xref: /freebsd/contrib/llvm-project/llvm/include/llvm/CodeGen/ScheduleDAG.h (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //===- llvm/CodeGen/ScheduleDAG.h - Common Base Class -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file Implements the ScheduleDAG class, which is used as the common base
10 /// class for instruction schedulers. This encapsulates the scheduling DAG,
11 /// which is shared between SelectionDAG and MachineInstr scheduling.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_SCHEDULEDAG_H
16 #define LLVM_CODEGEN_SCHEDULEDAG_H
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include <cassert>
27 #include <cstddef>
28 #include <iterator>
29 #include <string>
30 #include <vector>
31 
32 namespace llvm {
33 
34 template<class Graph> class GraphWriter;
35 class LLVMTargetMachine;
36 class MachineFunction;
37 class MachineRegisterInfo;
38 class MCInstrDesc;
39 struct MCSchedClassDesc;
40 class SDNode;
41 class SUnit;
42 class ScheduleDAG;
43 class TargetInstrInfo;
44 class TargetRegisterClass;
45 class TargetRegisterInfo;
46 
47   /// Scheduling dependency. This represents one direction of an edge in the
48   /// scheduling DAG.
49   class SDep {
50   public:
51     /// These are the different kinds of scheduling dependencies.
52     enum Kind {
53       Data,        ///< Regular data dependence (aka true-dependence).
54       Anti,        ///< A register anti-dependence (aka WAR).
55       Output,      ///< A register output-dependence (aka WAW).
56       Order        ///< Any other ordering dependency.
57     };
58 
59     // Strong dependencies must be respected by the scheduler. Artificial
60     // dependencies may be removed only if they are redundant with another
61     // strong dependence.
62     //
63     // Weak dependencies may be violated by the scheduling strategy, but only if
64     // the strategy can prove it is correct to do so.
65     //
66     // Strong OrderKinds must occur before "Weak".
67     // Weak OrderKinds must occur after "Weak".
68     enum OrderKind {
69       Barrier,      ///< An unknown scheduling barrier.
70       MayAliasMem,  ///< Nonvolatile load/Store instructions that may alias.
71       MustAliasMem, ///< Nonvolatile load/Store instructions that must alias.
72       Artificial,   ///< Arbitrary strong DAG edge (no real dependence).
73       Weak,         ///< Arbitrary weak DAG edge.
74       Cluster       ///< Weak DAG edge linking a chain of clustered instrs.
75     };
76 
77   private:
78     /// A pointer to the depending/depended-on SUnit, and an enum
79     /// indicating the kind of the dependency.
80     PointerIntPair<SUnit *, 2, Kind> Dep;
81 
82     /// A union discriminated by the dependence kind.
83     union {
84       /// For Data, Anti, and Output dependencies, the associated register. For
85       /// Data dependencies that don't currently have a register/ assigned, this
86       /// is set to zero.
87       unsigned Reg;
88 
89       /// Additional information about Order dependencies.
90       unsigned OrdKind; // enum OrderKind
91     } Contents;
92 
93     /// The time associated with this edge. Often this is just the value of the
94     /// Latency field of the predecessor, however advanced models may provide
95     /// additional information about specific edges.
96     unsigned Latency;
97 
98   public:
99     /// Constructs a null SDep. This is only for use by container classes which
100     /// require default constructors. SUnits may not/ have null SDep edges.
101     SDep() : Dep(nullptr, Data) {}
102 
103     /// Constructs an SDep with the specified values.
104     SDep(SUnit *S, Kind kind, unsigned Reg)
105       : Dep(S, kind), Contents() {
106       switch (kind) {
107       default:
108         llvm_unreachable("Reg given for non-register dependence!");
109       case Anti:
110       case Output:
111         assert(Reg != 0 &&
112                "SDep::Anti and SDep::Output must use a non-zero Reg!");
113         Contents.Reg = Reg;
114         Latency = 0;
115         break;
116       case Data:
117         Contents.Reg = Reg;
118         Latency = 1;
119         break;
120       }
121     }
122 
123     SDep(SUnit *S, OrderKind kind)
124       : Dep(S, Order), Contents(), Latency(0) {
125       Contents.OrdKind = kind;
126     }
127 
128     /// Returns true if the specified SDep is equivalent except for latency.
