1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the SDNode class and derived classes, which are used to 10 // represent the nodes and operations present in a SelectionDAG. These nodes 11 // and operations are machine code level operations, with some similarities to 12 // the GCC RTL representation. 13 // 14 // Clients should include the SelectionDAG.h file instead of this file directly. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H 19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H 20 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/FoldingSet.h" 25 #include "llvm/ADT/GraphTraits.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/ilist_node.h" 29 #include "llvm/ADT/iterator.h" 30 #include "llvm/ADT/iterator_range.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/ValueTypes.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Support/AlignOf.h" 41 #include "llvm/Support/AtomicOrdering.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MachineValueType.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <climits> 48 #include <cstddef> 49 #include <cstdint> 50 #include <cstring> 51 #include <iterator> 52 #include <string> 53 #include <tuple> 54 55 namespace llvm { 56 57 class APInt; 58 class Constant; 59 template <typename T> struct DenseMapInfo; 60 class GlobalValue; 61 class MachineBasicBlock; 62 class MachineConstantPoolValue; 63 class MCSymbol; 64 class raw_ostream; 65 class SDNode; 66 class SelectionDAG; 67 class Type; 68 class Value; 69 70 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr, 71 bool force = false); 72 73 /// This represents a list of ValueType's that has been intern'd by 74 /// a SelectionDAG. Instances of this simple value class are returned by 75 /// SelectionDAG::getVTList(...). 76 /// 77 struct SDVTList { 78 const EVT *VTs; 79 unsigned int NumVTs; 80 }; 81 82 namespace ISD { 83 84 /// Node predicates 85 86 /// If N is a BUILD_VECTOR node whose elements are all the same constant or 87 /// undefined, return true and return the constant value in \p SplatValue. 88 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue); 89 90 /// Return true if the specified node is a BUILD_VECTOR where all of the 91 /// elements are ~0 or undef. 92 bool isBuildVectorAllOnes(const SDNode *N); 93 94 /// Return true if the specified node is a BUILD_VECTOR where all of the 95 /// elements are 0 or undef. 96 bool isBuildVectorAllZeros(const SDNode *N); 97 98 /// Return true if the specified node is a BUILD_VECTOR node of all 99 /// ConstantSDNode or undef. 100 bool isBuildVectorOfConstantSDNodes(const SDNode *N); 101 102 /// Return true if the specified node is a BUILD_VECTOR node of all 103 /// ConstantFPSDNode or undef. 104 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N); 105 106 /// Return true if the node has at least one operand and all operands of the 107 /// specified node are ISD::UNDEF. 108 bool allOperandsUndef(const SDNode *N); 109 110 } // end namespace ISD 111 112 //===----------------------------------------------------------------------===// 113 /// Unlike LLVM values, Selection DAG nodes may return multiple 114 /// values as the result of a computation. Many nodes return multiple values, 115 /// from loads (which define a token and a return value) to ADDC (which returns 116 /// a result and a carry value), to calls (which may return an arbitrary number 117 /// of values). 118 /// 119 /// As such, each use of a SelectionDAG computation must indicate the node that 120 /// computes it as well as which return value to use from that node. This pair 121 /// of information is represented with the SDValue value type. 122 /// 123 class SDValue { 124 friend struct DenseMapInfo<SDValue>; 125 126 SDNode *Node = nullptr; // The node defining the value we are using. 127 unsigned ResNo = 0; // Which return value of the node we are using. 128 129 public: 130 SDValue() = default; 131 SDValue(SDNode *node, unsigned resno); 132 133 /// get the index which selects a specific result in the SDNode 134 unsigned getResNo() const { return ResNo; } 135 136 /// get the SDNode which holds the desired result 137 SDNode *getNode() const { return Node; } 138 139 /// set the SDNode 140 void setNode(SDNode *N) { Node = N; } 141 142 inline SDNode *operator->() const { return Node; } 143 144 bool operator==(const SDValue &O) const { 145 return Node == O.Node && ResNo == O.ResNo; 146 } 147 bool operator!=(const SDValue &O) const { 148 return !operator==(O); 149 } 150 bool operator<(const SDValue &O) const { 151 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo); 152 } 153 explicit operator bool() const { 154 return Node != nullptr; 155 } 156 157 SDValue getValue(unsigned R) const { 158 return SDValue(Node, R); 159 } 160 161 /// Return true if this node is an operand of N. 162 bool isOperandOf(const SDNode *N) const; 163 164 /// Return the ValueType of the referenced return value. 165 inline EVT getValueType() const; 166 167 /// Return the simple ValueType of the referenced return value. 168 MVT getSimpleValueType() const { 169 return getValueType().getSimpleVT(); 170 } 171 172 /// Returns the size of the value in bits. 173 unsigned getValueSizeInBits() const { 174 return getValueType().getSizeInBits(); 175 } 176 177 unsigned getScalarValueSizeInBits() const { 178 return getValueType().getScalarType().getSizeInBits(); 179 } 180 181 // Forwarding methods - These forward to the corresponding methods in SDNode. 182 inline unsigned getOpcode() const; 183 inline unsigned getNumOperands() const; 184 inline const SDValue &getOperand(unsigned i) const; 185 inline uint64_t getConstantOperandVal(unsigned i) const; 186 inline const APInt &getConstantOperandAPInt(unsigned i) const; 187 inline bool isTargetMemoryOpcode() const; 188 inline bool isTargetOpcode() const; 189 inline bool isMachineOpcode() const; 190 inline bool isUndef() const; 191 inline unsigned getMachineOpcode() const; 192 inline const DebugLoc &getDebugLoc() const; 193 inline void dump() const; 194 inline void dump(const SelectionDAG *G) const; 195 inline void dumpr() const; 196 inline void dumpr(const SelectionDAG *G) const; 197 198 /// Return true if this operand (which must be a chain) reaches the 199 /// specified operand without crossing any side-effecting instructions. 200 /// In practice, this looks through token factors and non-volatile loads. 201 /// In order to remain efficient, this only 202 /// looks a couple of nodes in, it does not do an exhaustive search. 203 bool reachesChainWithoutSideEffects(SDValue Dest, 204 unsigned Depth = 2) const; 205 206 /// Return true if there are no nodes using value ResNo of Node. 207 inline bool use_empty() const; 208 209 /// Return true if there is exactly one node using value ResNo of Node. 210 inline bool hasOneUse() const; 211 }; 212 213 template<> struct DenseMapInfo<SDValue> { 214 static inline SDValue getEmptyKey() { 215 SDValue V; 216 V.ResNo = -1U; 217 return V; 218 } 219 220 static inline SDValue getTombstoneKey() { 221 SDValue V; 222 V.ResNo = -2U; 223 return V; 224 } 225 226 static unsigned getHashValue(const SDValue &Val) { 227 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ 228 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); 229 } 230 231 static bool isEqual(const SDValue &LHS, const SDValue &RHS) { 232 return LHS == RHS; 233 } 234 }; 235 236 /// Allow casting operators to work directly on 237 /// SDValues as if they were SDNode*'s. 238 template<> struct simplify_type<SDValue> { 239 using SimpleType = SDNode *; 240 241 static SimpleType getSimplifiedValue(SDValue &Val) { 242 return Val.getNode(); 243 } 244 }; 245 template<> struct simplify_type<const SDValue> { 246 using SimpleType = /*const*/ SDNode *; 247 248 static SimpleType getSimplifiedValue(const SDValue &Val) { 249 return Val.getNode(); 250 } 251 }; 252 253 /// Represents a use of a SDNode. This class holds an SDValue, 254 /// which records the SDNode being used and the result number, a 255 /// pointer to the SDNode using the value, and Next and Prev pointers, 256 /// which link together all the uses of an SDNode. 257 /// 258 class SDUse { 259 /// Val - The value being used. 260 SDValue Val; 261 /// User - The user of this value. 262 SDNode *User = nullptr; 263 /// Prev, Next - Pointers to the uses list of the SDNode referred by 264 /// this operand. 265 SDUse **Prev = nullptr; 266 SDUse *Next = nullptr; 267 268 public: 269 SDUse() = default; 270 SDUse(const SDUse &U) = delete; 271 SDUse &operator=(const SDUse &) = delete; 272 273 /// Normally SDUse will just implicitly convert to an SDValue that it holds. 274 operator const SDValue&() const { return Val; } 275 276 /// If implicit conversion to SDValue doesn't work, the get() method returns 277 /// the SDValue. 278 const SDValue &get() const { return Val; } 279 280 /// This returns the SDNode that contains this Use. 281 SDNode *getUser() { return User; } 282 283 /// Get the next SDUse in the use list. 284 SDUse *getNext() const { return Next; } 285 286 /// Convenience function for get().getNode(). 287 SDNode *getNode() const { return Val.getNode(); } 288 /// Convenience function for get().getResNo(). 289 unsigned getResNo() const { return Val.getResNo(); } 290 /// Convenience function for get().getValueType(). 291 EVT getValueType() const { return Val.getValueType(); } 292 293 /// Convenience function for get().operator== 294 bool operator==(const SDValue &V) const { 295 return Val == V; 296 } 297 298 /// Convenience function for get().operator!= 299 bool operator!=(const SDValue &V) const { 300 return Val != V; 301 } 302 303 /// Convenience function for get().operator< 304 bool operator<(const SDValue &V) const { 305 return Val < V; 306 } 307 308 private: 309 friend class SelectionDAG; 310 friend class SDNode; 311 // TODO: unfriend HandleSDNode once we fix its operand handling. 312 friend class HandleSDNode; 313 314 void setUser(SDNode *p) { User = p; } 315 316 /// Remove this use from its existing use list, assign it the 317 /// given value, and add it to the new value's node's use list. 318 inline void set(const SDValue &V); 319 /// Like set, but only supports initializing a newly-allocated 320 /// SDUse with a non-null value. 321 inline void setInitial(const SDValue &V); 322 /// Like set, but only sets the Node portion of the value, 323 /// leaving the ResNo portion unmodified. 324 inline void setNode(SDNode *N); 325 326 void addToList(SDUse **List) { 327 Next = *List; 328 if (Next) Next->Prev = &Next; 329 Prev = List; 330 *List = this; 331 } 332 333 void removeFromList() { 334 *Prev = Next; 335 if (Next) Next->Prev = Prev; 336 } 337 }; 338 339 /// simplify_type specializations - Allow casting operators to work directly on 340 /// SDValues as if they were SDNode*'s. 341 template<> struct simplify_type<SDUse> { 342 using SimpleType = SDNode *; 343 344 static SimpleType getSimplifiedValue(SDUse &Val) { 345 return Val.getNode(); 346 } 347 }; 348 349 /// These are IR-level optimization flags that may be propagated to SDNodes. 350 /// TODO: This data structure should be shared by the IR optimizer and the 351 /// the backend. 352 struct SDNodeFlags { 353 private: 354 // This bit is used to determine if the flags are in a defined state. 355 // Flag bits can only be masked out during intersection if the masking flags 356 // are defined. 