mask[i] >= 0)
1535         return Mask[i];
1536 
1537     // We can choose any index value here and be correct because all elements
1538     // are undefined. Return 0 for better potential for callers to simplify.
1539     return 0;
1540   }
1541 
1542   static bool isSplatMask(const int *Mask, EVT VT);
1543 
1544   /// Change values in a shuffle permute mask assuming
1545   /// the two vector operands have swapped position.
1546   static void commuteMask(MutableArrayRef<int> Mask) {
1547     unsigned NumElems = Mask.size();
1548     for (unsigned i = 0; i != NumElems; ++i) {
1549       int idx = Mask[i];
1550       if (idx < 0)
1551         continue;
1552       else if (idx < (int)NumElems)
1553         Mask[i] = idx + NumElems;
1554       else
1555         Mask[i] = idx - NumElems;
1556     }
1557   }
1558 
1559   static bool classof(const SDNode *N) {
1560     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1561   }
1562 };
1563 
1564 class ConstantSDNode : public SDNode {
1565   friend class SelectionDAG;
1566 
1567   const ConstantInt *Value;
1568 
1569   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1570       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1571                getSDVTList(VT)),
1572         Value(val) {
1573     ConstantSDNodeBits.IsOpaque = isOpaque;
1574   }
1575 
1576 public:
1577   const ConstantInt *getConstantIntValue() const { return Value; }
1578   const APInt &getAPIntValue() const { return Value->getValue(); }
1579   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1580   int64_t getSExtValue() const { return Value->getSExtValue(); }
1581   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1582     return Value->getLimitedValue(Limit);
1583   }
1584 
1585   bool isOne() const { return Value->isOne(); }
1586   bool isNullValue() const { return Value->isZero(); }
1587   bool isAllOnesValue() const { return Value->isMinusOne(); }
1588 
1589   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1590 
1591   static bool classof(const SDNode *N) {
1592     return N->getOpcode() == ISD::Constant ||
1593            N->getOpcode() == ISD::TargetConstant;
1594   }
1595 };
1596 
1597 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1598   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1599 }
1600 
1601 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1602   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1603 }
1604 
1605 class ConstantFPSDNode : public SDNode {
1606   friend class SelectionDAG;
1607 
1608   const ConstantFP *Value;
1609 
1610   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1611       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1612                DebugLoc(), getSDVTList(VT)),
1613         Value(val) {}
1614 
1615 public:
1616   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1617   const ConstantFP *getConstantFPValue() const { return Value; }
1618 
1619   /// Return true if the value is positive or negative zero.
1620   bool isZero() const { return Value->isZero(); }
1621 
1622   /// Return true if the value is a NaN.
1623   bool isNaN() const { return Value->isNaN(); }
1624 
1625   /// Return true if the value is an infinity
1626   bool isInfinity() const { return Value->isInfinity(); }
1627 
1628   /// Return true if the value is negative.
1629   bool isNegative() const { return Value->isNegative(); }
1630 
1631   /// We don't rely on operator== working on double values, as
1632   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1633   /// As such, this method can be used to do an exact bit-for-bit comparison of
1634   /// two floating point values.
1635 
1636   /// We leave the version with the double argument here because it's just so
1637   /// convenient to write "2.0" and the like.  Without this function we'd
1638   /// have to duplicate its logic everywhere it's called.
1639   bool isExactlyValue(double V) const {
1640     return Value->getValueAPF().isExactlyValue(V);
1641   }
1642   bool isExactlyValue(const APFloat& V) const;
1643 
1644   static bool isValueValidForType(EVT VT, const APFloat& Val);
1645 
1646   static bool classof(const SDNode *N) {
1647     return N->getOpcode() == ISD::ConstantFP ||
1648            N->getOpcode() == ISD::TargetConstantFP;
1649   }
1650 };
1651 
1652 /// Returns true if \p V is a constant integer zero.
1653 bool isNullConstant(SDValue V);
1654 
1655 /// Returns true if \p V is an FP constant with a value of positive zero.
1656 bool isNullFPConstant(SDValue V);
1657 
1658 /// Returns true if \p V is an integer constant with all bits set.
1659 bool isAllOnesConstant(SDValue V);
1660 
1661 /// Returns true if \p V is a constant integer one.
1662 bool isOneConstant(SDValue V);
1663 
1664 /// Return the non-bitcasted source operand of \p V if it exists.
1665 /// If \p V is not a bitcasted value, it is returned as-is.
1666 SDValue peekThroughBitcasts(SDValue V);
1667 
1668 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1669 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1670 SDValue peekThroughOneUseBitcasts(SDValue V);
1671 
1672 /// Return the non-extracted vector source operand of \p V if it exists.
1673 /// If \p V is not an extracted subvector, it is returned as-is.
