1 //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // PBQP Graph class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_PBQP_GRAPH_H 14 #define LLVM_CODEGEN_PBQP_GRAPH_H 15 16 #include "llvm/ADT/STLExtras.h" 17 #include <algorithm> 18 #include <cassert> 19 #include <iterator> 20 #include <limits> 21 #include <vector> 22 23 namespace llvm { 24 namespace PBQP { 25 26 class GraphBase { 27 public: 28 using NodeId = unsigned; 29 using EdgeId = unsigned; 30 31 /// Returns a value representing an invalid (non-existent) node. 32 static NodeId invalidNodeId() { 33 return std::numeric_limits<NodeId>::max(); 34 } 35 36 /// Returns a value representing an invalid (non-existent) edge. 37 static EdgeId invalidEdgeId() { 38 return std::numeric_limits<EdgeId>::max(); 39 } 40 }; 41 42 /// PBQP Graph class. 43 /// Instances of this class describe PBQP problems. 44 /// 45 template <typename SolverT> 46 class Graph : public GraphBase { 47 private: 48 using CostAllocator = typename SolverT::CostAllocator; 49 50 public: 51 using RawVector = typename SolverT::RawVector; 52 using RawMatrix = typename SolverT::RawMatrix; 53 using Vector = typename SolverT::Vector; 54 using Matrix = typename SolverT::Matrix; 55 using VectorPtr = typename CostAllocator::VectorPtr; 56 using MatrixPtr = typename CostAllocator::MatrixPtr; 57 using NodeMetadata = typename SolverT::NodeMetadata; 58 using EdgeMetadata = typename SolverT::EdgeMetadata; 59 using GraphMetadata = typename SolverT::GraphMetadata; 60 61 private: 62 class NodeEntry { 63 public: 64 using AdjEdgeList = std::vector<EdgeId>; 65 using AdjEdgeIdx = AdjEdgeList::size_type; 66 using AdjEdgeItr = AdjEdgeList::const_iterator; 67 68 NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} 69 70 static AdjEdgeIdx getInvalidAdjEdgeIdx() { 71 return std::numeric_limits<AdjEdgeIdx>::max(); 72 } 73 74 AdjEdgeIdx addAdjEdgeId(EdgeId EId) { 75 AdjEdgeIdx Idx = AdjEdgeIds.size(); 76 AdjEdgeIds.push_back(EId); 77 return Idx; 78 } 79 80 void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { 81 // Swap-and-pop for fast removal. 82 // 1) Update the adj index of the edge currently at back(). 83 // 2) Move last Edge down to Idx. 84 // 3) pop_back() 85 // If Idx == size() - 1 then the setAdjEdgeIdx and swap are 86 // redundant, but both operations are cheap. 87 G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); 88 AdjEdgeIds[Idx] = AdjEdgeIds.back(); 89 AdjEdgeIds.pop_back(); 90 } 91 92 const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } 93 94 VectorPtr Costs; 95 NodeMetadata Metadata; 96 97 private: 98 AdjEdgeList AdjEdgeIds; 99 }; 100 101 class EdgeEntry { 102 public: 103 EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) 104 : Costs(std::move(Costs)) { 105 NIds[0] = N1Id; 106 NIds[1] = N2Id; 107 ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); 108 ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); 109 } 110 111 void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { 112 assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && 113 "Edge already connected to NIds[NIdx]."); 114 NodeEntry &N = G.getNode(NIds[NIdx]); 115 ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); 116 } 117 118 void connect(Graph &G, EdgeId ThisEdgeId) { 119 connectToN(G, ThisEdgeId, 0); 120 connectToN(G, ThisEdgeId, 1); 121 } 122 123 void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { 124 if (NId == NIds[0]) 125 ThisEdgeAdjIdxs[0] = NewIdx; 126 else { 127 assert(NId == NIds[1] && "Edge not connected to NId"); 128 ThisEdgeAdjIdxs[1] = NewIdx; 129 } 130 } 131 132 void disconnectFromN(Graph &G, unsigned NIdx) { 133 assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && 134 "Edge not connected to NIds[NIdx]."); 135 NodeEntry &N = G.getNode(NIds[NIdx]); 136 N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); 137 ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); 138 } 139 140 void disconnectFrom(Graph &G, NodeId NId) { 141 if (NId == NIds[0]) 142 disconnectFromN(G, 0); 143 else { 144 assert(NId == NIds[1] && "Edge does not connect NId"); 145 disconnectFromN(G, 1); 146 } 147 } 148 149 NodeId getN1Id() const { return NIds[0]; } 150 NodeId getN2Id() const { return