1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the SDNode class and derived classes, which are used to 10 // represent the nodes and operations present in a SelectionDAG. These nodes 11 // and operations are machine code level operations, with some similarities to 12 // the GCC RTL representation. 13 // 14 // Clients should include the SelectionDAG.h file instead of this file directly. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H 19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H 20 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/FoldingSet.h" 25 #include "llvm/ADT/GraphTraits.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/ilist_node.h" 29 #include "llvm/ADT/iterator.h" 30 #include "llvm/ADT/iterator_range.h" 31 #include "llvm/CodeGen/ISDOpcodes.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/Register.h" 34 #include "llvm/CodeGen/ValueTypes.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/Metadata.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/Support/AlignOf.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MachineValueType.h" 46 #include "llvm/Support/TypeSize.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <climits> 50 #include <cstddef> 51 #include <cstdint> 52 #include <cstring> 53 #include <iterator> 54 #include <string> 55 #include <tuple> 56 57 namespace llvm { 58 59 class APInt; 60 class Constant; 61 class GlobalValue; 62 class MachineBasicBlock; 63 class MachineConstantPoolValue; 64 class MCSymbol; 65 class raw_ostream; 66 class SDNode; 67 class SelectionDAG; 68 class Type; 69 class Value; 70 71 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr, 72 bool force = false); 73 74 /// This represents a list of ValueType's that has been intern'd by 75 /// a SelectionDAG. Instances of this simple value class are returned by 76 /// SelectionDAG::getVTList(...). 77 /// 78 struct SDVTList { 79 const EVT *VTs; 80 unsigned int NumVTs; 81 }; 82 83 namespace ISD { 84 85 /// Node predicates 86 87 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the 88 /// same constant or undefined, return true and return the constant value in 89 /// \p SplatValue. 90 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue); 91 92 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where 93 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to 94 /// true, it only checks BUILD_VECTOR. 95 bool isConstantSplatVectorAllOnes(const SDNode *N, 96 bool BuildVectorOnly = false); 97 98 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where 99 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it 100 /// only checks BUILD_VECTOR. 101 bool isConstantSplatVectorAllZeros(const SDNode *N, 102 bool BuildVectorOnly = false); 103 104 /// Return true if the specified node is a BUILD_VECTOR where all of the 105 /// elements are ~0 or undef. 106 bool isBuildVectorAllOnes(const SDNode *N); 107 108 /// Return true if the specified node is a BUILD_VECTOR where all of the 109 /// elements are 0 or undef. 110 bool isBuildVectorAllZeros(const SDNode *N); 111 112 /// Return true if the specified node is a BUILD_VECTOR node of all 113 /// ConstantSDNode or undef. 114 bool isBuildVectorOfConstantSDNodes(const SDNode *N); 115 116 /// Return true if the specified node is a BUILD_VECTOR node of all 117 /// ConstantFPSDNode or undef. 118 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N); 119 120 /// Return true if the node has at least one operand and all operands of the 121 /// specified node are ISD::UNDEF. 122 bool allOperandsUndef(const SDNode *N); 123 124 } // end namespace ISD 125 126 //===----------------------------------------------------------------------===// 127 /// Unlike LLVM values, Selection DAG nodes may return multiple 128 /// values as the result of a computation. Many nodes return multiple values, 129 /// from loads (which define a token and a return value) to ADDC (which returns 130 /// a result and a carry value), to calls (which may return an arbitrary number 131 /// of values). 132 /// 133 /// As such, each use of a SelectionDAG computation must indicate the node that 134 /// computes it as well as which return value to use from that node. This pair 135 /// of information is represented with the SDValue value type. 136 /// 137 class SDValue { 138 friend struct DenseMapInfo<SDValue>; 139 140 SDNode *Node = nullptr; // The node defining the value we are using. 141 unsigned ResNo = 0; // Which return value of the node we are using. 142 143 public: 144 SDValue() = default; 145 SDValue(SDNode *node, unsigned resno); 146 147 /// get the index which selects a specific result in the SDNode 148 unsigned getResNo() const { return ResNo; } 149 150 /// get the SDNode which holds the desired result 151 SDNode *getNode() const { return Node; } 152 153 /// set the SDNode 154 void setNode(SDNode *N) { Node = N; } 155 156 inline SDNode *operator->() const { return Node; } 157 158 bool operator==(const SDValue &O) const { 159 return Node == O.Node && ResNo == O.ResNo; 160 } 161 bool operator!=(const SDValue &O) const { 162 return !operator==(O); 163 } 164 bool operator<(const SDValue &O) const { 165 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo); 166 } 167 explicit operator bool() const { 168 return Node != nullptr; 169 } 170 171 SDValue getValue(unsigned R) const { 172 return SDValue(Node, R); 173 } 174 175 /// Return true if this node is an operand of N. 176 bool isOperandOf(const SDNode *N) const; 177 178 /// Return the ValueType of the referenced return value. 179 inline EVT getValueType() const; 180 181 /// Return the simple ValueType of the referenced return value. 182 MVT getSimpleValueType() const { 183 return getValueType().getSimpleVT(); 184 } 185 186 /// Returns the size of the value in bits. 187 /// 188 /// If the value type is a scalable vector type, the scalable property will 189 /// be set and the runtime size will be a positive integer multiple of the 190 /// base size. 191 TypeSize getValueSizeInBits() const { 192 return getValueType().getSizeInBits(); 193 } 194 195 uint64_t getScalarValueSizeInBits() const { 196 return getValueType().getScalarType().getFixedSizeInBits(); 197 } 198 199 // Forwarding methods - These forward to the corresponding methods in SDNode. 200 inline unsigned getOpcode() const; 201 inline unsigned getNumOperands() const; 202 inline const SDValue &getOperand(unsigned i) const; 203 inline uint64_t getConstantOperandVal(unsigned i) const; 204 inline const APInt &getConstantOperandAPInt(unsigned i) const; 205 inline bool isTargetMemoryOpcode() const; 206 inline bool isTargetOpcode() const; 207 inline bool isMachineOpcode() const; 208 inline bool isUndef() const; 209 inline unsigned getMachineOpcode() const; 210 inline const DebugLoc &getDebugLoc() const; 211 inline void dump() const; 212 inline void dump(const SelectionDAG *G) const; 213 inline void dumpr() const; 214 inline void dumpr(const SelectionDAG *G) const; 215 216 /// Return true if this operand (which must be a chain) reaches the 217 /// specified operand without crossing any side-effecting instructions. 218 /// In practice, this looks through token factors and non-volatile loads. 219 /// In order to remain efficient, this only 220 /// looks a couple of nodes in, it does not do an exhaustive search. 221 bool reachesChainWithoutSideEffects(SDValue Dest, 222 unsigned Depth = 2) const; 223 224 /// Return true if there are no nodes using value ResNo of Node. 225 inline bool use_empty() const; 226 227 /// Return true if there is exactly one node using value ResNo of Node. 228 inline bool hasOneUse() const; 229 }; 230 231 template<> struct DenseMapInfo<SDValue> { 232 static inline SDValue getEmptyKey() { 233 SDValue V; 234 V.ResNo = -1U; 235 return V; 236 } 237 238 static inline SDValue getTombstoneKey() { 239 SDValue V; 240 V.ResNo = -2U; 241 return V; 242 } 243 244 static unsigned getHashValue(const SDValue &Val) { 245 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ 246 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); 247 } 248 249 static bool isEqual(const SDValue &LHS, const SDValue &RHS) { 250 return LHS == RHS; 251 } 252 }; 253 254 /// Allow casting operators to work directly on 255 /// SDValues as if they were SDNode*'s. 256 template<> struct simplify_type<SDValue> { 257 using SimpleType = SDNode *; 258 259 static SimpleType getSimplifiedValue(SDValue &Val) { 260 return Val.getNode(); 261 } 262 }; 263 template<> struct simplify_type<const SDValue> { 264 using SimpleType = /*const*/ SDNode *; 265 266 static SimpleType getSimplifiedValue(const SDValue &Val) { 267 return Val.getNode(); 268 } 269 }; 270 271 /// Represents a use of a SDNode. This class holds an SDValue, 272 /// which records the SDNode being used and the result number, a 273 /// pointer to the SDNode using the value, and Next and Prev pointers, 274 /// which link together all the uses of an SDNode. 275 /// 276 class SDUse { 277 /// Val - The value being used. 278 SDValue Val; 279 /// User - The user of this value. 280 SDNode *User = nullptr; 281 /// Prev, Next - Pointers to the uses list of the SDNode referred by 282 /// this operand. 283 SDUse **Prev = nullptr; 284 SDUse *Next = nullptr; 285 286 public: 287 SDUse() = default; 288 SDUse(const SDUse &U) = delete; 289 SDUse &operator=(const SDUse &) = delete; 290 291 /// Normally SDUse will just implicitly convert to an SDValue that it holds. 292 operator const SDValue&() const { return Val; } 293 294 /// If implicit conversion to SDValue doesn't work, the get() method returns 295 /// the SDValue. 296 const SDValue &get() const { return Val; } 297 298 /// This returns the SDNode that contains this Use. 299 SDNode *getUser() { return User; } 300 301 /// Get the next SDUse in the use list. 302 SDUse *getNext() const { return Next; } 303 304 /// Convenience function for get().getNode(). 305 SDNode *getNode() const { return Val.getNode(); } 306 /// Convenience function for get().getResNo(). 307 unsigned getResNo() const { return Val.getResNo(); } 308 /// Convenience function for get().getValueType(). 309 EVT getValueType() const { return Val.getValueType(); } 310 311 /// Convenience function for get().operator== 312 bool operator==(const SDValue &V) const { 313 return Val == V; 314 } 315 316 /// Convenience function for get().operator!= 317 bool operator!=(const SDValue &V) const { 318 return Val != V; 319 } 320 321 /// Convenience function for get().operator< 322 bool operator<(const SDValue &V) const { 323 return Val < V; 324 } 325 326 private: 327 friend class SelectionDAG; 328 friend class SDNode; 329 // TODO: unfriend HandleSDNode once we fix its operand handling. 330 friend class HandleSDNode; 331 332 void setUser(SDNode *p) { User = p; } 333 334 /// Remove this use from its existing use list, assign it the 335 /// given value, and add it to the new value's node's use list. 336 inline void set(const SDValue &V); 337 /// Like set, but only supports initializing a newly-allocated 338 /// SDUse with a non-null value. 339 inline void setInitial(const SDValue &V); 340 /// Like set, but only sets the Node portion of the value, 341 /// leaving the ResNo portion unmodified. 342 inline void setNode(SDNode *N); 343 344 void addToList(SDUse **List) { 345 Next = *List; 346 if (Next) Next->Prev = &Next; 347 Prev = List; 348 *List = this; 349 } 350 351 void removeFromList() { 352 *Prev = Next; 353 if (Next) Next->Prev = Prev; 354 } 355 }; 356 357 /// simplify_type specializations - Allow casting operators to work directly on 358 /// SDValues as if they were SDNode*'s. 359 template<> struct simplify_type<SDUse> { 360 using SimpleType = SDNode *; 361 362 static SimpleType getSimplifiedValue(SDUse &Val) { 363 return Val.getNode(); 364 } 365 }; 366 367 /// These are IR-level optimization flags that may be propagated to SDNodes. 368 /// TODO: This data structure should be shared by the IR optimizer and the 369 /// the backend. 370 struct SDNodeFlags { 371 private: 372 bool NoUnsignedWrap : 1; 373 bool NoSignedWrap : 1; 374 bool Exact : 1; 375 bool NoNaNs : 1; 376 bool NoInfs : 1; 377 bool NoSignedZeros : 1; 378 bool AllowReciprocal : 1; 379 bool AllowContract : 1; 380 bool ApproximateFuncs : 1; 381 bool AllowReassociation : 1; 382 383 // We assume instructions do not raise floating-point exceptions by default, 384 // and only those marked explicitly may do so. We could choose to represent 385 // this via a positive "FPExcept" flags like on the MI level, but having a 386 // negative "NoFPExcept" flag here (that defaults to true) makes the flag 387 // intersection logic more straightforward. 388 bool NoFPExcept : 1; 389 390 public: 391 /// Default constructor turns off all optimization flags. 392 SDNodeFlags() 393 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false), 394 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false), 395 AllowContract(false), ApproximateFuncs(false), 396 AllowReassociation(false), NoFPExcept(false) {} 397 398 /// Propagate the fast-math-flags from an IR FPMathOperator. 