1674 SDValue peekThroughExtractSubvectors(SDValue V);
1675 
1676 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1677 /// constant is canonicalized to be operand 1.
1678 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1679 
1680 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1681 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1682                                     bool AllowTruncation = false);
1683 
1684 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1685 /// constant int.
1686 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1687                                     bool AllowUndefs = false,
1688                                     bool AllowTruncation = false);
1689 
1690 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1691 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1692 
1693 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1694 /// constant float.
1695 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1696                                         bool AllowUndefs = false);
1697 
1698 /// Return true if the value is a constant 0 integer or a splatted vector of
1699 /// a constant 0 integer (with no undefs by default).
1700 /// Build vector implicit truncation is not an issue for null values.
1701 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1702 
1703 /// Return true if the value is a constant 1 integer or a splatted vector of a
1704 /// constant 1 integer (with no undefs).
1705 /// Does not permit build vector implicit truncation.
1706 bool isOneOrOneSplat(SDValue V);
1707 
1708 /// Return true if the value is a constant -1 integer or a splatted vector of a
1709 /// constant -1 integer (with no undefs).
1710 /// Does not permit build vector implicit truncation.
1711 bool isAllOnesOrAllOnesSplat(SDValue V);
1712 
1713 class GlobalAddressSDNode : public SDNode {
1714   friend class SelectionDAG;
1715 
1716   const GlobalValue *TheGlobal;
1717   int64_t Offset;
1718   unsigned TargetFlags;
1719 
1720   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1721                       const GlobalValue *GA, EVT VT, int64_t o,
1722                       unsigned TF);
1723 
1724 public:
1725   const GlobalValue *getGlobal() const { return TheGlobal; }
1726   int64_t getOffset() const { return Offset; }
1727   unsigned getTargetFlags() const { return TargetFlags; }
1728   // Return the address space this GlobalAddress belongs to.
1729   unsigned getAddressSpace() const;
1730 
1731   static bool classof(const SDNode *N) {
1732     return N->getOpcode() == ISD::GlobalAddress ||
1733            N->getOpcode() == ISD::TargetGlobalAddress ||
1734            N->getOpcode() == ISD::GlobalTLSAddress ||
1735            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1736   }
1737 };
1738 
1739 class FrameIndexSDNode : public SDNode {
1740   friend class SelectionDAG;
1741 
1742   int FI;
1743 
1744   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1745     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1746       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1747   }
1748 
1749 public:
1750   int getIndex() const { return FI; }
1751 
1752   static bool classof(const SDNode *N) {
1753     return N->getOpcode() == ISD::FrameIndex ||
1754            N->getOpcode() == ISD::TargetFrameIndex;
1755   }
1756 };
1757 
1758 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1759 /// the offet and size that are started/ended in the underlying FrameIndex.
1760 class LifetimeSDNode : public SDNode {
1761   friend class SelectionDAG;
1762   int64_t Size;
1763   int64_t Offset; // -1 if offset is unknown.
1764 
1765   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1766                  SDVTList VTs, int64_t Size, int64_t Offset)
1767       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1768 public:
1769   int64_t getFrameIndex() const {
1770     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1771   }
1772 
1773   bool hasOffset() const { return Offset >= 0; }
1774   int64_t getOffset() const {
1775     assert(hasOffset() && "offset is unknown");
1776     return Offset;
1777   }
1778   int64_t getSize() const {
1779     assert(hasOffset() && "offset is unknown");
1780     return Size;
1781   }
1782 
1783   // Methods to support isa and dyn_cast
1784   static bool classof(const SDNode *N) {
1785     return N->getOpcode() == ISD::LIFETIME_START ||
1786            N->getOpcode() == ISD::LIFETIME_END;
1787   }
1788 };
1789 
1790 class JumpTableSDNode : public SDNode {
1791   friend class SelectionDAG;
1792 
1793   int JTI;
1794   unsigned TargetFlags;
1795 
1796   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1797     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1798       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1799   }
1800 
1801 public:
1802   int getIndex() const { return JTI; }
1803   unsigned getTargetFlags() const { return TargetFlags; }
1804 
1805   static bool classof(const SDNode *N) {
1806     return N->getOpcode() == ISD::JumpTable ||
1807            N->getOpcode() == ISD::TargetJumpTable;
1808   }
1809 };
1810 
1811 class ConstantPoolSDNode : public SDNode {
1812   friend class SelectionDAG;
1813 
1814   union {
1815     const Constant *ConstVal;
1816     MachineConstantPoolValue *MachineCPVal;
1817   } Val;
1818   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1819   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1820   unsigned TargetFlags;
1821 
1822   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1823                      unsigned Align, unsigned TF)
1824     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1825              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1826              TargetFlags(TF) {
1827     assert(Offset >= 0 && "Offset is too large");
1828     Val.ConstVal = c;
1829   }
1830 
1831   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1832                      EVT VT, int o, unsigned Align, unsigned TF)
1833     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1834              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1835              TargetFlags(TF) {
1836     assert(Offset >= 0 && "Offset is too large");
1837     Val.MachineCPVal = v;
1838     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1839   }
1840 
1841 public:
1842   bool isMachineConstantPoolEntry() const {
1843     return Offset < 0;
1844   }
1845 
1846   const Constant *getConstVal() const {
1847     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1848     return Val.ConstVal;
1849   }
1850 
1851   MachineConstantPoolValue *getMachineCPVal() const {
1852     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1853     return Val.MachineCPVal;
1854   }
1855 
1856   int getOffset() const {
1857     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1858   }
1859 
1860   // Return the alignment of this constant pool object, which is either 0 (for
1861   // default alignment) or the desired value.