129     bool overlaps(const SDep &Other) const;
130 
131     bool operator==(const SDep &Other) const {
132       return overlaps(Other) && Latency == Other.Latency;
133     }
134 
135     bool operator!=(const SDep &Other) const {
136       return !operator==(Other);
137     }
138 
139     /// Returns the latency value for this edge, which roughly means the
140     /// minimum number of cycles that must elapse between the predecessor and
141     /// the successor, given that they have this edge between them.
142     unsigned getLatency() const {
143       return Latency;
144     }
145 
146     /// Sets the latency for this edge.
147     void setLatency(unsigned Lat) {
148       Latency = Lat;
149     }
150 
151     //// Returns the SUnit to which this edge points.
152     SUnit *getSUnit() const;
153 
154     //// Assigns the SUnit to which this edge points.
155     void setSUnit(SUnit *SU);
156 
157     /// Returns an enum value representing the kind of the dependence.
158     Kind getKind() const;
159 
160     /// Shorthand for getKind() != SDep::Data.
161     bool isCtrl() const {
162       return getKind() != Data;
163     }
164 
165     /// Tests if this is an Order dependence between two memory accesses
166     /// where both sides of the dependence access memory in non-volatile and
167     /// fully modeled ways.
168     bool isNormalMemory() const {
169       return getKind() == Order && (Contents.OrdKind == MayAliasMem
170                                     || Contents.OrdKind == MustAliasMem);
171     }
172 
173     /// Tests if this is an Order dependence that is marked as a barrier.
174     bool isBarrier() const {
175       return getKind() == Order && Contents.OrdKind == Barrier;
176     }
177 
178     /// Tests if this is could be any kind of memory dependence.
179     bool isNormalMemoryOrBarrier() const {
180       return (isNormalMemory() || isBarrier());
181     }
182 
183     /// Tests if this is an Order dependence that is marked as
184     /// "must alias", meaning that the SUnits at either end of the edge have a
185     /// memory dependence on a known memory location.
186     bool isMustAlias() const {
187       return getKind() == Order && Contents.OrdKind == MustAliasMem;
188     }
189 
190     /// Tests if this a weak dependence. Weak dependencies are considered DAG
191     /// edges for height computation and other heuristics, but do not force
192     /// ordering. Breaking a weak edge may require the scheduler to compensate,
193     /// for example by inserting a copy.
194     bool isWeak() const {
195       return getKind() == Order && Contents.OrdKind >= Weak;
196     }
197 
198     /// Tests if this is an Order dependence that is marked as
199     /// "artificial", meaning it isn't necessary for correctness.
200     bool isArtificial() const {
201       return getKind() == Order && Contents.OrdKind == Artificial;
202     }
203 
204     /// Tests if this is an Order dependence that is marked as "cluster",
205     /// meaning it is artificial and wants to be adjacent.
206     bool isCluster() const {
207       return getKind() == Order && Contents.OrdKind == Cluster;
208     }
209 
210     /// Tests if this is a Data dependence that is associated with a register.
211     bool isAssignedRegDep() const {
212       return getKind() == Data && Contents.Reg != 0;
213     }
214 
215     /// Returns the register associated with this edge. This is only valid on
216     /// Data, Anti, and Output edges. On Data edges, this value may be zero,
217     /// meaning there is no associated register.
218     unsigned getReg() const {
219       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
220              "getReg called on non-register dependence edge!");
221       return Contents.Reg;
222     }
223 
224     /// Assigns the associated register for this edge. This is only valid on
225     /// Data, Anti, and Output edges. On Anti and Output edges, this value must
226     /// not be zero. On Data edges, the value may be zero, which would mean that
227     /// no specific register is associated with this edge.