399 void copyFMF(const FPMathOperator &FPMO) { 400 setNoNaNs(FPMO.hasNoNaNs()); 401 setNoInfs(FPMO.hasNoInfs()); 402 setNoSignedZeros(FPMO.hasNoSignedZeros()); 403 setAllowReciprocal(FPMO.hasAllowReciprocal()); 404 setAllowContract(FPMO.hasAllowContract()); 405 setApproximateFuncs(FPMO.hasApproxFunc()); 406 setAllowReassociation(FPMO.hasAllowReassoc()); 407 } 408 409 // These are mutators for each flag. 410 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; } 411 void setNoSignedWrap(bool b) { NoSignedWrap = b; } 412 void setExact(bool b) { Exact = b; } 413 void setNoNaNs(bool b) { NoNaNs = b; } 414 void setNoInfs(bool b) { NoInfs = b; } 415 void setNoSignedZeros(bool b) { NoSignedZeros = b; } 416 void setAllowReciprocal(bool b) { AllowReciprocal = b; } 417 void setAllowContract(bool b) { AllowContract = b; } 418 void setApproximateFuncs(bool b) { ApproximateFuncs = b; } 419 void setAllowReassociation(bool b) { AllowReassociation = b; } 420 void setNoFPExcept(bool b) { NoFPExcept = b; } 421 422 // These are accessors for each flag. 423 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; } 424 bool hasNoSignedWrap() const { return NoSignedWrap; } 425 bool hasExact() const { return Exact; } 426 bool hasNoNaNs() const { return NoNaNs; } 427 bool hasNoInfs() const { return NoInfs; } 428 bool hasNoSignedZeros() const { return NoSignedZeros; } 429 bool hasAllowReciprocal() const { return AllowReciprocal; } 430 bool hasAllowContract() const { return AllowContract; } 431 bool hasApproximateFuncs() const { return ApproximateFuncs; } 432 bool hasAllowReassociation() const { return AllowReassociation; } 433 bool hasNoFPExcept() const { return NoFPExcept; } 434 435 /// Clear any flags in this flag set that aren't also set in Flags. All 436 /// flags will be cleared if Flags are undefined. 437 void intersectWith(const SDNodeFlags Flags) { 438 NoUnsignedWrap &= Flags.NoUnsignedWrap; 439 NoSignedWrap &= Flags.NoSignedWrap; 440 Exact &= Flags.Exact; 441 NoNaNs &= Flags.NoNaNs; 442 NoInfs &= Flags.NoInfs; 443 NoSignedZeros &= Flags.NoSignedZeros; 444 AllowReciprocal &= Flags.AllowReciprocal; 445 AllowContract &= Flags.AllowContract; 446 ApproximateFuncs &= Flags.ApproximateFuncs; 447 AllowReassociation &= Flags.AllowReassociation; 448 NoFPExcept &= Flags.NoFPExcept; 449 } 450 }; 451 452 /// Represents one node in the SelectionDAG. 453 /// 454 class SDNode : public FoldingSetNode, public ilist_node<SDNode> { 455 private: 456 /// The operation that this node performs. 457 int16_t NodeType; 458 459 protected: 460 // We define a set of mini-helper classes to help us interpret the bits in our 461 // SubclassData. These are designed to fit within a uint16_t so they pack 462 // with NodeType. 463 464 #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__)) 465 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words 466 // and give the `pack` pragma push semantics. 467 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)") 468 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)") 469 #else 470 #define BEGIN_TWO_BYTE_PACK() 471 #define END_TWO_BYTE_PACK() 472 #endif 473 474 BEGIN_TWO_BYTE_PACK() 475 class SDNodeBitfields { 476 friend class SDNode; 477 friend class MemIntrinsicSDNode; 478 friend class MemSDNode; 479 friend class SelectionDAG; 480 481 uint16_t HasDebugValue : 1; 482 uint16_t IsMemIntrinsic : 1; 483 uint16_t IsDivergent : 1; 484 }; 485 enum { NumSDNodeBits = 3 }; 486 487 class ConstantSDNodeBitfields { 488 friend class ConstantSDNode; 489 490 uint16_t : NumSDNodeBits; 491 492 uint16_t IsOpaque : 1; 493 }; 494 495 class MemSDNodeBitfields { 496 friend class MemSDNode; 497 friend class MemIntrinsicSDNode; 498 friend class AtomicSDNode; 499 500 uint16_t : NumSDNodeBits; 501 502 uint16_t IsVolatile : 1; 503 uint16_t IsNonTemporal : 1; 504 uint16_t IsDereferenceable : 1; 505 uint16_t IsInvariant : 1; 506 }; 507 enum { NumMemSDNodeBits = NumSDNodeBits + 4 }; 508 509 class LSBaseSDNodeBitfields { 510 friend class LSBaseSDNode; 511 friend class VPLoadStoreSDNode; 512 friend class MaskedLoadStoreSDNode; 513 friend class MaskedGatherScatterSDNode; 514 friend class VPGatherScatterSDNode; 515 516 uint16_t : NumMemSDNodeBits; 517 518 // This storage is shared between disparate class hierarchies to hold an 519 // enumeration specific to the class hierarchy in use. 520 // LSBaseSDNode => enum ISD::MemIndexedMode 521 // VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode 522 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode 523 // VPGatherScatterSDNode => enum ISD::MemIndexType 524 // MaskedGatherScatterSDNode => enum ISD::MemIndexType 525 uint16_t AddressingMode : 3; 526 }; 527 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 }; 528 529 class LoadSDNodeBitfields { 530 friend class LoadSDNode; 531 friend class VPLoadSDNode; 532 friend class MaskedLoadSDNode; 533 friend class MaskedGatherSDNode; 534 friend class VPGatherSDNode; 535 536 uint16_t : NumLSBaseSDNodeBits; 537 538 uint16_t ExtTy : 2; // enum ISD::LoadExtType 539 uint16_t IsExpanding : 1; 540 }; 541 542 class StoreSDNodeBitfields { 543 friend class StoreSDNode; 544 friend class VPStoreSDNode; 545 friend class MaskedStoreSDNode; 546 friend class MaskedScatterSDNode; 547 friend class VPScatterSDNode; 548 549 uint16_t : NumLSBaseSDNodeBits; 550 551 uint16_t IsTruncating : 1; 552 uint16_t IsCompressing : 1; 553 }; 554 555 union { 556 char RawSDNodeBits[sizeof(uint16_t)]; 557 SDNodeBitfields SDNodeBits; 558 ConstantSDNodeBitfields ConstantSDNodeBits; 559 MemSDNodeBitfields MemSDNodeBits; 560 LSBaseSDNodeBitfields LSBaseSDNodeBits; 561 LoadSDNodeBitfields LoadSDNodeBits; 562 StoreSDNodeBitfields StoreSDNodeBits; 563 }; 564 END_TWO_BYTE_PACK() 565 #undef BEGIN_TWO_BYTE_PACK 566 #undef END_TWO_BYTE_PACK 567 568 // RawSDNodeBits must cover the entirety of the union. This means that all of 569 // the union's members must have size <= RawSDNodeBits. We write the RHS as 570 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter. 571 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide"); 572 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide"); 573 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide"); 574 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide"); 575 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide"); 576 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide"); 577 578 private: 579 friend class SelectionDAG; 580 // TODO: unfriend HandleSDNode once we fix its operand handling. 581 friend class HandleSDNode; 582 583 /// Unique id per SDNode in the DAG. 584 int NodeId = -1; 585 586 /// The values that are used by this operation. 587 SDUse *OperandList = nullptr; 588 589 /// The types of the values this node defines. SDNode's may 590 /// define multiple values simultaneously. 591 const EVT *ValueList; 592 593 /// List of uses for this SDNode. 594 SDUse *UseList = nullptr; 595 596 /// The number of entries in the Operand/Value list. 597 unsigned short NumOperands = 0; 598 unsigned short NumValues; 599 600 // The ordering of the SDNodes. It roughly corresponds to the ordering of the 601 // original LLVM instructions. 602 // This is used for turning off scheduling, because we'll forgo 603 // the normal scheduling algorithms and output the instructions according to 604 // this ordering. 605 unsigned IROrder; 606 607 /// Source line information. 608 DebugLoc debugLoc; 609 610 /// Return a pointer to the specified value type. 611 static const EVT *getValueTypeList(EVT VT); 612 613 SDNodeFlags Flags; 614 615 public: 616 /// Unique and persistent id per SDNode in the DAG. 617 /// Used for debug printing. 618 uint16_t PersistentId; 619 620 //===--------------------------------------------------------------------===// 621 // Accessors 622 // 623 624 /// Return the SelectionDAG opcode value for this node. For 625 /// pre-isel nodes (those for which isMachineOpcode returns false), these 626 /// are the opcode values in the ISD and <target>ISD namespaces. For 627 /// post-isel opcodes, see getMachineOpcode. 628 unsigned getOpcode() const { return (unsigned short)NodeType; } 629 630 /// Test if this node has a target-specific opcode (in the 631 /// \<target\>ISD namespace). 632 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } 633 634 /// Test if this node has a target-specific opcode that may raise 635 /// FP exceptions (in the \<target\>ISD namespace and greater than 636 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory 637 /// opcode are currently automatically considered to possibly raise 638 /// FP exceptions as well. 639 bool isTargetStrictFPOpcode() const { 640 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE; 641 } 642 643 /// Test if this node has a target-specific 644 /// memory-referencing opcode (in the \<target\>ISD namespace and 645 /// greater than FIRST_TARGET_MEMORY_OPCODE). 646 bool isTargetMemoryOpcode() const { 647 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; 648 } 649 650 /// Return true if the type of the node type undefined. 651 bool isUndef() const { return NodeType == ISD::UNDEF; } 652 653 /// Test if this node is a memory intrinsic (with valid pointer information). 654 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for 655 /// non-memory intrinsics (with chains) that are not really instances of 656 /// MemSDNode. For such nodes, we need some extra state to determine the 657 /// proper classof relationship. 658 bool isMemIntrinsic() const { 659 return (NodeType == ISD::INTRINSIC_W_CHAIN || 660 NodeType == ISD::INTRINSIC_VOID) && 661 SDNodeBits.IsMemIntrinsic; 662 } 663 664 /// Test if this node is a strict floating point pseudo-op. 665 bool isStrictFPOpcode() { 666 switch (NodeType) { 667 default: 668 return false; 669 case ISD::STRICT_FP16_TO_FP: 670 case ISD::STRICT_FP_TO_FP16: 671 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 672 case ISD::STRICT_##DAGN: 673 #include "llvm/IR/ConstrainedOps.def" 674 return true; 675 } 676 } 677 678 /// Test if this node has a post-isel opcode, directly 679 /// corresponding to a MachineInstr opcode. 680 bool isMachineOpcode() const { return NodeType < 0; } 681 682 /// This may only be called if isMachineOpcode returns 683 /// true. It returns the MachineInstr opcode value that the node's opcode 684 /// corresponds to. 685 unsigned getMachineOpcode() const { 686 assert(isMachineOpcode() && "Not a MachineInstr opcode!"); 687 return ~NodeType; 688 } 689 690 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; } 691 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; } 692 693 bool isDivergent() const { return SDNodeBits.IsDivergent; } 694 695 /// Return true if there are no uses of this node. 696 bool use_empty() const { return UseList == nullptr; } 697 698 /// Return true if there is exactly one use of this node. 699 bool hasOneUse() const { return hasSingleElement(uses()); } 700 701 /// Return the number of uses of this node. This method takes 702 /// time proportional to the number of uses. 703 size_t use_size() const { return std::distance(use_begin(), use_end()); } 704 705 /// Return the unique node id. 706 int getNodeId() const { return NodeId; } 707 708 /// Set unique node id. 709 void setNodeId(int Id) { NodeId = Id; } 710 711 /// Return the node ordering. 712 unsigned getIROrder() const { return IROrder; } 713 714 /// Set the node ordering. 715 void setIROrder(unsigned Order) { IROrder = Order; } 716 717 /// Return the source location info. 718 const DebugLoc &getDebugLoc() const { return debugLoc; } 719 720 /// Set source location info. Try to avoid this, putting 721 /// it in the constructor is preferable. 722 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); } 723 724 /// This class provides iterator support for SDUse 725 /// operands that use a specific SDNode. 726 class use_iterator { 727 friend class SDNode; 728 729 SDUse *Op = nullptr; 730 731 explicit use_iterator(SDUse *op) : Op(op) {} 732 733 public: 734 using iterator_category = std::forward_iterator_tag; 735 using value_type = SDUse; 736 using difference_type = std::ptrdiff_t; 737 using pointer = value_type *; 738 using reference = value_type &; 739 740 use_iterator() = default; 741 use_iterator(const use_iterator &I) : Op(I.Op) {} 742 743 bool operator==(const use_iterator &x) const { 744 return Op == x.Op; 745 } 746 bool operator!=(const use_iterator &x) const { 747 return !operator==(x); 748 } 749 750 /// Return true if this iterator is at the end of uses list. 751 bool atEnd() const { return Op == nullptr; } 752 753 // Iterator traversal: forward iteration only. 754 use_iterator &operator++() { // Preincrement 755 assert(Op && "Cannot increment end iterator!"); 756 Op = Op->getNext(); 757 return *this; 758 } 759 760 use_iterator operator++(int) { // Postincrement 761 use_iterator tmp = *this; ++*this; return tmp; 762 } 763 764 /// Retrieve a pointer to the current user node. 765 SDNode *operator*() const { 766 assert(Op && "Cannot dereference end iterator!"); 767 return Op->getUser(); 768 } 769 770 SDNode *operator->() const { return operator*(); } 771 772 SDUse &getUse() const { return *Op; } 773 774 /// Retrieve the operand # of this use in its user. 775 unsigned getOperandNo() const { 776 assert(Op && "Cannot dereference end iterator!"); 777 return (unsigned)(Op - Op->getUser()->OperandList); 778 } 779 }; 780 781 /// Provide iteration support to walk over all uses of an SDNode. 782 use_iterator use_begin() const { 783 return use_iterator(UseList); 784 } 785 786 static use_iterator use_end() { return use_iterator(nullptr); } 787 788 inline iterator_range<use_iterator> uses() { 789 return make_range(use_begin(), use_end()); 790 } 791 inline iterator_range<use_iterator> uses() const { 792 return make_range(use_begin(), use_end()); 793 } 794 795 /// Return true if there are exactly NUSES uses of the indicated value. 796 /// This method ignores uses of other values defined by this operation. 