xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/SelectionDAGNodes.h (revision 0d7056458db5b5dd7fdc5ccd8abab73e3ee76a20)
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG.  These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
13 //
14 // Clients should include the SelectionDAG.h file instead of this file directly.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
20 
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineValueType.h"
34 #include "llvm/CodeGen/Register.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/Support/AlignOf.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/TypeSize.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <climits>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <iterator>
54 #include <string>
55 #include <tuple>
56 #include <utility>
57 
58 namespace llvm {
59 
60 class APInt;
61 class Constant;
62 class GlobalValue;
63 class MachineBasicBlock;
64 class MachineConstantPoolValue;
65 class MCSymbol;
66 class raw_ostream;
67 class SDNode;
68 class SelectionDAG;
69 class Type;
70 class Value;
71 
72 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73                     bool force = false);
74 
75 /// This represents a list of ValueType's that has been intern'd by
76 /// a SelectionDAG.  Instances of this simple value class are returned by
77 /// SelectionDAG::getVTList(...).
78 ///
79 struct SDVTList {
80   const EVT *VTs;
81   unsigned int NumVTs;
82 };
83 
84 namespace ISD {
85 
86   /// Node predicates
87 
88 /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89 /// same constant or undefined, return true and return the constant value in
90 /// \p SplatValue.
91 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92 
93 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94 /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95 /// true, it only checks BUILD_VECTOR.
96 bool isConstantSplatVectorAllOnes(const SDNode *N,
97                                   bool BuildVectorOnly = false);
98 
99 /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100 /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101 /// only checks BUILD_VECTOR.
102 bool isConstantSplatVectorAllZeros(const SDNode *N,
103                                    bool BuildVectorOnly = false);
104 
105 /// Return true if the specified node is a BUILD_VECTOR where all of the
106 /// elements are ~0 or undef.
107 bool isBuildVectorAllOnes(const SDNode *N);
108 
109 /// Return true if the specified node is a BUILD_VECTOR where all of the
110 /// elements are 0 or undef.
111 bool isBuildVectorAllZeros(const SDNode *N);
112 
113 /// Return true if the specified node is a BUILD_VECTOR node of all
114 /// ConstantSDNode or undef.
115 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116 
117 /// Return true if the specified node is a BUILD_VECTOR node of all
118 /// ConstantFPSDNode or undef.
119 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120 
121 /// Returns true if the specified node is a vector where all elements can
122 /// be truncated to the specified element size without a loss in meaning.
123 bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed);
124 
125 /// Return true if the node has at least one operand and all operands of the
126 /// specified node are ISD::UNDEF.
127 bool allOperandsUndef(const SDNode *N);
128 
129 /// Return true if the specified node is FREEZE(UNDEF).
130 bool isFreezeUndef(const SDNode *N);
131 
132 } // end namespace ISD
133 
134 //===----------------------------------------------------------------------===//
135 /// Unlike LLVM values, Selection DAG nodes may return multiple
136 /// values as the result of a computation.  Many nodes return multiple values,
137 /// from loads (which define a token and a return value) to ADDC (which returns
138 /// a result and a carry value), to calls (which may return an arbitrary number
139 /// of values).
140 ///
141 /// As such, each use of a SelectionDAG computation must indicate the node that
142 /// computes it as well as which return value to use from that node.  This pair
143 /// of information is represented with the SDValue value type.
144 ///
145 class SDValue {
146   friend struct DenseMapInfo<SDValue>;
147 
148   SDNode *Node = nullptr; // The node defining the value we are using.
149   unsigned ResNo = 0;     // Which return value of the node we are using.
150 
151 public:
152   SDValue() = default;
153   SDValue(SDNode *node, unsigned resno);
154 
155   /// get the index which selects a specific result in the SDNode
156   unsigned getResNo() const { return ResNo; }
157 
158   /// get the SDNode which holds the desired result
159   SDNode *getNode() const { return Node; }
160 
161   /// set the SDNode
162   void setNode(SDNode *N) { Node = N; }
163 
164   inline SDNode *operator->() const { return Node; }
165 
166   bool operator==(const SDValue &O) const {
167     return Node == O.Node && ResNo == O.ResNo;
168   }
169   bool operator!=(const SDValue &O) const {
170     return !operator==(O);
171   }
172   bool operator<(const SDValue &O) const {
173     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
174   }
175   explicit operator bool() const {
176     return Node != nullptr;
177   }
178 
179   SDValue getValue(unsigned R) const {
180     return SDValue(Node, R);
181   }
182 
183   /// Return true if this node is an operand of N.
184   bool isOperandOf(const SDNode *N) const;
185 
186   /// Return the ValueType of the referenced return value.
187   inline EVT getValueType() const;
188 
189   /// Return the simple ValueType of the referenced return value.
190   MVT getSimpleValueType() const {
191     return getValueType().getSimpleVT();
192   }
193 
194   /// Returns the size of the value in bits.
195   ///
196   /// If the value type is a scalable vector type, the scalable property will
197   /// be set and the runtime size will be a positive integer multiple of the
198   /// base size.
199   TypeSize getValueSizeInBits() const {
200     return getValueType().getSizeInBits();
201   }
202 
203   uint64_t getScalarValueSizeInBits() const {
204     return getValueType().getScalarType().getFixedSizeInBits();
205   }
206 
207   // Forwarding methods - These forward to the corresponding methods in SDNode.
208   inline unsigned getOpcode() const;
209   inline unsigned getNumOperands() const;
210   inline const SDValue &getOperand(unsigned i) const;
211   inline uint64_t getConstantOperandVal(unsigned i) const;
212   inline const APInt &getConstantOperandAPInt(unsigned i) const;
213   inline bool isTargetMemoryOpcode() const;
214   inline bool isTargetOpcode() const;
215   inline bool isMachineOpcode() const;
216   inline bool isUndef() const;
217   inline unsigned getMachineOpcode() const;
218   inline const DebugLoc &getDebugLoc() const;
219   inline void dump() const;
220   inline void dump(const SelectionDAG *G) const;
221   inline void dumpr() const;
222   inline void dumpr(const SelectionDAG *G) const;
223 
224   /// Return true if this operand (which must be a chain) reaches the
225   /// specified operand without crossing any side-effecting instructions.
226   /// In practice, this looks through token factors and non-volatile loads.
227   /// In order to remain efficient, this only
228   /// looks a couple of nodes in, it does not do an exhaustive search.
229   bool reachesChainWithoutSideEffects(SDValue Dest,
230                                       unsigned Depth = 2) const;
231 
232   /// Return true if there are no nodes using value ResNo of Node.
233   inline bool use_empty() const;
234 
235   /// Return true if there is exactly one node using value ResNo of Node.
236   inline bool hasOneUse() const;
237 };
238 
239 template<> struct DenseMapInfo<SDValue> {
240   static inline SDValue getEmptyKey() {
241     SDValue V;
242     V.ResNo = -1U;
243     return V;
244   }
245 
246   static inline SDValue getTombstoneKey() {
247     SDValue V;
248     V.ResNo = -2U;
249     return V;
250   }
251 
252   static unsigned getHashValue(const SDValue &Val) {
253     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
254             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
255   }
256 
257   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
258     return LHS == RHS;
259   }
260 };
261 
262 /// Allow casting operators to work directly on
263 /// SDValues as if they were SDNode*'s.
264 template<> struct simplify_type<SDValue> {
265   using SimpleType = SDNode *;
266 
267   static SimpleType getSimplifiedValue(SDValue &Val) {
268     return Val.getNode();
269   }
270 };
271 template<> struct simplify_type<const SDValue> {
272   using SimpleType = /*const*/ SDNode *;
273 
274   static SimpleType getSimplifiedValue(const SDValue &Val) {
275     return Val.getNode();
276   }
277 };
278 
279 /// Represents a use of a SDNode. This class holds an SDValue,
280 /// which records the SDNode being used and the result number, a
281 /// pointer to the SDNode using the value, and Next and Prev pointers,
282 /// which link together all the uses of an SDNode.
283 ///
284 class SDUse {
285   /// Val - The value being used.
286   SDValue Val;
287   /// User - The user of this value.
288   SDNode *User = nullptr;
289   /// Prev, Next - Pointers to the uses list of the SDNode referred by
290   /// this operand.
291   SDUse **Prev = nullptr;
292   SDUse *Next = nullptr;
293 
294 public:
295   SDUse() = default;
296   SDUse(const SDUse &U) = delete;
297   SDUse &operator=(const SDUse &) = delete;
298 
299   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
300   operator const SDValue&() const { return Val; }
301 
302   /// If implicit conversion to SDValue doesn't work, the get() method returns
303   /// the SDValue.
304   const SDValue &get() const { return Val; }
305 
306   /// This returns the SDNode that contains this Use.
307   SDNode *getUser() { return User; }
308   const SDNode *getUser() const { return User; }
309 
310   /// Get the next SDUse in the use list.
311   SDUse *getNext() const { return Next; }
312 
313   /// Convenience function for get().getNode().
314   SDNode *getNode() const { return Val.getNode(); }
315   /// Convenience function for get().getResNo().
316   unsigned getResNo() const { return Val.getResNo(); }
317   /// Convenience function for get().getValueType().
318   EVT getValueType() const { return Val.getValueType(); }
319 
320   /// Convenience function for get().operator==
321   bool operator==(const SDValue &V) const {
322     return Val == V;
323   }
324 
325   /// Convenience function for get().operator!=
326   bool operator!=(const SDValue &V) const {
327     return Val != V;
328   }
329 
330   /// Convenience function for get().operator<
331   bool operator<(const SDValue &V) const {
332     return Val < V;
333   }
334 
335 private:
336   friend class SelectionDAG;
337   friend class SDNode;
338   // TODO: unfriend HandleSDNode once we fix its operand handling.
339   friend class HandleSDNode;
340 
341   void setUser(SDNode *p) { User = p; }
342 
343   /// Remove this use from its existing use list, assign it the
344   /// given value, and add it to the new value's node's use list.
345   inline void set(const SDValue &V);
346   /// Like set, but only supports initializing a newly-allocated
347   /// SDUse with a non-null value.
348   inline void setInitial(const SDValue &V);
349   /// Like set, but only sets the Node portion of the value,
350   /// leaving the ResNo portion unmodified.
351   inline void setNode(SDNode *N);
352 
353   void addToList(SDUse **List) {
354     Next = *List;
355     if (Next) Next->Prev = &Next;
356     Prev = List;
357     *List = this;
358   }
359 
360   void removeFromList() {
361     *Prev = Next;
362     if (Next) Next->Prev = Prev;
363   }
364 };
365 
366 /// simplify_type specializations - Allow casting operators to work directly on
367 /// SDValues as if they were SDNode*'s.
368 template<> struct simplify_type<SDUse> {
369   using SimpleType = SDNode *;
370 
371   static SimpleType getSimplifiedValue(SDUse &Val) {
372     return Val.getNode();
373   }
374 };
375 
376 /// These are IR-level optimization flags that may be propagated to SDNodes.
377 /// TODO: This data structure should be shared by the IR optimizer and the
378 /// the backend.
379 struct SDNodeFlags {
380 private:
381   bool NoUnsignedWrap : 1;
382   bool NoSignedWrap : 1;
383   bool Exact : 1;
384   bool Disjoint : 1;
385   bool NonNeg : 1;
386   bool NoNaNs : 1;
387   bool NoInfs : 1;
388   bool NoSignedZeros : 1;
389   bool AllowReciprocal : 1;
390   bool AllowContract : 1;
391   bool ApproximateFuncs : 1;
392   bool AllowReassociation : 1;
393 
394   // We assume instructions do not raise floating-point exceptions by default,
395   // and only those marked explicitly may do so.  We could choose to represent
396   // this via a positive "FPExcept" flags like on the MI level, but having a
397   // negative "NoFPExcept" flag here makes the flag intersection logic more
398   // straightforward.
399   bool NoFPExcept : 1;
400   // Instructions with attached 'unpredictable' metadata on IR level.
401   bool Unpredictable : 1;
402 
403 public:
404   /// Default constructor turns off all optimization flags.
405   SDNodeFlags()
406       : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false),
407         Disjoint(false), NonNeg(false), NoNaNs(false), NoInfs(false),
408         NoSignedZeros(false), AllowReciprocal(false), AllowContract(false),
409         ApproximateFuncs(false), AllowReassociation(false), NoFPExcept(false),
410         Unpredictable(false) {}
411 
412   /// Propagate the fast-math-flags from an IR FPMathOperator.
413   void copyFMF(const FPMathOperator &FPMO) {
414     setNoNaNs(FPMO.hasNoNaNs());
415     setNoInfs(FPMO.hasNoInfs());
416     setNoSignedZeros(FPMO.hasNoSignedZeros());
417     setAllowReciprocal(FPMO.hasAllowReciprocal());
418     setAllowContract(FPMO.hasAllowContract());
419     setApproximateFuncs(FPMO.hasApproxFunc());
420     setAllowReassociation(FPMO.hasAllowReassoc());
421   }
422 
423   // These are mutators for each flag.
424   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
425   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
426   void setExact(bool b) { Exact = b; }
427   void setDisjoint(bool b) { Disjoint = b; }
428   void setNonNeg(bool b) { NonNeg = b; }
429   void setNoNaNs(bool b) { NoNaNs = b; }
430   void setNoInfs(bool b) { NoInfs = b; }
431   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
432   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
433   void setAllowContract(bool b) { AllowContract = b; }
434   void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
435   void setAllowReassociation(bool b) { AllowReassociation = b; }
436   void setNoFPExcept(bool b) { NoFPExcept = b; }
437   void setUnpredictable(bool b) { Unpredictable = b; }
438 
439   // These are accessors for each flag.