228     void setReg(unsigned Reg) {
229       assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
230              "setReg called on non-register dependence edge!");
231       assert((getKind() != Anti || Reg != 0) &&
232              "SDep::Anti edge cannot use the zero register!");
233       assert((getKind() != Output || Reg != 0) &&
234              "SDep::Output edge cannot use the zero register!");
235       Contents.Reg = Reg;
236     }
237 
238     void dump(const TargetRegisterInfo *TRI = nullptr) const;
239   };
240 
241   /// Scheduling unit. This is a node in the scheduling DAG.
242   class SUnit {
243   private:
244     enum : unsigned { BoundaryID = ~0u };
245 
246     SDNode *Node = nullptr;        ///< Representative node.
247     MachineInstr *Instr = nullptr; ///< Alternatively, a MachineInstr.
248 
249   public:
250     SUnit *OrigNode = nullptr; ///< If not this, the node from which this node
251                                /// was cloned. (SD scheduling only)
252 
253     const MCSchedClassDesc *SchedClass =
254         nullptr; ///< nullptr or resolved SchedClass.
255 
256     SmallVector<SDep, 4> Preds;  ///< All sunit predecessors.
257     SmallVector<SDep, 4> Succs;  ///< All sunit successors.
258 
259     typedef SmallVectorImpl<SDep>::iterator pred_iterator;
260     typedef SmallVectorImpl<SDep>::iterator succ_iterator;
261     typedef SmallVectorImpl<SDep>::const_iterator const_pred_iterator;
262     typedef SmallVectorImpl<SDep>::const_iterator const_succ_iterator;
263 
264     unsigned NodeNum = BoundaryID;     ///< Entry # of node in the node vector.
265     unsigned NodeQueueId = 0;          ///< Queue id of node.
266     unsigned NumPreds = 0;             ///< # of SDep::Data preds.
267     unsigned NumSuccs = 0;             ///< # of SDep::Data sucss.
268     unsigned NumPredsLeft = 0;         ///< # of preds not scheduled.
269     unsigned NumSuccsLeft = 0;         ///< # of succs not scheduled.
270     unsigned WeakPredsLeft = 0;        ///< # of weak preds not scheduled.
271     unsigned WeakSuccsLeft = 0;        ///< # of weak succs not scheduled.
272     unsigned short NumRegDefsLeft = 0; ///< # of reg defs with no scheduled use.
273     unsigned short Latency = 0;        ///< Node latency.
274     bool isVRegCycle      : 1;         ///< May use and def the same vreg.
275     bool isCall           : 1;         ///< Is a function call.
276     bool isCallOp         : 1;         ///< Is a function call operand.
277     bool isTwoAddress     : 1;         ///< Is a two-address instruction.
278     bool isCommutable     : 1;         ///< Is a commutable instruction.
279     bool hasPhysRegUses   : 1;         ///< Has physreg uses.
280     bool hasPhysRegDefs   : 1;         ///< Has physreg defs that are being used.
281     bool hasPhysRegClobbers : 1;       ///< Has any physreg defs, used or not.
282     bool isPending        : 1;         ///< True once pending.
283     bool isAvailable      : 1;         ///< True once available.
284     bool isScheduled      : 1;         ///< True once scheduled.
285     bool isScheduleHigh   : 1;         ///< True if preferable to schedule high.
286     bool isScheduleLow    : 1;         ///< True if preferable to schedule low.
287     bool isCloned         : 1;         ///< True if this node has been cloned.
288     bool isUnbuffered     : 1;         ///< Uses an unbuffered resource.
289     bool hasReservedResource : 1;      ///< Uses a reserved resource.
290     Sched::Preference SchedulingPref = Sched::None; ///< Scheduling preference.
291 
292   private:
293     bool isDepthCurrent   : 1;         ///< True if Depth is current.