797 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; 798 799 /// Return true if there are any use of the indicated value. 800 /// This method ignores uses of other values defined by this operation. 801 bool hasAnyUseOfValue(unsigned Value) const; 802 803 /// Return true if this node is the only use of N. 804 bool isOnlyUserOf(const SDNode *N) const; 805 806 /// Return true if this node is an operand of N. 807 bool isOperandOf(const SDNode *N) const; 808 809 /// Return true if this node is a predecessor of N. 810 /// NOTE: Implemented on top of hasPredecessor and every bit as 811 /// expensive. Use carefully. 812 bool isPredecessorOf(const SDNode *N) const { 813 return N->hasPredecessor(this); 814 } 815 816 /// Return true if N is a predecessor of this node. 817 /// N is either an operand of this node, or can be reached by recursively 818 /// traversing up the operands. 819 /// NOTE: This is an expensive method. Use it carefully. 820 bool hasPredecessor(const SDNode *N) const; 821 822 /// Returns true if N is a predecessor of any node in Worklist. This 823 /// helper keeps Visited and Worklist sets externally to allow unions 824 /// searches to be performed in parallel, caching of results across 825 /// queries and incremental addition to Worklist. Stops early if N is 826 /// found but will resume. Remember to clear Visited and Worklists 827 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before 828 /// giving up. The TopologicalPrune flag signals that positive NodeIds are 829 /// topologically ordered (Operands have strictly smaller node id) and search 830 /// can be pruned leveraging this. 831 static bool hasPredecessorHelper(const SDNode *N, 832 SmallPtrSetImpl<const SDNode *> &Visited, 833 SmallVectorImpl<const SDNode *> &Worklist, 834 unsigned int MaxSteps = 0, 835 bool TopologicalPrune = false) { 836 SmallVector<const SDNode *, 8> DeferredNodes; 837 if (Visited.count(N)) 838 return true; 839 840 // Node Id's are assigned in three places: As a topological 841 // ordering (> 0), during legalization (results in values set to 842 // 0), new nodes (set to -1). If N has a topolgical id then we 843 // know that all nodes with ids smaller than it cannot be 844 // successors and we need not check them. Filter out all node 845 // that can't be matches. We add them to the worklist before exit 846 // in case of multiple calls. Note that during selection the topological id 847 // may be violated if a node's predecessor is selected before it. We mark 848 // this at selection negating the id of unselected successors and 849 // restricting topological pruning to positive ids. 850 851 int NId = N->getNodeId(); 852 // If we Invalidated the Id, reconstruct original NId. 853 if (NId < -1) 854 NId = -(NId + 1); 855 856 bool Found = false; 857 while (!Worklist.empty()) { 858 const SDNode *M = Worklist.pop_back_val(); 859 int MId = M->getNodeId(); 860 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) && 861 (MId > 0) && (MId < NId)) { 862 DeferredNodes.push_back(M); 863 continue; 864 } 865 for (const SDValue &OpV : M->op_values()) { 866 SDNode *Op = OpV.getNode(); 867 if (Visited.insert(Op).second) 868 Worklist.push_back(Op); 869 if (Op == N) 870 Found = true; 871 } 872 if (Found) 873 break; 874 if (MaxSteps != 0 && Visited.size() >= MaxSteps) 875 break; 876 } 877 // Push deferred nodes back on worklist. 878 Worklist.append(DeferredNodes.begin(), DeferredNodes.end()); 879 // If we bailed early, conservatively return found. 880 if (MaxSteps != 0 && Visited.size() >= MaxSteps) 881 return true; 882 return Found; 883 } 884 885 /// Return true if all the users of N are contained in Nodes. 886 /// NOTE: Requires at least one match, but doesn't require them all. 887 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N); 888 889 /// Return the number of values used by this operation. 890 unsigned getNumOperands() const { return NumOperands; } 891 892 /// Return the maximum number of operands that a SDNode can hold. 893 static constexpr size_t getMaxNumOperands() { 894 return std::numeric_limits<decltype(SDNode::NumOperands)>::max(); 895 } 896 897 /// Helper method returns the integer value of a ConstantSDNode operand. 898 inline uint64_t getConstantOperandVal(unsigned Num) const; 899 900 /// Helper method returns the APInt of a ConstantSDNode operand. 901 inline const APInt &getConstantOperandAPInt(unsigned Num) const; 902 903 const SDValue &getOperand(unsigned Num) const { 904 assert(Num < NumOperands && "Invalid child # of SDNode!"); 905 return OperandList[Num]; 906 } 907 908 using op_iterator = SDUse *; 909 910 op_iterator op_begin() const { return OperandList; } 911 op_iterator op_end() const { return OperandList+NumOperands; } 912 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); } 913 914 /// Iterator for directly iterating over the operand SDValue's. 915 struct value_op_iterator 916 : iterator_adaptor_base<value_op_iterator, op_iterator, 917 std::random_access_iterator_tag, SDValue, 918 ptrdiff_t, value_op_iterator *, 919 value_op_iterator *> { 920 explicit value_op_iterator(SDUse *U = nullptr) 921 : iterator_adaptor_base(U) {} 922 923 const SDValue &operator*() const { return I->get(); } 924 }; 925 926 iterator_range<value_op_iterator> op_values() const { 927 return make_range(value_op_iterator(op_begin()), 928 value_op_iterator(op_end())); 929 } 930 931 SDVTList getVTList() const { 932 SDVTList X = { ValueList, NumValues }; 933 return X; 934 } 935 936 /// If this node has a glue operand, return the node 937 /// to which the glue operand points. Otherwise return NULL. 938 SDNode *getGluedNode() const { 939 if (getNumOperands() != 0 && 940 getOperand(getNumOperands()-1).getValueType() == MVT::Glue) 941 return getOperand(getNumOperands()-1).getNode(); 942 return nullptr; 943 } 944 945 /// If this node has a glue value with a user, return 946 /// the user (there is at most one). Otherwise return NULL. 947 SDNode *getGluedUser() const { 948 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI) 949 if (UI.getUse().get().getValueType() == MVT::Glue) 950 return *UI; 951 return nullptr; 952 } 953 954 SDNodeFlags getFlags() const { return Flags; } 955 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; } 956 957 /// Clear any flags in this node that aren't also set in Flags. 958 /// If Flags is not in a defined state then this has no effect. 959 void intersectFlagsWith(const SDNodeFlags Flags); 960 961 /// Return the number of values defined/returned by this operator. 962 unsigned getNumValues() const { return NumValues; } 963 964 /// Return the type of a specified result. 965 EVT getValueType(unsigned ResNo) const { 966 assert(ResNo < NumValues && "Illegal result number!"); 967 return ValueList[ResNo]; 968 } 969 970 /// Return the type of a specified result as a simple type. 971 MVT getSimpleValueType(unsigned ResNo) const { 972 return getValueType(ResNo).getSimpleVT(); 973 } 974 975 /// Returns MVT::getSizeInBits(getValueType(ResNo)). 976 /// 977 /// If the value type is a scalable vector type, the scalable property will 978 /// be set and the runtime size will be a positive integer multiple of the 979 /// base size. 980 TypeSize getValueSizeInBits(unsigned ResNo) const { 981 return getValueType(ResNo).getSizeInBits(); 982 } 983 984 using value_iterator = const EVT *; 985 986 value_iterator value_begin() const { return ValueList; } 987 value_iterator value_end() const { return ValueList+NumValues; } 988 iterator_range<value_iterator> values() const { 989 return llvm::make_range(value_begin(), value_end()); 990 } 991 992 /// Return the opcode of this operation for printing. 993 std::string getOperationName(const SelectionDAG *G = nullptr) const; 994 static const char* getIndexedModeName(ISD::MemIndexedMode AM); 995 void print_types(raw_ostream &OS, const SelectionDAG *G) const; 996 void print_details(raw_ostream &OS, const SelectionDAG *G) const; 997 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const; 998 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const; 999 1000 /// Print a SelectionDAG node and all children down to 1001 /// the leaves. The given SelectionDAG allows target-specific nodes 1002 /// to be printed in human-readable form. Unlike printr, this will 1003 /// print the whole DAG, including children that appear multiple 1004 /// times. 1005 /// 1006 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const; 1007 1008 /// Print a SelectionDAG node and children up to 1009 /// depth "depth." The given SelectionDAG allows target-specific 1010 /// nodes to be printed in human-readable form. Unlike printr, this 1011 /// will print children that appear multiple times wherever they are 1012 /// used. 1013 /// 1014 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr, 1015 unsigned depth = 100) const; 1016 1017 /// Dump this node, for debugging. 1018 void dump() const; 1019 1020 /// Dump (recursively) this node and its use-def subgraph. 1021 void dumpr() const; 1022 1023 /// Dump this node, for debugging. 1024 /// The given SelectionDAG allows target-specific nodes to be printed 1025 /// in human-readable form. 1026 void dump(const SelectionDAG *G) const; 1027 1028 /// Dump (recursively) this node and its use-def subgraph. 1029 /// The given SelectionDAG allows target-specific nodes to be printed 1030 /// in human-readable form. 1031 void dumpr(const SelectionDAG *G) const; 1032 1033 /// printrFull to dbgs(). The given SelectionDAG allows 1034 /// target-specific nodes to be printed in human-readable form. 1035 /// Unlike dumpr, this will print the whole DAG, including children 1036 /// that appear multiple times. 1037 void dumprFull(const SelectionDAG *G = nullptr) const; 1038 1039 /// printrWithDepth to dbgs(). The given 1040 /// SelectionDAG allows target-specific nodes to be printed in 1041 /// human-readable form. Unlike dumpr, this will print children 1042 /// that appear multiple times wherever they are used. 1043 /// 1044 void dumprWithDepth(const SelectionDAG *G = nullptr, 1045 unsigned depth = 100) const; 1046 1047 /// Gather unique data for the node. 1048 void Profile(FoldingSetNodeID &ID) const; 1049 1050 /// This method should only be used by the SDUse class. 1051 void addUse(SDUse &U) { U.addToList(&UseList); } 1052 1053 protected: 1054 static SDVTList getSDVTList(EVT VT) { 1055 SDVTList Ret = { getValueTypeList(VT), 1 }; 1056 return Ret; 1057 } 1058 1059 /// Create an SDNode. 1060 /// 1061 /// SDNodes are created without any operands, and never own the operand 1062 /// storage. To add operands, see SelectionDAG::createOperands. 1063 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs) 1064 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs), 1065 IROrder(Order), debugLoc(std::move(dl)) { 1066 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits)); 1067 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1068 assert(NumValues == VTs.NumVTs && 1069 "NumValues wasn't wide enough for its operands!"); 1070 } 1071 1072 /// Release the operands and set this node to have zero operands. 1073 void DropOperands(); 1074 }; 1075 1076 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed 1077 /// into SDNode creation functions. 1078 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted 1079 /// from the original Instruction, and IROrder is the ordinal position of 1080 /// the instruction. 1081 /// When an SDNode is created after the DAG is being built, both DebugLoc and 1082 /// the IROrder are propagated from the original SDNode. 1083 /// So SDLoc class provides two constructors besides the default one, one to 1084 /// be used by the DAGBuilder, the other to be used by others. 1085 class SDLoc { 1086 private: 1087 DebugLoc DL; 1088 int IROrder = 0; 1089 1090 public: 1091 SDLoc() = default; 1092 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {} 1093 SDLoc(const SDValue V) : SDLoc(V.getNode()) {} 1094 SDLoc(const Instruction *I, int Order) : IROrder(Order) { 1095 assert(Order >= 0 && "bad IROrder"); 1096 if (I) 1097 DL = I->getDebugLoc(); 1098 } 1099 1100 unsigned getIROrder() const { return IROrder; } 1101 const DebugLoc &getDebugLoc() const { return DL; } 1102 }; 1103 1104 // Define inline functions from the SDValue class. 1105 1106 inline SDValue::SDValue(SDNode *node, unsigned resno) 1107 : Node(node), ResNo(resno) { 1108 // Explicitly check for !ResNo to avoid use-after-free, because there are 1109 // callers that use SDValue(N, 0) with a deleted N to indicate successful 1110 // combines. 