1862   unsigned getAlignment() const { return Alignment; }
1863   unsigned getTargetFlags() const { return TargetFlags; }
1864 
1865   Type *getType() const;
1866 
1867   static bool classof(const SDNode *N) {
1868     return N->getOpcode() == ISD::ConstantPool ||
1869            N->getOpcode() == ISD::TargetConstantPool;
1870   }
1871 };
1872 
1873 /// Completely target-dependent object reference.
1874 class TargetIndexSDNode : public SDNode {
1875   friend class SelectionDAG;
1876 
1877   unsigned TargetFlags;
1878   int Index;
1879   int64_t Offset;
1880 
1881 public:
1882   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1883       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1884         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1885 
1886   unsigned getTargetFlags() const { return TargetFlags; }
1887   int getIndex() const { return Index; }
1888   int64_t getOffset() const { return Offset; }
1889 
1890   static bool classof(const SDNode *N) {
1891     return N->getOpcode() == ISD::TargetIndex;
1892   }
1893 };
1894 
1895 class BasicBlockSDNode : public SDNode {
1896   friend class SelectionDAG;
1897 
1898   MachineBasicBlock *MBB;
1899 
1900   /// Debug info is meaningful and potentially useful here, but we create
1901   /// blocks out of order when they're jumped to, which makes it a bit
1902   /// harder.  Let's see if we need it first.
1903   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1904     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1905   {}
1906 
1907 public:
1908   MachineBasicBlock *getBasicBlock() const { return MBB; }
1909 
1910   static bool classof(const SDNode *N) {
1911     return N->getOpcode() == ISD::BasicBlock;
1912   }
1913 };
1914 
1915 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1916 class BuildVectorSDNode : public SDNode {
1917 public:
1918   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1919   explicit BuildVectorSDNode() = delete;
1920 
1921   /// Check if this is a constant splat, and if so, find the
1922   /// smallest element size that splats the vector.  If MinSplatBits is
1923   /// nonzero, the element size must be at least that large.  Note that the
1924   /// splat element may be the entire vector (i.e., a one element vector).
1925   /// Returns the splat element value in SplatValue.  Any undefined bits in
1926   /// that value are zero, and the corresponding bits in the SplatUndef mask
1927   /// are set.  The SplatBitSize value is set to the splat element size in
1928   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1929   /// undefined.  isBigEndian describes the endianness of the target.
1930   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1931                        unsigned &SplatBitSize, bool &HasAnyUndefs,
1932                        unsigned MinSplatBits = 0,
1933                        bool isBigEndian = false) const;
1934 
1935   /// Returns the demanded splatted value or a null value if this is not a
1936   /// splat.
1937   ///
1938   /// The DemandedElts mask indicates the elements that must be in the splat.
1939   /// If passed a non-null UndefElements bitvector, it will resize it to match
1940   /// the vector width and set the bits where elements are undef.
1941   SDValue getSplatValue(const APInt &DemandedElts,
1942                         BitVector *UndefElements = nullptr) const;
1943 
1944   /// Returns the splatted value or a null value if this is not a splat.
1945   ///
1946   /// If passed a non-null UndefElements bitvector, it will resize it to match
1947   /// the vector width and set the bits where elements are undef.
1948   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1949 
1950   /// Returns the demanded splatted constant or null if this is not a constant
1951   /// splat.
1952   ///
1953   /// The DemandedElts mask indicates the elements that must be in the splat.
1954   /// If passed a non-null UndefElements bitvector, it will resize it to match
1955   /// the vector width and set the bits where elements are undef.
1956   ConstantSDNode *
1957   getConstantSplatNode(const APInt &DemandedElts,
1958                        BitVector *UndefElements = nullptr) const;
1959 
1960   /// Returns the splatted constant or null if this is not a constant
1961   /// splat.
1962   ///
1963   /// If passed a non-null UndefElements bitvector, it will resize it to match
1964   /// the vector width and set the bits where elements are undef.