440   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
441   bool hasNoSignedWrap() const { return NoSignedWrap; }
442   bool hasExact() const { return Exact; }
443   bool hasDisjoint() const { return Disjoint; }
444   bool hasNonNeg() const { return NonNeg; }
445   bool hasNoNaNs() const { return NoNaNs; }
446   bool hasNoInfs() const { return NoInfs; }
447   bool hasNoSignedZeros() const { return NoSignedZeros; }
448   bool hasAllowReciprocal() const { return AllowReciprocal; }
449   bool hasAllowContract() const { return AllowContract; }
450   bool hasApproximateFuncs() const { return ApproximateFuncs; }
451   bool hasAllowReassociation() const { return AllowReassociation; }
452   bool hasNoFPExcept() const { return NoFPExcept; }
453   bool hasUnpredictable() const { return Unpredictable; }
454 
455   /// Clear any flags in this flag set that aren't also set in Flags. All
456   /// flags will be cleared if Flags are undefined.
457   void intersectWith(const SDNodeFlags Flags) {
458     NoUnsignedWrap &= Flags.NoUnsignedWrap;
459     NoSignedWrap &= Flags.NoSignedWrap;
460     Exact &= Flags.Exact;
461     Disjoint &= Flags.Disjoint;
462     NonNeg &= Flags.NonNeg;
463     NoNaNs &= Flags.NoNaNs;
464     NoInfs &= Flags.NoInfs;
465     NoSignedZeros &= Flags.NoSignedZeros;
466     AllowReciprocal &= Flags.AllowReciprocal;
467     AllowContract &= Flags.AllowContract;
468     ApproximateFuncs &= Flags.ApproximateFuncs;
469     AllowReassociation &= Flags.AllowReassociation;
470     NoFPExcept &= Flags.NoFPExcept;
471     Unpredictable &= Flags.Unpredictable;
472   }
473 };
474 
475 /// Represents one node in the SelectionDAG.
476 ///
477 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
478 private:
479   /// The operation that this node performs.
480   int32_t NodeType;
481 
482 public:
483   /// Unique and persistent id per SDNode in the DAG. Used for debug printing.
484   /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS`
485   /// intentionally because it adds unneeded complexity without noticeable
486   /// benefits (see discussion with @thakis in D120714).
487   uint16_t PersistentId = 0xffff;
488 
489 protected:
490   // We define a set of mini-helper classes to help us interpret the bits in our
491   // SubclassData.  These are designed to fit within a uint16_t so they pack
492   // with PersistentId.
493 
494 #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
495 // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
496 // and give the `pack` pragma push semantics.
497 #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
498 #define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
499 #else
500 #define BEGIN_TWO_BYTE_PACK()
501 #define END_TWO_BYTE_PACK()
502 #endif
503 
504 BEGIN_TWO_BYTE_PACK()
505   class SDNodeBitfields {
506     friend class SDNode;
507     friend class MemIntrinsicSDNode;
508     friend class MemSDNode;
509     friend class SelectionDAG;
510 
511     uint16_t HasDebugValue : 1;
512     uint16_t IsMemIntrinsic : 1;
513     uint16_t IsDivergent : 1;
514   };
515   enum { NumSDNodeBits = 3 };
516 
517   class ConstantSDNodeBitfields {
518     friend class ConstantSDNode;
519 
520     uint16_t : NumSDNodeBits;
521 
522     uint16_t IsOpaque : 1;
523   };
524 
525   class MemSDNodeBitfields {
526     friend class MemSDNode;
527     friend class MemIntrinsicSDNode;
528     friend class AtomicSDNode;
529 
530     uint16_t : NumSDNodeBits;
531 
532     uint16_t IsVolatile : 1;
533     uint16_t IsNonTemporal : 1;
534     uint16_t IsDereferenceable : 1;
535     uint16_t IsInvariant : 1;
536   };
537   enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
538 
539   class LSBaseSDNodeBitfields {
540     friend class LSBaseSDNode;
541     friend class VPBaseLoadStoreSDNode;
542     friend class MaskedLoadStoreSDNode;
543     friend class MaskedGatherScatterSDNode;
544     friend class VPGatherScatterSDNode;
545 
546     uint16_t : NumMemSDNodeBits;
547 
548     // This storage is shared between disparate class hierarchies to hold an
549     // enumeration specific to the class hierarchy in use.
550     //   LSBaseSDNode => enum ISD::MemIndexedMode
551     //   VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode
552     //   MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
553     //   VPGatherScatterSDNode => enum ISD::MemIndexType
554     //   MaskedGatherScatterSDNode => enum ISD::MemIndexType
555     uint16_t AddressingMode : 3;
556   };
557   enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
558 
559   class LoadSDNodeBitfields {
560     friend class LoadSDNode;
561     friend class VPLoadSDNode;
562     friend class VPStridedLoadSDNode;
563     friend class MaskedLoadSDNode;
564     friend class MaskedGatherSDNode;
565     friend class VPGatherSDNode;
566 
567     uint16_t : NumLSBaseSDNodeBits;
568 
569     uint16_t ExtTy : 2; // enum ISD::LoadExtType
570     uint16_t IsExpanding : 1;
571   };
572 
573   class StoreSDNodeBitfields {
574     friend class StoreSDNode;
575     friend class VPStoreSDNode;
576     friend class VPStridedStoreSDNode;
577     friend class MaskedStoreSDNode;
578     friend class MaskedScatterSDNode;
579     friend class VPScatterSDNode;
580 
581     uint16_t : NumLSBaseSDNodeBits;
582 
583     uint16_t IsTruncating : 1;
584     uint16_t IsCompressing : 1;
585   };
586 
587   union {
588     char RawSDNodeBits[sizeof(uint16_t)];
589     SDNodeBitfields SDNodeBits;
590     ConstantSDNodeBitfields ConstantSDNodeBits;
591     MemSDNodeBitfields MemSDNodeBits;
592     LSBaseSDNodeBitfields LSBaseSDNodeBits;
593     LoadSDNodeBitfields LoadSDNodeBits;
594     StoreSDNodeBitfields StoreSDNodeBits;
595   };
596 END_TWO_BYTE_PACK()
597 #undef BEGIN_TWO_BYTE_PACK
598 #undef END_TWO_BYTE_PACK
599 
600   // RawSDNodeBits must cover the entirety of the union.  This means that all of
601   // the union's members must have size <= RawSDNodeBits.  We write the RHS as
602   // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
603   static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
604   static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
605   static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
606   static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
607   static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
608   static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
609 
610 private:
611   friend class SelectionDAG;
612   // TODO: unfriend HandleSDNode once we fix its operand handling.
613   friend class HandleSDNode;
614 
615   /// Unique id per SDNode in the DAG.
616   int NodeId = -1;
617 
618   /// The values that are used by this operation.
619   SDUse *OperandList = nullptr;
620 
621   /// The types of the values this node defines.  SDNode's may
622   /// define multiple values simultaneously.
623   const EVT *ValueList;
624 
625   /// List of uses for this SDNode.
626   SDUse *UseList = nullptr;
627 
628   /// The number of entries in the Operand/Value list.
629   unsigned short NumOperands = 0;
630   unsigned short NumValues;
631 
632   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
633   // original LLVM instructions.
634   // This is used for turning off scheduling, because we'll forgo
635   // the normal scheduling algorithms and output the instructions according to
636   // this ordering.
637   unsigned IROrder;
638 
639   /// Source line information.
640   DebugLoc debugLoc;
641 
642   /// Return a pointer to the specified value type.
643   static const EVT *getValueTypeList(EVT VT);
644 
645   SDNodeFlags Flags;
646 
647   uint32_t CFIType = 0;
648 
649 public:
650   //===--------------------------------------------------------------------===//
651   //  Accessors
652   //
653 
654   /// Return the SelectionDAG opcode value for this node. For
655   /// pre-isel nodes (those for which isMachineOpcode returns false), these
656   /// are the opcode values in the ISD and <target>ISD namespaces. For
657   /// post-isel opcodes, see getMachineOpcode.
658   unsigned getOpcode()  const { return (unsigned)NodeType; }
659 
660   /// Test if this node has a target-specific opcode (in the
661   /// \<target\>ISD namespace).
662   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
663 
664   /// Test if this node has a target-specific opcode that may raise
665   /// FP exceptions (in the \<target\>ISD namespace and greater than
666   /// FIRST_TARGET_STRICTFP_OPCODE).  Note that all target memory
667   /// opcode are currently automatically considered to possibly raise
668   /// FP exceptions as well.
669   bool isTargetStrictFPOpcode() const {
670     return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
671   }
672 
673   /// Test if this node has a target-specific
674   /// memory-referencing opcode (in the \<target\>ISD namespace and
675   /// greater than FIRST_TARGET_MEMORY_OPCODE).
676   bool isTargetMemoryOpcode() const {
677     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
678   }
679 
680   /// Return true if the type of the node type undefined.
681   bool isUndef() const { return NodeType == ISD::UNDEF; }
682 
683   /// Test if this node is a memory intrinsic (with valid pointer information).
684   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
685   /// non-memory intrinsics (with chains) that are not really instances of
686   /// MemSDNode. For such nodes, we need some extra state to determine the
687   /// proper classof relationship.
688   bool isMemIntrinsic() const {
689     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
690             NodeType == ISD::INTRINSIC_VOID) &&
691            SDNodeBits.IsMemIntrinsic;
692   }
693 
694   /// Test if this node is a strict floating point pseudo-op.
695   bool isStrictFPOpcode() {
696     switch (NodeType) {
697       default:
698         return false;
699       case ISD::STRICT_FP16_TO_FP:
700       case ISD::STRICT_FP_TO_FP16:
701 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
702       case ISD::STRICT_##DAGN:
703 #include "llvm/IR/ConstrainedOps.def"
704         return true;
705     }
706   }
707 
708   /// Test if this node is a vector predication operation.
709   bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); }
710 
711   /// Test if this node has a post-isel opcode, directly
712   /// corresponding to a MachineInstr opcode.
713   bool isMachineOpcode() const { return NodeType < 0; }
714 
715   /// This may only be called if isMachineOpcode returns
716   /// true. It returns the MachineInstr opcode value that the node's opcode
717   /// corresponds to.
718   unsigned getMachineOpcode() const {
719     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
720     return ~NodeType;
721   }
722 
723   bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
724   void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
725 
726   bool isDivergent() const { return SDNodeBits.IsDivergent; }
727 
728   /// Return true if there are no uses of this node.
729   bool use_empty() const { return UseList == nullptr; }
730 
731   /// Return true if there is exactly one use of this node.
732   bool hasOneUse() const { return hasSingleElement(uses()); }
733 
734   /// Return the number of uses of this node. This method takes
735   /// time proportional to the number of uses.
736   size_t use_size() const { return std::distance(use_begin(), use_end()); }
737 
738   /// Return the unique node id.
739   int getNodeId() const { return NodeId; }
740 
741   /// Set unique node id.
742   void setNodeId(int Id) { NodeId = Id; }
743 
744   /// Return the node ordering.
745   unsigned getIROrder() const { return IROrder; }
746 
747   /// Set the node ordering.
748   void setIROrder(unsigned Order) { IROrder = Order; }
749 
750   /// Return the source location info.
751   const DebugLoc &getDebugLoc() const { return debugLoc; }
752 
753   /// Set source location info.  Try to avoid this, putting
754   /// it in the constructor is preferable.
755   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
756 
757   /// This class provides iterator support for SDUse
758   /// operands that use a specific SDNode.
759   class use_iterator {
760     friend class SDNode;
761 
762     SDUse *Op = nullptr;
763 
764     explicit use_iterator(SDUse *op) : Op(op) {}
765 
766   public:
767     using iterator_category = std::forward_iterator_tag;
768     using value_type = SDUse;
769     using difference_type = std::ptrdiff_t;
770     using pointer = value_type *;
771     using reference = value_type &;
772 
773     use_iterator() = default;
774     use_iterator(const use_iterator &I) = default;
775     use_iterator &operator=(const use_iterator &) = default;
776 
777     bool operator==(const use_iterator &x) const { return Op == x.Op; }
778     bool operator!=(const use_iterator &x) const {
779       return !operator==(x);
780     }
781 
782     /// Return true if this iterator is at the end of uses list.
783     bool atEnd() const { return Op == nullptr; }
784 
785     // Iterator traversal: forward iteration only.
786     use_iterator &operator++() {          // Preincrement
787       assert(Op && "Cannot increment end iterator!");
788       Op = Op->getNext();
789       return *this;
790     }
791 
792     use_iterator operator++(int) {        // Postincrement
793       use_iterator tmp = *this; ++*this; return tmp;
794     }
795 
796     /// Retrieve a pointer to the current user node.
797     SDNode *operator*() const {
798       assert(Op && "Cannot dereference end iterator!");
799       return Op->getUser();
800     }
801 
802     SDNode *operator->() const { return operator*(); }
803 
804     SDUse &getUse() const { return *Op; }
805 
806     /// Retrieve the operand # of this use in its user.
807     unsigned getOperandNo() const {
808       assert(Op && "Cannot dereference end iterator!");
809       return (unsigned)(Op - Op->getUser()->OperandList);
810     }
811   };
812 
813   /// Provide iteration support to walk over all uses of an SDNode.
814   use_iterator use_begin() const {
815     return use_iterator(UseList);
816   }
817 
818   static use_iterator use_end() { return use_iterator(nullptr); }
819 
820   inline iterator_range<use_iterator> uses() {
821     return make_range(use_begin(), use_end());
822   }
823   inline iterator_range<use_iterator> uses() const {
824     return make_range(use_begin(), use_end());
825   }
826 
827   /// Return true if there are exactly NUSES uses of the indicated value.