1111 assert((!Node || !ResNo || ResNo < Node->getNumValues()) && 1112 "Invalid result number for the given node!"); 1113 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."); 1114 } 1115 1116 inline unsigned SDValue::getOpcode() const { 1117 return Node->getOpcode(); 1118 } 1119 1120 inline EVT SDValue::getValueType() const { 1121 return Node->getValueType(ResNo); 1122 } 1123 1124 inline unsigned SDValue::getNumOperands() const { 1125 return Node->getNumOperands(); 1126 } 1127 1128 inline const SDValue &SDValue::getOperand(unsigned i) const { 1129 return Node->getOperand(i); 1130 } 1131 1132 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { 1133 return Node->getConstantOperandVal(i); 1134 } 1135 1136 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const { 1137 return Node->getConstantOperandAPInt(i); 1138 } 1139 1140 inline bool SDValue::isTargetOpcode() const { 1141 return Node->isTargetOpcode(); 1142 } 1143 1144 inline bool SDValue::isTargetMemoryOpcode() const { 1145 return Node->isTargetMemoryOpcode(); 1146 } 1147 1148 inline bool SDValue::isMachineOpcode() const { 1149 return Node->isMachineOpcode(); 1150 } 1151 1152 inline unsigned SDValue::getMachineOpcode() const { 1153 return Node->getMachineOpcode(); 1154 } 1155 1156 inline bool SDValue::isUndef() const { 1157 return Node->isUndef(); 1158 } 1159 1160 inline bool SDValue::use_empty() const { 1161 return !Node->hasAnyUseOfValue(ResNo); 1162 } 1163 1164 inline bool SDValue::hasOneUse() const { 1165 return Node->hasNUsesOfValue(1, ResNo); 1166 } 1167 1168 inline const DebugLoc &SDValue::getDebugLoc() const { 1169 return Node->getDebugLoc(); 1170 } 1171 1172 inline void SDValue::dump() const { 1173 return Node->dump(); 1174 } 1175 1176 inline void SDValue::dump(const SelectionDAG *G) const { 1177 return Node->dump(G); 1178 } 1179 1180 inline void SDValue::dumpr() const { 1181 return Node->dumpr(); 1182 } 1183 1184 inline void SDValue::dumpr(const SelectionDAG *G) const { 1185 return Node->dumpr(G); 1186 } 1187 1188 // Define inline functions from the SDUse class. 1189 1190 inline void SDUse::set(const SDValue &V) { 1191 if (Val.getNode()) removeFromList(); 1192 Val = V; 1193 if (V.getNode()) V.getNode()->addUse(*this); 1194 } 1195 1196 inline void SDUse::setInitial(const SDValue &V) { 1197 Val = V; 1198 V.getNode()->addUse(*this); 1199 } 1200 1201 inline void SDUse::setNode(SDNode *N) { 1202 if (Val.getNode()) removeFromList(); 1203 Val.setNode(N); 1204 if (N) N->addUse(*this); 1205 } 1206 1207 /// This class is used to form a handle around another node that 1208 /// is persistent and is updated across invocations of replaceAllUsesWith on its 1209 /// operand. This node should be directly created by end-users and not added to 1210 /// the AllNodes list. 1211 class HandleSDNode : public SDNode { 1212 SDUse Op; 1213 1214 public: 1215 explicit HandleSDNode(SDValue X) 1216 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) { 1217 // HandleSDNodes are never inserted into the DAG, so they won't be 1218 // auto-numbered. Use ID 65535 as a sentinel. 1219 PersistentId = 0xffff; 1220 1221 // Manually set up the operand list. This node type is special in that it's 1222 // always stack allocated and SelectionDAG does not manage its operands. 1223 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not 1224 // be so special. 1225 Op.setUser(this); 1226 Op.setInitial(X); 1227 NumOperands = 1; 1228 OperandList = &Op; 1229 } 1230 ~HandleSDNode(); 1231 1232 const SDValue &getValue() const { return Op; } 1233 }; 1234 1235 class AddrSpaceCastSDNode : public SDNode { 1236 private: 1237 unsigned SrcAddrSpace; 1238 unsigned DestAddrSpace; 1239 1240 public: 1241 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT, 1242 unsigned SrcAS, unsigned DestAS); 1243 1244 unsigned getSrcAddressSpace() const { return SrcAddrSpace; } 1245 unsigned getDestAddressSpace() const { return DestAddrSpace; } 1246 1247 static bool classof(const SDNode *N) { 1248 return N->getOpcode() == ISD::ADDRSPACECAST; 1249 } 1250 }; 1251 1252 /// This is an abstract virtual class for memory operations. 1253 class MemSDNode : public SDNode { 1254 private: 1255 // VT of in-memory value. 1256 EVT MemoryVT; 1257 1258 protected: 1259 /// Memory reference information. 1260 MachineMemOperand *MMO; 1261 1262 public: 1263 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, 1264 EVT memvt, MachineMemOperand *MMO); 1265 1266 bool readMem() const { return MMO->isLoad(); } 1267 bool writeMem() const { return MMO->isStore(); } 1268 1269 /// Returns alignment and volatility of the memory access 1270 Align getOriginalAlign() const { return MMO->getBaseAlign(); } 1271 Align getAlign() const { return MMO->getAlign(); } 1272 // FIXME: Remove once transition to getAlign is over. 1273 unsigned getAlignment() const { return MMO->getAlign().value(); } 1274 1275 /// Return the SubclassData value, without HasDebugValue. This contains an 1276 /// encoding of the volatile flag, as well as bits used by subclasses. This 1277 /// function should only be used to compute a FoldingSetNodeID value. 1278 /// The HasDebugValue bit is masked out because CSE map needs to match 1279 /// nodes with debug info with nodes without debug info. Same is about 1280 /// isDivergent bit. 1281 unsigned getRawSubclassData() const { 1282 uint16_t Data; 1283 union { 1284 char RawSDNodeBits[sizeof(uint16_t)]; 1285 SDNodeBitfields SDNodeBits; 1286 }; 1287 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits)); 1288 SDNodeBits.HasDebugValue = 0; 1289 SDNodeBits.IsDivergent = false; 1290 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits)); 1291 return Data; 1292 } 1293 1294 bool isVolatile() const { return MemSDNodeBits.IsVolatile; } 1295 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; } 1296 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; } 1297 bool isInvariant() const { return MemSDNodeBits.IsInvariant; } 1298 1299 // Returns the offset from the location of the access. 1300 int64_t getSrcValueOffset() const { return MMO->getOffset(); } 1301 1302 /// Returns the AA info that describes the dereference. 1303 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); } 1304 1305 /// Returns the Ranges that describes the dereference. 1306 const MDNode *getRanges() const { return MMO->getRanges(); } 1307 1308 /// Returns the synchronization scope ID for this memory operation. 1309 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); } 1310 1311 /// Return the atomic ordering requirements for this memory operation. For 1312 /// cmpxchg atomic operations, return the atomic ordering requirements when 1313 /// store occurs. 1314 AtomicOrdering getSuccessOrdering() const { 1315 return MMO->getSuccessOrdering(); 1316 } 1317 1318 /// Return a single atomic ordering that is at least as strong as both the 1319 /// success and failure orderings for an atomic operation. (For operations 1320 /// other than cmpxchg, this is equivalent to getSuccessOrdering().) 1321 AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); } 1322 1323 /// Return true if the memory operation ordering is Unordered or higher. 1324 bool isAtomic() const { return MMO->isAtomic(); } 1325 1326 /// Returns true if the memory operation doesn't imply any ordering 1327 /// constraints on surrounding memory operations beyond the normal memory 1328 /// aliasing rules. 1329 bool isUnordered() const { return MMO->isUnordered(); } 1330 1331 /// Returns true if the memory operation is neither atomic or volatile. 1332 bool isSimple() const { return !isAtomic() && !isVolatile(); } 1333 1334 /// Return the type of the in-memory value. 1335 EVT getMemoryVT() const { return MemoryVT; } 1336 1337 /// Return a MachineMemOperand object describing the memory 1338 /// reference performed by operation. 1339 MachineMemOperand *getMemOperand() const { return MMO; } 1340 1341 const MachinePointerInfo &getPointerInfo() const { 1342 return MMO->getPointerInfo(); 1343 } 1344 1345 /// Return the address space for the associated pointer 1346 unsigned getAddressSpace() const { 1347 return getPointerInfo().getAddrSpace(); 1348 } 1349 1350 /// Update this MemSDNode's MachineMemOperand information 1351 /// to reflect the alignment of NewMMO, if it has a greater alignment. 1352 /// This must only be used when the new alignment applies to all users of 1353 /// this MachineMemOperand. 1354 void refineAlignment(const MachineMemOperand *NewMMO) { 1355 MMO->refineAlignment(NewMMO); 1356 } 1357 1358 const SDValue &getChain() const { return getOperand(0); } 1359 1360 const SDValue &getBasePtr() const { 1361 switch (getOpcode()) { 1362 case ISD::STORE: 1363 case ISD::VP_STORE: 1364 case ISD::MSTORE: 1365 case ISD::VP_SCATTER: 1366 return getOperand(2); 1367 case ISD::MGATHER: 1368 case ISD::MSCATTER: 1369 return getOperand(3); 1370 default: 1371 return getOperand(1); 1372 } 1373 } 1374 1375 // Methods to support isa and dyn_cast 1376 static bool classof(const SDNode *N) { 1377 // For some targets, we lower some target intrinsics to a MemIntrinsicNode 1378 // with either an intrinsic or a target opcode. 1379 switch (N->getOpcode()) { 1380 case ISD::LOAD: 1381 case ISD::STORE: 1382 case ISD::PREFETCH: 1383 case ISD::ATOMIC_CMP_SWAP: 1384 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 1385 case ISD::ATOMIC_SWAP: 1386 case ISD::ATOMIC_LOAD_ADD: 1387 case ISD::ATOMIC_LOAD_SUB: 1388 case ISD::ATOMIC_LOAD_AND: 1389 case ISD::ATOMIC_LOAD_CLR: 1390 case ISD::ATOMIC_LOAD_OR: 1391 case ISD::ATOMIC_LOAD_XOR: 1392 case ISD::ATOMIC_LOAD_NAND: 1393 case ISD::ATOMIC_LOAD_MIN: 1394 case ISD::ATOMIC_LOAD_MAX: 1395 case ISD::ATOMIC_LOAD_UMIN: 1396 case ISD::ATOMIC_LOAD_UMAX: 1397 case ISD::ATOMIC_LOAD_FADD: 1398 case ISD::ATOMIC_LOAD_FSUB: 1399 case ISD::ATOMIC_LOAD: 1400 case ISD::ATOMIC_STORE: 1401 case ISD::MLOAD: 1402 case ISD::MSTORE: 1403 case ISD::MGATHER: 1404 case ISD::MSCATTER: 1405 case ISD::VP_LOAD: 1406 case ISD::VP_STORE: 1407 case ISD::VP_GATHER: 1408 case ISD::VP_SCATTER: 1409 return true; 1410 default: 1411 return N->isMemIntrinsic() || N->isTargetMemoryOpcode(); 1412 } 1413 } 1414 }; 1415 1416 /// This is an SDNode representing atomic operations. 1417 class AtomicSDNode : public MemSDNode { 1418 public: 1419 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL, 1420 EVT MemVT, MachineMemOperand *MMO) 1421 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) { 1422 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || 1423 MMO->isAtomic()) && "then why are we using an AtomicSDNode?"); 1424 } 1425 1426 const SDValue &getBasePtr() const { return getOperand(1); } 1427 const SDValue &getVal() const { return getOperand(2); } 1428 1429 /// Returns true if this SDNode represents cmpxchg atomic operation, false 1430 /// otherwise. 1431 bool isCompareAndSwap() const { 1432 unsigned Op = getOpcode(); 1433 return Op == ISD::ATOMIC_CMP_SWAP || 1434 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS; 1435 } 1436 1437 /// For cmpxchg atomic operations, return the atomic ordering requirements 1438 /// when store does not occur. 1439 AtomicOrdering getFailureOrdering() const { 1440 assert(isCompareAndSwap() && "Must be cmpxchg operation"); 1441 return MMO->getFailureOrdering(); 1442 } 1443 1444 // Methods to support isa and dyn_cast 1445 static bool classof(const SDNode *N) { 1446 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || 1447 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || 1448 N->getOpcode() == ISD::ATOMIC_SWAP || 1449 N->getOpcode() == ISD::ATOMIC_LOAD_ADD || 1450 N->getOpcode() == ISD::ATOMIC_LOAD_SUB || 1451 N->getOpcode() == ISD::ATOMIC_LOAD_AND || 1452 N->getOpcode() == ISD::ATOMIC_LOAD_CLR || 1453 N->getOpcode() == ISD::ATOMIC_LOAD_OR || 1454 N->getOpcode() == ISD::ATOMIC_LOAD_XOR || 1455 N->getOpcode() == ISD::ATOMIC_LOAD_NAND || 1456 N->getOpcode() == ISD::ATOMIC_LOAD_MIN || 1457 N->getOpcode() == ISD::ATOMIC_LOAD_MAX || 1458 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || 1459 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || 1460 N->getOpcode() == ISD::ATOMIC_LOAD_FADD || 1461 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || 1462 N->getOpcode() == ISD::ATOMIC_LOAD || 1463 N->getOpcode() == ISD::ATOMIC_STORE; 1464 } 1465 }; 1466 1467 /// This SDNode is used for target intrinsics that touch 1468 /// memory and need an associated MachineMemOperand. Its opcode may be 1469 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode 1470 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE. 1471 class MemIntrinsicSDNode : public MemSDNode { 1472 public: 1473 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, 1474 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO) 1475 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) { 1476 SDNodeBits.IsMemIntrinsic = true; 1477 } 1478 1479 // Methods to support isa and dyn_cast 1480 static bool classof(const SDNode *N) { 1481 // We lower some target intrinsics to their target opcode 1482 // early a node with a target opcode can be of this class 1483 return N->isMemIntrinsic() || 1484 N->getOpcode() == ISD::PREFETCH || 1485 N->isTargetMemoryOpcode(); 1486 } 1487 }; 1488 1489 /// This SDNode is used to implement the code generator 1490 /// support for the llvm IR shufflevector instruction. It combines elements 1491 /// from two input vectors into a new input vector, with the selection and 1492 /// ordering of elements determined by an array of integers, referred to as 1493 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 1494 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. 1495 /// An index of -1 is treated as undef, such that the code generator may put 1496 /// any value in the corresponding element of the result. 1497 class ShuffleVectorSDNode : public SDNode { 1498 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and 1499 // is freed when the SelectionDAG object is destroyed. 1500 const int *Mask; 1501 1502 protected: 1503 friend class SelectionDAG; 1504 1505 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M) 1506 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {} 1507 1508 public: 1509 ArrayRef<int> getMask() const { 1510 EVT VT = getValueType(0); 1511 return makeArrayRef(Mask, VT.getVectorNumElements()); 1512 } 1513 1514 int getMaskElt(unsigned Idx) const { 1515 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); 1516 return Mask[Idx]; 1517 } 1518 1519 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } 1520 1521 int getSplatIndex() const { 1522 assert(isSplat() && "Cannot get splat index for non-splat!"); 1523 EVT VT = getValueType(0); 1524 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 1525 if (Mask[i] >= 0) 1526 return Mask[i]; 1527 1528 // We can choose any index value here and be correct because all elements 1529 // are undefined. Return 0 for better potential for callers to simplify. 