357 bool AnyDefined : 1; 358 359 bool NoUnsignedWrap : 1; 360 bool NoSignedWrap : 1; 361 bool Exact : 1; 362 bool NoNaNs : 1; 363 bool NoInfs : 1; 364 bool NoSignedZeros : 1; 365 bool AllowReciprocal : 1; 366 bool VectorReduction : 1; 367 bool AllowContract : 1; 368 bool ApproximateFuncs : 1; 369 bool AllowReassociation : 1; 370 371 // We assume instructions do not raise floating-point exceptions by default, 372 // and only those marked explicitly may do so. We could choose to represent 373 // this via a positive "FPExcept" flags like on the MI level, but having a 374 // negative "NoFPExcept" flag here (that defaults to true) makes the flag 375 // intersection logic more straightforward. 376 bool NoFPExcept : 1; 377 378 public: 379 /// Default constructor turns off all optimization flags. 380 SDNodeFlags() 381 : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false), 382 Exact(false), NoNaNs(false), NoInfs(false), 383 NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false), 384 AllowContract(false), ApproximateFuncs(false), 385 AllowReassociation(false), NoFPExcept(true) {} 386 387 /// Propagate the fast-math-flags from an IR FPMathOperator. 388 void copyFMF(const FPMathOperator &FPMO) { 389 setNoNaNs(FPMO.hasNoNaNs()); 390 setNoInfs(FPMO.hasNoInfs()); 391 setNoSignedZeros(FPMO.hasNoSignedZeros()); 392 setAllowReciprocal(FPMO.hasAllowReciprocal()); 393 setAllowContract(FPMO.hasAllowContract()); 394 setApproximateFuncs(FPMO.hasApproxFunc()); 395 setAllowReassociation(FPMO.hasAllowReassoc()); 396 } 397 398 /// Sets the state of the flags to the defined state. 399 void setDefined() { AnyDefined = true; } 400 /// Returns true if the flags are in a defined state. 401 bool isDefined() const { return AnyDefined; } 402 403 // These are mutators for each flag. 404 void setNoUnsignedWrap(bool b) { 405 setDefined(); 406 NoUnsignedWrap = b; 407 } 408 void setNoSignedWrap(bool b) { 409 setDefined(); 410 NoSignedWrap = b; 411 } 412 void setExact(bool b) { 413 setDefined(); 414 Exact = b; 415 } 416 void setNoNaNs(bool b) { 417 setDefined(); 418 NoNaNs = b; 419 } 420 void setNoInfs(bool b) { 421 setDefined(); 422 NoInfs = b; 423 } 424 void setNoSignedZeros(bool b) { 425 setDefined(); 426 NoSignedZeros = b; 427 } 428 void setAllowReciprocal(bool b) { 429 setDefined(); 430 AllowReciprocal = b; 431 } 432 void setVectorReduction(bool b) { 433 setDefined(); 434 VectorReduction = b; 435 } 436 void setAllowContract(bool b) { 437 setDefined(); 438 AllowContract = b; 439 } 440 void setApproximateFuncs(bool b) { 441 setDefined(); 442 ApproximateFuncs = b; 443 } 444 void setAllowReassociation(bool b) { 445 setDefined(); 446 AllowReassociation = b; 447 } 448 void setFPExcept(bool b) { 449 setDefined(); 450 NoFPExcept = !b; 451 } 452 453 // These are accessors for each flag. 454 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; } 455 bool hasNoSignedWrap() const { return NoSignedWrap; } 456 bool hasExact() const { return Exact; } 457 bool hasNoNaNs() const { return NoNaNs; } 458 bool hasNoInfs() const { return NoInfs; } 459 bool hasNoSignedZeros() const { return NoSignedZeros; } 460 bool hasAllowReciprocal() const { return AllowReciprocal; } 461 bool hasVectorReduction() const { return VectorReduction; } 462 bool hasAllowContract() const { return AllowContract; } 463 bool hasApproximateFuncs() const { return ApproximateFuncs; } 464 bool hasAllowReassociation() const { return AllowReassociation; } 465 bool hasFPExcept() const { return !NoFPExcept; } 466 467 bool isFast() const { 468 return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs && NoFPExcept && 469 AllowContract && ApproximateFuncs && AllowReassociation; 470 } 471 472 /// Clear any flags in this flag set that aren't also set in Flags. 473 /// If the given Flags are undefined then don't do anything. 474 void intersectWith(const SDNodeFlags Flags) { 475 if (!Flags.isDefined()) 476 return; 477 NoUnsignedWrap &= Flags.NoUnsignedWrap; 478 NoSignedWrap &= Flags.NoSignedWrap; 479 Exact &= Flags.Exact; 480 NoNaNs &= Flags.NoNaNs; 481 NoInfs &= Flags.NoInfs; 482 NoSignedZeros &= Flags.NoSignedZeros; 483 AllowReciprocal &= Flags.AllowReciprocal; 484 VectorReduction &= Flags.VectorReduction; 485 AllowContract &= Flags.AllowContract; 486 ApproximateFuncs &= Flags.ApproximateFuncs; 487 AllowReassociation &= Flags.AllowReassociation; 488 NoFPExcept &= Flags.NoFPExcept; 489 } 490 }; 491 492 /// Represents one node in the SelectionDAG. 493 /// 494 class SDNode : public FoldingSetNode, public ilist_node<SDNode> { 495 private: 496 /// The operation that this node performs. 497 int16_t NodeType; 498 499 protected: 500 // We define a set of mini-helper classes to help us interpret the bits in our 501 // SubclassData. These are designed to fit within a uint16_t so they pack 502 // with NodeType. 503 504 #if defined(_AIX) && (!defined(__GNUC__) || defined(__ibmxl__)) 505 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words 506 // and give the `pack` pragma push semantics. 507 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)") 508 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)") 509 #else 510 #define BEGIN_TWO_BYTE_PACK() 511 #define END_TWO_BYTE_PACK() 512 #endif 513 514 BEGIN_TWO_BYTE_PACK() 515 class SDNodeBitfields { 516 friend class SDNode; 517 friend class MemIntrinsicSDNode; 518 friend class MemSDNode; 519 friend class SelectionDAG; 520 521 uint16_t HasDebugValue : 1; 522 uint16_t IsMemIntrinsic : 1; 523 uint16_t IsDivergent : 1; 524 }; 525 enum { NumSDNodeBits = 3 }; 526 527 class ConstantSDNodeBitfields { 528 friend class ConstantSDNode; 529 530 uint16_t : NumSDNodeBits; 531 532 uint16_t IsOpaque : 1; 533 }; 534 535 class MemSDNodeBitfields { 536 friend class MemSDNode; 537 friend class MemIntrinsicSDNode; 538 friend class AtomicSDNode; 539 540 uint16_t : NumSDNodeBits; 541 542 uint16_t IsVolatile : 1; 543 uint16_t IsNonTemporal : 1; 544 uint16_t IsDereferenceable : 1; 545 uint16_t IsInvariant : 1; 546 }; 547 enum { NumMemSDNodeBits = NumSDNodeBits + 4 }; 548 549 class LSBaseSDNodeBitfields { 550 friend class LSBaseSDNode; 551 552 uint16_t : NumMemSDNodeBits; 553 554 uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode 555 }; 556 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 }; 557 558 class LoadSDNodeBitfields { 559 friend class LoadSDNode; 560 friend class MaskedLoadSDNode; 561 562 uint16_t : NumLSBaseSDNodeBits; 563 564 uint16_t ExtTy : 2; // enum ISD::LoadExtType 565 uint16_t IsExpanding : 1; 566 }; 567 568 class StoreSDNodeBitfields { 569 friend class StoreSDNode; 570 friend class MaskedStoreSDNode; 571 572 uint16_t : NumLSBaseSDNodeBits; 573 574 uint16_t IsTruncating : 1; 575 uint16_t IsCompressing : 1; 576 }; 577 578 union { 579 char RawSDNodeBits[sizeof(uint16_t)]; 580 SDNodeBitfields SDNodeBits; 581 ConstantSDNodeBitfields ConstantSDNodeBits; 582 MemSDNodeBitfields MemSDNodeBits; 583 LSBaseSDNodeBitfields LSBaseSDNodeBits; 584 LoadSDNodeBitfields LoadSDNodeBits; 585 StoreSDNodeBitfields StoreSDNodeBits; 586 }; 587 END_TWO_BYTE_PACK() 588 #undef BEGIN_TWO_BYTE_PACK 589 #undef END_TWO_BYTE_PACK 590 591 // RawSDNodeBits must cover the entirety of the union. This means that all of 592 // the union's members must have size <= RawSDNodeBits. We write the RHS as 593 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter. 594 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide"); 595 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide"); 596 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide"); 597 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide"); 598 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide"); 599 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide"); 600 601 private: 602 friend class SelectionDAG; 603 // TODO: unfriend HandleSDNode once we fix its operand handling. 604 friend class HandleSDNode; 605 606 /// Unique id per SDNode in the DAG. 607 int NodeId = -1; 608 609 /// The values that are used by this operation. 610 SDUse *OperandList = nullptr; 611 612 /// The types of the values this node defines. SDNode's may 613 /// define multiple values simultaneously. 614 const EVT *ValueList; 615 616 /// List of uses for this SDNode. 617 SDUse *UseList = nullptr; 618 619 /// The number of entries in the Operand/Value list. 620 unsigned short NumOperands = 0; 621 unsigned short NumValues; 622 623 // The ordering of the SDNodes. It roughly corresponds to the ordering of the 624 // original LLVM instructions. 625 // This is used for turning off scheduling, because we'll forgo 626 // the normal scheduling algorithms and output the instructions according to 627 // this ordering. 628 unsigned IROrder; 629 630 /// Source line information. 631 DebugLoc debugLoc; 632 633 /// Return a pointer to the specified value type. 634 static const EVT *getValueTypeList(EVT VT); 635 636 SDNodeFlags Flags; 637 638 public: 639 /// Unique and persistent id per SDNode in the DAG. 640 /// Used for debug printing. 641 uint16_t PersistentId; 642 643 //===--------------------------------------------------------------------===// 644 // Accessors 645 // 646 647 /// Return the SelectionDAG opcode value for this node. For 648 /// pre-isel nodes (those for which isMachineOpcode returns false), these 649 /// are the opcode values in the ISD and <target>ISD namespaces. For 650 /// post-isel opcodes, see getMachineOpcode. 651 unsigned getOpcode() const { return (unsigned short)NodeType; } 652 653 /// Test if this node has a target-specific opcode (in the 654 /// \<target\>ISD namespace). 655 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } 656 657 /// Test if this node has a target-specific 658 /// memory-referencing opcode (in the \<target\>ISD namespace and 659 /// greater than FIRST_TARGET_MEMORY_OPCODE). 660 bool isTargetMemoryOpcode() const { 661 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; 662 } 663 664 /// Return true if the type of the node type undefined. 665 bool isUndef() const { return NodeType == ISD::UNDEF; } 666 667 /// Test if this node is a memory intrinsic (with valid pointer information). 668 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for 669 /// non-memory intrinsics (with chains) that are not really instances of 670 /// MemSDNode. For such nodes, we need some extra state to determine the 671 /// proper classof relationship. 672 bool isMemIntrinsic() const { 673 return (NodeType == ISD::INTRINSIC_W_CHAIN || 674 NodeType == ISD::INTRINSIC_VOID) && 675 SDNodeBits.IsMemIntrinsic; 676 } 677 678 /// Test if this node is a strict floating point pseudo-op. 679 bool isStrictFPOpcode() { 680 switch (NodeType) { 681 default: 682 return false; 683 case ISD::STRICT_FADD: 684 case ISD::STRICT_FSUB: 685 case ISD::STRICT_FMUL: 686 case ISD::STRICT_FDIV: 687 case ISD::STRICT_FREM: 688 case ISD::STRICT_FMA: 689 case ISD::STRICT_FSQRT: 690 case ISD::STRICT_FPOW: 691 case ISD::STRICT_FPOWI: 692 case ISD::STRICT_FSIN: 693 case ISD::STRICT_FCOS: 694 case ISD::STRICT_FEXP: 695 case ISD::STRICT_FEXP2: 696 case ISD::STRICT_FLOG: 697 case ISD::STRICT_FLOG10: 698 case ISD::STRICT_FLOG2: 699 case ISD::STRICT_FRINT: 700 case ISD::STRICT_FNEARBYINT: 701 case ISD::STRICT_FMAXNUM: 702 case ISD::STRICT_FMINNUM: 703 case ISD::STRICT_FCEIL: 704 case ISD::STRICT_FFLOOR: 705 case ISD::STRICT_FROUND: 706 case ISD::STRICT_FTRUNC: 707 case ISD::STRICT_FP_ROUND: 708 case ISD::STRICT_FP_EXTEND: 709 return true; 710 } 711 } 712 713 /// Test if this node has a post-isel opcode, directly 714 /// corresponding to a MachineInstr opcode. 