1965   ConstantSDNode *
1966   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1967 
1968   /// Returns the demanded splatted constant FP or null if this is not a
1969   /// constant FP splat.
1970   ///
1971   /// The DemandedElts mask indicates the elements that must be in the splat.
1972   /// If passed a non-null UndefElements bitvector, it will resize it to match
1973   /// the vector width and set the bits where elements are undef.
1974   ConstantFPSDNode *
1975   getConstantFPSplatNode(const APInt &DemandedElts,
1976                          BitVector *UndefElements = nullptr) const;
1977 
1978   /// Returns the splatted constant FP or null if this is not a constant
1979   /// FP splat.
1980   ///
1981   /// If passed a non-null UndefElements bitvector, it will resize it to match
1982   /// the vector width and set the bits where elements are undef.
1983   ConstantFPSDNode *
1984   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1985 
1986   /// If this is a constant FP splat and the splatted constant FP is an
1987   /// exact power or 2, return the log base 2 integer value.  Otherwise,
1988   /// return -1.
1989   ///
1990   /// The BitWidth specifies the necessary bit precision.
1991   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
1992                                           uint32_t BitWidth) const;
1993 
1994   bool isConstant() const;
1995 
1996   static bool classof(const SDNode *N) {
1997     return N->getOpcode() == ISD::BUILD_VECTOR;
1998   }
1999 };
2000 
2001 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2002 /// used when the SelectionDAG needs to make a simple reference to something
2003 /// in the LLVM IR representation.
2004 ///
2005 class SrcValueSDNode : public SDNode {
2006   friend class SelectionDAG;
2007 
2008   const Value *V;
2009 
2010   /// Create a SrcValue for a general value.
2011   explicit SrcValueSDNode(const Value *v)
2012     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2013 
2014 public:
2015   /// Return the contained Value.
2016   const Value *getValue() const { return V; }
2017 
2018   static bool classof(const SDNode *N) {
2019     return N->getOpcode() == ISD::SRCVALUE;
2020   }
2021 };
2022 
2023 class MDNodeSDNode : public SDNode {
2024   friend class SelectionDAG;
2025 
2026   const MDNode *MD;
2027 
2028   explicit MDNodeSDNode(const MDNode *md)
2029   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2030   {}
2031 
2032 public:
2033   const MDNode *getMD() const { return MD; }
2034 
2035   static bool classof(const SDNode *N) {
2036     return N->getOpcode() == ISD::MDNODE_SDNODE;
2037   }
2038 };
2039 
2040 class RegisterSDNode : public SDNode {
2041   friend class SelectionDAG;
2042 
2043   unsigned Reg;
2044 
2045   RegisterSDNode(unsigned reg, EVT VT)
2046     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2047 
2048 public:
2049   unsigned getReg() const { return Reg; }
2050 
2051   static bool classof(const SDNode *N) {
2052     return N->getOpcode() == ISD::Register;
2053   }
2054 };
2055 
2056 class RegisterMaskSDNode : public SDNode {
2057   friend class SelectionDAG;
2058 
2059   // The memory for RegMask is not owned by the node.
2060   const uint32_t *RegMask;
2061 
2062   RegisterMaskSDNode(const uint32_t *mask)
2063     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2064       RegMask(mask) {}
2065 
2066 public:
2067   const uint32_t *getRegMask() const { return RegMask; }
2068 
2069   static bool classof(const SDNode *N) {
2070     return N->getOpcode() == ISD::RegisterMask;
2071   }
2072 };
2073 
2074 class BlockAddressSDNode : public SDNode {
2075   friend class SelectionDAG;
2076 
2077   const BlockAddress *BA;
2078   int64_t Offset;
2079   unsigned TargetFlags;
2080 
2081   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2082                      int64_t o, unsigned Flags)
2083     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2084              BA(ba), Offset(o), TargetFlags(Flags) {}
2085 
2086 public:
2087   const BlockAddress *getBlockAddress() const { return BA; }
2088   int64_t getOffset() const { return Offset; }
2089   unsigned getTargetFlags() const { return TargetFlags; }
2090 
2091   static bool classof(const SDNode *N) {
2092     return N->getOpcode() == ISD::BlockAddress ||
2093            N->getOpcode() == ISD::TargetBlockAddress;
2094   }
2095 };
2096 
2097 class LabelSDNode : public SDNode {
2098   friend class SelectionDAG;
2099 
2100   MCSymbol *Label;
2101 
2102   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2103       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2104     assert(LabelSDNode::classof(this) && "not a label opcode");
2105   }
2106 
2107 public:
2108   MCSymbol *getLabel() const { return Label; }
2109 
2110   static bool classof(const SDNode *N) {
2111     return N->getOpcode() == ISD::EH_LABEL ||
2112            N->getOpcode() == ISD::ANNOTATION_LABEL;
2113   }
2114 };
2115 
2116 class ExternalSymbolSDNode : public SDNode {
2117   friend class SelectionDAG;
2118 
2119   const char *Symbol;