294     bool isHeightCurrent  : 1;         ///< True if Height is current.
295     unsigned Depth = 0;                ///< Node depth.
296     unsigned Height = 0;               ///< Node height.
297 
298   public:
299     unsigned TopReadyCycle = 0; ///< Cycle relative to start when node is ready.
300     unsigned BotReadyCycle = 0; ///< Cycle relative to end when node is ready.
301 
302     const TargetRegisterClass *CopyDstRC =
303         nullptr; ///< Is a special copy node if != nullptr.
304     const TargetRegisterClass *CopySrcRC = nullptr;
305 
306     /// Constructs an SUnit for pre-regalloc scheduling to represent an
307     /// SDNode and any nodes flagged to it.
308     SUnit(SDNode *node, unsigned nodenum)
309       : Node(node), NodeNum(nodenum), isVRegCycle(false), isCall(false),
310         isCallOp(false), isTwoAddress(false), isCommutable(false),
311         hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
312         isPending(false), isAvailable(false), isScheduled(false),
313         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
314         isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
315         isHeightCurrent(false) {}
316 
317     /// Constructs an SUnit for post-regalloc scheduling to represent a
318     /// MachineInstr.
319     SUnit(MachineInstr *instr, unsigned nodenum)
320       : Instr(instr), NodeNum(nodenum), isVRegCycle(false), isCall(false),
321         isCallOp(false), isTwoAddress(false), isCommutable(false),
322         hasPhysRegUses(false), hasPhysRegDefs(false), hasPhysRegClobbers(false),
323         isPending(false), isAvailable(false), isScheduled(false),
324         isScheduleHigh(false), isScheduleLow(false), isCloned(false),
325         isUnbuffered(false), hasReservedResource(false), isDepthCurrent(false),
326         isHeightCurrent(false) {}
327 
328     /// Constructs a placeholder SUnit.
329     SUnit()
330       : isVRegCycle(false), isCall(false), isCallOp(false), isTwoAddress(false),
331         isCommutable(false), hasPhysRegUses(false), hasPhysRegDefs(false),
332         hasPhysRegClobbers(false), isPending(false), isAvailable(false),
333         isScheduled(false), isScheduleHigh(false), isScheduleLow(false),
334         isCloned(false), isUnbuffered(false), hasReservedResource(false),
335         isDepthCurrent(false), isHeightCurrent(false) {}
336 
337     /// Boundary nodes are placeholders for the boundary of the
338     /// scheduling region.
339     ///
340     /// BoundaryNodes can have DAG edges, including Data edges, but they do not
341     /// correspond to schedulable entities (e.g. instructions) and do not have a
342     /// valid ID. Consequently, always check for boundary nodes before accessing
343     /// an associative data structure keyed on node ID.
344     bool isBoundaryNode() const { return NodeNum == BoundaryID; }
345 
346     /// Assigns the representative SDNode for this SUnit. This may be used
347     /// during pre-regalloc scheduling.
348     void setNode(SDNode *N) {
349       assert(!Instr && "Setting SDNode of SUnit with MachineInstr!");
350       Node = N;
351     }
352 
353     /// Returns the representative SDNode for this SUnit. This may be used
354     /// during pre-regalloc scheduling.
355     SDNode *getNode() const {
356       assert(!Instr && "Reading SDNode of SUnit with MachineInstr!");
357       return Node;
358     }
359 
360     /// Returns true if this SUnit refers to a machine instruction as
361     /// opposed to an SDNode.
362     bool isInstr() const { return Instr; }
363 
364     /// Assigns the instruction for the SUnit. This may be used during
365     /// post-regalloc scheduling.
366     void setInstr(MachineInstr *MI) {
367       assert(!Node && "Setting MachineInstr of SUnit with SDNode!");
368       Instr = MI;
369     }
370 
371     /// Returns the representative MachineInstr for this SUnit. This may be used
372     /// during post-regalloc scheduling.