715 bool isMachineOpcode() const { return NodeType < 0; } 716 717 /// This may only be called if isMachineOpcode returns 718 /// true. It returns the MachineInstr opcode value that the node's opcode 719 /// corresponds to. 720 unsigned getMachineOpcode() const { 721 assert(isMachineOpcode() && "Not a MachineInstr opcode!"); 722 return ~NodeType; 723 } 724 725 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; } 726 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; } 727 728 bool isDivergent() const { return SDNodeBits.IsDivergent; } 729 730 /// Return true if there are no uses of this node. 731 bool use_empty() const { return UseList == nullptr; } 732 733 /// Return true if there is exactly one use of this node. 734 bool hasOneUse() const { 735 return !use_empty() && std::next(use_begin()) == use_end(); 736 } 737 738 /// Return the number of uses of this node. This method takes 739 /// time proportional to the number of uses. 740 size_t use_size() const { return std::distance(use_begin(), use_end()); } 741 742 /// Return the unique node id. 743 int getNodeId() const { return NodeId; } 744 745 /// Set unique node id. 746 void setNodeId(int Id) { NodeId = Id; } 747 748 /// Return the node ordering. 749 unsigned getIROrder() const { return IROrder; } 750 751 /// Set the node ordering. 752 void setIROrder(unsigned Order) { IROrder = Order; } 753 754 /// Return the source location info. 755 const DebugLoc &getDebugLoc() const { return debugLoc; } 756 757 /// Set source location info. Try to avoid this, putting 758 /// it in the constructor is preferable. 759 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); } 760 761 /// This class provides iterator support for SDUse 762 /// operands that use a specific SDNode. 763 class use_iterator 764 : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> { 765 friend class SDNode; 766 767 SDUse *Op = nullptr; 768 769 explicit use_iterator(SDUse *op) : Op(op) {} 770 771 public: 772 using reference = std::iterator<std::forward_iterator_tag, 773 SDUse, ptrdiff_t>::reference; 774 using pointer = std::iterator<std::forward_iterator_tag, 775 SDUse, ptrdiff_t>::pointer; 776 777 use_iterator() = default; 778 use_iterator(const use_iterator &I) : Op(I.Op) {} 779 780 bool operator==(const use_iterator &x) const { 781 return Op == x.Op; 782 } 783 bool operator!=(const use_iterator &x) const { 784 return !operator==(x); 785 } 786 787 /// Return true if this iterator is at the end of uses list. 788 bool atEnd() const { return Op == nullptr; } 789 790 // Iterator traversal: forward iteration only. 791 use_iterator &operator++() { // Preincrement 792 assert(Op && "Cannot increment end iterator!"); 793 Op = Op->getNext(); 794 return *this; 795 } 796 797 use_iterator operator++(int) { // Postincrement 798 use_iterator tmp = *this; ++*this; return tmp; 799 } 800 801 /// Retrieve a pointer to the current user node. 802 SDNode *operator*() const { 803 assert(Op && "Cannot dereference end iterator!"); 804 return Op->getUser(); 805 } 806 807 SDNode *operator->() const { return operator*(); } 808 809 SDUse &getUse() const { return *Op; } 810 811 /// Retrieve the operand # of this use in its user. 812 unsigned getOperandNo() const { 813 assert(Op && "Cannot dereference end iterator!"); 814 return (unsigned)(Op - Op->getUser()->OperandList); 815 } 816 }; 817 818 /// Provide iteration support to walk over all uses of an SDNode. 819 use_iterator use_begin() const { 820 return use_iterator(UseList); 821 } 822 823 static use_iterator use_end() { return use_iterator(nullptr); } 824 825 inline iterator_range<use_iterator> uses() { 826 return make_range(use_begin(), use_end()); 827 } 828 inline iterator_range<use_iterator> uses() const { 829 return make_range(use_begin(), use_end()); 830 } 831 832 /// Return true if there are exactly NUSES uses of the indicated value. 833 /// This method ignores uses of other values defined by this operation. 834 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; 835 836 /// Return true if there are any use of the indicated value. 837 /// This method ignores uses of other values defined by this operation. 838 bool hasAnyUseOfValue(unsigned Value) const; 839 840 /// Return true if this node is the only use of N. 841 bool isOnlyUserOf(const SDNode *N) const; 842 843 /// Return true if this node is an operand of N. 844 bool isOperandOf(const SDNode *N) const; 845 846 /// Return true if this node is a predecessor of N. 847 /// NOTE: Implemented on top of hasPredecessor and every bit as 848 /// expensive. Use carefully. 849 bool isPredecessorOf(const SDNode *N) const { 850 return N->hasPredecessor(this); 851 } 852 853 /// Return true if N is a predecessor of this node. 854 /// N is either an operand of this node, or can be reached by recursively 855 /// traversing up the operands. 856 /// NOTE: This is an expensive method. Use it carefully. 857 bool hasPredecessor(const SDNode *N) const; 858 859 /// Returns true if N is a predecessor of any node in Worklist. This 860 /// helper keeps Visited and Worklist sets externally to allow unions 861 /// searches to be performed in parallel, caching of results across 862 /// queries and incremental addition to Worklist. Stops early if N is 863 /// found but will resume. Remember to clear Visited and Worklists 864 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before 865 /// giving up. The TopologicalPrune flag signals that positive NodeIds are 866 /// topologically ordered (Operands have strictly smaller node id) and search 867 /// can be pruned leveraging this. 868 static bool hasPredecessorHelper(const SDNode *N, 869 SmallPtrSetImpl<const SDNode *> &Visited, 870 SmallVectorImpl<const SDNode *> &Worklist, 871 unsigned int MaxSteps = 0, 872 bool TopologicalPrune = false) { 873 SmallVector<const SDNode *, 8> DeferredNodes; 874 if (Visited.count(N)) 875 return true; 876 877 // Node Id's are assigned in three places: As a topological 878 // ordering (> 0), during legalization (results in values set to 879 // 0), new nodes (set to -1). If N has a topolgical id then we 880 // know that all nodes with ids smaller than it cannot be 881 // successors and we need not check them. Filter out all node 882 // that can't be matches. We add them to the worklist before exit 883 // in case of multiple calls. Note that during selection the topological id 884 // may be violated if a node's predecessor is selected before it. We mark 885 // this at selection negating the id of unselected successors and 886 // restricting topological pruning to positive ids. 887 888 int NId = N->getNodeId(); 889 // If we Invalidated the Id, reconstruct original NId. 890 if (NId < -1) 891 NId = -(NId + 1); 892 893 bool Found = false; 894 while (!Worklist.empty()) { 895 const SDNode *M = Worklist.pop_back_val(); 896 int MId = M->getNodeId(); 897 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) && 898 (MId > 0) && (MId < NId)) { 899 DeferredNodes.push_back(M); 900 continue; 901 } 902 for (const SDValue &OpV : M->op_values()) { 903 SDNode *Op = OpV.getNode(); 904 if (Visited.insert(Op).second) 905 Worklist.push_back(Op); 906 if (Op == N) 907 Found = true; 908 } 909 if (Found) 910 break; 911 if (MaxSteps != 0 && Visited.size() >= MaxSteps) 912 break; 913 } 914 // Push deferred nodes back on worklist. 915 Worklist.append(DeferredNodes.begin(), DeferredNodes.end()); 916 // If we bailed early, conservatively return found. 917 if (MaxSteps != 0 && Visited.size() >= MaxSteps) 918 return true; 919 return Found; 920 } 921 922 /// Return true if all the users of N are contained in Nodes. 923 /// NOTE: Requires at least one match, but doesn't require them all. 924 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N); 925 926 /// Return the number of values used by this operation. 927 unsigned getNumOperands() const { return NumOperands; } 928 929 /// Return the maximum number of operands that a SDNode can hold. 930 static constexpr size_t getMaxNumOperands() { 931 return std::numeric_limits<decltype(SDNode::NumOperands)>::max(); 932 } 933 934 /// Helper method returns the integer value of a ConstantSDNode operand. 935 inline uint64_t getConstantOperandVal(unsigned Num) const; 936 937 /// Helper method returns the APInt of a ConstantSDNode operand. 938 inline const APInt &getConstantOperandAPInt(unsigned Num) const; 939 940 const SDValue &getOperand(unsigned Num) const { 941 assert(Num < NumOperands && "Invalid child # of SDNode!"); 942 return OperandList[Num]; 943 } 944 945 using op_iterator = SDUse *; 946 947 op_iterator op_begin() const { return OperandList; } 948 op_iterator op_end() const { return OperandList+NumOperands; } 949 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); } 950 951 /// Iterator for directly iterating over the operand SDValue's. 952 struct value_op_iterator 953 : iterator_adaptor_base<value_op_iterator, op_iterator, 954 std::random_access_iterator_tag, SDValue, 955 ptrdiff_t, value_op_iterator *, 956 value_op_iterator *> { 957 explicit value_op_iterator(SDUse *U = nullptr) 958 : iterator_adaptor_base(U) {} 959 960 const SDValue &operator*() const { return I->get(); } 961 }; 962 963 iterator_range<value_op_iterator> op_values() const { 964 return make_range(value_op_iterator(op_begin()), 965 value_op_iterator(op_end())); 966 } 967 968 SDVTList getVTList() const { 969 SDVTList X = { ValueList, NumValues }; 970 return X; 971 } 972 973 /// If this node has a glue operand, return the node 974 /// to which the glue operand points. Otherwise return NULL. 975 SDNode *getGluedNode() const { 976 if (getNumOperands() != 0 && 977 getOperand(getNumOperands()-1).getValueType() == MVT::Glue) 978 return getOperand(getNumOperands()-1).getNode(); 979 return nullptr; 980 } 981 982 /// If this node has a glue value with a user, return 983 /// the user (there is at most one). Otherwise return NULL. 984 SDNode *getGluedUser() const { 985 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI) 986 if (UI.getUse().get().getValueType() == MVT::Glue) 987 return *UI; 988 return nullptr; 989 } 990 991 const SDNodeFlags getFlags() const { return Flags; } 992 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; } 993 bool isFast() { return Flags.isFast(); } 994 995 /// Clear any flags in this node that aren't also set in Flags. 996 /// If Flags is not in a defined state then this has no effect. 997 void intersectFlagsWith(const SDNodeFlags Flags); 998 999 /// Return the number of values defined/returned by this operator. 1000 unsigned getNumValues() const { return NumValues; } 1001 1002 /// Return the type of a specified result. 1003 EVT getValueType(unsigned ResNo) const { 1004 assert(ResNo < NumValues && "Illegal result number!"); 1005 return ValueList[ResNo]; 1006 } 1007 1008 /// Return the type of a specified result as a simple type. 1009 MVT getSimpleValueType(unsigned ResNo) const { 1010 return getValueType(ResNo).getSimpleVT(); 1011 } 1012 1013 /// Returns MVT::getSizeInBits(getValueType(ResNo)). 1014 unsigned getValueSizeInBits(unsigned ResNo) const { 1015 return getValueType(ResNo).getSizeInBits(); 1016 } 1017 1018 using value_iterator = const EVT *; 1019 1020 value_iterator value_begin() const { return ValueList; } 1021 value_iterator value_end() const { return ValueList+NumValues; } 1022 1023 /// Return the opcode of this operation for printing. 1024 std::string getOperationName(const SelectionDAG *G = nullptr) const; 1025 static const char* getIndexedModeName(ISD::MemIndexedMode AM); 1026 void print_types(raw_ostream &OS, const SelectionDAG *G) const; 1027 void print_details(raw_ostream &OS, const SelectionDAG *G) const; 1028 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const; 1029 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const; 1030 1031 /// Print a SelectionDAG node and all children down to 1032 /// the leaves. The given SelectionDAG allows target-specific nodes 1033 /// to be printed in human-readable form. Unlike printr, this will 1034 /// print the whole DAG, including children that appear multiple 1035 /// times. 