828   /// This method ignores uses of other values defined by this operation.
829   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
830 
831   /// Return true if there are any use of the indicated value.
832   /// This method ignores uses of other values defined by this operation.
833   bool hasAnyUseOfValue(unsigned Value) const;
834 
835   /// Return true if this node is the only use of N.
836   bool isOnlyUserOf(const SDNode *N) const;
837 
838   /// Return true if this node is an operand of N.
839   bool isOperandOf(const SDNode *N) const;
840 
841   /// Return true if this node is a predecessor of N.
842   /// NOTE: Implemented on top of hasPredecessor and every bit as
843   /// expensive. Use carefully.
844   bool isPredecessorOf(const SDNode *N) const {
845     return N->hasPredecessor(this);
846   }
847 
848   /// Return true if N is a predecessor of this node.
849   /// N is either an operand of this node, or can be reached by recursively
850   /// traversing up the operands.
851   /// NOTE: This is an expensive method. Use it carefully.
852   bool hasPredecessor(const SDNode *N) const;
853 
854   /// Returns true if N is a predecessor of any node in Worklist. This
855   /// helper keeps Visited and Worklist sets externally to allow unions
856   /// searches to be performed in parallel, caching of results across
857   /// queries and incremental addition to Worklist. Stops early if N is
858   /// found but will resume. Remember to clear Visited and Worklists
859   /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
860   /// giving up. The TopologicalPrune flag signals that positive NodeIds are
861   /// topologically ordered (Operands have strictly smaller node id) and search
862   /// can be pruned leveraging this.
863   static bool hasPredecessorHelper(const SDNode *N,
864                                    SmallPtrSetImpl<const SDNode *> &Visited,
865                                    SmallVectorImpl<const SDNode *> &Worklist,
866                                    unsigned int MaxSteps = 0,
867                                    bool TopologicalPrune = false) {
868     SmallVector<const SDNode *, 8> DeferredNodes;
869     if (Visited.count(N))
870       return true;
871 
872     // Node Id's are assigned in three places: As a topological
873     // ordering (> 0), during legalization (results in values set to
874     // 0), new nodes (set to -1). If N has a topolgical id then we
875     // know that all nodes with ids smaller than it cannot be
876     // successors and we need not check them. Filter out all node
877     // that can't be matches. We add them to the worklist before exit
878     // in case of multiple calls. Note that during selection the topological id
879     // may be violated if a node's predecessor is selected before it. We mark
880     // this at selection negating the id of unselected successors and
881     // restricting topological pruning to positive ids.
882 
883     int NId = N->getNodeId();
884     // If we Invalidated the Id, reconstruct original NId.
885     if (NId < -1)
886       NId = -(NId + 1);
887 
888     bool Found = false;
889     while (!Worklist.empty()) {
890       const SDNode *M = Worklist.pop_back_val();
891       int MId = M->getNodeId();
892       if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
893           (MId > 0) && (MId < NId)) {
894         DeferredNodes.push_back(M);
895         continue;
896       }
897       for (const SDValue &OpV : M->op_values()) {
898         SDNode *Op = OpV.getNode();
899         if (Visited.insert(Op).second)
900           Worklist.push_back(Op);
901         if (Op == N)
902           Found = true;
903       }
904       if (Found)
905         break;
906       if (MaxSteps != 0 && Visited.size() >= MaxSteps)
907         break;
908     }
909     // Push deferred nodes back on worklist.
910     Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
911     // If we bailed early, conservatively return found.
912     if (MaxSteps != 0 && Visited.size() >= MaxSteps)
913       return true;
914     return Found;
915   }
916 
917   /// Return true if all the users of N are contained in Nodes.
918   /// NOTE: Requires at least one match, but doesn't require them all.
919   static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
920 
921   /// Return the number of values used by this operation.
922   unsigned getNumOperands() const { return NumOperands; }
923 
924   /// Return the maximum number of operands that a SDNode can hold.
925   static constexpr size_t getMaxNumOperands() {
926     return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
927   }
928 
929   /// Helper method returns the integer value of a ConstantSDNode operand.
930   inline uint64_t getConstantOperandVal(unsigned Num) const;
931 
932   /// Helper method returns the zero-extended integer value of a ConstantSDNode.
933   inline uint64_t getAsZExtVal() const;
934 
935   /// Helper method returns the APInt of a ConstantSDNode operand.
936   inline const APInt &getConstantOperandAPInt(unsigned Num) const;
937 
938   /// Helper method returns the APInt value of a ConstantSDNode.
939   inline const APInt &getAsAPIntVal() const;
940 
941   const SDValue &getOperand(unsigned Num) const {
942     assert(Num < NumOperands && "Invalid child # of SDNode!");
943     return OperandList[Num];
944   }
945 
946   using op_iterator = SDUse *;
947 
948   op_iterator op_begin() const { return OperandList; }
949   op_iterator op_end() const { return OperandList+NumOperands; }
950   ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); }
951 
952   /// Iterator for directly iterating over the operand SDValue's.
953   struct value_op_iterator
954       : iterator_adaptor_base<value_op_iterator, op_iterator,
955                               std::random_access_iterator_tag, SDValue,
956                               ptrdiff_t, value_op_iterator *,
957                               value_op_iterator *> {
958     explicit value_op_iterator(SDUse *U = nullptr)
959       : iterator_adaptor_base(U) {}
960 
961     const SDValue &operator*() const { return I->get(); }
962   };
963 
964   iterator_range<value_op_iterator> op_values() const {
965     return make_range(value_op_iterator(op_begin()),
966                       value_op_iterator(op_end()));
967   }
968 
969   SDVTList getVTList() const {
970     SDVTList X = { ValueList, NumValues };
971     return X;
972   }
973 
974   /// If this node has a glue operand, return the node
975   /// to which the glue operand points. Otherwise return NULL.
976   SDNode *getGluedNode() const {
977     if (getNumOperands() != 0 &&
978         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
979       return getOperand(getNumOperands()-1).getNode();
980     return nullptr;
981   }
982 
983   /// If this node has a glue value with a user, return
984   /// the user (there is at most one). Otherwise return NULL.
985   SDNode *getGluedUser() const {
986     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
987       if (UI.getUse().get().getValueType() == MVT::Glue)
988         return *UI;
989     return nullptr;
990   }
991 
992   SDNodeFlags getFlags() const { return Flags; }
993   void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
994 
995   /// Clear any flags in this node that aren't also set in Flags.
996   /// If Flags is not in a defined state then this has no effect.
997   void intersectFlagsWith(const SDNodeFlags Flags);
998 
999   void setCFIType(uint32_t Type) { CFIType = Type; }
1000   uint32_t getCFIType() const { return CFIType; }
1001 
1002   /// Return the number of values defined/returned by this operator.
1003   unsigned getNumValues() const { return NumValues; }
1004 
1005   /// Return the type of a specified result.
1006   EVT getValueType(unsigned ResNo) const {
1007     assert(ResNo < NumValues && "Illegal result number!");
1008     return ValueList[ResNo];
1009   }
1010 
1011   /// Return the type of a specified result as a simple type.
1012   MVT getSimpleValueType(unsigned ResNo) const {
1013     return getValueType(ResNo).getSimpleVT();
1014   }
1015 
1016   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
1017   ///
1018   /// If the value type is a scalable vector type, the scalable property will
1019   /// be set and the runtime size will be a positive integer multiple of the
1020   /// base size.
1021   TypeSize getValueSizeInBits(unsigned ResNo) const {
1022     return getValueType(ResNo).getSizeInBits();
1023   }
1024 
1025   using value_iterator = const EVT *;
1026 
1027   value_iterator value_begin() const { return ValueList; }
1028   value_iterator value_end() const { return ValueList+NumValues; }
1029   iterator_range<value_iterator> values() const {
1030     return llvm::make_range(value_begin(), value_end());
1031   }
1032 
1033   /// Return the opcode of this operation for printing.
1034   std::string getOperationName(const SelectionDAG *G = nullptr) const;
1035   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
1036   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
1037   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
1038   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1039   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1040 
1041   /// Print a SelectionDAG node and all children down to
1042   /// the leaves.  The given SelectionDAG allows target-specific nodes
1043   /// to be printed in human-readable form.  Unlike printr, this will
1044   /// print the whole DAG, including children that appear multiple
1045   /// times.
1046   ///
1047   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1048 
1049   /// Print a SelectionDAG node and children up to
1050   /// depth "depth."  The given SelectionDAG allows target-specific
1051   /// nodes to be printed in human-readable form.  Unlike printr, this
1052   /// will print children that appear multiple times wherever they are
1053   /// used.
1054   ///
1055   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1056                        unsigned depth = 100) const;
1057 
1058   /// Dump this node, for debugging.
1059   void dump() const;
1060 
1061   /// Dump (recursively) this node and its use-def subgraph.
1062   void dumpr() const;
1063 
1064   /// Dump this node, for debugging.
1065   /// The given SelectionDAG allows target-specific nodes to be printed
1066   /// in human-readable form.
1067   void dump(const SelectionDAG *G) const;
1068 
1069   /// Dump (recursively) this node and its use-def subgraph.
1070   /// The given SelectionDAG allows target-specific nodes to be printed
1071   /// in human-readable form.
1072   void dumpr(const SelectionDAG *G) const;
1073 
1074   /// printrFull to dbgs().  The given SelectionDAG allows
1075   /// target-specific nodes to be printed in human-readable form.
1076   /// Unlike dumpr, this will print the whole DAG, including children
1077   /// that appear multiple times.
1078   void dumprFull(const SelectionDAG *G = nullptr) const;
1079 
1080   /// printrWithDepth to dbgs().  The given
1081   /// SelectionDAG allows target-specific nodes to be printed in
1082   /// human-readable form.  Unlike dumpr, this will print children
1083   /// that appear multiple times wherever they are used.
1084   ///
1085   void dumprWithDepth(const SelectionDAG *G = nullptr,
1086                       unsigned depth = 100) const;
1087 
1088   /// Gather unique data for the node.
1089   void Profile(FoldingSetNodeID &ID) const;
1090 
1091   /// This method should only be used by the SDUse class.
1092   void addUse(SDUse &U) { U.addToList(&UseList); }
1093 
1094 protected:
1095   static SDVTList getSDVTList(EVT VT) {
1096     SDVTList Ret = { getValueTypeList(VT), 1 };
1097     return Ret;
1098   }
1099 
1100   /// Create an SDNode.
1101   ///
1102   /// SDNodes are created without any operands, and never own the operand
1103   /// storage. To add operands, see SelectionDAG::createOperands.
1104   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1105       : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1106         IROrder(Order), debugLoc(std::move(dl)) {
1107     memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1108     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1109     assert(NumValues == VTs.NumVTs &&
1110            "NumValues wasn't wide enough for its operands!");
1111   }
1112 
1113   /// Release the operands and set this node to have zero operands.
1114   void DropOperands();
1115 };
1116 
1117 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1118 /// into SDNode creation functions.
1119 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1120 /// from the original Instruction, and IROrder is the ordinal position of
1121 /// the instruction.
1122 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1123 /// the IROrder are propagated from the original SDNode.
1124 /// So SDLoc class provides two constructors besides the default one, one to
1125 /// be used by the DAGBuilder, the other to be used by others.
1126 class SDLoc {
1127 private:
1128   DebugLoc DL;
1129   int IROrder = 0;
1130 
1131 public:
1132   SDLoc() = default;
1133   SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1134   SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1135   SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1136     assert(Order >= 0 && "bad IROrder");
1137     if (I)
1138       DL = I->getDebugLoc();
1139   }
1140 
1141   unsigned getIROrder() const { return IROrder; }
1142   const DebugLoc &getDebugLoc() const { return DL; }
1143 };
1144 
1145 // Define inline functions from the SDValue class.
1146 
1147 inline SDValue::SDValue(SDNode *node, unsigned resno)
1148     : Node(node), ResNo(resno) {
1149   // Explicitly check for !ResNo to avoid use-after-free, because there are
1150   // callers that use SDValue(N, 0) with a deleted N to indicate successful
1151   // combines.
1152   assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1153          "Invalid result number for the given node!");
1154   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1155 }
1156 
1157 inline unsigned SDValue::getOpcode() const {
1158   return Node->getOpcode();
1159 }
1160 
1161 inline EVT SDValue::getValueType() const {
1162   return Node->getValueType(ResNo);
1163 }
1164 
1165 inline unsigned SDValue::getNumOperands() const {
1166   return Node->getNumOperands();
1167 }
1168 
1169 inline const SDValue &SDValue::getOperand(unsigned i) const {
1170   return Node->getOperand(i);
1171 }
1172 
1173 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1174   return Node->getConstantOperandVal(i);
1175 }
1176 
1177 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1178   return Node->getConstantOperandAPInt(i);
1179 }
1180 
1181 inline bool SDValue::isTargetOpcode() const {
1182   return Node->isTargetOpcode();
1183 }
1184 
1185 inline bool SDValue::isTargetMemoryOpcode() const {
1186   return Node->isTargetMemoryOpcode();
1187 }
1188 
1189 inline bool SDValue::isMachineOpcode() const {
1190   return Node->isMachineOpcode();
1191 }
1192 
1193 inline unsigned SDValue::getMachineOpcode() const {
1194   return Node->getMachineOpcode();
1195 }
1196 
1197 inline bool SDValue::isUndef() const {
1198   return Node->isUndef();
1199 }
1200 
1201 inline bool SDValue::use_empty() const {
1202   return !Node->hasAnyUseOfValue(ResNo);
1203 }
1204 
1205 inline bool SDValue::hasOneUse() const {
1206   return Node->hasNUsesOfValue(1, ResNo);
1207 }
1208 
1209 inline const DebugLoc &SDValue::getDebugLoc() const {
1210   return Node->getDebugLoc();
1211 }
1212 
1213 inline void SDValue::dump() const {
1214   return Node->dump();
1215 }
1216 
1217 inline void SDValue::dump(const SelectionDAG *G) const {
1218   return Node->dump(G);
1219 }
1220 
1221 inline void SDValue::dumpr() const {
1222   return Node->dumpr();
1223 }
1224 
1225 inline void SDValue::dumpr(const SelectionDAG *G) const {
1226   return Node->dumpr(G);
1227 }
1228 
1229 // Define inline functions from the SDUse class.