2120   unsigned TargetFlags;
2121 
2122   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2123       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2124                DebugLoc(), getSDVTList(VT)),
2125         Symbol(Sym), TargetFlags(TF) {}
2126 
2127 public:
2128   const char *getSymbol() const { return Symbol; }
2129   unsigned getTargetFlags() const { return TargetFlags; }
2130 
2131   static bool classof(const SDNode *N) {
2132     return N->getOpcode() == ISD::ExternalSymbol ||
2133            N->getOpcode() == ISD::TargetExternalSymbol;
2134   }
2135 };
2136 
2137 class MCSymbolSDNode : public SDNode {
2138   friend class SelectionDAG;
2139 
2140   MCSymbol *Symbol;
2141 
2142   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2143       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2144 
2145 public:
2146   MCSymbol *getMCSymbol() const { return Symbol; }
2147 
2148   static bool classof(const SDNode *N) {
2149     return N->getOpcode() == ISD::MCSymbol;
2150   }
2151 };
2152 
2153 class CondCodeSDNode : public SDNode {
2154   friend class SelectionDAG;
2155 
2156   ISD::CondCode Condition;
2157 
2158   explicit CondCodeSDNode(ISD::CondCode Cond)
2159     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2160       Condition(Cond) {}
2161 
2162 public:
2163   ISD::CondCode get() const { return Condition; }
2164 
2165   static bool classof(const SDNode *N) {
2166     return N->getOpcode() == ISD::CONDCODE;
2167   }
2168 };
2169 
2170 /// This class is used to represent EVT's, which are used
2171 /// to parameterize some operations.
2172 class VTSDNode : public SDNode {
2173   friend class SelectionDAG;
2174 
2175   EVT ValueType;
2176 
2177   explicit VTSDNode(EVT VT)
2178     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2179       ValueType(VT) {}
2180 
2181 public:
2182   EVT getVT() const { return ValueType; }
2183 
2184   static bool classof(const SDNode *N) {
2185     return N->getOpcode() == ISD::VALUETYPE;
2186   }
2187 };
2188 
2189 /// Base class for LoadSDNode and StoreSDNode
2190 class LSBaseSDNode : public MemSDNode {
2191 public:
2192   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2193                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2194                MachineMemOperand *MMO)
2195       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2196     LSBaseSDNodeBits.AddressingMode = AM;
2197     assert(getAddressingMode() == AM && "Value truncated");
2198   }
2199 
2200   const SDValue &getOffset() const {
2201     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2202   }
2203 
2204   /// Return the addressing mode for this load or store:
2205   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2206   ISD::MemIndexedMode getAddressingMode() const {
2207     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2208   }
2209 
2210   /// Return true if this is a pre/post inc/dec load/store.
2211   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2212 
2213   /// Return true if this is NOT a pre/post inc/dec load/store.
2214   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2215 
2216   static bool classof(const SDNode *N) {
2217     return N->getOpcode() == ISD::LOAD ||
2218            N->getOpcode() == ISD::STORE;
2219   }
2220 };
2221 
2222 /// This class is used to represent ISD::LOAD nodes.
2223 class LoadSDNode : public LSBaseSDNode {
2224   friend class SelectionDAG;
2225 
2226   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2227              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2228              MachineMemOperand *MMO)
2229       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2230     LoadSDNodeBits.ExtTy = ETy;
2231     assert(readMem() && "Load MachineMemOperand is not a load!");
2232     assert(!writeMem() && "Load MachineMemOperand is a store!");
2233   }
2234 
2235 public:
2236   /// Return whether this is a plain node,
2237   /// or one of the varieties of value-extending loads.
2238   ISD::LoadExtType getExtensionType() const {
2239     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2240   }
2241 
2242   const SDValue &getBasePtr() const { return getOperand(1); }
2243   const SDValue &getOffset() const { return getOperand(2); }
2244 
2245   static bool classof(const SDNode *N) {
2246     return N->getOpcode() == ISD::LOAD;
2247   }
2248 };
2249 
2250 /// This class is used to represent ISD::STORE nodes.
2251 class StoreSDNode : public LSBaseSDNode {
2252   friend class SelectionDAG;
2253 
2254   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2255               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2256               MachineMemOperand *MMO)
2257       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2258     StoreSDNodeBits.IsTruncating = isTrunc;
2259     assert(!readMem() && "Store MachineMemOperand is a load!");
2260     assert(writeMem() && "Store MachineMemOperand is not a store!");
2261   }
2262 
2263 public:
2264   /// Return true if the op does a truncation before store.