373     MachineInstr *getInstr() const {
374       assert(!Node && "Reading MachineInstr of SUnit with SDNode!");
375       return Instr;
376     }
377 
378     /// Adds the specified edge as a pred of the current node if not already.
379     /// It also adds the current node as a successor of the specified node.
380     bool addPred(const SDep &D, bool Required = true);
381 
382     /// Adds a barrier edge to SU by calling addPred(), with latency 0
383     /// generally or latency 1 for a store followed by a load.
384     bool addPredBarrier(SUnit *SU) {
385       SDep Dep(SU, SDep::Barrier);
386       unsigned TrueMemOrderLatency =
387         ((SU->getInstr()->mayStore() && this->getInstr()->mayLoad()) ? 1 : 0);
388       Dep.setLatency(TrueMemOrderLatency);
389       return addPred(Dep);
390     }
391 
392     /// Removes the specified edge as a pred of the current node if it exists.
393     /// It also removes the current node as a successor of the specified node.
394     void removePred(const SDep &D);
395 
396     /// Returns the depth of this node, which is the length of the maximum path
397     /// up to any node which has no predecessors.
398     unsigned getDepth() const {
399       if (!isDepthCurrent)
400         const_cast<SUnit *>(this)->ComputeDepth();
401       return Depth;
402     }
403 
404     /// Returns the height of this node, which is the length of the
405     /// maximum path down to any node which has no successors.
406     unsigned getHeight() const {
407       if (!isHeightCurrent)
408         const_cast<SUnit *>(this)->ComputeHeight();
409       return Height;
410     }
411 
412     /// If NewDepth is greater than this node's depth value, sets it to
413     /// be the new depth value. This also recursively marks successor nodes
414     /// dirty.
415     void setDepthToAtLeast(unsigned NewDepth);
416 
417     /// If NewHeight is greater than this node's height value, set it to be
418     /// the new height value. This also recursively marks predecessor nodes
419     /// dirty.
420     void setHeightToAtLeast(unsigned NewHeight);
421 
422     /// Sets a flag in this node to indicate that its stored Depth value
423     /// will require recomputation the next time getDepth() is called.
424     void setDepthDirty();
425 
426     /// Sets a flag in this node to indicate that its stored Height value
427     /// will require recomputation the next time getHeight() is called.
428     void setHeightDirty();
429 
430     /// Tests if node N is a predecessor of this node.
431     bool isPred(const SUnit *N) const {
432       for (const SDep &Pred : Preds)
433         if (Pred.getSUnit() == N)
434           return true;
435       return false;
436     }
437 
438     /// Tests if node N is a successor of this node.
439     bool isSucc(const SUnit *N) const {
440       for (const SDep &Succ : Succs)
441         if (Succ.getSUnit() == N)
442           return true;
443       return false;
444     }
445 
446     bool isTopReady() const {
447       return NumPredsLeft == 0;
448     }
449     bool isBottomReady() const {
450       return NumSuccsLeft == 0;
451     }
452 
453     /// Orders this node's predecessor edges such that the critical path
454     /// edge occurs first.
455     void biasCriticalPath();
456 
457     void dumpAttributes() const;
458 
459   private:
460     void ComputeDepth();
461     void ComputeHeight();
462   };
463 
464   /// Returns true if the specified SDep is equivalent except for latency.
465   inline bool SDep::overlaps(const SDep &Other) const {
466     if (Dep != Other.Dep)
467       return false;
468     switch (Dep.getInt()) {
469     case Data:
470     case Anti:
471     case Output:
472       return Contents.Reg == Other.Contents.Reg;
473     case Order:
474       return Contents.OrdKind == Other.Contents.OrdKind;
475     }
476     llvm_unreachable("Invalid dependency kind!");
477   }
478 
479   //// Returns the SUnit to which this edge points.
480   inline SUnit *SDep::getSUnit() const { return Dep.getPointer(); }
481 
482   //// Assigns the SUnit to which this edge points.