1230 
1231 inline void SDUse::set(const SDValue &V) {
1232   if (Val.getNode()) removeFromList();
1233   Val = V;
1234   if (V.getNode())
1235     V->addUse(*this);
1236 }
1237 
1238 inline void SDUse::setInitial(const SDValue &V) {
1239   Val = V;
1240   V->addUse(*this);
1241 }
1242 
1243 inline void SDUse::setNode(SDNode *N) {
1244   if (Val.getNode()) removeFromList();
1245   Val.setNode(N);
1246   if (N) N->addUse(*this);
1247 }
1248 
1249 /// This class is used to form a handle around another node that
1250 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1251 /// operand.  This node should be directly created by end-users and not added to
1252 /// the AllNodes list.
1253 class HandleSDNode : public SDNode {
1254   SDUse Op;
1255 
1256 public:
1257   explicit HandleSDNode(SDValue X)
1258     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1259     // HandleSDNodes are never inserted into the DAG, so they won't be
1260     // auto-numbered. Use ID 65535 as a sentinel.
1261     PersistentId = 0xffff;
1262 
1263     // Manually set up the operand list. This node type is special in that it's
1264     // always stack allocated and SelectionDAG does not manage its operands.
1265     // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1266     // be so special.
1267     Op.setUser(this);
1268     Op.setInitial(X);
1269     NumOperands = 1;
1270     OperandList = &Op;
1271   }
1272   ~HandleSDNode();
1273 
1274   const SDValue &getValue() const { return Op; }
1275 };
1276 
1277 class AddrSpaceCastSDNode : public SDNode {
1278 private:
1279   unsigned SrcAddrSpace;
1280   unsigned DestAddrSpace;
1281 
1282 public:
1283   AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1284                       unsigned SrcAS, unsigned DestAS);
1285 
1286   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1287   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1288 
1289   static bool classof(const SDNode *N) {
1290     return N->getOpcode() == ISD::ADDRSPACECAST;
1291   }
1292 };
1293 
1294 /// This is an abstract virtual class for memory operations.
1295 class MemSDNode : public SDNode {
1296 private:
1297   // VT of in-memory value.
1298   EVT MemoryVT;
1299 
1300 protected:
1301   /// Memory reference information.
1302   MachineMemOperand *MMO;
1303 
1304 public:
1305   MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1306             EVT memvt, MachineMemOperand *MMO);
1307 
1308   bool readMem() const { return MMO->isLoad(); }
1309   bool writeMem() const { return MMO->isStore(); }
1310 
1311   /// Returns alignment and volatility of the memory access
1312   Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1313   Align getAlign() const { return MMO->getAlign(); }
1314 
1315   /// Return the SubclassData value, without HasDebugValue. This contains an
1316   /// encoding of the volatile flag, as well as bits used by subclasses. This
1317   /// function should only be used to compute a FoldingSetNodeID value.
1318   /// The HasDebugValue bit is masked out because CSE map needs to match
1319   /// nodes with debug info with nodes without debug info. Same is about
1320   /// isDivergent bit.
1321   unsigned getRawSubclassData() const {
1322     uint16_t Data;
1323     union {
1324       char RawSDNodeBits[sizeof(uint16_t)];
1325       SDNodeBitfields SDNodeBits;
1326     };
1327     memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1328     SDNodeBits.HasDebugValue = 0;
1329     SDNodeBits.IsDivergent = false;
1330     memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1331     return Data;
1332   }
1333 
1334   bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1335   bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1336   bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1337   bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1338 
1339   // Returns the offset from the location of the access.
1340   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1341 
1342   /// Returns the AA info that describes the dereference.
1343   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1344 
1345   /// Returns the Ranges that describes the dereference.
1346   const MDNode *getRanges() const { return MMO->getRanges(); }
1347 
1348   /// Returns the synchronization scope ID for this memory operation.
1349   SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1350 
1351   /// Return the atomic ordering requirements for this memory operation. For
1352   /// cmpxchg atomic operations, return the atomic ordering requirements when
1353   /// store occurs.
1354   AtomicOrdering getSuccessOrdering() const {
1355     return MMO->getSuccessOrdering();
1356   }
1357 
1358   /// Return a single atomic ordering that is at least as strong as both the
1359   /// success and failure orderings for an atomic operation.  (For operations
1360   /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1361   AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1362 
1363   /// Return true if the memory operation ordering is Unordered or higher.
1364   bool isAtomic() const { return MMO->isAtomic(); }
1365 
1366   /// Returns true if the memory operation doesn't imply any ordering
1367   /// constraints on surrounding memory operations beyond the normal memory
1368   /// aliasing rules.
1369   bool isUnordered() const { return MMO->isUnordered(); }
1370 
1371   /// Returns true if the memory operation is neither atomic or volatile.
1372   bool isSimple() const { return !isAtomic() && !isVolatile(); }
1373 
1374   /// Return the type of the in-memory value.
1375   EVT getMemoryVT() const { return MemoryVT; }
1376 
1377   /// Return a MachineMemOperand object describing the memory
1378   /// reference performed by operation.
1379   MachineMemOperand *getMemOperand() const { return MMO; }
1380 
1381   const MachinePointerInfo &getPointerInfo() const {
1382     return MMO->getPointerInfo();
1383   }
1384 
1385   /// Return the address space for the associated pointer
1386   unsigned getAddressSpace() const {
1387     return getPointerInfo().getAddrSpace();
1388   }
1389 
1390   /// Update this MemSDNode's MachineMemOperand information
1391   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1392   /// This must only be used when the new alignment applies to all users of
1393   /// this MachineMemOperand.
1394   void refineAlignment(const MachineMemOperand *NewMMO) {
1395     MMO->refineAlignment(NewMMO);
1396   }
1397 
1398   const SDValue &getChain() const { return getOperand(0); }
1399 
1400   const SDValue &getBasePtr() const {
1401     switch (getOpcode()) {
1402     case ISD::STORE:
1403     case ISD::ATOMIC_STORE:
1404     case ISD::VP_STORE:
1405     case ISD::MSTORE:
1406     case ISD::VP_SCATTER:
1407     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1408       return getOperand(2);
1409     case ISD::MGATHER:
1410     case ISD::MSCATTER:
1411       return getOperand(3);
1412     default:
1413       return getOperand(1);
1414     }
1415   }
1416 
1417   // Methods to support isa and dyn_cast
1418   static bool classof(const SDNode *N) {
1419     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1420     // with either an intrinsic or a target opcode.
1421     switch (N->getOpcode()) {
1422     case ISD::LOAD:
1423     case ISD::STORE:
1424     case ISD::PREFETCH:
1425     case ISD::ATOMIC_CMP_SWAP:
1426     case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1427     case ISD::ATOMIC_SWAP:
1428     case ISD::ATOMIC_LOAD_ADD:
1429     case ISD::ATOMIC_LOAD_SUB:
1430     case ISD::ATOMIC_LOAD_AND:
1431     case ISD::ATOMIC_LOAD_CLR:
1432     case ISD::ATOMIC_LOAD_OR:
1433     case ISD::ATOMIC_LOAD_XOR:
1434     case ISD::ATOMIC_LOAD_NAND:
1435     case ISD::ATOMIC_LOAD_MIN:
1436     case ISD::ATOMIC_LOAD_MAX:
1437     case ISD::ATOMIC_LOAD_UMIN:
1438     case ISD::ATOMIC_LOAD_UMAX:
1439     case ISD::ATOMIC_LOAD_FADD:
1440     case ISD::ATOMIC_LOAD_FSUB:
1441     case ISD::ATOMIC_LOAD_FMAX:
1442     case ISD::ATOMIC_LOAD_FMIN:
1443     case ISD::ATOMIC_LOAD_UINC_WRAP:
1444     case ISD::ATOMIC_LOAD_UDEC_WRAP:
1445     case ISD::ATOMIC_LOAD:
1446     case ISD::ATOMIC_STORE:
1447     case ISD::MLOAD:
1448     case ISD::MSTORE:
1449     case ISD::MGATHER:
1450     case ISD::MSCATTER:
1451     case ISD::VP_LOAD:
1452     case ISD::VP_STORE:
1453     case ISD::VP_GATHER:
1454     case ISD::VP_SCATTER:
1455     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
1456     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
1457     case ISD::GET_FPENV_MEM:
1458     case ISD::SET_FPENV_MEM:
1459       return true;
1460     default:
1461       return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1462     }
1463   }
1464 };
1465 
1466 /// This is an SDNode representing atomic operations.
1467 class AtomicSDNode : public MemSDNode {
1468 public:
1469   AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1470                EVT MemVT, MachineMemOperand *MMO)
1471     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1472     assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
1473             MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
1474   }
1475 
1476   const SDValue &getBasePtr() const {
1477     return getOpcode() == ISD::ATOMIC_STORE ? getOperand(2) : getOperand(1);
1478   }
1479   const SDValue &getVal() const {
1480     return getOpcode() == ISD::ATOMIC_STORE ? getOperand(1) : getOperand(2);
1481   }
1482 
1483   /// Returns true if this SDNode represents cmpxchg atomic operation, false
1484   /// otherwise.
1485   bool isCompareAndSwap() const {
1486     unsigned Op = getOpcode();
1487     return Op == ISD::ATOMIC_CMP_SWAP ||
1488            Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1489   }
1490 
1491   /// For cmpxchg atomic operations, return the atomic ordering requirements
1492   /// when store does not occur.
1493   AtomicOrdering getFailureOrdering() const {
1494     assert(isCompareAndSwap() && "Must be cmpxchg operation");
1495     return MMO->getFailureOrdering();
1496   }
1497 
1498   // Methods to support isa and dyn_cast
1499   static bool classof(const SDNode *N) {
1500     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1501            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1502            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1503            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1504            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1505            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1506            N->getOpcode() == ISD::ATOMIC_LOAD_CLR     ||
1507            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1508            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1509            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1510            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1511            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1512            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1513            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1514            N->getOpcode() == ISD::ATOMIC_LOAD_FADD    ||
1515            N->getOpcode() == ISD::ATOMIC_LOAD_FSUB    ||
1516            N->getOpcode() == ISD::ATOMIC_LOAD_FMAX    ||
1517            N->getOpcode() == ISD::ATOMIC_LOAD_FMIN    ||
1518            N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP ||
1519            N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP ||
1520            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1521            N->getOpcode() == ISD::ATOMIC_STORE;
1522   }
1523 };
1524 
1525 /// This SDNode is used for target intrinsics that touch
1526 /// memory and need an associated MachineMemOperand. Its opcode may be
1527 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1528 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1529 class MemIntrinsicSDNode : public MemSDNode {
1530 public:
1531   MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1532                      SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1533       : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1534     SDNodeBits.IsMemIntrinsic = true;
1535   }
1536 
1537   // Methods to support isa and dyn_cast
1538   static bool classof(const SDNode *N) {
1539     // We lower some target intrinsics to their target opcode
1540     // early a node with a target opcode can be of this class
1541     return N->isMemIntrinsic()             ||
1542            N->getOpcode() == ISD::PREFETCH ||
1543            N->isTargetMemoryOpcode();
1544   }
1545 };
1546 
1547 /// This SDNode is used to implement the code generator
1548 /// support for the llvm IR shufflevector instruction.  It combines elements
1549 /// from two input vectors into a new input vector, with the selection and
1550 /// ordering of elements determined by an array of integers, referred to as
1551 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1552 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1553 /// An index of -1 is treated as undef, such that the code generator may put
1554 /// any value in the corresponding element of the result.
1555 class ShuffleVectorSDNode : public SDNode {
1556   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1557   // is freed when the SelectionDAG object is destroyed.
1558   const int *Mask;
1559 
1560 protected:
1561   friend class SelectionDAG;
1562 
1563   ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1564       : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1565 
1566 public:
1567   ArrayRef<int> getMask() const {
1568     EVT VT = getValueType(0);
1569     return ArrayRef(Mask, VT.getVectorNumElements());
1570   }
1571 
1572   int getMaskElt(unsigned Idx) const {
1573     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1574     return Mask[Idx];
1575   }
1576 
1577   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1578 
1579   int getSplatIndex() const {
1580     assert(isSplat() && "Cannot get splat index for non-splat!");
1581     EVT VT = getValueType(0);
1582     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1583       if (Mask[i] >= 0)
1584         return Mask[i];
1585 
1586     // We can choose any index value here and be correct because all elements
1587     // are undefined. Return 0 for better potential for callers to simplify.
1588     return 0;
1589   }
1590 
1591   static bool isSplatMask(const int *Mask, EVT VT);
1592 
1593   /// Change values in a shuffle permute mask assuming
1594   /// the two vector operands have swapped position.