1530 return 0; 1531 } 1532 1533 static bool isSplatMask(const int *Mask, EVT VT); 1534 1535 /// Change values in a shuffle permute mask assuming 1536 /// the two vector operands have swapped position. 1537 static void commuteMask(MutableArrayRef<int> Mask) { 1538 unsigned NumElems = Mask.size(); 1539 for (unsigned i = 0; i != NumElems; ++i) { 1540 int idx = Mask[i]; 1541 if (idx < 0) 1542 continue; 1543 else if (idx < (int)NumElems) 1544 Mask[i] = idx + NumElems; 1545 else 1546 Mask[i] = idx - NumElems; 1547 } 1548 } 1549 1550 static bool classof(const SDNode *N) { 1551 return N->getOpcode() == ISD::VECTOR_SHUFFLE; 1552 } 1553 }; 1554 1555 class ConstantSDNode : public SDNode { 1556 friend class SelectionDAG; 1557 1558 const ConstantInt *Value; 1559 1560 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT) 1561 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(), 1562 getSDVTList(VT)), 1563 Value(val) { 1564 ConstantSDNodeBits.IsOpaque = isOpaque; 1565 } 1566 1567 public: 1568 const ConstantInt *getConstantIntValue() const { return Value; } 1569 const APInt &getAPIntValue() const { return Value->getValue(); } 1570 uint64_t getZExtValue() const { return Value->getZExtValue(); } 1571 int64_t getSExtValue() const { return Value->getSExtValue(); } 1572 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) { 1573 return Value->getLimitedValue(Limit); 1574 } 1575 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); } 1576 Align getAlignValue() const { return Value->getAlignValue(); } 1577 1578 bool isOne() const { return Value->isOne(); } 1579 bool isZero() const { return Value->isZero(); } 1580 // NOTE: This is soft-deprecated. Please use `isZero()` instead. 1581 bool isNullValue() const { return isZero(); } 1582 bool isAllOnes() const { return Value->isMinusOne(); } 1583 // NOTE: This is soft-deprecated. Please use `isAllOnes()` instead. 1584 bool isAllOnesValue() const { return isAllOnes(); } 1585 bool isMaxSignedValue() const { return Value->isMaxValue(true); } 1586 bool isMinSignedValue() const { return Value->isMinValue(true); } 1587 1588 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; } 1589 1590 static bool classof(const SDNode *N) { 1591 return N->getOpcode() == ISD::Constant || 1592 N->getOpcode() == ISD::TargetConstant; 1593 } 1594 }; 1595 1596 uint64_t SDNode::getConstantOperandVal(unsigned Num) const { 1597 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue(); 1598 } 1599 1600 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const { 1601 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue(); 1602 } 1603 1604 class ConstantFPSDNode : public SDNode { 1605 friend class SelectionDAG; 1606 1607 const ConstantFP *Value; 1608 1609 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) 1610 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, 1611 DebugLoc(), getSDVTList(VT)), 1612 Value(val) {} 1613 1614 public: 1615 const APFloat& getValueAPF() const { return Value->getValueAPF(); } 1616 const ConstantFP *getConstantFPValue() const { return Value; } 1617 1618 /// Return true if the value is positive or negative zero. 1619 bool isZero() const { return Value->isZero(); } 1620 1621 /// Return true if the value is a NaN. 1622 bool isNaN() const { return Value->isNaN(); } 1623 1624 /// Return true if the value is an infinity 1625 bool isInfinity() const { return Value->isInfinity(); } 1626 1627 /// Return true if the value is negative. 1628 bool isNegative() const { return Value->isNegative(); } 1629 1630 /// We don't rely on operator== working on double values, as 1631 /// it returns true for things that are clearly not equal, like -0.0 and 0.0. 1632 /// As such, this method can be used to do an exact bit-for-bit comparison of 1633 /// two floating point values. 1634 1635 /// We leave the version with the double argument here because it's just so 1636 /// convenient to write "2.0" and the like. Without this function we'd 1637 /// have to duplicate its logic everywhere it's called. 1638 bool isExactlyValue(double V) const { 1639 return Value->getValueAPF().isExactlyValue(V); 1640 } 1641 bool isExactlyValue(const APFloat& V) const; 1642 1643 static bool isValueValidForType(EVT VT, const APFloat& Val); 1644 1645 static bool classof(const SDNode *N) { 1646 return N->getOpcode() == ISD::ConstantFP || 1647 N->getOpcode() == ISD::TargetConstantFP; 1648 } 1649 }; 1650 1651 /// Returns true if \p V is a constant integer zero. 1652 bool isNullConstant(SDValue V); 1653 1654 /// Returns true if \p V is an FP constant with a value of positive zero. 1655 bool isNullFPConstant(SDValue V); 1656 1657 /// Returns true if \p V is an integer constant with all bits set. 1658 bool isAllOnesConstant(SDValue V); 1659 1660 /// Returns true if \p V is a constant integer one. 1661 bool isOneConstant(SDValue V); 1662 1663 /// Return the non-bitcasted source operand of \p V if it exists. 1664 /// If \p V is not a bitcasted value, it is returned as-is. 1665 SDValue peekThroughBitcasts(SDValue V); 1666 1667 /// Return the non-bitcasted and one-use source operand of \p V if it exists. 1668 /// If \p V is not a bitcasted one-use value, it is returned as-is. 1669 SDValue peekThroughOneUseBitcasts(SDValue V); 1670 1671 /// Return the non-extracted vector source operand of \p V if it exists. 1672 /// If \p V is not an extracted subvector, it is returned as-is. 1673 SDValue peekThroughExtractSubvectors(SDValue V); 1674 1675 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones 1676 /// constant is canonicalized to be operand 1. 1677 bool isBitwiseNot(SDValue V, bool AllowUndefs = false); 1678 1679 /// Returns the SDNode if it is a constant splat BuildVector or constant int. 1680 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false, 1681 bool AllowTruncation = false); 1682 1683 /// Returns the SDNode if it is a demanded constant splat BuildVector or 1684 /// constant int. 1685 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts, 1686 bool AllowUndefs = false, 1687 bool AllowTruncation = false); 1688 1689 /// Returns the SDNode if it is a constant splat BuildVector or constant float. 1690 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false); 1691 1692 /// Returns the SDNode if it is a demanded constant splat BuildVector or 1693 /// constant float. 1694 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts, 1695 bool AllowUndefs = false); 1696 1697 /// Return true if the value is a constant 0 integer or a splatted vector of 1698 /// a constant 0 integer (with no undefs by default). 1699 /// Build vector implicit truncation is not an issue for null values. 1700 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false); 1701 1702 /// Return true if the value is a constant 1 integer or a splatted vector of a 1703 /// constant 1 integer (with no undefs). 1704 /// Does not permit build vector implicit truncation. 1705 bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false); 1706 1707 /// Return true if the value is a constant -1 integer or a splatted vector of a 1708 /// constant -1 integer (with no undefs). 1709 /// Does not permit build vector implicit truncation. 1710 bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false); 1711 1712 /// Return true if \p V is either a integer or FP constant. 1713 inline bool isIntOrFPConstant(SDValue V) { 1714 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V); 1715 } 1716 1717 class GlobalAddressSDNode : public SDNode { 1718 friend class SelectionDAG; 1719 1720 const GlobalValue *TheGlobal; 1721 int64_t Offset; 1722 unsigned TargetFlags; 1723 1724 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, 1725 const GlobalValue *GA, EVT VT, int64_t o, 1726 unsigned TF); 1727 1728 public: 1729 const GlobalValue *getGlobal() const { return TheGlobal; } 1730 int64_t getOffset() const { return Offset; } 1731 unsigned getTargetFlags() const { return TargetFlags; } 1732 // Return the address space this GlobalAddress belongs to. 1733 unsigned getAddressSpace() const; 1734 1735 static bool classof(const SDNode *N) { 1736 return N->getOpcode() == ISD::GlobalAddress || 1737 N->getOpcode() == ISD::TargetGlobalAddress || 1738 N->getOpcode() == ISD::GlobalTLSAddress || 1739 N->getOpcode() == ISD::TargetGlobalTLSAddress; 1740 } 1741 }; 1742 1743 class FrameIndexSDNode : public SDNode { 1744 friend class SelectionDAG; 1745 1746 int FI; 1747 1748 FrameIndexSDNode(int fi, EVT VT, bool isTarg) 1749 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, 1750 0, DebugLoc(), getSDVTList(VT)), FI(fi) { 1751 } 1752 1753 public: 1754 int getIndex() const { return FI; } 1755 1756 static bool classof(const SDNode *N) { 1757 return N->getOpcode() == ISD::FrameIndex || 1758 N->getOpcode() == ISD::TargetFrameIndex; 1759 } 1760 }; 1761 1762 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate 1763 /// the offet and size that are started/ended in the underlying FrameIndex. 1764 class LifetimeSDNode : public SDNode { 1765 friend class SelectionDAG; 1766 int64_t Size; 1767 int64_t Offset; // -1 if offset is unknown. 1768 1769 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, 1770 SDVTList VTs, int64_t Size, int64_t Offset) 1771 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {} 1772 public: 1773 int64_t getFrameIndex() const { 1774 return cast<FrameIndexSDNode>(getOperand(1))->getIndex(); 1775 } 1776 1777 bool hasOffset() const { return Offset >= 0; } 1778 int64_t getOffset() const { 1779 assert(hasOffset() && "offset is unknown"); 1780 return Offset; 1781 } 1782 int64_t getSize() const { 1783 assert(hasOffset() && "offset is unknown"); 1784 return Size; 1785 } 1786 1787 // Methods to support isa and dyn_cast 1788 static bool classof(const SDNode *N) { 1789 return N->getOpcode() == ISD::LIFETIME_START || 1790 N->getOpcode() == ISD::LIFETIME_END; 1791 } 1792 }; 1793 1794 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and 1795 /// the index of the basic block being probed. A pseudo probe serves as a place 1796 /// holder and will be removed at the end of compilation. It does not have any 1797 /// operand because we do not want the instruction selection to deal with any. 1798 class PseudoProbeSDNode : public SDNode { 1799 friend class SelectionDAG; 1800 uint64_t Guid; 1801 uint64_t Index; 1802 uint32_t Attributes; 1803 1804 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl, 1805 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr) 1806 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index), 1807 Attributes(Attr) {} 1808 1809 public: 1810 uint64_t getGuid() const { return Guid; } 1811 uint64_t getIndex() const { return Index; } 1812 uint32_t getAttributes() const { return Attributes; } 1813 1814 // Methods to support isa and dyn_cast 1815 static bool classof(const SDNode *N) { 1816 return N->getOpcode() == ISD::PSEUDO_PROBE; 1817 } 1818 }; 1819 1820 class JumpTableSDNode : public SDNode { 1821 friend class SelectionDAG; 1822 1823 int JTI; 1824 unsigned TargetFlags; 1825 1826 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF) 1827 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, 1828 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { 1829 } 1830 1831 public: 1832 int getIndex() const { return JTI; } 1833 unsigned getTargetFlags() const { return TargetFlags; } 1834 1835 static bool classof(const SDNode *N) { 1836 return N->getOpcode() == ISD::JumpTable || 1837 N->getOpcode() == ISD::TargetJumpTable; 1838 } 1839 }; 1840 1841 class ConstantPoolSDNode : public SDNode { 1842 friend class SelectionDAG; 1843 1844 union { 1845 const Constant *ConstVal; 1846 MachineConstantPoolValue *MachineCPVal; 1847 } Val; 1848 int Offset; // It's a MachineConstantPoolValue if top bit is set. 1849 Align Alignment; // Minimum alignment requirement of CP. 1850 unsigned TargetFlags; 1851 1852 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o, 1853 Align Alignment, unsigned TF) 1854 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, 1855 DebugLoc(), getSDVTList(VT)), 1856 Offset(o), Alignment(Alignment), TargetFlags(TF) { 1857 assert(Offset >= 0 && "Offset is too large"); 1858 Val.ConstVal = c; 1859 } 1860 1861 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o, 1862 Align Alignment, unsigned TF) 1863 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, 1864 DebugLoc(), getSDVTList(VT)), 1865 Offset(o), Alignment(Alignment), TargetFlags(TF) { 1866 assert(Offset >= 0 && "Offset is too large"); 1867 Val.MachineCPVal = v; 1868 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); 1869 } 1870 1871 public: 1872 bool isMachineConstantPoolEntry() const { 1873 return Offset < 0; 1874 } 1875 1876 const Constant *getConstVal() const { 1877 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); 1878 return Val.ConstVal; 1879 } 1880 1881 MachineConstantPoolValue *getMachineCPVal() const { 1882 assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); 1883 return Val.MachineCPVal; 1884 } 1885 1886 int getOffset() const { 1887 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); 1888 } 1889 1890 // Return the alignment of this constant pool object, which is either 0 (for 1891 // default alignment) or the desired value. 