1036 /// 1037 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const; 1038 1039 /// Print a SelectionDAG node and children up to 1040 /// depth "depth." The given SelectionDAG allows target-specific 1041 /// nodes to be printed in human-readable form. Unlike printr, this 1042 /// will print children that appear multiple times wherever they are 1043 /// used. 1044 /// 1045 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr, 1046 unsigned depth = 100) const; 1047 1048 /// Dump this node, for debugging. 1049 void dump() const; 1050 1051 /// Dump (recursively) this node and its use-def subgraph. 1052 void dumpr() const; 1053 1054 /// Dump this node, for debugging. 1055 /// The given SelectionDAG allows target-specific nodes to be printed 1056 /// in human-readable form. 1057 void dump(const SelectionDAG *G) const; 1058 1059 /// Dump (recursively) this node and its use-def subgraph. 1060 /// The given SelectionDAG allows target-specific nodes to be printed 1061 /// in human-readable form. 1062 void dumpr(const SelectionDAG *G) const; 1063 1064 /// printrFull to dbgs(). The given SelectionDAG allows 1065 /// target-specific nodes to be printed in human-readable form. 1066 /// Unlike dumpr, this will print the whole DAG, including children 1067 /// that appear multiple times. 1068 void dumprFull(const SelectionDAG *G = nullptr) const; 1069 1070 /// printrWithDepth to dbgs(). The given 1071 /// SelectionDAG allows target-specific nodes to be printed in 1072 /// human-readable form. Unlike dumpr, this will print children 1073 /// that appear multiple times wherever they are used. 1074 /// 1075 void dumprWithDepth(const SelectionDAG *G = nullptr, 1076 unsigned depth = 100) const; 1077 1078 /// Gather unique data for the node. 1079 void Profile(FoldingSetNodeID &ID) const; 1080 1081 /// This method should only be used by the SDUse class. 1082 void addUse(SDUse &U) { U.addToList(&UseList); } 1083 1084 protected: 1085 static SDVTList getSDVTList(EVT VT) { 1086 SDVTList Ret = { getValueTypeList(VT), 1 }; 1087 return Ret; 1088 } 1089 1090 /// Create an SDNode. 1091 /// 1092 /// SDNodes are created without any operands, and never own the operand 1093 /// storage. To add operands, see SelectionDAG::createOperands. 1094 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs) 1095 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs), 1096 IROrder(Order), debugLoc(std::move(dl)) { 1097 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits)); 1098 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1099 assert(NumValues == VTs.NumVTs && 1100 "NumValues wasn't wide enough for its operands!"); 1101 } 1102 1103 /// Release the operands and set this node to have zero operands. 1104 void DropOperands(); 1105 }; 1106 1107 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed 1108 /// into SDNode creation functions. 1109 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted 1110 /// from the original Instruction, and IROrder is the ordinal position of 1111 /// the instruction. 1112 /// When an SDNode is created after the DAG is being built, both DebugLoc and 1113 /// the IROrder are propagated from the original SDNode. 1114 /// So SDLoc class provides two constructors besides the default one, one to 1115 /// be used by the DAGBuilder, the other to be used by others. 1116 class SDLoc { 1117 private: 1118 DebugLoc DL; 1119 int IROrder = 0; 1120 1121 public: 1122 SDLoc() = default; 1123 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {} 1124 SDLoc(const SDValue V) : SDLoc(V.getNode()) {} 1125 SDLoc(const Instruction *I, int Order) : IROrder(Order) { 1126 assert(Order >= 0 && "bad IROrder"); 1127 if (I) 1128 DL = I->getDebugLoc(); 1129 } 1130 1131 unsigned getIROrder() const { return IROrder; } 1132 const DebugLoc &getDebugLoc() const { return DL; } 1133 }; 1134 1135 // Define inline functions from the SDValue class. 1136 1137 inline SDValue::SDValue(SDNode *node, unsigned resno) 1138 : Node(node), ResNo(resno) { 1139 // Explicitly check for !ResNo to avoid use-after-free, because there are 1140 // callers that use SDValue(N, 0) with a deleted N to indicate successful 1141 // combines. 1142 assert((!Node || !ResNo || ResNo < Node->getNumValues()) && 1143 "Invalid result number for the given node!"); 1144 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."); 1145 } 1146 1147 inline unsigned SDValue::getOpcode() const { 1148 return Node->getOpcode(); 1149 } 1150 1151 inline EVT SDValue::getValueType() const { 1152 return Node->getValueType(ResNo); 1153 } 1154 1155 inline unsigned SDValue::getNumOperands() const { 1156 return Node->getNumOperands(); 1157 } 1158 1159 inline const SDValue &SDValue::getOperand(unsigned i) const { 1160 return Node->getOperand(i); 1161 } 1162 1163 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { 1164 return Node->getConstantOperandVal(i); 1165 } 1166 1167 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const { 1168 return Node->getConstantOperandAPInt(i); 1169 } 1170 1171 inline bool SDValue::isTargetOpcode() const { 1172 return Node->isTargetOpcode(); 1173 } 1174 1175 inline bool SDValue::isTargetMemoryOpcode() const { 1176 return Node->isTargetMemoryOpcode(); 1177 } 1178 1179 inline bool SDValue::isMachineOpcode() const { 1180 return Node->isMachineOpcode(); 1181 } 1182 1183 inline unsigned SDValue::getMachineOpcode() const { 1184 return Node->getMachineOpcode(); 1185 } 1186 1187 inline bool SDValue::isUndef() const { 1188 return Node->isUndef(); 1189 } 1190 1191 inline bool SDValue::use_empty() const { 1192 return !Node->hasAnyUseOfValue(ResNo); 1193 } 1194 1195 inline bool SDValue::hasOneUse() const { 1196 return Node->hasNUsesOfValue(1, ResNo); 1197 } 1198 1199 inline const DebugLoc &SDValue::getDebugLoc() const { 1200 return Node->getDebugLoc(); 1201 } 1202 1203 inline void SDValue::dump() const { 1204 return Node->dump(); 1205 } 1206 1207 inline void SDValue::dump(const SelectionDAG *G) const { 1208 return Node->dump(G); 1209 } 1210 1211 inline void SDValue::dumpr() const { 1212 return Node->dumpr(); 1213 } 1214 1215 inline void SDValue::dumpr(const SelectionDAG *G) const { 1216 return Node->dumpr(G); 1217 } 1218 1219 // Define inline functions from the SDUse class. 1220 1221 inline void SDUse::set(const SDValue &V) { 1222 if (Val.getNode()) removeFromList(); 1223 Val = V; 1224 if (V.getNode()) V.getNode()->addUse(*this); 1225 } 1226 1227 inline void SDUse::setInitial(const SDValue &V) { 1228 Val = V; 1229 V.getNode()->addUse(*this); 1230 } 1231 1232 inline void SDUse::setNode(SDNode *N) { 1233 if (Val.getNode()) removeFromList(); 1234 Val.setNode(N); 1235 if (N) N->addUse(*this); 1236 } 1237 1238 /// This class is used to form a handle around another node that 1239 /// is persistent and is updated across invocations of replaceAllUsesWith on its 1240 /// operand. This node should be directly created by end-users and not added to 1241 /// the AllNodes list. 1242 class HandleSDNode : public SDNode { 1243 SDUse Op; 1244 1245 public: 1246 explicit HandleSDNode(SDValue X) 1247 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) { 1248 // HandleSDNodes are never inserted into the DAG, so they won't be 1249 // auto-numbered. Use ID 65535 as a sentinel. 1250 PersistentId = 0xffff; 1251 1252 // Manually set up the operand list. This node type is special in that it's 1253 // always stack allocated and SelectionDAG does not manage its operands. 1254 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not 1255 // be so special. 1256 Op.setUser(this); 1257 Op.setInitial(X); 1258 NumOperands = 1; 1259 OperandList = &Op; 1260 } 1261 ~HandleSDNode(); 1262 1263 const SDValue &getValue() const { return Op; } 1264 }; 1265 1266 class AddrSpaceCastSDNode : public SDNode { 1267 private: 1268 unsigned SrcAddrSpace; 1269 unsigned DestAddrSpace; 1270 1271 public: 1272 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT, 1273 unsigned SrcAS, unsigned DestAS); 1274 1275 unsigned getSrcAddressSpace() const { return SrcAddrSpace; } 1276 unsigned getDestAddressSpace() const { return DestAddrSpace; } 1277 1278 static bool classof(const SDNode *N) { 1279 return N->getOpcode() == ISD::ADDRSPACECAST; 1280 } 1281 }; 1282 1283 /// This is an abstract virtual class for memory operations. 1284 class MemSDNode : public SDNode { 1285 private: 1286 // VT of in-memory value. 1287 EVT MemoryVT; 1288 1289 protected: 1290 /// Memory reference information. 1291 MachineMemOperand *MMO; 1292 1293 public: 1294 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, 1295 EVT memvt, MachineMemOperand *MMO); 1296 1297 bool readMem() const { return MMO->isLoad(); } 1298 bool writeMem() const { return MMO->isStore(); } 1299 1300 /// Returns alignment and volatility of the memory access 1301 unsigned getOriginalAlignment() const { 1302 return MMO->getBaseAlignment(); 1303 } 1304 unsigned getAlignment() const { 1305 return MMO->getAlignment(); 1306 } 1307 1308 /// Return the SubclassData value, without HasDebugValue. This contains an 1309 /// encoding of the volatile flag, as well as bits used by subclasses. This 1310 /// function should only be used to compute a FoldingSetNodeID value. 1311 /// The HasDebugValue bit is masked out because CSE map needs to match 1312 /// nodes with debug info with nodes without debug info. Same is about 1313 /// isDivergent bit. 1314 unsigned getRawSubclassData() const { 1315 uint16_t Data; 1316 union { 1317 char RawSDNodeBits[sizeof(uint16_t)]; 1318 SDNodeBitfields SDNodeBits; 1319 }; 1320 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits)); 1321 SDNodeBits.HasDebugValue = 0; 1322 SDNodeBits.IsDivergent = false; 1323 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits)); 1324 return Data; 1325 } 1326 1327 bool isVolatile() const { return MemSDNodeBits.IsVolatile; } 1328 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; } 1329 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; } 1330 bool isInvariant() const { return MemSDNodeBits.IsInvariant; } 1331 1332 // Returns the offset from the location of the access. 1333 int64_t getSrcValueOffset() const { return MMO->getOffset(); } 1334 1335 /// Returns the AA info that describes the dereference. 1336 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); } 1337 1338 /// Returns the Ranges that describes the dereference. 1339 const MDNode *getRanges() const { return MMO->getRanges(); } 1340 1341 /// Returns the synchronization scope ID for this memory operation. 1342 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); } 1343 1344 /// Return the atomic ordering requirements for this memory operation. For 1345 /// cmpxchg atomic operations, return the atomic ordering requirements when 1346 /// store occurs. 1347 AtomicOrdering getOrdering() const { return MMO->getOrdering(); } 1348 1349 /// Return the type of the in-memory value. 1350 EVT getMemoryVT() const { return MemoryVT; } 1351 1352 /// Return a MachineMemOperand object describing the memory 1353 /// reference performed by operation. 