1595   static void commuteMask(MutableArrayRef<int> Mask) {
1596     unsigned NumElems = Mask.size();
1597     for (unsigned i = 0; i != NumElems; ++i) {
1598       int idx = Mask[i];
1599       if (idx < 0)
1600         continue;
1601       else if (idx < (int)NumElems)
1602         Mask[i] = idx + NumElems;
1603       else
1604         Mask[i] = idx - NumElems;
1605     }
1606   }
1607 
1608   static bool classof(const SDNode *N) {
1609     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1610   }
1611 };
1612 
1613 class ConstantSDNode : public SDNode {
1614   friend class SelectionDAG;
1615 
1616   const ConstantInt *Value;
1617 
1618   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1619       : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1620                getSDVTList(VT)),
1621         Value(val) {
1622     ConstantSDNodeBits.IsOpaque = isOpaque;
1623   }
1624 
1625 public:
1626   const ConstantInt *getConstantIntValue() const { return Value; }
1627   const APInt &getAPIntValue() const { return Value->getValue(); }
1628   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1629   int64_t getSExtValue() const { return Value->getSExtValue(); }
1630   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1631     return Value->getLimitedValue(Limit);
1632   }
1633   MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1634   Align getAlignValue() const { return Value->getAlignValue(); }
1635 
1636   bool isOne() const { return Value->isOne(); }
1637   bool isZero() const { return Value->isZero(); }
1638   bool isAllOnes() const { return Value->isMinusOne(); }
1639   bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1640   bool isMinSignedValue() const { return Value->isMinValue(true); }
1641 
1642   bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1643 
1644   static bool classof(const SDNode *N) {
1645     return N->getOpcode() == ISD::Constant ||
1646            N->getOpcode() == ISD::TargetConstant;
1647   }
1648 };
1649 
1650 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1651   return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1652 }
1653 
1654 uint64_t SDNode::getAsZExtVal() const {
1655   return cast<ConstantSDNode>(this)->getZExtValue();
1656 }
1657 
1658 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1659   return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1660 }
1661 
1662 const APInt &SDNode::getAsAPIntVal() const {
1663   return cast<ConstantSDNode>(this)->getAPIntValue();
1664 }
1665 
1666 class ConstantFPSDNode : public SDNode {
1667   friend class SelectionDAG;
1668 
1669   const ConstantFP *Value;
1670 
1671   ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1672       : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1673                DebugLoc(), getSDVTList(VT)),
1674         Value(val) {}
1675 
1676 public:
1677   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1678   const ConstantFP *getConstantFPValue() const { return Value; }
1679 
1680   /// Return true if the value is positive or negative zero.
1681   bool isZero() const { return Value->isZero(); }
1682 
1683   /// Return true if the value is a NaN.
1684   bool isNaN() const { return Value->isNaN(); }
1685 
1686   /// Return true if the value is an infinity
1687   bool isInfinity() const { return Value->isInfinity(); }
1688 
1689   /// Return true if the value is negative.
1690   bool isNegative() const { return Value->isNegative(); }
1691 
1692   /// We don't rely on operator== working on double values, as
1693   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1694   /// As such, this method can be used to do an exact bit-for-bit comparison of
1695   /// two floating point values.
1696 
1697   /// We leave the version with the double argument here because it's just so
1698   /// convenient to write "2.0" and the like.  Without this function we'd
1699   /// have to duplicate its logic everywhere it's called.
1700   bool isExactlyValue(double V) const {
1701     return Value->getValueAPF().isExactlyValue(V);
1702   }
1703   bool isExactlyValue(const APFloat& V) const;
1704 
1705   static bool isValueValidForType(EVT VT, const APFloat& Val);
1706 
1707   static bool classof(const SDNode *N) {
1708     return N->getOpcode() == ISD::ConstantFP ||
1709            N->getOpcode() == ISD::TargetConstantFP;
1710   }
1711 };
1712 
1713 /// Returns true if \p V is a constant integer zero.
1714 bool isNullConstant(SDValue V);
1715 
1716 /// Returns true if \p V is an FP constant with a value of positive zero.
1717 bool isNullFPConstant(SDValue V);
1718 
1719 /// Returns true if \p V is an integer constant with all bits set.
1720 bool isAllOnesConstant(SDValue V);
1721 
1722 /// Returns true if \p V is a constant integer one.
1723 bool isOneConstant(SDValue V);
1724 
1725 /// Returns true if \p V is a constant min signed integer value.
1726 bool isMinSignedConstant(SDValue V);
1727 
1728 /// Returns true if \p V is a neutral element of Opc with Flags.
1729 /// When OperandNo is 0, it checks that V is a left identity. Otherwise, it
1730 /// checks that V is a right identity.
1731 bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V,
1732                        unsigned OperandNo);
1733 
1734 /// Return the non-bitcasted source operand of \p V if it exists.
1735 /// If \p V is not a bitcasted value, it is returned as-is.
1736 SDValue peekThroughBitcasts(SDValue V);
1737 
1738 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1739 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1740 SDValue peekThroughOneUseBitcasts(SDValue V);
1741 
1742 /// Return the non-extracted vector source operand of \p V if it exists.
1743 /// If \p V is not an extracted subvector, it is returned as-is.
1744 SDValue peekThroughExtractSubvectors(SDValue V);
1745 
1746 /// Return the non-truncated source operand of \p V if it exists.
1747 /// If \p V is not a truncation, it is returned as-is.
1748 SDValue peekThroughTruncates(SDValue V);
1749 
1750 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1751 /// constant is canonicalized to be operand 1.
1752 bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1753 
1754 /// If \p V is a bitwise not, returns the inverted operand. Otherwise returns
1755 /// an empty SDValue. Only bits set in \p Mask are required to be inverted,
1756 /// other bits may be arbitrary.
1757 SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs);
1758 
1759 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1760 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1761                                     bool AllowTruncation = false);
1762 
1763 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1764 /// constant int.
1765 ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1766                                     bool AllowUndefs = false,
1767                                     bool AllowTruncation = false);
1768 
1769 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1770 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1771 
1772 /// Returns the SDNode if it is a demanded constant splat BuildVector or
1773 /// constant float.
1774 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1775                                         bool AllowUndefs = false);
1776 
1777 /// Return true if the value is a constant 0 integer or a splatted vector of
1778 /// a constant 0 integer (with no undefs by default).
1779 /// Build vector implicit truncation is not an issue for null values.
1780 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1781 
1782 /// Return true if the value is a constant 1 integer or a splatted vector of a
1783 /// constant 1 integer (with no undefs).
1784 /// Build vector implicit truncation is allowed, but the truncated bits need to
1785 /// be zero.
1786 bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1787 
1788 /// Return true if the value is a constant -1 integer or a splatted vector of a
1789 /// constant -1 integer (with no undefs).
1790 /// Does not permit build vector implicit truncation.
1791 bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1792 
1793 /// Return true if \p V is either a integer or FP constant.
1794 inline bool isIntOrFPConstant(SDValue V) {
1795   return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1796 }
1797 
1798 class GlobalAddressSDNode : public SDNode {
1799   friend class SelectionDAG;
1800 
1801   const GlobalValue *TheGlobal;
1802   int64_t Offset;
1803   unsigned TargetFlags;
1804 
1805   GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1806                       const GlobalValue *GA, EVT VT, int64_t o,
1807                       unsigned TF);
1808 
1809 public:
1810   const GlobalValue *getGlobal() const { return TheGlobal; }
1811   int64_t getOffset() const { return Offset; }
1812   unsigned getTargetFlags() const { return TargetFlags; }
1813   // Return the address space this GlobalAddress belongs to.
1814   unsigned getAddressSpace() const;
1815 
1816   static bool classof(const SDNode *N) {
1817     return N->getOpcode() == ISD::GlobalAddress ||
1818            N->getOpcode() == ISD::TargetGlobalAddress ||
1819            N->getOpcode() == ISD::GlobalTLSAddress ||
1820            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1821   }
1822 };
1823 
1824 class FrameIndexSDNode : public SDNode {
1825   friend class SelectionDAG;
1826 
1827   int FI;
1828 
1829   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1830     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1831       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1832   }
1833 
1834 public:
1835   int getIndex() const { return FI; }
1836 
1837   static bool classof(const SDNode *N) {
1838     return N->getOpcode() == ISD::FrameIndex ||
1839            N->getOpcode() == ISD::TargetFrameIndex;
1840   }
1841 };
1842 
1843 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1844 /// the offet and size that are started/ended in the underlying FrameIndex.
1845 class LifetimeSDNode : public SDNode {
1846   friend class SelectionDAG;
1847   int64_t Size;
1848   int64_t Offset; // -1 if offset is unknown.
1849 
1850   LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1851                  SDVTList VTs, int64_t Size, int64_t Offset)
1852       : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1853 public:
1854   int64_t getFrameIndex() const {
1855     return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1856   }
1857 
1858   bool hasOffset() const { return Offset >= 0; }
1859   int64_t getOffset() const {
1860     assert(hasOffset() && "offset is unknown");
1861     return Offset;
1862   }
1863   int64_t getSize() const {
1864     assert(hasOffset() && "offset is unknown");
1865     return Size;
1866   }
1867 
1868   // Methods to support isa and dyn_cast
1869   static bool classof(const SDNode *N) {
1870     return N->getOpcode() == ISD::LIFETIME_START ||
1871            N->getOpcode() == ISD::LIFETIME_END;
1872   }
1873 };
1874 
1875 /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1876 /// the index of the basic block being probed. A pseudo probe serves as a place
1877 /// holder and will be removed at the end of compilation. It does not have any
1878 /// operand because we do not want the instruction selection to deal with any.
1879 class PseudoProbeSDNode : public SDNode {
1880   friend class SelectionDAG;
1881   uint64_t Guid;
1882   uint64_t Index;
1883   uint32_t Attributes;
1884 
1885   PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1886                     SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1887       : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1888         Attributes(Attr) {}
1889 
1890 public:
1891   uint64_t getGuid() const { return Guid; }
1892   uint64_t getIndex() const { return Index; }
1893   uint32_t getAttributes() const { return Attributes; }
1894 
1895   // Methods to support isa and dyn_cast
1896   static bool classof(const SDNode *N) {
1897     return N->getOpcode() == ISD::PSEUDO_PROBE;
1898   }
1899 };
1900 
1901 class JumpTableSDNode : public SDNode {
1902   friend class SelectionDAG;
1903 
1904   int JTI;
1905   unsigned TargetFlags;
1906 
1907   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1908     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1909       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1910   }
1911 
1912 public:
1913   int getIndex() const { return JTI; }
1914   unsigned getTargetFlags() const { return TargetFlags; }
1915 
1916   static bool classof(const SDNode *N) {
1917     return N->getOpcode() == ISD::JumpTable ||
1918            N->getOpcode() == ISD::TargetJumpTable;
1919   }
1920 };
1921 
1922 class ConstantPoolSDNode : public SDNode {
1923   friend class SelectionDAG;
1924 
1925   union {
1926     const Constant *ConstVal;
1927     MachineConstantPoolValue *MachineCPVal;
1928   } Val;
1929   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1930   Align Alignment; // Minimum alignment requirement of CP.
1931   unsigned TargetFlags;
1932 
1933   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1934                      Align Alignment, unsigned TF)
1935       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1936                DebugLoc(), getSDVTList(VT)),
1937         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1938     assert(Offset >= 0 && "Offset is too large");
1939     Val.ConstVal = c;
1940   }
1941 
1942   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1943                      Align Alignment, unsigned TF)
1944       : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1945                DebugLoc(), getSDVTList(VT)),
1946         Offset(o), Alignment(Alignment), TargetFlags(TF) {
1947     assert(Offset >= 0 && "Offset is too large");
1948     Val.MachineCPVal = v;
1949     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1950   }
1951 
1952 public:
1953   bool isMachineConstantPoolEntry() const {
1954     return Offset < 0;
1955   }
1956 
1957   const Constant *getConstVal() const {
1958     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1959     return Val.ConstVal;
1960   }
1961 
1962   MachineConstantPoolValue *getMachineCPVal() const {
1963     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1964     return Val.MachineCPVal;
1965   }
1966 
1967   int getOffset() const {
1968     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1969   }
1970 
1971   // Return the alignment of this constant pool object, which is either 0 (for
1972   // default alignment) or the desired value.
1973   Align getAlign() const { return Alignment; }
1974   unsigned getTargetFlags() const { return TargetFlags; }
1975 
1976   Type *getType() const;
1977 
1978   static bool classof(const SDNode *N) {
1979     return N->getOpcode() == ISD::ConstantPool ||
1980            N->getOpcode() == ISD::TargetConstantPool;
1981   }
1982 };
1983 
1984 /// Completely target-dependent object reference.
1985 class TargetIndexSDNode : public SDNode {
1986   friend class SelectionDAG;
1987 
1988   unsigned TargetFlags;
1989   int Index;
1990   int64_t Offset;
1991 
1992 public:
1993   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1994       : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1995         TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1996 
1997   unsigned getTargetFlags() const { return TargetFlags; }
1998   int getIndex() const { return Index; }
1999   int64_t getOffset() const { return Offset; }
2000 
2001   static bool classof(const SDNode *N) {
2002     return N->getOpcode() == ISD::TargetIndex;
2003   }
2004 };
2005 
2006 class BasicBlockSDNode : public SDNode {
2007   friend class SelectionDAG;
2008 
2009   MachineBasicBlock *MBB;
2010 
2011   /// Debug info is meaningful and potentially useful here, but we create
2012   /// blocks out of order when they're jumped to, which makes it a bit
2013   /// harder.  Let's see if we need it first.