1892 Align getAlign() const { return Alignment; } 1893 unsigned getTargetFlags() const { return TargetFlags; } 1894 1895 Type *getType() const; 1896 1897 static bool classof(const SDNode *N) { 1898 return N->getOpcode() == ISD::ConstantPool || 1899 N->getOpcode() == ISD::TargetConstantPool; 1900 } 1901 }; 1902 1903 /// Completely target-dependent object reference. 1904 class TargetIndexSDNode : public SDNode { 1905 friend class SelectionDAG; 1906 1907 unsigned TargetFlags; 1908 int Index; 1909 int64_t Offset; 1910 1911 public: 1912 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF) 1913 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)), 1914 TargetFlags(TF), Index(Idx), Offset(Ofs) {} 1915 1916 unsigned getTargetFlags() const { return TargetFlags; } 1917 int getIndex() const { return Index; } 1918 int64_t getOffset() const { return Offset; } 1919 1920 static bool classof(const SDNode *N) { 1921 return N->getOpcode() == ISD::TargetIndex; 1922 } 1923 }; 1924 1925 class BasicBlockSDNode : public SDNode { 1926 friend class SelectionDAG; 1927 1928 MachineBasicBlock *MBB; 1929 1930 /// Debug info is meaningful and potentially useful here, but we create 1931 /// blocks out of order when they're jumped to, which makes it a bit 1932 /// harder. Let's see if we need it first. 1933 explicit BasicBlockSDNode(MachineBasicBlock *mbb) 1934 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) 1935 {} 1936 1937 public: 1938 MachineBasicBlock *getBasicBlock() const { return MBB; } 1939 1940 static bool classof(const SDNode *N) { 1941 return N->getOpcode() == ISD::BasicBlock; 1942 } 1943 }; 1944 1945 /// A "pseudo-class" with methods for operating on BUILD_VECTORs. 1946 class BuildVectorSDNode : public SDNode { 1947 public: 1948 // These are constructed as SDNodes and then cast to BuildVectorSDNodes. 1949 explicit BuildVectorSDNode() = delete; 1950 1951 /// Check if this is a constant splat, and if so, find the 1952 /// smallest element size that splats the vector. If MinSplatBits is 1953 /// nonzero, the element size must be at least that large. Note that the 1954 /// splat element may be the entire vector (i.e., a one element vector). 1955 /// Returns the splat element value in SplatValue. Any undefined bits in 1956 /// that value are zero, and the corresponding bits in the SplatUndef mask 1957 /// are set. The SplatBitSize value is set to the splat element size in 1958 /// bits. HasAnyUndefs is set to true if any bits in the vector are 1959 /// undefined. isBigEndian describes the endianness of the target. 1960 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, 1961 unsigned &SplatBitSize, bool &HasAnyUndefs, 1962 unsigned MinSplatBits = 0, 1963 bool isBigEndian = false) const; 1964 1965 /// Returns the demanded splatted value or a null value if this is not a 1966 /// splat. 1967 /// 1968 /// The DemandedElts mask indicates the elements that must be in the splat. 1969 /// If passed a non-null UndefElements bitvector, it will resize it to match 1970 /// the vector width and set the bits where elements are undef. 1971 SDValue getSplatValue(const APInt &DemandedElts, 1972 BitVector *UndefElements = nullptr) const; 1973 1974 /// Returns the splatted value or a null value if this is not a splat. 1975 /// 1976 /// If passed a non-null UndefElements bitvector, it will resize it to match 1977 /// the vector width and set the bits where elements are undef. 1978 SDValue getSplatValue(BitVector *UndefElements = nullptr) const; 1979 1980 /// Find the shortest repeating sequence of values in the build vector. 1981 /// 1982 /// e.g. { u, X, u, X, u, u, X, u } -> { X } 1983 /// { X, Y, u, Y, u, u, X, u } -> { X, Y } 1984 /// 1985 /// Currently this must be a power-of-2 build vector. 1986 /// The DemandedElts mask indicates the elements that must be present, 1987 /// undemanded elements in Sequence may be null (SDValue()). If passed a 1988 /// non-null UndefElements bitvector, it will resize it to match the original 1989 /// vector width and set the bits where elements are undef. If result is 1990 /// false, Sequence will be empty. 1991 bool getRepeatedSequence(const APInt &DemandedElts, 1992 SmallVectorImpl<SDValue> &Sequence, 1993 BitVector *UndefElements = nullptr) const; 1994 1995 /// Find the shortest repeating sequence of values in the build vector. 1996 /// 1997 /// e.g. { u, X, u, X, u, u, X, u } -> { X } 1998 /// { X, Y, u, Y, u, u, X, u } -> { X, Y } 1999 /// 2000 /// Currently this must be a power-of-2 build vector. 2001 /// If passed a non-null UndefElements bitvector, it will resize it to match 2002 /// the original vector width and set the bits where elements are undef. 2003 /// If result is false, Sequence will be empty. 2004 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, 2005 BitVector *UndefElements = nullptr) const; 2006 2007 /// Returns the demanded splatted constant or null if this is not a constant 2008 /// splat. 2009 /// 2010 /// The DemandedElts mask indicates the elements that must be in the splat. 2011 /// If passed a non-null UndefElements bitvector, it will resize it to match 2012 /// the vector width and set the bits where elements are undef. 2013 ConstantSDNode * 2014 getConstantSplatNode(const APInt &DemandedElts, 2015 BitVector *UndefElements = nullptr) const; 2016 2017 /// Returns the splatted constant or null if this is not a constant 2018 /// splat. 2019 /// 2020 /// If passed a non-null UndefElements bitvector, it will resize it to match 2021 /// the vector width and set the bits where elements are undef. 2022 ConstantSDNode * 2023 getConstantSplatNode(BitVector *UndefElements = nullptr) const; 2024 2025 /// Returns the demanded splatted constant FP or null if this is not a 2026 /// constant FP splat. 2027 /// 2028 /// The DemandedElts mask indicates the elements that must be in the splat. 2029 /// If passed a non-null UndefElements bitvector, it will resize it to match 2030 /// the vector width and set the bits where elements are undef. 2031 ConstantFPSDNode * 2032 getConstantFPSplatNode(const APInt &DemandedElts, 2033 BitVector *UndefElements = nullptr) const; 2034 2035 /// Returns the splatted constant FP or null if this is not a constant 2036 /// FP splat. 2037 /// 2038 /// If passed a non-null UndefElements bitvector, it will resize it to match 2039 /// the vector width and set the bits where elements are undef. 2040 ConstantFPSDNode * 2041 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const; 2042 2043 /// If this is a constant FP splat and the splatted constant FP is an 2044 /// exact power or 2, return the log base 2 integer value. Otherwise, 2045 /// return -1. 2046 /// 2047 /// The BitWidth specifies the necessary bit precision. 2048 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, 2049 uint32_t BitWidth) const; 2050 2051 /// Extract the raw bit data from a build vector of Undef, Constant or 2052 /// ConstantFP node elements. Each raw bit element will be \p 2053 /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely 2054 /// undefined elements are flagged in \p UndefElements. 2055 bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, 2056 SmallVectorImpl<APInt> &RawBitElements, 2057 BitVector &UndefElements) const; 2058 2059 bool isConstant() const; 2060 2061 /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements. 2062 /// Undef elements are treated as zero, and entirely undefined elements are 2063 /// flagged in \p DstUndefElements. 2064 static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, 2065 SmallVectorImpl<APInt> &DstBitElements, 2066 ArrayRef<APInt> SrcBitElements, 2067 BitVector &DstUndefElements, 2068 const BitVector &SrcUndefElements); 2069 2070 static bool classof(const SDNode *N) { 2071 return N->getOpcode() == ISD::BUILD_VECTOR; 2072 } 2073 }; 2074 2075 /// An SDNode that holds an arbitrary LLVM IR Value. This is 2076 /// used when the SelectionDAG needs to make a simple reference to something 2077 /// in the LLVM IR representation. 2078 /// 2079 class SrcValueSDNode : public SDNode { 2080 friend class SelectionDAG; 2081 2082 const Value *V; 2083 2084 /// Create a SrcValue for a general value. 2085 explicit SrcValueSDNode(const Value *v) 2086 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {} 2087 2088 public: 2089 /// Return the contained Value. 2090 const Value *getValue() const { return V; } 2091 2092 static bool classof(const SDNode *N) { 2093 return N->getOpcode() == ISD::SRCVALUE; 2094 } 2095 }; 2096 2097 class MDNodeSDNode : public SDNode { 2098 friend class SelectionDAG; 2099 2100 const MDNode *MD; 2101 2102 explicit MDNodeSDNode(const MDNode *md) 2103 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md) 2104 {} 2105 2106 public: 2107 const MDNode *getMD() const { return MD; } 2108 2109 static bool classof(const SDNode *N) { 2110 return N->getOpcode() == ISD::MDNODE_SDNODE; 2111 } 2112 }; 2113 2114 class RegisterSDNode : public SDNode { 2115 friend class SelectionDAG; 2116 2117 Register Reg; 2118 2119 RegisterSDNode(Register reg, EVT VT) 2120 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {} 2121 2122 public: 2123 Register getReg() const { return Reg; } 2124 2125 static bool classof(const SDNode *N) { 2126 return N->getOpcode() == ISD::Register; 2127 } 2128 }; 2129 2130 class RegisterMaskSDNode : public SDNode { 2131 friend class SelectionDAG; 2132 2133 // The memory for RegMask is not owned by the node. 2134 const uint32_t *RegMask; 2135 2136 RegisterMaskSDNode(const uint32_t *mask) 2137 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)), 2138 RegMask(mask) {} 2139 2140 public: 2141 const uint32_t *getRegMask() const { return RegMask; } 2142 2143 static bool classof(const SDNode *N) { 2144 return N->getOpcode() == ISD::RegisterMask; 2145 } 2146 }; 2147 2148 class BlockAddressSDNode : public SDNode { 2149 friend class SelectionDAG; 2150 2151 const BlockAddress *BA; 2152 int64_t Offset; 2153 unsigned TargetFlags; 2154 2155 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba, 2156 int64_t o, unsigned Flags) 2157 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)), 2158 BA(ba), Offset(o), TargetFlags(Flags) {} 2159 2160 public: 2161 const BlockAddress *getBlockAddress() const { return BA; } 2162 int64_t getOffset() const { return Offset; } 2163 unsigned getTargetFlags() const { return TargetFlags; } 2164 2165 static bool classof(const SDNode *N) { 2166 return N->getOpcode() == ISD::BlockAddress || 2167 N->getOpcode() == ISD::TargetBlockAddress; 2168 } 2169 }; 2170 2171 class LabelSDNode : public SDNode { 2172 friend class SelectionDAG; 2173 2174 MCSymbol *Label; 2175 2176 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L) 2177 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) { 2178 assert(LabelSDNode::classof(this) && "not a label opcode"); 2179 } 2180 2181 public: 2182 MCSymbol *getLabel() const { return Label; } 2183 2184 static bool classof(const SDNode *N) { 2185 return N->getOpcode() == ISD::EH_LABEL || 2186 N->getOpcode() == ISD::ANNOTATION_LABEL; 2187 } 2188 }; 2189 2190 class ExternalSymbolSDNode : public SDNode { 2191 friend class SelectionDAG; 2192 2193 const char *Symbol; 2194 unsigned TargetFlags; 2195 2196 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT) 2197 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0, 2198 DebugLoc(), getSDVTList(VT)), 2199 Symbol(Sym), TargetFlags(TF) {} 2200 2201 public: 2202 const char *getSymbol() const { return Symbol; } 2203 unsigned getTargetFlags() const { return TargetFlags; } 2204 2205 static bool classof(const SDNode *N) { 2206 return N->getOpcode() == ISD::ExternalSymbol || 2207 N->getOpcode() == ISD::TargetExternalSymbol; 2208 } 2209 }; 2210 2211 class MCSymbolSDNode : public SDNode { 2212 friend class SelectionDAG; 2213 2214 MCSymbol *Symbol; 2215 2216 MCSymbolSDNode(MCSymbol *Symbol, EVT VT) 2217 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {} 2218 2219 public: 2220 MCSymbol *getMCSymbol() const { return Symbol; } 2221 2222 static bool classof(const SDNode *N) { 2223 return N->getOpcode() == ISD::MCSymbol; 2224 } 2225 }; 2226 2227 class CondCodeSDNode : public SDNode { 2228 friend class SelectionDAG; 2229 2230 ISD::CondCode Condition; 2231 2232 explicit CondCodeSDNode(ISD::CondCode Cond) 2233 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)), 2234 Condition(Cond) {} 2235 2236 public: 2237 ISD::CondCode get() const { return Condition; } 2238 2239 static bool classof(const SDNode *N) { 2240 return N->getOpcode() == ISD::CONDCODE; 2241 } 2242 }; 2243 2244 /// This class is used to represent EVT's, which are used 2245 /// to parameterize some operations. 2246 class VTSDNode : public SDNode { 2247 friend class SelectionDAG; 2248 2249 EVT ValueType; 2250 2251 explicit VTSDNode(EVT VT) 2252 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)), 2253 ValueType(VT) {} 2254 2255 public: 2256 EVT getVT() const { return ValueType; } 2257 2258 static bool classof(const SDNode *N) { 2259 return N->getOpcode() == ISD::VALUETYPE; 2260 } 2261 }; 2262 2263 /// Base class for LoadSDNode and StoreSDNode 2264 class LSBaseSDNode : public MemSDNode { 2265 public: 2266 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, 2267 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, 2268 MachineMemOperand *MMO) 2269 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { 2270 LSBaseSDNodeBits.AddressingMode = AM; 2271 assert(getAddressingMode() == AM && "Value truncated"); 2272 } 2273 2274 const SDValue &getOffset() const { 2275 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); 2276 } 2277 2278 /// Return the addressing mode for this load or store: 2279 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. 