2265   /// For integers this is the same as doing a TRUNCATE and storing the result.
2266   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2267   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2268   void setTruncatingStore(bool Truncating) {
2269     StoreSDNodeBits.IsTruncating = Truncating;
2270   }
2271 
2272   const SDValue &getValue() const { return getOperand(1); }
2273   const SDValue &getBasePtr() const { return getOperand(2); }
2274   const SDValue &getOffset() const { return getOperand(3); }
2275 
2276   static bool classof(const SDNode *N) {
2277     return N->getOpcode() == ISD::STORE;
2278   }
2279 };
2280 
2281 /// This base class is used to represent MLOAD and MSTORE nodes
2282 class MaskedLoadStoreSDNode : public MemSDNode {
2283 public:
2284   friend class SelectionDAG;
2285 
2286   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2287                         const DebugLoc &dl, SDVTList VTs,
2288                         ISD::MemIndexedMode AM, EVT MemVT,
2289                         MachineMemOperand *MMO)
2290       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2291     LSBaseSDNodeBits.AddressingMode = AM;
2292     assert(getAddressingMode() == AM && "Value truncated");
2293   }
2294 
2295   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2296   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2297   // Mask is a vector of i1 elements
2298   const SDValue &getBasePtr() const {
2299     return getOperand(getOpcode() == ISD::MLOAD ? 1 : 2);
2300   }
2301   const SDValue &getOffset() const {
2302     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2303   }
2304   const SDValue &getMask() const {
2305     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2306   }
2307 
2308   /// Return the addressing mode for this load or store:
2309   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2310   ISD::MemIndexedMode getAddressingMode() const {
2311     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2312   }
2313 
2314   /// Return true if this is a pre/post inc/dec load/store.
2315   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2316 
2317   /// Return true if this is NOT a pre/post inc/dec load/store.
2318   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2319 
2320   static bool classof(const SDNode *N) {
2321     return N->getOpcode() == ISD::MLOAD ||
2322            N->getOpcode() == ISD::MSTORE;
2323   }
2324 };
2325 
2326 /// This class is used to represent an MLOAD node
2327 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2328 public:
2329   friend class SelectionDAG;
2330 
2331   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2332                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2333                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2334       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2335     LoadSDNodeBits.ExtTy = ETy;
2336     LoadSDNodeBits.IsExpanding = IsExpanding;
2337   }
2338 
2339   ISD::LoadExtType getExtensionType() const {
2340     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2341   }
2342 
2343   const SDValue &getBasePtr() const { return getOperand(1); }
2344   const SDValue &getOffset() const { return getOperand(2); }
2345   const SDValue &getMask() const { return getOperand(3); }
2346   const SDValue &getPassThru() const { return getOperand(4); }
2347 
2348   static bool classof(const SDNode *N) {
2349     return N->getOpcode() == ISD::MLOAD;
2350   }
2351 
2352   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2353 };
2354 
2355 /// This class is used to represent an MSTORE node
2356 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2357 public:
2358   friend class SelectionDAG;
2359 
2360   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2361                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2362                     EVT MemVT, MachineMemOperand *MMO)
2363       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2364     StoreSDNodeBits.IsTruncating = isTrunc;
2365     StoreSDNodeBits.IsCompressing = isCompressing;
2366   }
2367 
2368   /// Return true if the op does a truncation before store.
2369   /// For integers this is the same as doing a TRUNCATE and storing the result.
2370   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2371   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2372 
2373   /// Returns true if the op does a compression to the vector before storing.
2374   /// The node contiguously stores the active elements (integers or floats)
2375   /// in src (those with their respective bit set in writemask k) to unaligned
2376   /// memory at base_addr.
2377   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2378 
2379   const SDValue &getValue() const { return getOperand(1); }
2380   const SDValue &getBasePtr() const { return getOperand(2); }
2381   const SDValue &getOffset() const { return getOperand(3); }
2382   const SDValue &getMask() const { return getOperand(4); }
2383 
2384   static bool classof(const SDNode *N) {
2385     return N->getOpcode() == ISD::MSTORE;
2386   }
2387 };
2388 
2389 /// This is a base class used to represent
2390 /// MGATHER and MSCATTER nodes
2391 ///
2392 class MaskedGatherScatterSDNode : public MemSDNode {
2393 public:
2394   friend class SelectionDAG;
2395 
2396   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2397                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2398                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2399       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2400     LSBaseSDNodeBits.AddressingMode = IndexType;
2401     assert(getIndexType() == IndexType && "Value truncated");
2402   }
2403 
2404   /// How is Index applied to BasePtr when computing addresses.