1354 MachineMemOperand *getMemOperand() const { return MMO; } 1355 1356 const MachinePointerInfo &getPointerInfo() const { 1357 return MMO->getPointerInfo(); 1358 } 1359 1360 /// Return the address space for the associated pointer 1361 unsigned getAddressSpace() const { 1362 return getPointerInfo().getAddrSpace(); 1363 } 1364 1365 /// Update this MemSDNode's MachineMemOperand information 1366 /// to reflect the alignment of NewMMO, if it has a greater alignment. 1367 /// This must only be used when the new alignment applies to all users of 1368 /// this MachineMemOperand. 1369 void refineAlignment(const MachineMemOperand *NewMMO) { 1370 MMO->refineAlignment(NewMMO); 1371 } 1372 1373 const SDValue &getChain() const { return getOperand(0); } 1374 const SDValue &getBasePtr() const { 1375 return getOperand(getOpcode() == ISD::STORE ? 2 : 1); 1376 } 1377 1378 // Methods to support isa and dyn_cast 1379 static bool classof(const SDNode *N) { 1380 // For some targets, we lower some target intrinsics to a MemIntrinsicNode 1381 // with either an intrinsic or a target opcode. 1382 return N->getOpcode() == ISD::LOAD || 1383 N->getOpcode() == ISD::STORE || 1384 N->getOpcode() == ISD::PREFETCH || 1385 N->getOpcode() == ISD::ATOMIC_CMP_SWAP || 1386 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || 1387 N->getOpcode() == ISD::ATOMIC_SWAP || 1388 N->getOpcode() == ISD::ATOMIC_LOAD_ADD || 1389 N->getOpcode() == ISD::ATOMIC_LOAD_SUB || 1390 N->getOpcode() == ISD::ATOMIC_LOAD_AND || 1391 N->getOpcode() == ISD::ATOMIC_LOAD_CLR || 1392 N->getOpcode() == ISD::ATOMIC_LOAD_OR || 1393 N->getOpcode() == ISD::ATOMIC_LOAD_XOR || 1394 N->getOpcode() == ISD::ATOMIC_LOAD_NAND || 1395 N->getOpcode() == ISD::ATOMIC_LOAD_MIN || 1396 N->getOpcode() == ISD::ATOMIC_LOAD_MAX || 1397 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || 1398 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || 1399 N->getOpcode() == ISD::ATOMIC_LOAD_FADD || 1400 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || 1401 N->getOpcode() == ISD::ATOMIC_LOAD || 1402 N->getOpcode() == ISD::ATOMIC_STORE || 1403 N->getOpcode() == ISD::MLOAD || 1404 N->getOpcode() == ISD::MSTORE || 1405 N->getOpcode() == ISD::MGATHER || 1406 N->getOpcode() == ISD::MSCATTER || 1407 N->isMemIntrinsic() || 1408 N->isTargetMemoryOpcode(); 1409 } 1410 }; 1411 1412 /// This is an SDNode representing atomic operations. 1413 class AtomicSDNode : public MemSDNode { 1414 public: 1415 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL, 1416 EVT MemVT, MachineMemOperand *MMO) 1417 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) { 1418 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || 1419 MMO->isAtomic()) && "then why are we using an AtomicSDNode?"); 1420 } 1421 1422 const SDValue &getBasePtr() const { return getOperand(1); } 1423 const SDValue &getVal() const { return getOperand(2); } 1424 1425 /// Returns true if this SDNode represents cmpxchg atomic operation, false 1426 /// otherwise. 1427 bool isCompareAndSwap() const { 1428 unsigned Op = getOpcode(); 1429 return Op == ISD::ATOMIC_CMP_SWAP || 1430 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS; 1431 } 1432 1433 /// For cmpxchg atomic operations, return the atomic ordering requirements 1434 /// when store does not occur. 1435 AtomicOrdering getFailureOrdering() const { 1436 assert(isCompareAndSwap() && "Must be cmpxchg operation"); 1437 return MMO->getFailureOrdering(); 1438 } 1439 1440 // Methods to support isa and dyn_cast 1441 static bool classof(const SDNode *N) { 1442 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || 1443 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || 1444 N->getOpcode() == ISD::ATOMIC_SWAP || 1445 N->getOpcode() == ISD::ATOMIC_LOAD_ADD || 1446 N->getOpcode() == ISD::ATOMIC_LOAD_SUB || 1447 N->getOpcode() == ISD::ATOMIC_LOAD_AND || 1448 N->getOpcode() == ISD::ATOMIC_LOAD_CLR || 1449 N->getOpcode() == ISD::ATOMIC_LOAD_OR || 1450 N->getOpcode() == ISD::ATOMIC_LOAD_XOR || 1451 N->getOpcode() == ISD::ATOMIC_LOAD_NAND || 1452 N->getOpcode() == ISD::ATOMIC_LOAD_MIN || 1453 N->getOpcode() == ISD::ATOMIC_LOAD_MAX || 1454 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || 1455 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || 1456 N->getOpcode() == ISD::ATOMIC_LOAD_FADD || 1457 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || 1458 N->getOpcode() == ISD::ATOMIC_LOAD || 1459 N->getOpcode() == ISD::ATOMIC_STORE; 1460 } 1461 }; 1462 1463 /// This SDNode is used for target intrinsics that touch 1464 /// memory and need an associated MachineMemOperand. Its opcode may be 1465 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode 1466 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE. 1467 class MemIntrinsicSDNode : public MemSDNode { 1468 public: 1469 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 1470 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO) 1471 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) { 1472 SDNodeBits.IsMemIntrinsic = true; 1473 } 1474 1475 // Methods to support isa and dyn_cast 1476 static bool classof(const SDNode *N) { 1477 // We lower some target intrinsics to their target opcode 1478 // early a node with a target opcode can be of this class 1479 return N->isMemIntrinsic() || 1480 N->getOpcode() == ISD::PREFETCH || 1481 N->isTargetMemoryOpcode(); 1482 } 1483 }; 1484 1485 /// This SDNode is used to implement the code generator 1486 /// support for the llvm IR shufflevector instruction. It combines elements 1487 /// from two input vectors into a new input vector, with the selection and 1488 /// ordering of elements determined by an array of integers, referred to as 1489 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 1490 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. 1491 /// An index of -1 is treated as undef, such that the code generator may put 1492 /// any value in the corresponding element of the result. 1493 class ShuffleVectorSDNode : public SDNode { 1494 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and 1495 // is freed when the SelectionDAG object is destroyed. 1496 const int *Mask; 1497 1498 protected: 1499 friend class SelectionDAG; 1500 1501 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M) 1502 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {} 1503 1504 public: 1505 ArrayRef<int> getMask() const { 1506 EVT VT = getValueType(0); 1507 return makeArrayRef(Mask, VT.getVectorNumElements()); 1508 } 1509 1510 int getMaskElt(unsigned Idx) const { 1511 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); 1512 return Mask[Idx]; 1513 } 1514 1515 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } 1516 1517 int getSplatIndex() const { 1518 assert(isSplat() && "Cannot get splat index for non-splat!"); 1519 EVT VT = getValueType(0); 1520 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1521 if (Mask[i] >= 0) 1522 return Mask[i]; 1523 1524 // We can choose any index value here and be correct because all elements 1525 // are undefined. Return 0 for better potential for callers to simplify. 1526 return 0; 1527 } 1528 1529 static bool isSplatMask(const int *Mask, EVT VT); 1530 1531 /// Change values in a shuffle permute mask assuming 1532 /// the two vector operands have swapped position. 1533 static void commuteMask(MutableArrayRef<int> Mask) { 1534 unsigned NumElems = Mask.size(); 1535 for (unsigned i = 0; i != NumElems; ++i) { 1536 int idx = Mask[i]; 1537 if (idx < 0) 1538 continue; 1539 else if (idx < (int)NumElems) 1540 Mask[i] = idx + NumElems; 1541 else 1542 Mask[i] = idx - NumElems; 1543 } 1544 } 1545 1546 static bool classof(const SDNode *N) { 1547 return N->getOpcode() == ISD::VECTOR_SHUFFLE; 1548 } 1549 }; 1550 1551 class ConstantSDNode : public SDNode { 1552 friend class SelectionDAG; 1553 1554 const ConstantInt *Value; 1555 1556 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT) 1557 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(), 1558 getSDVTList(VT)), 1559 Value(val) { 1560 ConstantSDNodeBits.IsOpaque = isOpaque; 1561 } 1562 1563 public: 1564 const ConstantInt *getConstantIntValue() const { return Value; } 1565 const APInt &getAPIntValue() const { return Value->getValue(); } 1566 uint64_t getZExtValue() const { return Value->getZExtValue(); } 1567 int64_t getSExtValue() const { return Value->getSExtValue(); } 1568 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) { 1569 return Value->getLimitedValue(Limit); 1570 } 1571 1572 bool isOne() const { return Value->isOne(); } 1573 bool isNullValue() const { return Value->isZero(); } 1574 bool isAllOnesValue() const { return Value->isMinusOne(); } 1575 1576 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; } 1577 1578 static bool classof(const SDNode *N) { 1579 return N->getOpcode() == ISD::Constant || 1580 N->getOpcode() == ISD::TargetConstant; 1581 } 1582 }; 1583 1584 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 1585 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue(); 1586 } 1587 1588 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const { 1589 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue(); 1590 } 1591 1592 class ConstantFPSDNode : public SDNode { 1593 friend class SelectionDAG; 1594 1595 const ConstantFP *Value; 1596 1597 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) 1598 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, 1599 DebugLoc(), getSDVTList(VT)), 1600 Value(val) {} 1601 1602 public: 1603 const APFloat& getValueAPF() const { return Value->getValueAPF(); } 1604 const ConstantFP *getConstantFPValue() const { return Value; } 1605 1606 /// Return true if the value is positive or negative zero. 1607 bool isZero() const { return Value->isZero(); } 1608 1609 /// Return true if the value is a NaN. 1610 bool isNaN() const { return Value->isNaN(); } 1611 1612 /// Return true if the value is an infinity 1613 bool isInfinity() const { return Value->isInfinity(); } 1614 1615 /// Return true if the value is negative. 1616 bool isNegative() const { return Value->isNegative(); } 1617 1618 /// We don't rely on operator== working on double values, as 1619 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 1620 /// As such, this method can be used to do an exact bit-for-bit comparison of 1621 /// two floating point values. 1622 1623 /// We leave the version with the double argument here because it's just so 1624 /// convenient to write "2.0" and the like. Without this function we'd 1625 /// have to duplicate its logic everywhere it's called. 1626 bool isExactlyValue(double V) const { 1627 return Value->getValueAPF().isExactlyValue(V); 1628 } 1629 bool isExactlyValue(const APFloat& V) const; 1630 1631 static bool isValueValidForType(EVT VT, const APFloat& Val); 1632 1633 static bool classof(const SDNode *N) { 1634 return N->getOpcode() == ISD::ConstantFP || 1635 N->getOpcode() == ISD::TargetConstantFP; 1636 } 1637 }; 1638 1639 /// Returns true if \p V is a constant integer zero. 1640 bool isNullConstant(SDValue V); 1641 1642 /// Returns true if \p V is an FP constant with a value of positive zero. 1643 bool isNullFPConstant(SDValue V); 1644 1645 /// Returns true if \p V is an integer constant with all bits set. 1646 bool isAllOnesConstant(SDValue V); 1647 1648 /// Returns true if \p V is a constant integer one. 1649 bool isOneConstant(SDValue V); 1650 1651 /// Return the non-bitcasted source operand of \p V if it exists. 1652 /// If \p V is not a bitcasted value, it is returned as-is. 1653 SDValue peekThroughBitcasts(SDValue V); 1654 1655 /// Return the non-bitcasted and one-use source operand of \p V if it exists. 1656 /// If \p V is not a bitcasted one-use value, it is returned as-is. 1657 SDValue peekThroughOneUseBitcasts(SDValue V); 1658 1659 /// Return the non-extracted vector source operand of \p V if it exists. 