2280 ISD::MemIndexedMode getAddressingMode() const { 2281 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); 2282 } 2283 2284 /// Return true if this is a pre/post inc/dec load/store. 2285 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } 2286 2287 /// Return true if this is NOT a pre/post inc/dec load/store. 2288 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } 2289 2290 static bool classof(const SDNode *N) { 2291 return N->getOpcode() == ISD::LOAD || 2292 N->getOpcode() == ISD::STORE; 2293 } 2294 }; 2295 2296 /// This class is used to represent ISD::LOAD nodes. 2297 class LoadSDNode : public LSBaseSDNode { 2298 friend class SelectionDAG; 2299 2300 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2301 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, 2302 MachineMemOperand *MMO) 2303 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) { 2304 LoadSDNodeBits.ExtTy = ETy; 2305 assert(readMem() && "Load MachineMemOperand is not a load!"); 2306 assert(!writeMem() && "Load MachineMemOperand is a store!"); 2307 } 2308 2309 public: 2310 /// Return whether this is a plain node, 2311 /// or one of the varieties of value-extending loads. 2312 ISD::LoadExtType getExtensionType() const { 2313 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); 2314 } 2315 2316 const SDValue &getBasePtr() const { return getOperand(1); } 2317 const SDValue &getOffset() const { return getOperand(2); } 2318 2319 static bool classof(const SDNode *N) { 2320 return N->getOpcode() == ISD::LOAD; 2321 } 2322 }; 2323 2324 /// This class is used to represent ISD::STORE nodes. 2325 class StoreSDNode : public LSBaseSDNode { 2326 friend class SelectionDAG; 2327 2328 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2329 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, 2330 MachineMemOperand *MMO) 2331 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) { 2332 StoreSDNodeBits.IsTruncating = isTrunc; 2333 assert(!readMem() && "Store MachineMemOperand is a load!"); 2334 assert(writeMem() && "Store MachineMemOperand is not a store!"); 2335 } 2336 2337 public: 2338 /// Return true if the op does a truncation before store. 2339 /// For integers this is the same as doing a TRUNCATE and storing the result. 2340 /// For floats, it is the same as doing an FP_ROUND and storing the result. 2341 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } 2342 void setTruncatingStore(bool Truncating) { 2343 StoreSDNodeBits.IsTruncating = Truncating; 2344 } 2345 2346 const SDValue &getValue() const { return getOperand(1); } 2347 const SDValue &getBasePtr() const { return getOperand(2); } 2348 const SDValue &getOffset() const { return getOperand(3); } 2349 2350 static bool classof(const SDNode *N) { 2351 return N->getOpcode() == ISD::STORE; 2352 } 2353 }; 2354 2355 /// This base class is used to represent VP_LOAD and VP_STORE nodes 2356 class VPLoadStoreSDNode : public MemSDNode { 2357 public: 2358 friend class SelectionDAG; 2359 2360 VPLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, 2361 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, 2362 MachineMemOperand *MMO) 2363 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { 2364 LSBaseSDNodeBits.AddressingMode = AM; 2365 assert(getAddressingMode() == AM && "Value truncated"); 2366 } 2367 2368 // VPLoadSDNode (Chain, Ptr, Offset, Mask, EVL) 2369 // VPStoreSDNode (Chain, Data, Ptr, Offset, Mask, EVL) 2370 // Mask is a vector of i1 elements; 2371 // the type of EVL is TLI.getVPExplicitVectorLengthTy(). 2372 const SDValue &getOffset() const { 2373 return getOperand(getOpcode() == ISD::VP_LOAD ? 2 : 3); 2374 } 2375 const SDValue &getBasePtr() const { 2376 return getOperand(getOpcode() == ISD::VP_LOAD ? 1 : 2); 2377 } 2378 const SDValue &getMask() const { 2379 return getOperand(getOpcode() == ISD::VP_LOAD ? 3 : 4); 2380 } 2381 const SDValue &getVectorLength() const { 2382 return getOperand(getOpcode() == ISD::VP_LOAD ? 4 : 5); 2383 } 2384 2385 /// Return the addressing mode for this load or store: 2386 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. 2387 ISD::MemIndexedMode getAddressingMode() const { 2388 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); 2389 } 2390 2391 /// Return true if this is a pre/post inc/dec load/store. 2392 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } 2393 2394 /// Return true if this is NOT a pre/post inc/dec load/store. 2395 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } 2396 2397 static bool classof(const SDNode *N) { 2398 return N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE; 2399 } 2400 }; 2401 2402 /// This class is used to represent a VP_LOAD node 2403 class VPLoadSDNode : public VPLoadStoreSDNode { 2404 public: 2405 friend class SelectionDAG; 2406 2407 VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2408 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding, 2409 EVT MemVT, MachineMemOperand *MMO) 2410 : VPLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) { 2411 LoadSDNodeBits.ExtTy = ETy; 2412 LoadSDNodeBits.IsExpanding = isExpanding; 2413 } 2414 2415 ISD::LoadExtType getExtensionType() const { 2416 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); 2417 } 2418 2419 const SDValue &getBasePtr() const { return getOperand(1); } 2420 const SDValue &getOffset() const { return getOperand(2); } 2421 const SDValue &getMask() const { return getOperand(3); } 2422 const SDValue &getVectorLength() const { return getOperand(4); } 2423 2424 static bool classof(const SDNode *N) { 2425 return N->getOpcode() == ISD::VP_LOAD; 2426 } 2427 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } 2428 }; 2429 2430 /// This class is used to represent a VP_STORE node 2431 class VPStoreSDNode : public VPLoadStoreSDNode { 2432 public: 2433 friend class SelectionDAG; 2434 2435 VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2436 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, 2437 EVT MemVT, MachineMemOperand *MMO) 2438 : VPLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) { 2439 StoreSDNodeBits.IsTruncating = isTrunc; 2440 StoreSDNodeBits.IsCompressing = isCompressing; 2441 } 2442 2443 /// Return true if this is a truncating store. 2444 /// For integers this is the same as doing a TRUNCATE and storing the result. 2445 /// For floats, it is the same as doing an FP_ROUND and storing the result. 2446 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } 2447 2448 /// Returns true if the op does a compression to the vector before storing. 2449 /// The node contiguously stores the active elements (integers or floats) 2450 /// in src (those with their respective bit set in writemask k) to unaligned 2451 /// memory at base_addr. 2452 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } 2453 2454 const SDValue &getValue() const { return getOperand(1); } 2455 const SDValue &getBasePtr() const { return getOperand(2); } 2456 const SDValue &getOffset() const { return getOperand(3); } 2457 const SDValue &getMask() const { return getOperand(4); } 2458 const SDValue &getVectorLength() const { return getOperand(5); } 2459 2460 static bool classof(const SDNode *N) { 2461 return N->getOpcode() == ISD::VP_STORE; 2462 } 2463 }; 2464 2465 /// This base class is used to represent MLOAD and MSTORE nodes 2466 class MaskedLoadStoreSDNode : public MemSDNode { 2467 public: 2468 friend class SelectionDAG; 2469 2470 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, 2471 const DebugLoc &dl, SDVTList VTs, 2472 ISD::MemIndexedMode AM, EVT MemVT, 2473 MachineMemOperand *MMO) 2474 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { 2475 LSBaseSDNodeBits.AddressingMode = AM; 2476 assert(getAddressingMode() == AM && "Value truncated"); 2477 } 2478 2479 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru) 2480 // MaskedStoreSDNode (Chain, data, ptr, offset, mask) 2481 // Mask is a vector of i1 elements 2482 const SDValue &getOffset() const { 2483 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3); 2484 } 2485 const SDValue &getMask() const { 2486 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4); 2487 } 2488 2489 /// Return the addressing mode for this load or store: 2490 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. 2491 ISD::MemIndexedMode getAddressingMode() const { 2492 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); 2493 } 2494 2495 /// Return true if this is a pre/post inc/dec load/store. 2496 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } 2497 2498 /// Return true if this is NOT a pre/post inc/dec load/store. 2499 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } 2500 2501 static bool classof(const SDNode *N) { 2502 return N->getOpcode() == ISD::MLOAD || 2503 N->getOpcode() == ISD::MSTORE; 2504 } 2505 }; 2506 2507 /// This class is used to represent an MLOAD node 2508 class MaskedLoadSDNode : public MaskedLoadStoreSDNode { 2509 public: 2510 friend class SelectionDAG; 2511 2512 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2513 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, 2514 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO) 2515 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) { 2516 LoadSDNodeBits.ExtTy = ETy; 2517 LoadSDNodeBits.IsExpanding = IsExpanding; 2518 } 2519 2520 ISD::LoadExtType getExtensionType() const { 2521 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); 2522 } 2523 2524 const SDValue &getBasePtr() const { return getOperand(1); } 2525 const SDValue &getOffset() const { return getOperand(2); } 2526 const SDValue &getMask() const { return getOperand(3); } 2527 const SDValue &getPassThru() const { return getOperand(4); } 2528 2529 static bool classof(const SDNode *N) { 2530 return N->getOpcode() == ISD::MLOAD; 2531 } 2532 2533 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } 2534 }; 2535 2536 /// This class is used to represent an MSTORE node 2537 class MaskedStoreSDNode : public MaskedLoadStoreSDNode { 2538 public: 2539 friend class SelectionDAG; 2540 2541 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2542 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, 2543 EVT MemVT, MachineMemOperand *MMO) 2544 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) { 2545 StoreSDNodeBits.IsTruncating = isTrunc; 2546 StoreSDNodeBits.IsCompressing = isCompressing; 2547 } 2548 2549 /// Return true if the op does a truncation before store. 2550 /// For integers this is the same as doing a TRUNCATE and storing the result. 2551 /// For floats, it is the same as doing an FP_ROUND and storing the result. 2552 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } 2553 2554 /// Returns true if the op does a compression to the vector before storing. 2555 /// The node contiguously stores the active elements (integers or floats) 2556 /// in src (those with their respective bit set in writemask k) to unaligned 2557 /// memory at base_addr. 2558 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } 2559 2560 const SDValue &getValue() const { return getOperand(1); } 2561 const SDValue &getBasePtr() const { return getOperand(2); } 2562 const SDValue &getOffset() const { return getOperand(3); } 2563 const SDValue &getMask() const { return getOperand(4); } 2564 2565 static bool classof(const SDNode *N) { 2566 return N->getOpcode() == ISD::MSTORE; 2567 } 2568 }; 2569 2570 /// This is a base class used to represent 2571 /// VP_GATHER and VP_SCATTER nodes 2572 /// 2573 class VPGatherScatterSDNode : public MemSDNode { 2574 public: 2575 friend class SelectionDAG; 2576 2577 VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, 2578 const DebugLoc &dl, SDVTList VTs, EVT MemVT, 2579 MachineMemOperand *MMO, ISD::MemIndexType IndexType) 2580 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { 2581 LSBaseSDNodeBits.AddressingMode = IndexType; 2582 assert(getIndexType() == IndexType && "Value truncated"); 2583 } 2584 2585 /// How is Index applied to BasePtr when computing addresses. 