NIds[1]; } 151 152 MatrixPtr Costs; 153 EdgeMetadata Metadata; 154 155 private: 156 NodeId NIds[2]; 157 typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; 158 }; 159 160 // ----- MEMBERS ----- 161 162 GraphMetadata Metadata; 163 CostAllocator CostAlloc; 164 SolverT *Solver = nullptr; 165 166 using NodeVector = std::vector<NodeEntry>; 167 using FreeNodeVector = std::vector<NodeId>; 168 NodeVector Nodes; 169 FreeNodeVector FreeNodeIds; 170 171 using EdgeVector = std::vector<EdgeEntry>; 172 using FreeEdgeVector = std::vector<EdgeId>; 173 EdgeVector Edges; 174 FreeEdgeVector FreeEdgeIds; 175 176 Graph(const Graph &Other) {} 177 178 // ----- INTERNAL METHODS ----- 179 180 NodeEntry &getNode(NodeId NId) { 181 assert(NId < Nodes.size() && "Out of bound NodeId"); 182 return Nodes[NId]; 183 } 184 const NodeEntry &getNode(NodeId NId) const { 185 assert(NId < Nodes.size() && "Out of bound NodeId"); 186 return Nodes[NId]; 187 } 188 189 EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } 190 const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } 191 192 NodeId addConstructedNode(NodeEntry N) { 193 NodeId NId = 0; 194 if (!FreeNodeIds.empty()) { 195 NId = FreeNodeIds.back(); 196 FreeNodeIds.pop_back(); 197 Nodes[NId] = std::move(N); 198 } else { 199 NId = Nodes.size(); 200 Nodes.push_back(std::move(N)); 201 } 202 return NId; 203 } 204 205 EdgeId addConstructedEdge(EdgeEntry E) { 206 assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && 207 "Attempt to add duplicate edge."); 208 EdgeId EId = 0; 209 if (!FreeEdgeIds.empty()) { 210 EId = FreeEdgeIds.back(); 211 FreeEdgeIds.pop_back(); 212 Edges[EId] = std::move(E); 213 } else { 214 EId = Edges.size(); 215 Edges.push_back(std::move(E)); 216 } 217 218 EdgeEntry &NE = getEdge(EId); 219 220 // Add the edge to the adjacency sets of its nodes. 221 NE.connect(*this, EId); 222 return EId; 223 } 224 225 void operator=(const Graph &Other) {} 226 227 public: 228 using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; 229 230 class NodeItr { 231 public: 232 using iterator_category = std::forward_iterator_tag; 233 using value_type = NodeId; 234 using difference_type = int; 235 using pointer = NodeId *; 236 using reference = NodeId &; 237 238 NodeItr(NodeId CurNId, const Graph &G) 239 : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { 240 this->CurNId = findNextInUse(CurNId); // Move to first in-use node id 241 } 242 243 bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } 244 bool operator!=(const NodeItr &O) const { return !(*this == O); } 245 NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } 246 NodeId operator*() const { return CurNId; } 247 248 private: 249 NodeId findNextInUse(NodeId NId) const { 250 while (NId < EndNId && is_contained(FreeNodeIds, NId)) { 251 ++NId; 252 } 253 return NId; 254 } 255 256 NodeId CurNId, EndNId; 257 const FreeNodeVector &FreeNodeIds; 258 }; 259 260 class EdgeItr { 261 public: 262 EdgeItr(EdgeId CurEId, const Graph &G) 263 : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { 264 this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id 265 } 266 267 bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } 268 bool operator!=(const EdgeItr &O) const { return !(*this == O); } 269 EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } 270 EdgeId operator*() const { return CurEId; } 271 272 private: 273 EdgeId findNextInUse(EdgeId EId) const { 274 while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { 275 ++EId; 276 } 277 return EId; 278 } 279 280 EdgeId CurEId, EndEId; 281 const FreeEdgeVector &FreeEdgeIds; 282 }; 283 284 class NodeIdSet { 285 public: 286 NodeIdSet(const Graph &G) : G(G) {} 287 288 NodeItr begin() const { return NodeItr(0, G); } 289 NodeItr end() const { return NodeItr(G.Nodes.size(), G); } 290 291 bool empty() const { return G.Nodes.empty(); } 292 293 typename NodeVector::size_type size() const { 294 return G.Nodes.size() - G.FreeNodeIds.size(); 295 } 296 297 private: 298 const Graph& G; 299 }; 300 301 class EdgeIdSet { 302 public: 303 EdgeIdSet(const Graph &G) : G(G) {} 304 305 EdgeItr begin() const { return EdgeItr(0, G); } 306 EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } 307 308 bool empty() const { return G.Edges.empty(); } 309 310 typename NodeVector::size_type size() const { 311 return G.Edges.size() - G.FreeEdgeIds.size(); 312 } 313 314 private: 315 const Graph& G; 316 }; 317 318 class AdjEdgeIdSet { 319 public: 320 AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} 321 322 typename NodeEntry::AdjEdgeItr begin() const { 323 return NE.getAdjEdgeIds().begin(); 324 } 325 326 typename NodeEntry::AdjEdgeItr end() const { 327 return NE.getAdjEdgeIds().end(); 328 } 329 330 bool empty() const { return NE.getAdjEdgeIds().empty(); } 331 332 typename NodeEntry::AdjEdgeList::size_type size() const { 333 return NE.getAdjEdgeIds().size(); 334 } 335 336 private: 337 const NodeEntry &NE; 338 }; 339 340 /// Construct an empty PBQP graph. 341 Graph() = default; 342 343 /// Construct an empty PBQP graph with the given graph metadata. 344 Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} 345 346 /// Get a reference to the graph metadata. 347 GraphMetadata& getMetadata() { return Metadata; } 348 349 /// Get a const-reference to the graph metadata. 350 const GraphMetadata& getMetadata() const { return Metadata; } 351 352 /// Lock this graph to the given solver instance in preparation 353 /// for running the solver. This method will call solver.handleAddNode for 354 /// each node in the graph, and handleAddEdge for each edge, to give the 355 /// solver an opportunity to set up any requried metadata. 356 void setSolver(SolverT &S) { 357 assert(!Solver && "Solver already set. Call unsetSolver()."); 358 Solver = &S; 359 for (auto NId : nodeIds()) 360 Solver->handleAddNode(NId); 361 for (auto EId : edgeIds()) 362 Solver->handleAddEdge(EId); 363 } 364 365 /// Release from solver instance. 366 void unsetSolver() { 367 assert(Solver && "Solver not set."); 368 Solver = nullptr; 369 } 370 371 /// Add a node with the given costs. 372 /// @param Costs Cost vector for the new node. 373 /// @return Node iterator for the added node. 374 template <typename OtherVectorT> 375 NodeId addNode(OtherVectorT Costs) { 376 // Get cost vector from the problem domain 377 VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); 378 NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); 379 if (Solver) 380 Solver->handleAddNode(NId); 381 return NId; 382 } 383 384 /// Add a node bypassing the cost allocator. 385 /// @param Costs Cost vector ptr for the new node (must be convertible to 386 /// VectorPtr). 387 /// @return Node iterator for the added node. 388 /// 389 /// This method allows for fast addition of a node whose costs don't need 390 /// to be passed through the cost allocator. The most common use case for 391 /// this is when duplicating costs from an existing node (when using a 392 /// pooling allocator). These have already been uniqued, so we can avoid 393 /// re-constructing and re-uniquing them by attaching them directly to the 394 /// new node. 395 template <typename OtherVectorPtrT> 396 NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { 397 NodeId NId = addConstructedNode(NodeEntry(Costs)); 398 if (Solver) 399 Solver->handleAddNode(NId); 400 return NId; 401 } 402 403 /// Add an edge between the given nodes with the given costs. 404 /// @param N1Id First node. 405 /// @param N2Id Second node. 406 /// @param Costs Cost matrix for new edge. 407 /// @return Edge iterator for the added edge. 408 template <typename OtherVectorT> 409 EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { 410 assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && 411 getNodeCosts(N2Id).getLength() == Costs.getCols() && 412 "Matrix dimensions mismatch."); 413 // Get cost matrix from the problem domain. 414 MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); 415 EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); 416 if (Solver) 417 Solver->handleAddEdge(EId); 418 return EId; 419 } 420 421 /// Add an edge bypassing the cost allocator. 