483   inline void SDep::setSUnit(SUnit *SU) { Dep.setPointer(SU); }
484 
485   /// Returns an enum value representing the kind of the dependence.
486   inline SDep::Kind SDep::getKind() const { return Dep.getInt(); }
487 
488   //===--------------------------------------------------------------------===//
489 
490   /// This interface is used to plug different priorities computation
491   /// algorithms into the list scheduler. It implements the interface of a
492   /// standard priority queue, where nodes are inserted in arbitrary order and
493   /// returned in priority order.  The computation of the priority and the
494   /// representation of the queue are totally up to the implementation to
495   /// decide.
496   class SchedulingPriorityQueue {
497     virtual void anchor();
498 
499     unsigned CurCycle = 0;
500     bool HasReadyFilter;
501 
502   public:
503     SchedulingPriorityQueue(bool rf = false) :  HasReadyFilter(rf) {}
504 
505     virtual ~SchedulingPriorityQueue() = default;
506 
507     virtual bool isBottomUp() const = 0;
508 
509     virtual void initNodes(std::vector<SUnit> &SUnits) = 0;
510     virtual void addNode(const SUnit *SU) = 0;
511     virtual void updateNode(const SUnit *SU) = 0;
512     virtual void releaseState() = 0;
513 
514     virtual bool empty() const = 0;
515 
516     bool hasReadyFilter() const { return HasReadyFilter; }
517 
518     virtual bool tracksRegPressure() const { return false; }
519 
520     virtual bool isReady(SUnit *) const {
521       assert(!HasReadyFilter && "The ready filter must override isReady()");
522       return true;
523     }
524 
525     virtual void push(SUnit *U) = 0;
526 
527     void push_all(const std::vector<SUnit *> &Nodes) {
528       for (std::vector<SUnit *>::const_iterator I = Nodes.begin(),
529            E = Nodes.end(); I != E; ++I)
530         push(*I);
531     }
532 
533     virtual SUnit *pop() = 0;
534 
535     virtual void remove(SUnit *SU) = 0;
536 
537     virtual void dump(ScheduleDAG *) const {}
538 
539     /// As each node is scheduled, this method is invoked.  This allows the
540     /// priority function to adjust the priority of related unscheduled nodes,
541     /// for example.
542     virtual void scheduledNode(SUnit *) {}
543 
544     virtual void unscheduledNode(SUnit *) {}
545 
546     void setCurCycle(unsigned Cycle) {
547       CurCycle = Cycle;
548     }
549 
550     unsigned getCurCycle() const {
551       return CurCycle;
552     }
553   };
554 
555   class ScheduleDAG {
556   public:
557     const LLVMTargetMachine &TM;        ///< Target processor
558     const TargetInstrInfo *TII;         ///< Target instruction information
559     const TargetRegisterInfo *TRI;      ///< Target processor register info
560     MachineFunction &MF;                ///< Machine function
561     MachineRegisterInfo &MRI;           ///< Virtual/real register map
562     std::vector<SUnit> SUnits;          ///< The scheduling units.
563     SUnit EntrySU;                      ///< Special node for the region entry.
564     SUnit ExitSU;                       ///< Special node for the region exit.
565 
566 #ifdef NDEBUG
567     static const bool StressSched = false;
568 #else
569     bool StressSched;
570 #endif
571 
572     explicit ScheduleDAG(MachineFunction &mf);
573 
574     virtual ~ScheduleDAG();
575 
576     /// Clears the DAG state (between regions).
577     void clearDAG();
578 
579     /// Returns the MCInstrDesc of this SUnit.
580     /// Returns NULL for SDNodes without a machine opcode.
581     const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
582       if (SU->isInstr()) return &SU->getInstr()->getDesc();
583       return getNodeDesc(SU->getNode());
584     }
585 
586     /// Pops up a GraphViz/gv window with the ScheduleDAG rendered using 'dot'.