2405   ISD::MemIndexType getIndexType() const {
2406     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2407   }
2408   bool isIndexScaled() const {
2409     return (getIndexType() == ISD::SIGNED_SCALED) ||
2410            (getIndexType() == ISD::UNSIGNED_SCALED);
2411   }
2412   bool isIndexSigned() const {
2413     return (getIndexType() == ISD::SIGNED_SCALED) ||
2414            (getIndexType() == ISD::SIGNED_UNSCALED);
2415   }
2416 
2417   // In the both nodes address is Op1, mask is Op2:
2418   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2419   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2420   // Mask is a vector of i1 elements
2421   const SDValue &getBasePtr() const { return getOperand(3); }
2422   const SDValue &getIndex()   const { return getOperand(4); }
2423   const SDValue &getMask()    const { return getOperand(2); }
2424   const SDValue &getScale()   const { return getOperand(5); }
2425 
2426   static bool classof(const SDNode *N) {
2427     return N->getOpcode() == ISD::MGATHER ||
2428            N->getOpcode() == ISD::MSCATTER;
2429   }
2430 };
2431 
2432 /// This class is used to represent an MGATHER node
2433 ///
2434 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2435 public:
2436   friend class SelectionDAG;
2437 
2438   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2439                      EVT MemVT, MachineMemOperand *MMO,
2440                      ISD::MemIndexType IndexType)
2441       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2442                                   IndexType) {}
2443 
2444   const SDValue &getPassThru() const { return getOperand(1); }
2445 
2446   static bool classof(const SDNode *N) {
2447     return N->getOpcode() == ISD::MGATHER;
2448   }
2449 };
2450 
2451 /// This class is used to represent an MSCATTER node
2452 ///
2453 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2454 public:
2455   friend class SelectionDAG;
2456 
2457   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2458                       EVT MemVT, MachineMemOperand *MMO,
2459                       ISD::MemIndexType IndexType)
2460       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2461                                   IndexType) {}
2462 
2463   const SDValue &getValue() const { return getOperand(1); }
2464 
2465   static bool classof(const SDNode *N) {
2466     return N->getOpcode() == ISD::MSCATTER;
2467   }
2468 };
2469 
2470 /// An SDNode that represents everything that will be needed
2471 /// to construct a MachineInstr. These nodes are created during the
2472 /// instruction selection proper phase.
2473 ///
2474 /// Note that the only supported way to set the `memoperands` is by calling the
2475 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2476 /// inside the DAG rather than in the node.
2477 class MachineSDNode : public SDNode {
2478 private:
2479   friend class SelectionDAG;
2480 
2481   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2482       : SDNode(Opc, Order, DL, VTs) {}
2483 
2484   // We use a pointer union between a single `MachineMemOperand` pointer and
2485   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2486   // the number of these is zero, the single pointer variant used when the
2487   // number is one, and the array is used for larger numbers.
2488   //
2489   // The array is allocated via the `SelectionDAG`'s allocator and so will
2490   // always live until the DAG is cleaned up and doesn't require ownership here.
2491   //
2492   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2493   // subclasses aren't managed in a conforming C++ manner. See the comments on
2494   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2495   // constraint here is that these don't manage memory with their constructor or
2496   // destructor and can be initialized to a good state even if they start off
2497   // uninitialized.
2498   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2499 
2500   // Note that this could be folded into the above `MemRefs` member if doing so
2501   // is advantageous at some point. We don't need to store this in most cases.
2502   // However, at the moment this doesn't appear to make the allocation any
2503   // smaller and makes the code somewhat simpler to read.
2504   int NumMemRefs = 0;
2505 
2506 public:
2507   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2508 
2509   ArrayRef<MachineMemOperand *> memoperands() const {
2510     // Special case the common cases.
2511     if (NumMemRefs == 0)
2512       return {};
2513     if (NumMemRefs == 1)
2514       return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2515 
2516     // Otherwise we have an actual array.
2517     return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2518   }
2519   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2520   mmo_iterator memoperands_end() const { return memoperands().end(); }
2521   bool memoperands_empty() const { return memoperands().empty(); }
2522 
2523   /// Clear out the memory reference descriptor list.