422 /// @param N1Id First node. 423 /// @param N2Id Second node. 424 /// @param Costs Cost matrix for new edge. 425 /// @return Edge iterator for the added edge. 426 /// 427 /// This method allows for fast addition of an edge whose costs don't need 428 /// to be passed through the cost allocator. The most common use case for 429 /// this is when duplicating costs from an existing edge (when using a 430 /// pooling allocator). These have already been uniqued, so we can avoid 431 /// re-constructing and re-uniquing them by attaching them directly to the 432 /// new edge. 433 template <typename OtherMatrixPtrT> 434 NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, 435 OtherMatrixPtrT Costs) { 436 assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && 437 getNodeCosts(N2Id).getLength() == Costs->getCols() && 438 "Matrix dimensions mismatch."); 439 // Get cost matrix from the problem domain. 440 EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); 441 if (Solver) 442 Solver->handleAddEdge(EId); 443 return EId; 444 } 445 446 /// Returns true if the graph is empty. 447 bool empty() const { return NodeIdSet(*this).empty(); } 448 449 NodeIdSet nodeIds() const { return NodeIdSet(*this); } 450 EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } 451 452 AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } 453 454 /// Get the number of nodes in the graph. 455 /// @return Number of nodes in the graph. 456 unsigned getNumNodes() const { return NodeIdSet(*this).size(); } 457 458 /// Get the number of edges in the graph. 459 /// @return Number of edges in the graph. 460 unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } 461 462 /// Set a node's cost vector. 463 /// @param NId Node to update. 464 /// @param Costs New costs to set. 465 template <typename OtherVectorT> 466 void setNodeCosts(NodeId NId, OtherVectorT Costs) { 467 VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); 468 if (Solver) 469 Solver->handleSetNodeCosts(NId, *AllocatedCosts); 470 getNode(NId).Costs = AllocatedCosts; 471 } 472 473 /// Get a VectorPtr to a node's cost vector. Rarely useful - use 474 /// getNodeCosts where possible. 475 /// @param NId Node id. 476 /// @return VectorPtr to node cost vector. 477 /// 478 /// This method is primarily useful for duplicating costs quickly by 479 /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer 480 /// getNodeCosts when dealing with node cost values. 481 const VectorPtr& getNodeCostsPtr(NodeId NId) const { 482 return getNode(NId).Costs; 483 } 484 485 /// Get a node's cost vector. 486 /// @param NId Node id. 487 /// @return Node cost vector. 488 const Vector& getNodeCosts(NodeId NId) const { 489 return *getNodeCostsPtr(NId); 490 } 491 492 NodeMetadata& getNodeMetadata(NodeId NId) { 493 return getNode(NId).Metadata; 494 } 495 496 const NodeMetadata& getNodeMetadata(NodeId NId) const { 497 return getNode(NId).Metadata; 498 } 499 500 typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { 501 return getNode(NId).getAdjEdgeIds().size(); 502 } 503 504 /// Update an edge's cost matrix. 505 /// @param EId Edge id. 506 /// @param Costs New cost matrix. 507 template <typename OtherMatrixT> 508 void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { 509 MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); 510 if (Solver) 511 Solver->handleUpdateCosts(EId, *AllocatedCosts); 512 getEdge(EId).Costs = AllocatedCosts; 513 } 514 515 /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use 516 /// getEdgeCosts where possible. 517 /// @param EId Edge id. 518 /// @return MatrixPtr to edge cost matrix. 519 /// 520 /// This method is primarily useful for duplicating costs quickly by 521 /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer 522 /// getEdgeCosts when dealing with edge cost values. 523 const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { 524 return getEdge(EId).Costs; 525 } 526 527 /// Get an edge's cost matrix. 528 /// @param EId Edge id. 529 /// @return Edge cost matrix. 