1660 /// If \p V is not an extracted subvector, it is returned as-is. 1661 SDValue peekThroughExtractSubvectors(SDValue V); 1662 1663 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones 1664 /// constant is canonicalized to be operand 1. 1665 bool isBitwiseNot(SDValue V, bool AllowUndefs = false); 1666 1667 /// Returns the SDNode if it is a constant splat BuildVector or constant int. 1668 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false, 1669 bool AllowTruncation = false); 1670 1671 /// Returns the SDNode if it is a demanded constant splat BuildVector or 1672 /// constant int. 1673 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 1674 bool AllowUndefs = false, 1675 bool AllowTruncation = false); 1676 1677 /// Returns the SDNode if it is a constant splat BuildVector or constant float. 1678 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false); 1679 1680 /// Returns the SDNode if it is a demanded constant splat BuildVector or 1681 /// constant float. 1682 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts, 1683 bool AllowUndefs = false); 1684 1685 /// Return true if the value is a constant 0 integer or a splatted vector of 1686 /// a constant 0 integer (with no undefs by default). 1687 /// Build vector implicit truncation is not an issue for null values. 1688 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false); 1689 1690 /// Return true if the value is a constant 1 integer or a splatted vector of a 1691 /// constant 1 integer (with no undefs). 1692 /// Does not permit build vector implicit truncation. 1693 bool isOneOrOneSplat(SDValue V); 1694 1695 /// Return true if the value is a constant -1 integer or a splatted vector of a 1696 /// constant -1 integer (with no undefs). 1697 /// Does not permit build vector implicit truncation. 1698 bool isAllOnesOrAllOnesSplat(SDValue V); 1699 1700 class GlobalAddressSDNode : public SDNode { 1701 friend class SelectionDAG; 1702 1703 const GlobalValue *TheGlobal; 1704 int64_t Offset; 1705 unsigned char TargetFlags; 1706 1707 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, 1708 const GlobalValue *GA, EVT VT, int64_t o, 1709 unsigned char TF); 1710 1711 public: 1712 const GlobalValue *getGlobal() const { return TheGlobal; } 1713 int64_t getOffset() const { return Offset; } 1714 unsigned char getTargetFlags() const { return TargetFlags; } 1715 // Return the address space this GlobalAddress belongs to. 1716 unsigned getAddressSpace() const; 1717 1718 static bool classof(const SDNode *N) { 1719 return N->getOpcode() == ISD::GlobalAddress || 1720 N->getOpcode() == ISD::TargetGlobalAddress || 1721 N->getOpcode() == ISD::GlobalTLSAddress || 1722 N->getOpcode() == ISD::TargetGlobalTLSAddress; 1723 } 1724 }; 1725 1726 class FrameIndexSDNode : public SDNode { 1727 friend class SelectionDAG; 1728 1729 int FI; 1730 1731 FrameIndexSDNode(int fi, EVT VT, bool isTarg) 1732 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, 1733 0, DebugLoc(), getSDVTList(VT)), FI(fi) { 1734 } 1735 1736 public: 1737 int getIndex() const { return FI; } 1738 1739 static bool classof(const SDNode *N) { 1740 return N->getOpcode() == ISD::FrameIndex || 1741 N->getOpcode() == ISD::TargetFrameIndex; 1742 } 1743 }; 1744 1745 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate 1746 /// the offet and size that are started/ended in the underlying FrameIndex. 1747 class LifetimeSDNode : public SDNode { 1748 friend class SelectionDAG; 1749 int64_t Size; 1750 int64_t Offset; // -1 if offset is unknown. 1751 1752 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, 1753 SDVTList VTs, int64_t Size, int64_t Offset) 1754 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {} 1755 public: 1756 int64_t getFrameIndex() const { 1757 return cast<FrameIndexSDNode>(getOperand(1))->getIndex(); 1758 } 1759 1760 bool hasOffset() const { return Offset >= 0; } 1761 int64_t getOffset() const { 1762 assert(hasOffset() && "offset is unknown"); 1763 return Offset; 1764 } 1765 int64_t getSize() const { 1766 assert(hasOffset() && "offset is unknown"); 1767 return Size; 1768 } 1769 1770 // Methods to support isa and dyn_cast 1771 static bool classof(const SDNode *N) { 1772 return N->getOpcode() == ISD::LIFETIME_START || 1773 N->getOpcode() == ISD::LIFETIME_END; 1774 } 1775 }; 1776 1777 class JumpTableSDNode : public SDNode { 1778 friend class SelectionDAG; 1779 1780 int JTI; 1781 unsigned char TargetFlags; 1782 1783 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF) 1784 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, 1785 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { 1786 } 1787 1788 public: 1789 int getIndex() const { return JTI; } 1790 unsigned char getTargetFlags() const { return TargetFlags; } 1791 1792 static bool classof(const SDNode *N) { 1793 return N->getOpcode() == ISD::JumpTable || 1794 N->getOpcode() == ISD::TargetJumpTable; 1795 } 1796 }; 1797 1798 class ConstantPoolSDNode : public SDNode { 1799 friend class SelectionDAG; 1800 1801 union { 1802 const Constant *ConstVal; 1803 MachineConstantPoolValue *MachineCPVal; 1804 } Val; 1805 int Offset; // It's a MachineConstantPoolValue if top bit is set. 1806 unsigned Alignment; // Minimum alignment requirement of CP (not log2 value). 1807 unsigned char TargetFlags; 1808 1809 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o, 1810 unsigned Align, unsigned char TF) 1811 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, 1812 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align), 1813 TargetFlags(TF) { 1814 assert(Offset >= 0 && "Offset is too large"); 1815 Val.ConstVal = c; 1816 } 1817 1818 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, 1819 EVT VT, int o, unsigned Align, unsigned char TF) 1820 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, 1821 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align), 1822 TargetFlags(TF) { 1823 assert(Offset >= 0 && "Offset is too large"); 1824 Val.MachineCPVal = v; 1825 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); 1826 } 1827 1828 public: 1829 bool isMachineConstantPoolEntry() const { 1830 return Offset < 0; 1831 } 1832 1833 const Constant *getConstVal() const { 1834 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); 1835 return Val.ConstVal; 1836 } 1837 1838 MachineConstantPoolValue *getMachineCPVal() const { 1839 assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); 1840 return Val.MachineCPVal; 1841 } 1842 1843 int getOffset() const { 1844 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); 1845 } 1846 1847 // Return the alignment of this constant pool object, which is either 0 (for 1848 // default alignment) or the desired value. 1849 unsigned getAlignment() const { return Alignment; } 1850 unsigned char getTargetFlags() const { return TargetFlags; } 1851 1852 Type *getType() const; 1853 1854 static bool classof(const SDNode *N) { 1855 return N->getOpcode() == ISD::ConstantPool || 1856 N->getOpcode() == ISD::TargetConstantPool; 1857 } 1858 }; 1859 1860 /// Completely target-dependent object reference. 1861 class TargetIndexSDNode : public SDNode { 1862 friend class SelectionDAG; 1863 1864 unsigned char TargetFlags; 1865 int Index; 1866 int64_t Offset; 1867 1868 public: 1869 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF) 1870 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)), 1871 TargetFlags(TF), Index(Idx), Offset(Ofs) {} 1872 1873 unsigned char getTargetFlags() const { return TargetFlags; } 1874 int getIndex() const { return Index; } 1875 int64_t getOffset() const { return Offset; } 1876 1877 static bool classof(const SDNode *N) { 1878 return N->getOpcode() == ISD::TargetIndex; 1879 } 1880 }; 1881 1882 class BasicBlockSDNode : public SDNode { 1883 friend class SelectionDAG; 1884 1885 MachineBasicBlock *MBB; 1886 1887 /// Debug info is meaningful and potentially useful here, but we create 1888 /// blocks out of order when they're jumped to, which makes it a bit 1889 /// harder. Let's see if we need it first. 1890 explicit BasicBlockSDNode(MachineBasicBlock *mbb) 1891 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) 1892 {} 1893 1894 public: 1895 MachineBasicBlock *getBasicBlock() const { return MBB; } 1896 1897 static bool classof(const SDNode *N) { 1898 return N->getOpcode() == ISD::BasicBlock; 1899 } 1900 }; 1901 1902 /// A "pseudo-class" with methods for operating on BUILD_VECTORs. 1903 class BuildVectorSDNode : public SDNode { 1904 public: 1905 // These are constructed as SDNodes and then cast to BuildVectorSDNodes. 1906 explicit BuildVectorSDNode() = delete; 1907 1908 /// Check if this is a constant splat, and if so, find the 1909 /// smallest element size that splats the vector. If MinSplatBits is 1910 /// nonzero, the element size must be at least that large. Note that the 1911 /// splat element may be the entire vector (i.e., a one element vector). 1912 /// Returns the splat element value in SplatValue. Any undefined bits in 1913 /// that value are zero, and the corresponding bits in the SplatUndef mask 1914 /// are set. The SplatBitSize value is set to the splat element size in 1915 /// bits. HasAnyUndefs is set to true if any bits in the vector are 1916 /// undefined. isBigEndian describes the endianness of the target. 1917 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 1918 unsigned &SplatBitSize, bool &HasAnyUndefs, 1919 unsigned MinSplatBits = 0, 1920 bool isBigEndian = false) const; 1921 1922 /// Returns the demanded splatted value or a null value if this is not a 1923 /// splat. 1924 /// 1925 /// The DemandedElts mask indicates the elements that must be in the splat. 1926 /// If passed a non-null UndefElements bitvector, it will resize it to match 1927 /// the vector width and set the bits where elements are undef. 1928 SDValue getSplatValue(const APInt &DemandedElts, 1929 BitVector *UndefElements = nullptr) const; 1930 1931 /// Returns the splatted value or a null value if this is not a splat. 1932 /// 1933 /// If passed a non-null UndefElements bitvector, it will resize it to match 1934 /// the vector width and set the bits where elements are undef. 1935 SDValue getSplatValue(BitVector *UndefElements = nullptr) const; 1936 1937 /// Returns the demanded splatted constant or null if this is not a constant 1938 /// splat. 1939 /// 1940 /// The DemandedElts mask indicates the elements that must be in the splat. 1941 /// If passed a non-null UndefElements bitvector, it will resize it to match 1942 /// the vector width and set the bits where elements are undef. 1943 ConstantSDNode * 1944 getConstantSplatNode(const APInt &DemandedElts, 1945 BitVector *UndefElements = nullptr) const; 1946 1947 /// Returns the splatted constant or null if this is not a constant 1948 /// splat. 1949 /// 1950 /// If passed a non-null UndefElements bitvector, it will resize it to match 1951 /// the vector width and set the bits where elements are undef. 1952 ConstantSDNode * 1953 getConstantSplatNode(BitVector *UndefElements = nullptr) const; 1954 1955 /// Returns the demanded splatted constant FP or null if this is not a 1956 /// constant FP splat. 1957 /// 1958 /// The DemandedElts mask indicates the elements that must be in the splat. 1959 /// If passed a non-null UndefElements bitvector, it will resize it to match 1960 /// the vector width and set the bits where elements are undef. 1961 ConstantFPSDNode * 1962 getConstantFPSplatNode(const APInt &DemandedElts, 1963 BitVector *UndefElements = nullptr) const; 1964 1965 /// Returns the splatted constant FP or null if this is not a constant 1966 /// FP splat. 