2586 ISD::MemIndexType getIndexType() const { 2587 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode); 2588 } 2589 bool isIndexScaled() const { 2590 return (getIndexType() == ISD::SIGNED_SCALED) || 2591 (getIndexType() == ISD::UNSIGNED_SCALED); 2592 } 2593 bool isIndexSigned() const { 2594 return (getIndexType() == ISD::SIGNED_SCALED) || 2595 (getIndexType() == ISD::SIGNED_UNSCALED); 2596 } 2597 2598 // In the both nodes address is Op1, mask is Op2: 2599 // VPGatherSDNode (Chain, base, index, scale, mask, vlen) 2600 // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen) 2601 // Mask is a vector of i1 elements 2602 const SDValue &getBasePtr() const { 2603 return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2); 2604 } 2605 const SDValue &getIndex() const { 2606 return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3); 2607 } 2608 const SDValue &getScale() const { 2609 return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4); 2610 } 2611 const SDValue &getMask() const { 2612 return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5); 2613 } 2614 const SDValue &getVectorLength() const { 2615 return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6); 2616 } 2617 2618 static bool classof(const SDNode *N) { 2619 return N->getOpcode() == ISD::VP_GATHER || 2620 N->getOpcode() == ISD::VP_SCATTER; 2621 } 2622 }; 2623 2624 /// This class is used to represent an VP_GATHER node 2625 /// 2626 class VPGatherSDNode : public VPGatherScatterSDNode { 2627 public: 2628 friend class SelectionDAG; 2629 2630 VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, 2631 MachineMemOperand *MMO, ISD::MemIndexType IndexType) 2632 : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO, 2633 IndexType) {} 2634 2635 static bool classof(const SDNode *N) { 2636 return N->getOpcode() == ISD::VP_GATHER; 2637 } 2638 }; 2639 2640 /// This class is used to represent an VP_SCATTER node 2641 /// 2642 class VPScatterSDNode : public VPGatherScatterSDNode { 2643 public: 2644 friend class SelectionDAG; 2645 2646 VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, 2647 MachineMemOperand *MMO, ISD::MemIndexType IndexType) 2648 : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO, 2649 IndexType) {} 2650 2651 const SDValue &getValue() const { return getOperand(1); } 2652 2653 static bool classof(const SDNode *N) { 2654 return N->getOpcode() == ISD::VP_SCATTER; 2655 } 2656 }; 2657 2658 /// This is a base class used to represent 2659 /// MGATHER and MSCATTER nodes 2660 /// 2661 class MaskedGatherScatterSDNode : public MemSDNode { 2662 public: 2663 friend class SelectionDAG; 2664 2665 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, 2666 const DebugLoc &dl, SDVTList VTs, EVT MemVT, 2667 MachineMemOperand *MMO, ISD::MemIndexType IndexType) 2668 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { 2669 LSBaseSDNodeBits.AddressingMode = IndexType; 2670 assert(getIndexType() == IndexType && "Value truncated"); 2671 } 2672 2673 /// How is Index applied to BasePtr when computing addresses. 2674 ISD::MemIndexType getIndexType() const { 2675 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode); 2676 } 2677 void setIndexType(ISD::MemIndexType IndexType) { 2678 LSBaseSDNodeBits.AddressingMode = IndexType; 2679 } 2680 bool isIndexScaled() const { 2681 return (getIndexType() == ISD::SIGNED_SCALED) || 2682 (getIndexType() == ISD::UNSIGNED_SCALED); 2683 } 2684 bool isIndexSigned() const { 2685 return (getIndexType() == ISD::SIGNED_SCALED) || 2686 (getIndexType() == ISD::SIGNED_UNSCALED); 2687 } 2688 2689 // In the both nodes address is Op1, mask is Op2: 2690 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale) 2691 // MaskedScatterSDNode (Chain, value, mask, base, index, scale) 2692 // Mask is a vector of i1 elements 2693 const SDValue &getBasePtr() const { return getOperand(3); } 2694 const SDValue &getIndex() const { return getOperand(4); } 2695 const SDValue &getMask() const { return getOperand(2); } 2696 const SDValue &getScale() const { return getOperand(5); } 2697 2698 static bool classof(const SDNode *N) { 2699 return N->getOpcode() == ISD::MGATHER || 2700 N->getOpcode() == ISD::MSCATTER; 2701 } 2702 }; 2703 2704 /// This class is used to represent an MGATHER node 2705 /// 2706 class MaskedGatherSDNode : public MaskedGatherScatterSDNode { 2707 public: 2708 friend class SelectionDAG; 2709 2710 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2711 EVT MemVT, MachineMemOperand *MMO, 2712 ISD::MemIndexType IndexType, ISD::LoadExtType ETy) 2713 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO, 2714 IndexType) { 2715 LoadSDNodeBits.ExtTy = ETy; 2716 } 2717 2718 const SDValue &getPassThru() const { return getOperand(1); } 2719 2720 ISD::LoadExtType getExtensionType() const { 2721 return ISD::LoadExtType(LoadSDNodeBits.ExtTy); 2722 } 2723 2724 static bool classof(const SDNode *N) { 2725 return N->getOpcode() == ISD::MGATHER; 2726 } 2727 }; 2728 2729 /// This class is used to represent an MSCATTER node 2730 /// 2731 class MaskedScatterSDNode : public MaskedGatherScatterSDNode { 2732 public: 2733 friend class SelectionDAG; 2734 2735 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, 2736 EVT MemVT, MachineMemOperand *MMO, 2737 ISD::MemIndexType IndexType, bool IsTrunc) 2738 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO, 2739 IndexType) { 2740 StoreSDNodeBits.IsTruncating = IsTrunc; 2741 } 2742 2743 /// Return true if the op does a truncation before store. 2744 /// For integers this is the same as doing a TRUNCATE and storing the result. 2745 /// For floats, it is the same as doing an FP_ROUND and storing the result. 2746 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } 2747 2748 const SDValue &getValue() const { return getOperand(1); } 2749 2750 static bool classof(const SDNode *N) { 2751 return N->getOpcode() == ISD::MSCATTER; 2752 } 2753 }; 2754 2755 /// An SDNode that represents everything that will be needed 2756 /// to construct a MachineInstr. These nodes are created during the 2757 /// instruction selection proper phase. 2758 /// 2759 /// Note that the only supported way to set the `memoperands` is by calling the 2760 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens 2761 /// inside the DAG rather than in the node. 2762 class MachineSDNode : public SDNode { 2763 private: 2764 friend class SelectionDAG; 2765 2766 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs) 2767 : SDNode(Opc, Order, DL, VTs) {} 2768 2769 // We use a pointer union between a single `MachineMemOperand` pointer and 2770 // a pointer to an array of `MachineMemOperand` pointers. This is null when 2771 // the number of these is zero, the single pointer variant used when the 2772 // number is one, and the array is used for larger numbers. 2773 // 2774 // The array is allocated via the `SelectionDAG`'s allocator and so will 2775 // always live until the DAG is cleaned up and doesn't require ownership here. 2776 // 2777 // We can't use something simpler like `TinyPtrVector` here because `SDNode` 2778 // subclasses aren't managed in a conforming C++ manner. See the comments on 2779 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the 2780 // constraint here is that these don't manage memory with their constructor or 2781 // destructor and can be initialized to a good state even if they start off 2782 // uninitialized. 2783 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {}; 2784 2785 // Note that this could be folded into the above `MemRefs` member if doing so 2786 // is advantageous at some point. We don't need to store this in most cases. 2787 // However, at the moment this doesn't appear to make the allocation any 2788 // smaller and makes the code somewhat simpler to read. 2789 int NumMemRefs = 0; 2790 2791 public: 2792 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator; 2793 2794 ArrayRef<MachineMemOperand *> memoperands() const { 2795 // Special case the common cases. 2796 if (NumMemRefs == 0) 2797 return {}; 2798 if (NumMemRefs == 1) 2799 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1); 2800 2801 // Otherwise we have an actual array. 2802 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs); 2803 } 2804 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 2805 mmo_iterator memoperands_end() const { return memoperands().end(); } 2806 bool memoperands_empty() const { return memoperands().empty(); } 2807 2808 /// Clear out the memory reference descriptor list. 2809 void clearMemRefs() { 2810 MemRefs = nullptr; 2811 NumMemRefs = 0; 2812 } 2813 2814 static bool classof(const SDNode *N) { 2815 return N->isMachineOpcode(); 2816 } 2817 }; 2818 2819 /// An SDNode that records if a register contains a value that is guaranteed to 2820 /// be aligned accordingly. 2821 class AssertAlignSDNode : public SDNode { 2822 Align Alignment; 2823 2824 public: 2825 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A) 2826 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {} 2827 2828 Align getAlign() const { return Alignment; } 2829 2830 static bool classof(const SDNode *N) { 2831 return N->getOpcode() == ISD::AssertAlign; 2832 } 2833 }; 2834 2835 class SDNodeIterator { 2836 const SDNode *Node; 2837 unsigned Operand; 2838 2839 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {} 2840 2841 public: 2842 using iterator_category = std::forward_iterator_tag; 2843 using value_type = SDNode; 2844 using difference_type = std::ptrdiff_t; 2845 using pointer = value_type *; 2846 using reference = value_type &; 2847 2848 bool operator==(const SDNodeIterator& x) const { 2849 return Operand == x.Operand; 2850 } 2851 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } 2852 2853 pointer operator*() const { 2854 return Node->getOperand(Operand).getNode(); 2855 } 2856 pointer operator->() const { return operator*(); } 2857 2858 SDNodeIterator& operator++() { // Preincrement 2859 ++Operand; 2860 return *this; 2861 } 2862 SDNodeIterator operator++(int) { // Postincrement 2863 SDNodeIterator tmp = *this; ++*this; return tmp; 2864 } 2865 size_t operator-(SDNodeIterator Other) const { 2866 assert(Node == Other.Node && 2867 "Cannot compare iterators of two different nodes!"); 2868 return Operand - Other.Operand; 2869 } 2870 2871 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); } 2872 static SDNodeIterator end (const SDNode *N) { 2873 return SDNodeIterator(N, N->getNumOperands()); 2874 } 2875 2876 unsigned getOperand() const { return Operand; } 2877 const SDNode *getNode() const { return Node; } 2878 }; 2879 2880 template <> struct GraphTraits<SDNode*> { 2881 using NodeRef = SDNode *; 2882 using ChildIteratorType = SDNodeIterator; 2883 2884 static NodeRef getEntryNode(SDNode *N) { return N; } 2885 2886 static ChildIteratorType child_begin(NodeRef N) { 2887 return SDNodeIterator::begin(N); 2888 } 2889 2890 static ChildIteratorType child_end(NodeRef N) { 2891 return SDNodeIterator::end(N); 2892 } 2893 }; 2894 2895 /// A representation of the largest SDNode, for use in sizeof(). 2896 /// 2897 /// This needs to be a union because the largest node differs on 32 bit systems 2898 /// with 4 and 8 byte pointer alignment, respectively. 2899 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode, 2900 BlockAddressSDNode, 2901 GlobalAddressSDNode, 2902 PseudoProbeSDNode>; 2903 2904 /// The SDNode class with the greatest alignment requirement. 2905 using MostAlignedSDNode = GlobalAddressSDNode; 2906 2907 namespace ISD { 2908 2909 /// Returns true if the specified node is a non-extending and unindexed load. 2910 inline bool isNormalLoad(const SDNode *N) { 2911 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N); 2912 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && 2913 Ld->getAddressingMode() == ISD::UNINDEXED; 2914 } 2915 2916 /// Returns true if the specified node is a non-extending load. 2917 inline bool isNON_EXTLoad(const SDNode *N) { 2918 return isa<LoadSDNode>(N) && 2919 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; 2920 } 2921 2922 /// Returns true if the specified node is a EXTLOAD. 2923 inline bool isEXTLoad(const SDNode *N) { 2924 return isa<LoadSDNode>(N) && 2925 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; 2926 } 2927 2928 /// Returns true if the specified node is a SEXTLOAD. 2929 inline bool isSEXTLoad(const SDNode *N) { 2930 return isa<LoadSDNode>(N) && 2931 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; 2932 } 2933 2934 /// Returns true if the specified node is a ZEXTLOAD. 2935 inline bool isZEXTLoad(const SDNode *N) { 2936 return isa<LoadSDNode>(N) && 2937 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; 2938 } 2939 2940 /// Returns true if the specified node is an unindexed load. 2941 inline bool isUNINDEXEDLoad(const SDNode *N) { 2942 return isa<LoadSDNode>(N) && 2943 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 2944 } 2945 2946 /// Returns true if the specified node is a non-truncating 2947 /// and unindexed store. 2948 inline bool isNormalStore(const SDNode *N) { 2949 const StoreSDNode *St = dyn_cast<StoreSDNode>(N); 2950 return St && !St->isTruncatingStore() && 2951 St->getAddressingMode() == ISD::UNINDEXED; 2952 } 2953 2954 /// Returns true if the specified node is an unindexed store. 2955 inline bool isUNINDEXEDStore(const SDNode *N) { 2956 return isa<StoreSDNode>(N) && 2957 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; 2958 } 2959 2960 /// Attempt to match a unary predicate against a scalar/splat constant or 2961 /// every element of a constant BUILD_VECTOR. 2962 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. 2963 bool matchUnaryPredicate(SDValue Op, 2964 std::function<bool(ConstantSDNode *)> Match, 2965 bool AllowUndefs = false); 2966 2967 /// Attempt to match a binary predicate against a pair of scalar/splat 2968 /// constants or every element of a pair of constant BUILD_VECTORs. 2969 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. 2970 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match. 2971 bool matchBinaryPredicate( 2972 SDValue LHS, SDValue RHS, 2973 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, 2974 bool AllowUndefs = false, bool AllowTypeMismatch = false); 2975 2976 /// Returns true if the specified value is the overflow result from one 2977 /// of the overflow intrinsic nodes. 2978 inline bool isOverflowIntrOpRes(SDValue Op) { 2979 unsigned Opc = Op.getOpcode(); 2980 return (Op.getResNo() == 1 && 2981 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 2982 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); 2983 } 2984 2985 } // end namespace ISD 2986 2987 } // end namespace llvm 2988 2989 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H 2990