587     virtual void viewGraph(const Twine &Name, const Twine &Title);
588     virtual void viewGraph();
589 
590     virtual void dumpNode(const SUnit &SU) const = 0;
591     virtual void dump() const = 0;
592     void dumpNodeName(const SUnit &SU) const;
593 
594     /// Returns a label for an SUnit node in a visualization of the ScheduleDAG.
595     virtual std::string getGraphNodeLabel(const SUnit *SU) const = 0;
596 
597     /// Returns a label for the region of code covered by the DAG.
598     virtual std::string getDAGName() const = 0;
599 
600     /// Adds custom features for a visualization of the ScheduleDAG.
601     virtual void addCustomGraphFeatures(GraphWriter<ScheduleDAG*> &) const {}
602 
603 #ifndef NDEBUG
604     /// Verifies that all SUnits were scheduled and that their state is
605     /// consistent. Returns the number of scheduled SUnits.
606     unsigned VerifyScheduledDAG(bool isBottomUp);
607 #endif
608 
609   protected:
610     void dumpNodeAll(const SUnit &SU) const;
611 
612   private:
613     /// Returns the MCInstrDesc of this SDNode or NULL.
614     const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
615   };
616 
617   class SUnitIterator : public std::iterator<std::forward_iterator_tag,
618                                              SUnit, ptrdiff_t> {
619     SUnit *Node;
620     unsigned Operand;
621 
622     SUnitIterator(SUnit *N, unsigned Op) : Node(N), Operand(Op) {}
623 
624   public:
625     bool operator==(const SUnitIterator& x) const {
626       return Operand == x.Operand;
627     }
628     bool operator!=(const SUnitIterator& x) const { return !operator==(x); }
629 
630     pointer operator*() const {
631       return Node->Preds[Operand].getSUnit();
632     }
633     pointer operator->() const { return operator*(); }
634 
635     SUnitIterator& operator++() {                // Preincrement
636       ++Operand;
637       return *this;
638     }
639     SUnitIterator operator++(int) { // Postincrement
640       SUnitIterator tmp = *this; ++*this; return tmp;
641     }
642 
643     static SUnitIterator begin(SUnit *N) { return SUnitIterator(N, 0); }
644     static SUnitIterator end  (SUnit *N) {
645       return SUnitIterator(N, (unsigned)N->Preds.size());
646     }
647 
648     unsigned getOperand() const { return Operand; }
649     const SUnit *getNode() const { return Node; }
650 
651     /// Tests if this is not an SDep::Data dependence.
652     bool isCtrlDep() const {
653       return getSDep().isCtrl();
654     }
655     bool isArtificialDep() const {
656       return getSDep().isArtificial();
657     }
658     const SDep &getSDep() const {
659       return Node->Preds[Operand];
660     }
661   };
662 
663   template <> struct GraphTraits<SUnit*> {
664     typedef SUnit *NodeRef;
665     typedef SUnitIterator ChildIteratorType;
666     static NodeRef getEntryNode(SUnit *N) { return N; }
667     static ChildIteratorType child_begin(NodeRef N) {
668       return SUnitIterator::begin(N);
669     }
670     static ChildIteratorType child_end(NodeRef N) {
671       return SUnitIterator::end(N);
672     }
673   };
674 
675   template <> struct GraphTraits<ScheduleDAG*> : public GraphTraits<SUnit*> {
676     typedef pointer_iterator<std::vector<SUnit>::iterator> nodes_iterator;
677     static nodes_iterator nodes_begin(ScheduleDAG *G) {
678       return nodes_iterator(G->SUnits.begin());
679     }
680     static nodes_iterator nodes_end(ScheduleDAG *G) {
681       return nodes_iterator(G->SUnits.end());
682     }
683   };
684 
685   /// This class can compute a topological ordering for SUnits and provides
686   /// methods for dynamically updating the ordering as new edges are added.
687   ///
688   /// This allows a very fast implementation of IsReachable, for example.