1967 /// 1968 /// If passed a non-null UndefElements bitvector, it will resize it to match 1969 /// the vector width and set the bits where elements are undef. 1970 ConstantFPSDNode * 1971 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const; 1972 1973 /// If this is a constant FP splat and the splatted constant FP is an 1974 /// exact power or 2, return the log base 2 integer value. Otherwise, 1975 /// return -1. 1976 /// 1977 /// The BitWidth specifies the necessary bit precision. 1978 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 1979 uint32_t BitWidth) const; 1980 1981 bool isConstant() const; 1982 1983 static bool classof(const SDNode *N) { 1984 return N->getOpcode() == ISD::BUILD_VECTOR; 1985 } 1986 }; 1987 1988 /// An SDNode that holds an arbitrary LLVM IR Value. This is 1989 /// used when the SelectionDAG needs to make a simple reference to something 1990 /// in the LLVM IR representation. 1991 /// 1992 class SrcValueSDNode : public SDNode { 1993 friend class SelectionDAG; 1994 1995 const Value *V; 1996 1997 /// Create a SrcValue for a general value. 1998 explicit SrcValueSDNode(const Value *v) 1999 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {} 2000 2001 public: 2002 /// Return the contained Value. 2003 const Value *getValue() const { return V; } 2004 2005 static bool classof(const SDNode *N) { 2006 return N->getOpcode() == ISD::SRCVALUE; 2007 } 2008 }; 2009 2010 class MDNodeSDNode : public SDNode { 2011 friend class SelectionDAG; 2012 2013 const MDNode *MD; 2014 2015 explicit MDNodeSDNode(const MDNode *md) 2016 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md) 2017 {} 2018 2019 public: 2020 const MDNode *getMD() const { return MD; } 2021 2022 static bool classof(const SDNode *N) { 2023 return N->getOpcode() == ISD::MDNODE_SDNODE; 2024 } 2025 }; 2026 2027 class RegisterSDNode : public SDNode { 2028 friend class SelectionDAG; 2029 2030 unsigned Reg; 2031 2032 RegisterSDNode(unsigned reg, EVT VT) 2033 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {} 2034 2035 public: 2036 unsigned getReg() const { return Reg; } 2037 2038 static bool classof(const SDNode *N) { 2039 return N->getOpcode() == ISD::Register; 2040 } 2041 }; 2042 2043 class RegisterMaskSDNode : public SDNode { 2044 friend class SelectionDAG; 2045 2046 // The memory for RegMask is not owned by the node. 2047 const uint32_t *RegMask; 2048 2049 RegisterMaskSDNode(const uint32_t *mask) 2050 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)), 2051 RegMask(mask) {} 2052 2053 public: 2054 const uint32_t *getRegMask() const { return RegMask; } 2055 2056 static bool classof(const SDNode *N) { 2057 return N->getOpcode() == ISD::RegisterMask; 2058 } 2059 }; 2060 2061 class BlockAddressSDNode : public SDNode { 2062 friend class SelectionDAG; 2063 2064 const BlockAddress *BA; 2065 int64_t Offset; 2066 unsigned char TargetFlags; 2067 2068 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba, 2069 int64_t o, unsigned char Flags) 2070 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)), 2071 BA(ba), Offset(o), TargetFlags(Flags) {} 2072 2073 public: 2074 const BlockAddress *getBlockAddress() const { return BA; } 2075 int64_t getOffset() const { return Offset; } 2076 unsigned char getTargetFlags() const { return TargetFlags; } 2077 2078 static bool classof(const SDNode *N) { 2079 return N->getOpcode() == ISD::BlockAddress || 2080 N->getOpcode() == ISD::TargetBlockAddress; 2081 } 2082 }; 2083 2084 class LabelSDNode : public SDNode { 2085 friend class SelectionDAG; 2086 2087 MCSymbol *Label; 2088 2089 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L) 2090 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) { 2091 assert(LabelSDNode::classof(this) && "not a label opcode"); 2092 } 2093 2094 public: 2095 MCSymbol *getLabel() const { return Label; } 2096 2097 static bool classof(const SDNode *N) { 2098 return N->getOpcode() == ISD::EH_LABEL || 2099 N->getOpcode() == ISD::ANNOTATION_LABEL; 2100 } 2101 }; 2102 2103 class ExternalSymbolSDNode : public SDNode { 2104 friend class SelectionDAG; 2105 2106 const char *Symbol; 2107 unsigned char TargetFlags; 2108 2109 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT) 2110 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 2111 0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {} 2112 2113 public: 2114 const char *getSymbol() const { return Symbol; } 2115 unsigned char getTargetFlags() const { return TargetFlags; } 2116 2117 static bool classof(const SDNode *N) { 2118 return N->getOpcode() == ISD::ExternalSymbol || 2119 N->getOpcode() == ISD::TargetExternalSymbol; 2120 } 2121 }; 2122 2123 class MCSymbolSDNode : public SDNode { 2124 friend class SelectionDAG; 2125 2126 MCSymbol *Symbol; 2127 2128 MCSymbolSDNode(MCSymbol *Symbol, EVT VT) 2129 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {} 2130 2131 public: 2132 MCSymbol *getMCSymbol() const { return Symbol; } 2133 2134 static bool classof(const SDNode *N) { 2135 return N->getOpcode() == ISD::MCSymbol; 2136 } 2137 }; 2138 2139 class CondCodeSDNode : public SDNode { 2140 friend class SelectionDAG; 2141 2142 ISD::CondCode Condition; 2143 2144 explicit CondCodeSDNode(ISD::CondCode Cond) 2145 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)), 2146 Condition(Cond) {} 2147 2148 public: 2149 ISD::CondCode get() const { return Condition; } 2150 2151 static bool classof(const SDNode *N) { 2152 return N->getOpcode() == ISD::CONDCODE; 2153 } 2154 }; 2155 2156 /// This class is used to represent EVT's, which are used 2157 /// to parameterize some operations. 2158 class VTSDNode : public SDNode { 2159 friend class SelectionDAG; 2160 2161 EVT ValueType; 2162 2163 explicit VTSDNode(EVT VT) 2164 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)), 2165 ValueType(VT) {} 2166 2167 public: 2168 EVT getVT() const { return ValueType; } 2169 2170 static bool classof(const SDNode *N) { 2171 return N->getOpcode() == ISD::VALUETYPE; 2172 } 2173 }; 2174 2175 /// Base class for LoadSDNode and StoreSDNode 2176 class LSBaseSDNode : public MemSDNode { 2177 public: 2178 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, 2179 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, 2180 MachineMemOperand *MMO) 2181 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { 2182 LSBaseSDNodeBits.AddressingMode = AM; 2183 assert(getAddressingMode() == AM && "Value truncated"); 2184 assert((!MMO->isAtomic() || MMO->isVolatile()) && 2185 "use an AtomicSDNode instead for non-volatile atomics"); 2186 } 2187 2188 const SDValue &getOffset() const { 2189 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); 2190 } 2191 2192 /// Return the addressing mode for this load or store: 2193 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. 2194 ISD::MemIndexedMode getAddressingMode() const { 2195 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); 2196 } 2197 2198 /// Return true if this is a pre/post inc/dec load/store. 2199 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } 2200 2201 /// Return true if this is NOT a pre/post inc/dec load/store. 2202 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } 2203 2204 static bool classof(const SDNode *N) { 2205 return N->getOpcode() == ISD::LOAD || 2206 N->getOpcode() == ISD::STORE; 2207 } 2208 }; 2209 2210 /// This class is used to represent ISD::LOAD nodes. 2211 class LoadSDNode : public LSBaseSDNode { 2212 friend class SelectionDAG; 2213 2214 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2215 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, 2216 MachineMemOperand *MMO) 2217 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) { 2218 LoadSDNodeBits.ExtTy = ETy; 2219 assert(readMem() && "Load MachineMemOperand is not a load!"); 2220 assert(!writeMem() && "Load MachineMemOperand is a store!"); 2221 } 2222 2223 public: 2224 /// Return whether this is a plain node, 2225 /// or one of the varieties of value-extending loads. 2226 ISD::LoadExtType getExtensionType() const { 2227 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); 2228 } 2229 2230 const SDValue &getBasePtr() const { return getOperand(1); } 2231 const SDValue &getOffset() const { return getOperand(2); } 2232 2233 static bool classof(const SDNode *N) { 2234 return N->getOpcode() == ISD::LOAD; 2235 } 2236 }; 2237 2238 /// This class is used to represent ISD::STORE nodes. 2239 class StoreSDNode : public LSBaseSDNode { 2240 friend class SelectionDAG; 2241 2242 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2243 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, 2244 MachineMemOperand *MMO) 2245 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) { 2246 StoreSDNodeBits.IsTruncating = isTrunc; 2247 assert(!readMem() && "Store MachineMemOperand is a load!"); 2248 assert(writeMem() && "Store MachineMemOperand is not a store!"); 2249 } 2250 2251 public: 2252 /// Return true if the op does a truncation before store. 2253 /// For integers this is the same as doing a TRUNCATE and storing the result. 2254 /// For floats, it is the same as doing an FP_ROUND and storing the result. 2255 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } 2256 void setTruncatingStore(bool Truncating) { 2257 StoreSDNodeBits.IsTruncating = Truncating; 2258 } 2259 2260 const SDValue &getValue() const { return getOperand(1); } 2261 const SDValue &getBasePtr() const { return getOperand(2); } 2262 const SDValue &getOffset() const { return getOperand(3); } 2263 2264 static bool classof(const SDNode *N) { 2265 return N->getOpcode() == ISD::STORE; 2266 } 2267 }; 2268 2269 /// This base class is used to represent MLOAD and MSTORE nodes 2270 class MaskedLoadStoreSDNode : public MemSDNode { 2271 public: 2272 friend class SelectionDAG; 2273 2274 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, 2275 const DebugLoc &dl, SDVTList VTs, EVT MemVT, 2276 MachineMemOperand *MMO) 2277 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {} 2278 2279 // MaskedLoadSDNode (Chain, ptr, mask, passthru) 2280 // MaskedStoreSDNode (Chain, data, ptr, mask) 2281 // Mask is a vector of i1 elements 2282 const SDValue &getBasePtr() const { 2283 return getOperand(getOpcode() == ISD::MLOAD ? 1 : 2); 2284 } 2285 const SDValue &getMask() const { 2286 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3); 2287 } 2288 2289 static bool classof(const SDNode *N) { 2290 return N->getOpcode() == ISD::MLOAD || 2291 N->getOpcode() == ISD::MSTORE; 2292 } 2293 }; 2294 2295 /// This class is used to represent an MLOAD node 2296 class MaskedLoadSDNode : public MaskedLoadStoreSDNode { 2297 public: 2298 friend class SelectionDAG; 2299 2300 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2301 ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT, 2302 MachineMemOperand *MMO) 2303 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) { 2304 LoadSDNodeBits.ExtTy = ETy; 2305 LoadSDNodeBits.IsExpanding = IsExpanding; 2306 } 2307 2308 ISD::LoadExtType getExtensionType() const { 2309 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); 2310 } 2311 2312 const SDValue &getBasePtr() const { return getOperand(1); } 2313 const SDValue &getMask() const { return getOperand(2); } 2314 const SDValue &getPassThru() const { return getOperand(3); } 2315 2316 static bool classof(const SDNode *N) { 2317 return N->getOpcode() == ISD::MLOAD; 2318 } 2319 2320 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } 2321 }; 2322 2323 /// This class is used to represent an MSTORE node 2324 class MaskedStoreSDNode : public MaskedLoadStoreSDNode { 2325 public: 2326 friend class SelectionDAG; 2327 2328 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2329 bool isTrunc, bool isCompressing, EVT MemVT, 2330 MachineMemOperand *MMO) 2331 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) { 2332 StoreSDNodeBits.IsTruncating = isTrunc; 2333 StoreSDNodeBits.IsCompressing = isCompressing; 2334 } 2335 2336 /// Return true if the op does a truncation before store. 