530 const Matrix& getEdgeCosts(EdgeId EId) const { 531 return *getEdge(EId).Costs; 532 } 533 534 EdgeMetadata& getEdgeMetadata(EdgeId EId) { 535 return getEdge(EId).Metadata; 536 } 537 538 const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { 539 return getEdge(EId).Metadata; 540 } 541 542 /// Get the first node connected to this edge. 543 /// @param EId Edge id. 544 /// @return The first node connected to the given edge. 545 NodeId getEdgeNode1Id(EdgeId EId) const { 546 return getEdge(EId).getN1Id(); 547 } 548 549 /// Get the second node connected to this edge. 550 /// @param EId Edge id. 551 /// @return The second node connected to the given edge. 552 NodeId getEdgeNode2Id(EdgeId EId) const { 553 return getEdge(EId).getN2Id(); 554 } 555 556 /// Get the "other" node connected to this edge. 557 /// @param EId Edge id. 558 /// @param NId Node id for the "given" node. 559 /// @return The iterator for the "other" node connected to this edge. 560 NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { 561 EdgeEntry &E = getEdge(EId); 562 if (E.getN1Id() == NId) { 563 return E.getN2Id(); 564 } // else 565 return E.getN1Id(); 566 } 567 568 /// Get the edge connecting two nodes. 569 /// @param N1Id First node id. 570 /// @param N2Id Second node id. 571 /// @return An id for edge (N1Id, N2Id) if such an edge exists, 572 /// otherwise returns an invalid edge id. 573 EdgeId findEdge(NodeId N1Id, NodeId N2Id) { 574 for (auto AEId : adjEdgeIds(N1Id)) { 575 if ((getEdgeNode1Id(AEId) == N2Id) || 576 (getEdgeNode2Id(AEId) == N2Id)) { 577 return AEId; 578 } 579 } 580 return invalidEdgeId(); 581 } 582 583 /// Remove a node from the graph. 584 /// @param NId Node id. 585 void removeNode(NodeId NId) { 586 if (Solver) 587 Solver->handleRemoveNode(NId); 588 NodeEntry &N = getNode(NId); 589 // TODO: Can this be for-each'd? 590 for (AdjEdgeItr AEItr = N.adjEdgesBegin(), 591 AEEnd = N.adjEdgesEnd(); 592 AEItr != AEEnd;) { 593 EdgeId EId = *AEItr; 594 ++AEItr; 595 removeEdge(EId); 596 } 597 FreeNodeIds.push_back(NId); 598 } 599 600 /// Disconnect an edge from the given node. 601 /// 602 /// Removes the given edge from the adjacency list of the given node. 603 /// This operation leaves the edge in an 'asymmetric' state: It will no 604 /// longer appear in an iteration over the given node's (NId's) edges, but 605 /// will appear in an iteration over the 'other', unnamed node's edges. 606 /// 607 /// This does not correspond to any normal graph operation, but exists to 608 /// support efficient PBQP graph-reduction based solvers. It is used to 609 /// 'effectively' remove the unnamed node from the graph while the solver 610 /// is performing the reduction. The solver will later call reconnectNode 611 /// to restore the edge in the named node's adjacency list. 612 /// 613 /// Since the degree of a node is the number of connected edges, 614 /// disconnecting an edge from a node 'u' will cause the degree of 'u' to 615 /// drop by 1. 616 /// 617 /// A disconnected edge WILL still appear in an iteration over the graph 618 /// edges. 619 /// 620 /// A disconnected edge should not be removed from the graph, it should be 621 /// reconnected first. 622 /// 623 /// A disconnected edge can be reconnected by calling the reconnectEdge 624 /// method. 625 void disconnectEdge(EdgeId EId, NodeId NId) { 626 if (Solver) 627 Solver->handleDisconnectEdge(EId, NId); 628 629 EdgeEntry &E = getEdge(EId); 630 E.disconnectFrom(*this, NId); 631 } 632 633 /// Convenience method to disconnect all neighbours from the given 634 /// node. 635 void disconnectAllNeighborsFromNode(NodeId NId) { 636 for (auto AEId : adjEdgeIds(NId)) 637 disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); 638 } 639 640 /// Re-attach an edge to its nodes. 641 /// 642 /// Adds an edge that had been previously disconnected back into the 643 /// adjacency set of the nodes that the edge connects. 644 void reconnectEdge(EdgeId EId, NodeId NId) { 645 EdgeEntry &E = getEdge(EId); 646 E.connectTo(*this, EId, NId); 647 if (Solver) 648 Solver->handleReconnectEdge(EId, NId); 649 } 650 651 /// Remove an edge from the graph. 652 /// @param EId Edge id. 653 void removeEdge(EdgeId EId) { 654 if (Solver) 655 Solver->handleRemoveEdge(EId); 656 EdgeEntry &E = getEdge(EId); 657 E.disconnect(); 658 FreeEdgeIds.push_back(EId); 659 Edges[EId].invalidate(); 660 } 661 662 /// Remove all nodes and edges from the graph. 663 void clear() { 664 Nodes.clear(); 665 FreeNodeIds.clear(); 666 Edges.clear(); 667 FreeEdgeIds.clear(); 668 } 669 }; 670 671 } // end namespace PBQP 672 } // end namespace llvm 673 674 #endif // LLVM_CODEGEN_PBQP_GRAPH_HPP 675