2524   void clearMemRefs() {
2525     MemRefs = nullptr;
2526     NumMemRefs = 0;
2527   }
2528 
2529   static bool classof(const SDNode *N) {
2530     return N->isMachineOpcode();
2531   }
2532 };
2533 
2534 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2535                                             SDNode, ptrdiff_t> {
2536   const SDNode *Node;
2537   unsigned Operand;
2538 
2539   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2540 
2541 public:
2542   bool operator==(const SDNodeIterator& x) const {
2543     return Operand == x.Operand;
2544   }
2545   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2546 
2547   pointer operator*() const {
2548     return Node->getOperand(Operand).getNode();
2549   }
2550   pointer operator->() const { return operator*(); }
2551 
2552   SDNodeIterator& operator++() {                // Preincrement
2553     ++Operand;
2554     return *this;
2555   }
2556   SDNodeIterator operator++(int) { // Postincrement
2557     SDNodeIterator tmp = *this; ++*this; return tmp;
2558   }
2559   size_t operator-(SDNodeIterator Other) const {
2560     assert(Node == Other.Node &&
2561            "Cannot compare iterators of two different nodes!");
2562     return Operand - Other.Operand;
2563   }
2564 
2565   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2566   static SDNodeIterator end  (const SDNode *N) {
2567     return SDNodeIterator(N, N->getNumOperands());
2568   }
2569 
2570   unsigned getOperand() const { return Operand; }
2571   const SDNode *getNode() const { return Node; }
2572 };
2573 
2574 template <> struct GraphTraits<SDNode*> {
2575   using NodeRef = SDNode *;
2576   using ChildIteratorType = SDNodeIterator;
2577 
2578   static NodeRef getEntryNode(SDNode *N) { return N; }
2579 
2580   static ChildIteratorType child_begin(NodeRef N) {
2581     return SDNodeIterator::begin(N);
2582   }
2583 
2584   static ChildIteratorType child_end(NodeRef N) {
2585     return SDNodeIterator::end(N);
2586   }
2587 };
2588 
2589 /// A representation of the largest SDNode, for use in sizeof().
2590 ///
2591 /// This needs to be a union because the largest node differs on 32 bit systems
2592 /// with 4 and 8 byte pointer alignment, respectively.
2593 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2594                                             BlockAddressSDNode,
2595                                             GlobalAddressSDNode>;
2596 
2597 /// The SDNode class with the greatest alignment requirement.
2598 using MostAlignedSDNode = GlobalAddressSDNode;
2599 
2600 namespace ISD {
2601 
2602   /// Returns true if the specified node is a non-extending and unindexed load.
2603   inline bool isNormalLoad(const SDNode *N) {
2604     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2605     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2606       Ld->getAddressingMode() == ISD::UNINDEXED;
2607   }
2608 
2609   /// Returns true if the specified node is a non-extending load.
2610   inline bool isNON_EXTLoad(const SDNode *N) {
2611     return isa<LoadSDNode>(N) &&
2612       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2613   }
2614 
2615   /// Returns true if the specified node is a EXTLOAD.
2616   inline bool isEXTLoad(const SDNode *N) {
2617     return isa<LoadSDNode>(N) &&
2618       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2619   }
2620 
2621   /// Returns true if the specified node is a SEXTLOAD.
2622   inline bool isSEXTLoad(const SDNode *N) {
2623     return isa<LoadSDNode>(N) &&
2624       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2625   }
2626 
2627   /// Returns true if the specified node is a ZEXTLOAD.
2628   inline bool isZEXTLoad(const SDNode *N) {
2629     return isa<LoadSDNode>(N) &&
2630       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2631   }
2632 
2633   /// Returns true if the specified node is an unindexed load.
2634   inline bool isUNINDEXEDLoad(const SDNode *N) {
2635     return isa<LoadSDNode>(N) &&
2636       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2637   }
2638 
2639   /// Returns true if the specified node is a non-truncating
2640   /// and unindexed store.
2641   inline bool isNormalStore(const SDNode *N) {
2642     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2643     return St && !St->isTruncatingStore() &&
2644       St->getAddressingMode() == ISD::UNINDEXED;
2645   }
2646 
2647   /// Returns true if the specified node is a non-truncating store.
2648   inline bool isNON_TRUNCStore(const SDNode *N) {
2649     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2650   }
2651 
2652   /// Returns true if the specified node is a truncating store.
2653   inline bool isTRUNCStore(const SDNode *N) {
2654     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2655   }
2656 
2657   /// Returns true if the specified node is an unindexed store.
2658   inline bool isUNINDEXEDStore(const SDNode *N) {
2659     return isa<StoreSDNode>(N) &&
2660       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2661   }
2662 
2663   /// Attempt to match a unary predicate against a scalar/splat constant or
2664   /// every element of a constant BUILD_VECTOR.
2665   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2666   bool matchUnaryPredicate(SDValue Op,
2667                            std::function<bool(ConstantSDNode *)> Match,
2668                            bool AllowUndefs = false);
2669 
2670   /// Attempt to match a binary predicate against a pair of scalar/splat
2671   /// constants or every element of a pair of constant BUILD_VECTORs.
2672   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2673   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2674   bool matchBinaryPredicate(
2675       SDValue LHS, SDValue RHS,
2676       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2677       bool AllowUndefs = false, bool AllowTypeMismatch = false);
2678 } // end namespace ISD
2679 
2680 } // end namespace llvm
2681 
2682 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
2683