689   class ScheduleDAGTopologicalSort {
690     /// A reference to the ScheduleDAG's SUnits.
691     std::vector<SUnit> &SUnits;
692     SUnit *ExitSU;
693 
694     // Have any new nodes been added?
695     bool Dirty = false;
696 
697     // Outstanding added edges, that have not been applied to the ordering.
698     SmallVector<std::pair<SUnit *, SUnit *>, 16> Updates;
699 
700     /// Maps topological index to the node number.
701     std::vector<int> Index2Node;
702     /// Maps the node number to its topological index.
703     std::vector<int> Node2Index;
704     /// a set of nodes visited during a DFS traversal.
705     BitVector Visited;
706 
707     /// Makes a DFS traversal and mark all nodes affected by the edge insertion.
708     /// These nodes will later get new topological indexes by means of the Shift
709     /// method.
710     void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
711 
712     /// Reassigns topological indexes for the nodes in the DAG to
713     /// preserve the topological ordering.
714     void Shift(BitVector& Visited, int LowerBound, int UpperBound);
715 
716     /// Assigns the topological index to the node n.
717     void Allocate(int n, int index);
718 
719     /// Fix the ordering, by either recomputing from scratch or by applying
720     /// any outstanding updates. Uses a heuristic to estimate what will be
721     /// cheaper.
722     void FixOrder();
723 
724   public:
725     ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit *ExitSU);
726 
727     /// Creates the initial topological ordering from the DAG to be scheduled.
728     void InitDAGTopologicalSorting();
729 
730     /// Returns an array of SUs that are both in the successor
731     /// subtree of StartSU and in the predecessor subtree of TargetSU.
732     /// StartSU and TargetSU are not in the array.
733     /// Success is false if TargetSU is not in the successor subtree of
734     /// StartSU, else it is true.
735     std::vector<int> GetSubGraph(const SUnit &StartSU, const SUnit &TargetSU,
736                                  bool &Success);
737 
738     /// Checks if \p SU is reachable from \p TargetSU.
739     bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
740 
741     /// Returns true if addPred(TargetSU, SU) creates a cycle.
742     bool WillCreateCycle(SUnit *TargetSU, SUnit *SU);
743 
744     /// Updates the topological ordering to accommodate an edge to be
745     /// added from SUnit \p X to SUnit \p Y.
746     void AddPred(SUnit *Y, SUnit *X);
747 
748     /// Queues an update to the topological ordering to accommodate an edge to
749     /// be added from SUnit \p X to SUnit \p Y.
750     void AddPredQueued(SUnit *Y, SUnit *X);
751 
752     /// Updates the topological ordering to accommodate an an edge to be
753     /// removed from the specified node \p N from the predecessors of the
754     /// current node \p M.
755     void RemovePred(SUnit *M, SUnit *N);
756 
757     /// Mark the ordering as temporarily broken, after a new node has been
758     /// added.
759     void MarkDirty() { Dirty = true; }
760 
761     typedef std::vector<int>::iterator iterator;
762     typedef std::vector<int>::const_iterator const_iterator;
763     iterator begin() { return Index2Node.begin(); }
764     const_iterator begin() const { return Index2Node.begin(); }
765     iterator end() { return Index2Node.end(); }
766     const_iterator end() const { return Index2Node.end(); }
767 
768     typedef std::vector<int>::reverse_iterator reverse_iterator;
769     typedef std::vector<int>::const_reverse_iterator const_reverse_iterator;
770     reverse_iterator rbegin() { return Index2Node.rbegin(); }
771     const_reverse_iterator rbegin() const { return Index2Node.rbegin(); }
772     reverse_iterator rend() { return Index2Node.rend(); }
773     const_reverse_iterator rend() const { return Index2Node.rend(); }
774   };
775 
776 } // end namespace llvm
777 
778 #endif // LLVM_CODEGEN_SCHEDULEDAG_H
779