2337 /// For integers this is the same as doing a TRUNCATE and storing the result. 2338 /// For floats, it is the same as doing an FP_ROUND and storing the result. 2339 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } 2340 2341 /// Returns true if the op does a compression to the vector before storing. 2342 /// The node contiguously stores the active elements (integers or floats) 2343 /// in src (those with their respective bit set in writemask k) to unaligned 2344 /// memory at base_addr. 2345 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } 2346 2347 const SDValue &getValue() const { return getOperand(1); } 2348 const SDValue &getBasePtr() const { return getOperand(2); } 2349 const SDValue &getMask() const { return getOperand(3); } 2350 2351 static bool classof(const SDNode *N) { 2352 return N->getOpcode() == ISD::MSTORE; 2353 } 2354 }; 2355 2356 /// This is a base class used to represent 2357 /// MGATHER and MSCATTER nodes 2358 /// 2359 class MaskedGatherScatterSDNode : public MemSDNode { 2360 public: 2361 friend class SelectionDAG; 2362 2363 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, 2364 const DebugLoc &dl, SDVTList VTs, EVT MemVT, 2365 MachineMemOperand *MMO) 2366 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {} 2367 2368 // In the both nodes address is Op1, mask is Op2: 2369 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale) 2370 // MaskedScatterSDNode (Chain, value, mask, base, index, scale) 2371 // Mask is a vector of i1 elements 2372 const SDValue &getBasePtr() const { return getOperand(3); } 2373 const SDValue &getIndex() const { return getOperand(4); } 2374 const SDValue &getMask() const { return getOperand(2); } 2375 const SDValue &getScale() const { return getOperand(5); } 2376 2377 static bool classof(const SDNode *N) { 2378 return N->getOpcode() == ISD::MGATHER || 2379 N->getOpcode() == ISD::MSCATTER; 2380 } 2381 }; 2382 2383 /// This class is used to represent an MGATHER node 2384 /// 2385 class MaskedGatherSDNode : public MaskedGatherScatterSDNode { 2386 public: 2387 friend class SelectionDAG; 2388 2389 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2390 EVT MemVT, MachineMemOperand *MMO) 2391 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {} 2392 2393 const SDValue &getPassThru() const { return getOperand(1); } 2394 2395 static bool classof(const SDNode *N) { 2396 return N->getOpcode() == ISD::MGATHER; 2397 } 2398 }; 2399 2400 /// This class is used to represent an MSCATTER node 2401 /// 2402 class MaskedScatterSDNode : public MaskedGatherScatterSDNode { 2403 public: 2404 friend class SelectionDAG; 2405 2406 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2407 EVT MemVT, MachineMemOperand *MMO) 2408 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {} 2409 2410 const SDValue &getValue() const { return getOperand(1); } 2411 2412 static bool classof(const SDNode *N) { 2413 return N->getOpcode() == ISD::MSCATTER; 2414 } 2415 }; 2416 2417 /// An SDNode that represents everything that will be needed 2418 /// to construct a MachineInstr. These nodes are created during the 2419 /// instruction selection proper phase. 2420 /// 2421 /// Note that the only supported way to set the `memoperands` is by calling the 2422 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens 2423 /// inside the DAG rather than in the node. 2424 class MachineSDNode : public SDNode { 2425 private: 2426 friend class SelectionDAG; 2427 2428 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs) 2429 : SDNode(Opc, Order, DL, VTs) {} 2430 2431 // We use a pointer union between a single `MachineMemOperand` pointer and 2432 // a pointer to an array of `MachineMemOperand` pointers. This is null when 2433 // the number of these is zero, the single pointer variant used when the 2434 // number is one, and the array is used for larger numbers. 2435 // 2436 // The array is allocated via the `SelectionDAG`'s allocator and so will 2437 // always live until the DAG is cleaned up and doesn't require ownership here. 2438 // 2439 // We can't use something simpler like `TinyPtrVector` here because `SDNode` 2440 // subclasses aren't managed in a conforming C++ manner. See the comments on 2441 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the 2442 // constraint here is that these don't manage memory with their constructor or 2443 // destructor and can be initialized to a good state even if they start off 2444 // uninitialized. 2445 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {}; 2446 2447 // Note that this could be folded into the above `MemRefs` member if doing so 2448 // is advantageous at some point. We don't need to store this in most cases. 2449 // However, at the moment this doesn't appear to make the allocation any 2450 // smaller and makes the code somewhat simpler to read. 2451 int NumMemRefs = 0; 2452 2453 public: 2454 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator; 2455 2456 ArrayRef<MachineMemOperand *> memoperands() const { 2457 // Special case the common cases. 2458 if (NumMemRefs == 0) 2459 return {}; 2460 if (NumMemRefs == 1) 2461 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1); 2462 2463 // Otherwise we have an actual array. 2464 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs); 2465 } 2466 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 2467 mmo_iterator memoperands_end() const { return memoperands().end(); } 2468 bool memoperands_empty() const { return memoperands().empty(); } 2469 2470 /// Clear out the memory reference descriptor list. 2471 void clearMemRefs() { 2472 MemRefs = nullptr; 2473 NumMemRefs = 0; 2474 } 2475 2476 static bool classof(const SDNode *N) { 2477 return N->isMachineOpcode(); 2478 } 2479 }; 2480 2481 class SDNodeIterator : public std::iterator<std::forward_iterator_tag, 2482 SDNode, ptrdiff_t> { 2483 const SDNode *Node; 2484 unsigned Operand; 2485 2486 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {} 2487 2488 public: 2489 bool operator==(const SDNodeIterator& x) const { 2490 return Operand == x.Operand; 2491 } 2492 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } 2493 2494 pointer operator*() const { 2495 return Node->getOperand(Operand).getNode(); 2496 } 2497 pointer operator->() const { return operator*(); } 2498 2499 SDNodeIterator& operator++() { // Preincrement 2500 ++Operand; 2501 return *this; 2502 } 2503 SDNodeIterator operator++(int) { // Postincrement 2504 SDNodeIterator tmp = *this; ++*this; return tmp; 2505 } 2506 size_t operator-(SDNodeIterator Other) const { 2507 assert(Node == Other.Node && 2508 "Cannot compare iterators of two different nodes!"); 2509 return Operand - Other.Operand; 2510 } 2511 2512 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); } 2513 static SDNodeIterator end (const SDNode *N) { 2514 return SDNodeIterator(N, N->getNumOperands()); 2515 } 2516 2517 unsigned getOperand() const { return Operand; } 2518 const SDNode *getNode() const { return Node; } 2519 }; 2520 2521 template <> struct GraphTraits<SDNode*> { 2522 using NodeRef = SDNode *; 2523 using ChildIteratorType = SDNodeIterator; 2524 2525 static NodeRef getEntryNode(SDNode *N) { return N; } 2526 2527 static ChildIteratorType child_begin(NodeRef N) { 2528 return SDNodeIterator::begin(N); 2529 } 2530 2531 static ChildIteratorType child_end(NodeRef N) { 2532 return SDNodeIterator::end(N); 2533 } 2534 }; 2535 2536 /// A representation of the largest SDNode, for use in sizeof(). 2537 /// 2538 /// This needs to be a union because the largest node differs on 32 bit systems 2539 /// with 4 and 8 byte pointer alignment, respectively. 2540 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode, 2541 BlockAddressSDNode, 2542 GlobalAddressSDNode>; 2543 2544 /// The SDNode class with the greatest alignment requirement. 2545 using MostAlignedSDNode = GlobalAddressSDNode; 2546 2547 namespace ISD { 2548 2549 /// Returns true if the specified node is a non-extending and unindexed load. 2550 inline bool isNormalLoad(const SDNode *N) { 2551 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N); 2552 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && 2553 Ld->getAddressingMode() == ISD::UNINDEXED; 2554 } 2555 2556 /// Returns true if the specified node is a non-extending load. 2557 inline bool isNON_EXTLoad(const SDNode *N) { 2558 return isa<LoadSDNode>(N) && 2559 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; 2560 } 2561 2562 /// Returns true if the specified node is a EXTLOAD. 2563 inline bool isEXTLoad(const SDNode *N) { 2564 return isa<LoadSDNode>(N) && 2565 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; 2566 } 2567 2568 /// Returns true if the specified node is a SEXTLOAD. 2569 inline bool isSEXTLoad(const SDNode *N) { 2570 return isa<LoadSDNode>(N) && 2571 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; 2572 } 2573 2574 /// Returns true if the specified node is a ZEXTLOAD. 2575 inline bool isZEXTLoad(const SDNode *N) { 2576 return isa<LoadSDNode>(N) && 2577 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; 2578 } 2579 2580 /// Returns true if the specified node is an unindexed load. 2581 inline bool isUNINDEXEDLoad(const SDNode *N) { 2582 return isa<LoadSDNode>(N) && 2583 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 2584 } 2585 2586 /// Returns true if the specified node is a non-truncating 2587 /// and unindexed store. 2588 inline bool isNormalStore(const SDNode *N) { 2589 const StoreSDNode *St = dyn_cast<StoreSDNode>(N); 2590 return St && !St->isTruncatingStore() && 2591 St->getAddressingMode() == ISD::UNINDEXED; 2592 } 2593 2594 /// Returns true if the specified node is a non-truncating store. 2595 inline bool isNON_TRUNCStore(const SDNode *N) { 2596 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore(); 2597 } 2598 2599 /// Returns true if the specified node is a truncating store. 2600 inline bool isTRUNCStore(const SDNode *N) { 2601 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore(); 2602 } 2603 2604 /// Returns true if the specified node is an unindexed store. 2605 inline bool isUNINDEXEDStore(const SDNode *N) { 2606 return isa<StoreSDNode>(N) && 2607 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 2608 } 2609 2610 /// Attempt to match a unary predicate against a scalar/splat constant or 2611 /// every element of a constant BUILD_VECTOR. 2612 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. 2613 bool matchUnaryPredicate(SDValue Op, 2614 std::function<bool(ConstantSDNode *)> Match, 2615 bool AllowUndefs = false); 2616 2617 /// Attempt to match a binary predicate against a pair of scalar/splat 2618 /// constants or every element of a pair of constant BUILD_VECTORs. 2619 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. 2620 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match. 2621 bool matchBinaryPredicate( 2622 SDValue LHS, SDValue RHS, 2623 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 2624 bool AllowUndefs = false, bool AllowTypeMismatch = false); 2625 } // end namespace ISD 2626 2627 } // end namespace llvm 2628 2629 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H 2630