2014   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
2015     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
2016   {}
2017 
2018 public:
2019   MachineBasicBlock *getBasicBlock() const { return MBB; }
2020 
2021   static bool classof(const SDNode *N) {
2022     return N->getOpcode() == ISD::BasicBlock;
2023   }
2024 };
2025 
2026 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
2027 class BuildVectorSDNode : public SDNode {
2028 public:
2029   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
2030   explicit BuildVectorSDNode() = delete;
2031 
2032   /// Check if this is a constant splat, and if so, find the
2033   /// smallest element size that splats the vector.  If MinSplatBits is
2034   /// nonzero, the element size must be at least that large.  Note that the
2035   /// splat element may be the entire vector (i.e., a one element vector).
2036   /// Returns the splat element value in SplatValue.  Any undefined bits in
2037   /// that value are zero, and the corresponding bits in the SplatUndef mask
2038   /// are set.  The SplatBitSize value is set to the splat element size in
2039   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
2040   /// undefined.  isBigEndian describes the endianness of the target.
2041   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
2042                        unsigned &SplatBitSize, bool &HasAnyUndefs,
2043                        unsigned MinSplatBits = 0,
2044                        bool isBigEndian = false) const;
2045 
2046   /// Returns the demanded splatted value or a null value if this is not a
2047   /// splat.
2048   ///
2049   /// The DemandedElts mask indicates the elements that must be in the splat.
2050   /// If passed a non-null UndefElements bitvector, it will resize it to match
2051   /// the vector width and set the bits where elements are undef.
2052   SDValue getSplatValue(const APInt &DemandedElts,
2053                         BitVector *UndefElements = nullptr) const;
2054 
2055   /// Returns the splatted value or a null value if this is not a splat.
2056   ///
2057   /// If passed a non-null UndefElements bitvector, it will resize it to match
2058   /// the vector width and set the bits where elements are undef.
2059   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
2060 
2061   /// Find the shortest repeating sequence of values in the build vector.
2062   ///
2063   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2064   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2065   ///
2066   /// Currently this must be a power-of-2 build vector.
2067   /// The DemandedElts mask indicates the elements that must be present,
2068   /// undemanded elements in Sequence may be null (SDValue()). If passed a
2069   /// non-null UndefElements bitvector, it will resize it to match the original
2070   /// vector width and set the bits where elements are undef. If result is
2071   /// false, Sequence will be empty.
2072   bool getRepeatedSequence(const APInt &DemandedElts,
2073                            SmallVectorImpl<SDValue> &Sequence,
2074                            BitVector *UndefElements = nullptr) const;
2075 
2076   /// Find the shortest repeating sequence of values in the build vector.
2077   ///
2078   /// e.g. { u, X, u, X, u, u, X, u } -> { X }
2079   ///      { X, Y, u, Y, u, u, X, u } -> { X, Y }
2080   ///
2081   /// Currently this must be a power-of-2 build vector.
2082   /// If passed a non-null UndefElements bitvector, it will resize it to match
2083   /// the original vector width and set the bits where elements are undef.
2084   /// If result is false, Sequence will be empty.
2085   bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
2086                            BitVector *UndefElements = nullptr) const;
2087 
2088   /// Returns the demanded splatted constant or null if this is not a constant
2089   /// splat.
2090   ///
2091   /// The DemandedElts mask indicates the elements that must be in the splat.
2092   /// If passed a non-null UndefElements bitvector, it will resize it to match
2093   /// the vector width and set the bits where elements are undef.
2094   ConstantSDNode *
2095   getConstantSplatNode(const APInt &DemandedElts,
2096                        BitVector *UndefElements = nullptr) const;
2097 
2098   /// Returns the splatted constant or null if this is not a constant
2099   /// splat.
2100   ///
2101   /// If passed a non-null UndefElements bitvector, it will resize it to match
2102   /// the vector width and set the bits where elements are undef.
2103   ConstantSDNode *
2104   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2105 
2106   /// Returns the demanded splatted constant FP or null if this is not a
2107   /// constant FP splat.
2108   ///
2109   /// The DemandedElts mask indicates the elements that must be in the splat.
2110   /// If passed a non-null UndefElements bitvector, it will resize it to match
2111   /// the vector width and set the bits where elements are undef.
2112   ConstantFPSDNode *
2113   getConstantFPSplatNode(const APInt &DemandedElts,
2114                          BitVector *UndefElements = nullptr) const;
2115 
2116   /// Returns the splatted constant FP or null if this is not a constant
2117   /// FP splat.
2118   ///
2119   /// If passed a non-null UndefElements bitvector, it will resize it to match
2120   /// the vector width and set the bits where elements are undef.
2121   ConstantFPSDNode *
2122   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2123 
2124   /// If this is a constant FP splat and the splatted constant FP is an
2125   /// exact power or 2, return the log base 2 integer value.  Otherwise,
2126   /// return -1.
2127   ///
2128   /// The BitWidth specifies the necessary bit precision.
2129   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2130                                           uint32_t BitWidth) const;
2131 
2132   /// Extract the raw bit data from a build vector of Undef, Constant or
2133   /// ConstantFP node elements. Each raw bit element will be \p
2134   /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely
2135   /// undefined elements are flagged in \p UndefElements.
2136   bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2137                           SmallVectorImpl<APInt> &RawBitElements,
2138                           BitVector &UndefElements) const;
2139 
2140   bool isConstant() const;
2141 
2142   /// If this BuildVector is constant and represents the numerical series
2143   /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer,
2144   /// the value "<a,n>" is returned.
2145   std::optional<std::pair<APInt, APInt>> isConstantSequence() const;
2146 
2147   /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements.
2148   /// Undef elements are treated as zero, and entirely undefined elements are
2149   /// flagged in \p DstUndefElements.
2150   static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits,
2151                             SmallVectorImpl<APInt> &DstBitElements,
2152                             ArrayRef<APInt> SrcBitElements,
2153                             BitVector &DstUndefElements,
2154                             const BitVector &SrcUndefElements);
2155 
2156   static bool classof(const SDNode *N) {
2157     return N->getOpcode() == ISD::BUILD_VECTOR;
2158   }
2159 };
2160 
2161 /// An SDNode that holds an arbitrary LLVM IR Value. This is
2162 /// used when the SelectionDAG needs to make a simple reference to something
2163 /// in the LLVM IR representation.
2164 ///
2165 class SrcValueSDNode : public SDNode {
2166   friend class SelectionDAG;
2167 
2168   const Value *V;
2169 
2170   /// Create a SrcValue for a general value.
2171   explicit SrcValueSDNode(const Value *v)
2172     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2173 
2174 public:
2175   /// Return the contained Value.
2176   const Value *getValue() const { return V; }
2177 
2178   static bool classof(const SDNode *N) {
2179     return N->getOpcode() == ISD::SRCVALUE;
2180   }
2181 };
2182 
2183 class MDNodeSDNode : public SDNode {
2184   friend class SelectionDAG;
2185 
2186   const MDNode *MD;
2187 
2188   explicit MDNodeSDNode(const MDNode *md)
2189   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2190   {}
2191 
2192 public:
2193   const MDNode *getMD() const { return MD; }
2194 
2195   static bool classof(const SDNode *N) {
2196     return N->getOpcode() == ISD::MDNODE_SDNODE;
2197   }
2198 };
2199 
2200 class RegisterSDNode : public SDNode {
2201   friend class SelectionDAG;
2202 
2203   Register Reg;
2204 
2205   RegisterSDNode(Register reg, EVT VT)
2206     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2207 
2208 public:
2209   Register getReg() const { return Reg; }
2210 
2211   static bool classof(const SDNode *N) {
2212     return N->getOpcode() == ISD::Register;
2213   }
2214 };
2215 
2216 class RegisterMaskSDNode : public SDNode {
2217   friend class SelectionDAG;
2218 
2219   // The memory for RegMask is not owned by the node.
2220   const uint32_t *RegMask;
2221 
2222   RegisterMaskSDNode(const uint32_t *mask)
2223     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2224       RegMask(mask) {}
2225 
2226 public:
2227   const uint32_t *getRegMask() const { return RegMask; }
2228 
2229   static bool classof(const SDNode *N) {
2230     return N->getOpcode() == ISD::RegisterMask;
2231   }
2232 };
2233 
2234 class BlockAddressSDNode : public SDNode {
2235   friend class SelectionDAG;
2236 
2237   const BlockAddress *BA;
2238   int64_t Offset;
2239   unsigned TargetFlags;
2240 
2241   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2242                      int64_t o, unsigned Flags)
2243     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2244              BA(ba), Offset(o), TargetFlags(Flags) {}
2245 
2246 public:
2247   const BlockAddress *getBlockAddress() const { return BA; }
2248   int64_t getOffset() const { return Offset; }
2249   unsigned getTargetFlags() const { return TargetFlags; }
2250 
2251   static bool classof(const SDNode *N) {
2252     return N->getOpcode() == ISD::BlockAddress ||
2253            N->getOpcode() == ISD::TargetBlockAddress;
2254   }
2255 };
2256 
2257 class LabelSDNode : public SDNode {
2258   friend class SelectionDAG;
2259 
2260   MCSymbol *Label;
2261 
2262   LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2263       : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2264     assert(LabelSDNode::classof(this) && "not a label opcode");
2265   }
2266 
2267 public:
2268   MCSymbol *getLabel() const { return Label; }
2269 
2270   static bool classof(const SDNode *N) {
2271     return N->getOpcode() == ISD::EH_LABEL ||
2272            N->getOpcode() == ISD::ANNOTATION_LABEL;
2273   }
2274 };
2275 
2276 class ExternalSymbolSDNode : public SDNode {
2277   friend class SelectionDAG;
2278 
2279   const char *Symbol;
2280   unsigned TargetFlags;
2281 
2282   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2283       : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2284                DebugLoc(), getSDVTList(VT)),
2285         Symbol(Sym), TargetFlags(TF) {}
2286 
2287 public:
2288   const char *getSymbol() const { return Symbol; }
2289   unsigned getTargetFlags() const { return TargetFlags; }
2290 
2291   static bool classof(const SDNode *N) {
2292     return N->getOpcode() == ISD::ExternalSymbol ||
2293            N->getOpcode() == ISD::TargetExternalSymbol;
2294   }
2295 };
2296 
2297 class MCSymbolSDNode : public SDNode {
2298   friend class SelectionDAG;
2299 
2300   MCSymbol *Symbol;
2301 
2302   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2303       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2304 
2305 public:
2306   MCSymbol *getMCSymbol() const { return Symbol; }
2307 
2308   static bool classof(const SDNode *N) {
2309     return N->getOpcode() == ISD::MCSymbol;
2310   }
2311 };
2312 
2313 class CondCodeSDNode : public SDNode {
2314   friend class SelectionDAG;
2315 
2316   ISD::CondCode Condition;
2317 
2318   explicit CondCodeSDNode(ISD::CondCode Cond)
2319     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2320       Condition(Cond) {}
2321 
2322 public:
2323   ISD::CondCode get() const { return Condition; }
2324 
2325   static bool classof(const SDNode *N) {
2326     return N->getOpcode() == ISD::CONDCODE;
2327   }
2328 };
2329 
2330 /// This class is used to represent EVT's, which are used
2331 /// to parameterize some operations.
2332 class VTSDNode : public SDNode {
2333   friend class SelectionDAG;
2334 
2335   EVT ValueType;
2336 
2337   explicit VTSDNode(EVT VT)
2338     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2339       ValueType(VT) {}
2340 
2341 public:
2342   EVT getVT() const { return ValueType; }
2343 
2344   static bool classof(const SDNode *N) {
2345     return N->getOpcode() == ISD::VALUETYPE;
2346   }
2347 };
2348 
2349 /// Base class for LoadSDNode and StoreSDNode
2350 class LSBaseSDNode : public MemSDNode {
2351 public:
2352   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2353                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2354                MachineMemOperand *MMO)
2355       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2356     LSBaseSDNodeBits.AddressingMode = AM;
2357     assert(getAddressingMode() == AM && "Value truncated");
2358   }
2359 
2360   const SDValue &getOffset() const {
2361     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2362   }
2363 
2364   /// Return the addressing mode for this load or store:
2365   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2366   ISD::MemIndexedMode getAddressingMode() const {
2367     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2368   }
2369 
2370   /// Return true if this is a pre/post inc/dec load/store.
2371   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2372 
2373   /// Return true if this is NOT a pre/post inc/dec load/store.
2374   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2375 
2376   static bool classof(const SDNode *N) {
2377     return N->getOpcode() == ISD::LOAD ||
2378            N->getOpcode() == ISD::STORE;
2379   }
2380 };
2381 
2382 /// This class is used to represent ISD::LOAD nodes.
2383 class LoadSDNode : public LSBaseSDNode {
2384   friend class SelectionDAG;
2385 
2386   LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2387              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2388              MachineMemOperand *MMO)
2389       : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2390     LoadSDNodeBits.ExtTy = ETy;
2391     assert(readMem() && "Load MachineMemOperand is not a load!");
2392     assert(!writeMem() && "Load MachineMemOperand is a store!");
2393   }
2394 
2395 public:
2396   /// Return whether this is a plain node,
2397   /// or one of the varieties of value-extending loads.
2398   ISD::LoadExtType getExtensionType() const {
2399     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2400   }
2401 
2402   const SDValue &getBasePtr() const { return getOperand(1); }
2403   const SDValue &getOffset() const { return getOperand(2); }
2404 
2405   static bool classof(const SDNode *N) {
2406     return N->getOpcode() == ISD::LOAD;
2407   }
2408 };
2409 
2410 /// This class is used to represent ISD::STORE nodes.
2411 class StoreSDNode : public LSBaseSDNode {
2412   friend class SelectionDAG;
2413 
2414   StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2415               ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2416               MachineMemOperand *MMO)
2417       : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2418     StoreSDNodeBits.IsTruncating = isTrunc;
2419     assert(!readMem() && "Store MachineMemOperand is a load!");
2420     assert(writeMem() && "Store MachineMemOperand is not a store!");
2421   }
2422 
2423 public:
2424   /// Return true if the op does a truncation before store.
2425   /// For integers this is the same as doing a TRUNCATE and storing the result.
2426   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2427   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2428   void setTruncatingStore(bool Truncating) {
2429     StoreSDNodeBits.IsTruncating = Truncating;
2430   }
2431 
2432   const SDValue &getValue() const { return getOperand(1); }
2433   const SDValue &getBasePtr() const { return getOperand(2); }
2434   const SDValue &getOffset() const { return getOperand(3); }
2435 
2436   static bool classof(const SDNode *N) {
2437     return N->getOpcode() == ISD::STORE;
2438   }
2439 };
2440 
2441 /// This base class is used to represent VP_LOAD, VP_STORE,
2442 /// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes
2443 class VPBaseLoadStoreSDNode : public MemSDNode {
2444 public:
2445   friend class SelectionDAG;
2446 
2447   VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2448                         const DebugLoc &DL, SDVTList VTs,
2449                         ISD::MemIndexedMode AM, EVT MemVT,
2450                         MachineMemOperand *MMO)
2451       : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) {
2452     LSBaseSDNodeBits.AddressingMode = AM;
2453     assert(getAddressingMode() == AM && "Value truncated");
2454   }
2455 
2456   // VPStridedStoreSDNode (Chain, Data, Ptr,    Offset, Stride, Mask, EVL)
2457   // VPStoreSDNode        (Chain, Data, Ptr,    Offset, Mask,   EVL)
2458   // VPStridedLoadSDNode  (Chain, Ptr,  Offset, Stride, Mask,   EVL)
2459   // VPLoadSDNode         (Chain, Ptr,  Offset, Mask,   EVL)
2460   // Mask is a vector of i1 elements;
2461   // the type of EVL is TLI.getVPExplicitVectorLengthTy().
2462   const SDValue &getOffset() const {
2463     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2464                        getOpcode() == ISD::VP_LOAD)
2465                           ? 2
2466                           : 3);
2467   }
2468   const SDValue &getBasePtr() const {
2469     return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2470                        getOpcode() == ISD::VP_LOAD)
2471                           ? 1
2472                           : 2);
2473   }
2474   const SDValue &getMask() const {
2475     switch (getOpcode()) {
2476     default:
2477       llvm_unreachable("Invalid opcode");
2478     case ISD::VP_LOAD:
2479       return getOperand(3);
2480     case ISD::VP_STORE:
2481     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2482       return getOperand(4);
2483     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2484       return getOperand(5);
2485     }
2486   }
2487   const SDValue &getVectorLength() const {
2488     switch (getOpcode()) {
2489     default:
2490       llvm_unreachable("Invalid opcode");
2491     case ISD::VP_LOAD:
2492       return getOperand(4);
2493     case ISD::VP_STORE:
2494     case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
2495       return getOperand(5);
2496     case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
2497       return getOperand(6);
2498     }
2499   }
2500 
2501   /// Return the addressing mode for this load or store:
2502   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2503   ISD::MemIndexedMode getAddressingMode() const {
2504     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2505   }
2506 
2507   /// Return true if this is a pre/post inc/dec load/store.
2508   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2509 
2510   /// Return true if this is NOT a pre/post inc/dec load/store.
2511   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2512 
2513   static bool classof(const SDNode *N) {
2514     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD ||
2515            N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE ||
2516            N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE;
2517   }
2518 };
2519 
2520 /// This class is used to represent a VP_LOAD node
2521 class VPLoadSDNode : public VPBaseLoadStoreSDNode {
2522 public:
2523   friend class SelectionDAG;
2524 
2525   VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2526                ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding,
2527                EVT MemVT, MachineMemOperand *MMO)
2528       : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2529     LoadSDNodeBits.ExtTy = ETy;
2530     LoadSDNodeBits.IsExpanding = isExpanding;
2531   }
2532 
2533   ISD::LoadExtType getExtensionType() const {
2534     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2535   }
2536 
2537   const SDValue &getBasePtr() const { return getOperand(1); }
2538   const SDValue &getOffset() const { return getOperand(2); }
2539   const SDValue &getMask() const { return getOperand(3); }
2540   const SDValue &getVectorLength() const { return getOperand(4); }
2541 
2542   static bool classof(const SDNode *N) {
2543     return N->getOpcode() == ISD::VP_LOAD;
2544   }
2545   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2546 };
2547 
2548 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node.
2549 class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode {
2550 public:
2551   friend class SelectionDAG;
2552 
2553   VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2554                       ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2555                       bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2556       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs,
2557                               AM, MemVT, MMO) {
2558     LoadSDNodeBits.ExtTy = ETy;
2559     LoadSDNodeBits.IsExpanding = IsExpanding;
2560   }
2561 
2562   ISD::LoadExtType getExtensionType() const {
2563     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2564   }
2565 
2566   const SDValue &getBasePtr() const { return getOperand(1); }
2567   const SDValue &getOffset() const { return getOperand(2); }
2568   const SDValue &getStride() const { return getOperand(3); }
2569   const SDValue &getMask() const { return getOperand(4); }
2570   const SDValue &getVectorLength() const { return getOperand(5); }
2571 
2572   static bool classof(const SDNode *N) {
2573     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD;
2574   }
2575   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2576 };
2577 
2578 /// This class is used to represent a VP_STORE node
2579 class VPStoreSDNode : public VPBaseLoadStoreSDNode {
2580 public:
2581   friend class SelectionDAG;
2582 
2583   VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2584                 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2585                 EVT MemVT, MachineMemOperand *MMO)
2586       : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) {
2587     StoreSDNodeBits.IsTruncating = isTrunc;
2588     StoreSDNodeBits.IsCompressing = isCompressing;
2589   }
2590 
2591   /// Return true if this is a truncating store.
2592   /// For integers this is the same as doing a TRUNCATE and storing the result.
2593   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2594   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2595 
2596   /// Returns true if the op does a compression to the vector before storing.
2597   /// The node contiguously stores the active elements (integers or floats)
2598   /// in src (those with their respective bit set in writemask k) to unaligned
2599   /// memory at base_addr.
2600   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2601 
2602   const SDValue &getValue() const { return getOperand(1); }
2603   const SDValue &getBasePtr() const { return getOperand(2); }
2604   const SDValue &getOffset() const { return getOperand(3); }
2605   const SDValue &getMask() const { return getOperand(4); }
2606   const SDValue &getVectorLength() const { return getOperand(5); }
2607 
2608   static bool classof(const SDNode *N) {
2609     return N->getOpcode() == ISD::VP_STORE;
2610   }
2611 };
2612 
2613 /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node.
2614 class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode {
2615 public:
2616   friend class SelectionDAG;
2617 
2618   VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs,
2619                        ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing,
2620                        EVT MemVT, MachineMemOperand *MMO)
2621       : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL,
2622                               VTs, AM, MemVT, MMO) {
2623     StoreSDNodeBits.IsTruncating = IsTrunc;
2624     StoreSDNodeBits.IsCompressing = IsCompressing;
2625   }
2626 
2627   /// Return true if this is a truncating store.
2628   /// For integers this is the same as doing a TRUNCATE and storing the result.
2629   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2630   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2631 
2632   /// Returns true if the op does a compression to the vector before storing.
2633   /// The node contiguously stores the active elements (integers or floats)
2634   /// in src (those with their respective bit set in writemask k) to unaligned
2635   /// memory at base_addr.
2636   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2637 
2638   const SDValue &getValue() const { return getOperand(1); }
2639   const SDValue &getBasePtr() const { return getOperand(2); }
2640   const SDValue &getOffset() const { return getOperand(3); }
2641   const SDValue &getStride() const { return getOperand(4); }
2642   const SDValue &getMask() const { return getOperand(5); }
2643   const SDValue &getVectorLength() const { return getOperand(6); }
2644 
2645   static bool classof(const SDNode *N) {
2646     return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE;
2647   }
2648 };
2649 
2650 /// This base class is used to represent MLOAD and MSTORE nodes
2651 class MaskedLoadStoreSDNode : public MemSDNode {
2652 public:
2653   friend class SelectionDAG;
2654 
2655   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2656                         const DebugLoc &dl, SDVTList VTs,
2657                         ISD::MemIndexedMode AM, EVT MemVT,
2658                         MachineMemOperand *MMO)
2659       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2660     LSBaseSDNodeBits.AddressingMode = AM;
2661     assert(getAddressingMode() == AM && "Value truncated");
2662   }
2663 
2664   // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2665   // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2666   // Mask is a vector of i1 elements
2667   const SDValue &getOffset() const {
2668     return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2669   }
2670   const SDValue &getMask() const {
2671     return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2672   }
2673 
2674   /// Return the addressing mode for this load or store:
2675   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2676   ISD::MemIndexedMode getAddressingMode() const {
2677     return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2678   }
2679 
2680   /// Return true if this is a pre/post inc/dec load/store.
2681   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2682 
2683   /// Return true if this is NOT a pre/post inc/dec load/store.
2684   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2685 
2686   static bool classof(const SDNode *N) {
2687     return N->getOpcode() == ISD::MLOAD ||
2688            N->getOpcode() == ISD::MSTORE;
2689   }
2690 };
2691 
2692 /// This class is used to represent an MLOAD node
2693 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2694 public:
2695   friend class SelectionDAG;
2696 
2697   MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2698                    ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2699                    bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2700       : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2701     LoadSDNodeBits.ExtTy = ETy;
2702     LoadSDNodeBits.IsExpanding = IsExpanding;
2703   }
2704 
2705   ISD::LoadExtType getExtensionType() const {
2706     return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2707   }
2708 
2709   const SDValue &getBasePtr() const { return getOperand(1); }
2710   const SDValue &getOffset() const { return getOperand(2); }
2711   const SDValue &getMask() const { return getOperand(3); }
2712   const SDValue &getPassThru() const { return getOperand(4); }
2713 
2714   static bool classof(const SDNode *N) {
2715     return N->getOpcode() == ISD::MLOAD;
2716   }
2717 
2718   bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2719 };
2720 
2721 /// This class is used to represent an MSTORE node
2722 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2723 public:
2724   friend class SelectionDAG;
2725 
2726   MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2727                     ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2728                     EVT MemVT, MachineMemOperand *MMO)
2729       : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2730     StoreSDNodeBits.IsTruncating = isTrunc;
2731     StoreSDNodeBits.IsCompressing = isCompressing;
2732   }
2733 
2734   /// Return true if the op does a truncation before store.
2735   /// For integers this is the same as doing a TRUNCATE and storing the result.
2736   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2737   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2738 
2739   /// Returns true if the op does a compression to the vector before storing.
2740   /// The node contiguously stores the active elements (integers or floats)
2741   /// in src (those with their respective bit set in writemask k) to unaligned
2742   /// memory at base_addr.
2743   bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2744 
2745   const SDValue &getValue() const { return getOperand(1); }
2746   const SDValue &getBasePtr() const { return getOperand(2); }
2747   const SDValue &getOffset() const { return getOperand(3); }
2748   const SDValue &getMask() const { return getOperand(4); }
2749 
2750   static bool classof(const SDNode *N) {
2751     return N->getOpcode() == ISD::MSTORE;
2752   }
2753 };
2754 
2755 /// This is a base class used to represent
2756 /// VP_GATHER and VP_SCATTER nodes
2757 ///
2758 class VPGatherScatterSDNode : public MemSDNode {
2759 public:
2760   friend class SelectionDAG;
2761 
2762   VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2763                         const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2764                         MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2765       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2766     LSBaseSDNodeBits.AddressingMode = IndexType;
2767     assert(getIndexType() == IndexType && "Value truncated");
2768   }
2769 
2770   /// How is Index applied to BasePtr when computing addresses.
2771   ISD::MemIndexType getIndexType() const {
2772     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2773   }
2774   bool isIndexScaled() const {
2775     return !cast<ConstantSDNode>(getScale())->isOne();
2776   }
2777   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2778 
2779   // In the both nodes address is Op1, mask is Op2:
2780   // VPGatherSDNode  (Chain, base, index, scale, mask, vlen)
2781   // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen)
2782   // Mask is a vector of i1 elements
2783   const SDValue &getBasePtr() const {
2784     return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2);
2785   }
2786   const SDValue &getIndex() const {
2787     return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3);
2788   }
2789   const SDValue &getScale() const {
2790     return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4);
2791   }
2792   const SDValue &getMask() const {
2793     return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5);
2794   }
2795   const SDValue &getVectorLength() const {
2796     return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6);
2797   }
2798 
2799   static bool classof(const SDNode *N) {
2800     return N->getOpcode() == ISD::VP_GATHER ||
2801            N->getOpcode() == ISD::VP_SCATTER;
2802   }
2803 };
2804 
2805 /// This class is used to represent an VP_GATHER node
2806 ///
2807 class VPGatherSDNode : public VPGatherScatterSDNode {
2808 public:
2809   friend class SelectionDAG;
2810 
2811   VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2812                  MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2813       : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO,
2814                               IndexType) {}
2815 
2816   static bool classof(const SDNode *N) {
2817     return N->getOpcode() == ISD::VP_GATHER;
2818   }
2819 };
2820 
2821 /// This class is used to represent an VP_SCATTER node
2822 ///
2823 class VPScatterSDNode : public VPGatherScatterSDNode {
2824 public:
2825   friend class SelectionDAG;
2826 
2827   VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2828                   MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2829       : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO,
2830                               IndexType) {}
2831 
2832   const SDValue &getValue() const { return getOperand(1); }
2833 
2834   static bool classof(const SDNode *N) {
2835     return N->getOpcode() == ISD::VP_SCATTER;
2836   }
2837 };
2838 
2839 /// This is a base class used to represent
2840 /// MGATHER and MSCATTER nodes
2841 ///
2842 class MaskedGatherScatterSDNode : public MemSDNode {
2843 public:
2844   friend class SelectionDAG;
2845 
2846   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2847                             const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2848                             MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2849       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2850     LSBaseSDNodeBits.AddressingMode = IndexType;
2851     assert(getIndexType() == IndexType && "Value truncated");
2852   }
2853 
2854   /// How is Index applied to BasePtr when computing addresses.
2855   ISD::MemIndexType getIndexType() const {
2856     return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2857   }
2858   bool isIndexScaled() const {
2859     return !cast<ConstantSDNode>(getScale())->isOne();
2860   }
2861   bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); }
2862 
2863   // In the both nodes address is Op1, mask is Op2:
2864   // MaskedGatherSDNode  (Chain, passthru, mask, base, index, scale)
2865   // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2866   // Mask is a vector of i1 elements
2867   const SDValue &getBasePtr() const { return getOperand(3); }
2868   const SDValue &getIndex()   const { return getOperand(4); }
2869   const SDValue &getMask()    const { return getOperand(2); }
2870   const SDValue &getScale()   const { return getOperand(5); }
2871 
2872   static bool classof(const SDNode *N) {
2873     return N->getOpcode() == ISD::MGATHER ||
2874            N->getOpcode() == ISD::MSCATTER;
2875   }
2876 };
2877 
2878 /// This class is used to represent an MGATHER node
2879 ///
2880 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2881 public:
2882   friend class SelectionDAG;
2883 
2884   MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2885                      EVT MemVT, MachineMemOperand *MMO,
2886                      ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2887       : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2888                                   IndexType) {
2889     LoadSDNodeBits.ExtTy = ETy;
2890   }
2891 
2892   const SDValue &getPassThru() const { return getOperand(1); }
2893 
2894   ISD::LoadExtType getExtensionType() const {
2895     return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2896   }
2897 
2898   static bool classof(const SDNode *N) {
2899     return N->getOpcode() == ISD::MGATHER;
2900   }
2901 };
2902 
2903 /// This class is used to represent an MSCATTER node
2904 ///
2905 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2906 public:
2907   friend class SelectionDAG;
2908 
2909   MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2910                       EVT MemVT, MachineMemOperand *MMO,
2911                       ISD::MemIndexType IndexType, bool IsTrunc)
2912       : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2913                                   IndexType) {
2914     StoreSDNodeBits.IsTruncating = IsTrunc;
2915   }
2916 
2917   /// Return true if the op does a truncation before store.
2918   /// For integers this is the same as doing a TRUNCATE and storing the result.
2919   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2920   bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2921 
2922   const SDValue &getValue() const { return getOperand(1); }
2923 
2924   static bool classof(const SDNode *N) {
2925     return N->getOpcode() == ISD::MSCATTER;
2926   }
2927 };
2928 
2929 class FPStateAccessSDNode : public MemSDNode {
2930 public:
2931   friend class SelectionDAG;
2932 
2933   FPStateAccessSDNode(unsigned NodeTy, unsigned Order, const DebugLoc &dl,
2934                       SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
2935       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2936     assert((NodeTy == ISD::GET_FPENV_MEM || NodeTy == ISD::SET_FPENV_MEM) &&
2937            "Expected FP state access node");
2938   }
2939 
2940   static bool classof(const SDNode *N) {
2941     return N->getOpcode() == ISD::GET_FPENV_MEM ||
2942            N->getOpcode() == ISD::SET_FPENV_MEM;
2943   }
2944 };
2945 
2946 /// An SDNode that represents everything that will be needed
2947 /// to construct a MachineInstr. These nodes are created during the
2948 /// instruction selection proper phase.
2949 ///
2950 /// Note that the only supported way to set the `memoperands` is by calling the
2951 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2952 /// inside the DAG rather than in the node.
2953 class MachineSDNode : public SDNode {
2954 private:
2955   friend class SelectionDAG;
2956 
2957   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2958       : SDNode(Opc, Order, DL, VTs) {}
2959 
2960   // We use a pointer union between a single `MachineMemOperand` pointer and
2961   // a pointer to an array of `MachineMemOperand` pointers. This is null when
2962   // the number of these is zero, the single pointer variant used when the
2963   // number is one, and the array is used for larger numbers.
2964   //
2965   // The array is allocated via the `SelectionDAG`'s allocator and so will
2966   // always live until the DAG is cleaned up and doesn't require ownership here.
2967   //
2968   // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2969   // subclasses aren't managed in a conforming C++ manner. See the comments on
2970   // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2971   // constraint here is that these don't manage memory with their constructor or
2972   // destructor and can be initialized to a good state even if they start off
2973   // uninitialized.
2974   PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2975 
2976   // Note that this could be folded into the above `MemRefs` member if doing so
2977   // is advantageous at some point. We don't need to store this in most cases.
2978   // However, at the moment this doesn't appear to make the allocation any
2979   // smaller and makes the code somewhat simpler to read.
2980   int NumMemRefs = 0;
2981 
2982 public:
2983   using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2984 
2985   ArrayRef<MachineMemOperand *> memoperands() const {
2986     // Special case the common cases.
2987     if (NumMemRefs == 0)
2988       return {};
2989     if (NumMemRefs == 1)
2990       return ArrayRef(MemRefs.getAddrOfPtr1(), 1);
2991 
2992     // Otherwise we have an actual array.
2993     return ArrayRef(cast<MachineMemOperand **>(MemRefs), NumMemRefs);
2994   }
2995   mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2996   mmo_iterator memoperands_end() const { return memoperands().end(); }
2997   bool memoperands_empty() const { return memoperands().empty(); }
2998 
2999   /// Clear out the memory reference descriptor list.
3000   void clearMemRefs() {
3001     MemRefs = nullptr;
3002     NumMemRefs = 0;
3003   }
3004 
3005   static bool classof(const SDNode *N) {
3006     return N->isMachineOpcode();
3007   }
3008 };
3009 
3010 /// An SDNode that records if a register contains a value that is guaranteed to
3011 /// be aligned accordingly.
3012 class AssertAlignSDNode : public SDNode {
3013   Align Alignment;
3014 
3015 public:
3016   AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
3017       : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
3018 
3019   Align getAlign() const { return Alignment; }
3020 
3021   static bool classof(const SDNode *N) {
3022     return N->getOpcode() == ISD::AssertAlign;
3023   }
3024 };
3025 
3026 class SDNodeIterator {
3027   const SDNode *Node;
3028   unsigned Operand;
3029 
3030   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
3031 
3032 public:
3033   using iterator_category = std::forward_iterator_tag;
3034   using value_type = SDNode;
3035   using difference_type = std::ptrdiff_t;
3036   using pointer = value_type *;
3037   using reference = value_type &;
3038 
3039   bool operator==(const SDNodeIterator& x) const {
3040     return Operand == x.Operand;
3041   }
3042   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
3043 
3044   pointer operator*() const {
3045     return Node->getOperand(Operand).getNode();
3046   }
3047   pointer operator->() const { return operator*(); }
3048 
3049   SDNodeIterator& operator++() {                // Preincrement
3050     ++Operand;
3051     return *this;
3052   }
3053   SDNodeIterator operator++(int) { // Postincrement
3054     SDNodeIterator tmp = *this; ++*this; return tmp;
3055   }
3056   size_t operator-(SDNodeIterator Other) const {
3057     assert(Node == Other.Node &&
3058            "Cannot compare iterators of two different nodes!");
3059     return Operand - Other.Operand;
3060   }
3061 
3062   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
3063   static SDNodeIterator end  (const SDNode *N) {
3064     return SDNodeIterator(N, N->getNumOperands());
3065   }
3066 
3067   unsigned getOperand() const { return Operand; }
3068   const SDNode *getNode() const { return Node; }
3069 };
3070 
3071 template <> struct GraphTraits<SDNode*> {
3072   using NodeRef = SDNode *;
3073   using ChildIteratorType = SDNodeIterator;
3074 
3075   static NodeRef getEntryNode(SDNode *N) { return N; }
3076 
3077   static ChildIteratorType child_begin(NodeRef N) {
3078     return SDNodeIterator::begin(N);
3079   }
3080 
3081   static ChildIteratorType child_end(NodeRef N) {
3082     return SDNodeIterator::end(N);
3083   }
3084 };
3085 
3086 /// A representation of the largest SDNode, for use in sizeof().
3087 ///
3088 /// This needs to be a union because the largest node differs on 32 bit systems
3089 /// with 4 and 8 byte pointer alignment, respectively.
3090 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
3091                                             BlockAddressSDNode,
3092                                             GlobalAddressSDNode,
3093                                             PseudoProbeSDNode>;
3094 
3095 /// The SDNode class with the greatest alignment requirement.
3096 using MostAlignedSDNode = GlobalAddressSDNode;
3097 
3098 namespace ISD {
3099 
3100   /// Returns true if the specified node is a non-extending and unindexed load.
3101   inline bool isNormalLoad(const SDNode *N) {
3102     auto *Ld = dyn_cast<LoadSDNode>(N);
3103     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
3104            Ld->getAddressingMode() == ISD::UNINDEXED;
3105   }
3106 
3107   /// Returns true if the specified node is a non-extending load.
3108   inline bool isNON_EXTLoad(const SDNode *N) {
3109     auto *Ld = dyn_cast<LoadSDNode>(N);
3110     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD;
3111   }
3112 
3113   /// Returns true if the specified node is a EXTLOAD.
3114   inline bool isEXTLoad(const SDNode *N) {
3115     auto *Ld = dyn_cast<LoadSDNode>(N);
3116     return Ld && Ld->getExtensionType() == ISD::EXTLOAD;
3117   }
3118 
3119   /// Returns true if the specified node is a SEXTLOAD.
3120   inline bool isSEXTLoad(const SDNode *N) {
3121     auto *Ld = dyn_cast<LoadSDNode>(N);
3122     return Ld && Ld->getExtensionType() == ISD::SEXTLOAD;
3123   }
3124 
3125   /// Returns true if the specified node is a ZEXTLOAD.
3126   inline bool isZEXTLoad(const SDNode *N) {
3127     auto *Ld = dyn_cast<LoadSDNode>(N);
3128     return Ld && Ld->getExtensionType() == ISD::ZEXTLOAD;
3129   }
3130 
3131   /// Returns true if the specified node is an unindexed load.
3132   inline bool isUNINDEXEDLoad(const SDNode *N) {
3133     auto *Ld = dyn_cast<LoadSDNode>(N);
3134     return Ld && Ld->getAddressingMode() == ISD::UNINDEXED;
3135   }
3136 
3137   /// Returns true if the specified node is a non-truncating
3138   /// and unindexed store.
3139   inline bool isNormalStore(const SDNode *N) {
3140     auto *St = dyn_cast<StoreSDNode>(N);
3141     return St && !St->isTruncatingStore() &&
3142            St->getAddressingMode() == ISD::UNINDEXED;
3143   }
3144 
3145   /// Returns true if the specified node is an unindexed store.
3146   inline bool isUNINDEXEDStore(const SDNode *N) {
3147     auto *St = dyn_cast<StoreSDNode>(N);
3148     return St && St->getAddressingMode() == ISD::UNINDEXED;
3149   }
3150 
3151   /// Attempt to match a unary predicate against a scalar/splat constant or
3152   /// every element of a constant BUILD_VECTOR.
3153   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3154   template <typename ConstNodeType>
3155   bool matchUnaryPredicateImpl(SDValue Op,
3156                                std::function<bool(ConstNodeType *)> Match,
3157                                bool AllowUndefs = false);
3158 
3159   /// Hook for matching ConstantSDNode predicate
3160   inline bool matchUnaryPredicate(SDValue Op,
3161                                   std::function<bool(ConstantSDNode *)> Match,
3162                                   bool AllowUndefs = false) {
3163     return matchUnaryPredicateImpl<ConstantSDNode>(Op, Match, AllowUndefs);
3164   }
3165 
3166   /// Hook for matching ConstantFPSDNode predicate
3167   inline bool
3168   matchUnaryFpPredicate(SDValue Op,
3169                         std::function<bool(ConstantFPSDNode *)> Match,
3170                         bool AllowUndefs = false) {
3171     return matchUnaryPredicateImpl<ConstantFPSDNode>(Op, Match, AllowUndefs);
3172   }
3173 
3174   /// Attempt to match a binary predicate against a pair of scalar/splat
3175   /// constants or every element of a pair of constant BUILD_VECTORs.
3176   /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
3177   /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
3178   bool matchBinaryPredicate(
3179       SDValue LHS, SDValue RHS,
3180       std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
3181       bool AllowUndefs = false, bool AllowTypeMismatch = false);
3182 
3183   /// Returns true if the specified value is the overflow result from one
3184   /// of the overflow intrinsic nodes.
3185   inline bool isOverflowIntrOpRes(SDValue Op) {
3186     unsigned Opc = Op.getOpcode();
3187     return (Op.getResNo() == 1 &&
3188             (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3189              Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
3190   }
3191 
3192 } // end namespace ISD
3193 
3194 } // end namespace llvm
3195 
3196 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
3197