1 //===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This header contains common, non-processor-specific data structures and 10 // constants for the ELF file format. 11 // 12 // The details of the ELF32 bits in this file are largely based on the Tool 13 // Interface Standard (TIS) Executable and Linking Format (ELF) Specification 14 // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format 15 // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #ifndef LLVM_BINARYFORMAT_ELF_H 20 #define LLVM_BINARYFORMAT_ELF_H 21 22 #include <cstdint> 23 #include <cstring> 24 25 namespace llvm { 26 namespace ELF { 27 28 using Elf32_Addr = uint32_t; // Program address 29 using Elf32_Off = uint32_t; // File offset 30 using Elf32_Half = uint16_t; 31 using Elf32_Word = uint32_t; 32 using Elf32_Sword = int32_t; 33 34 using Elf64_Addr = uint64_t; 35 using Elf64_Off = uint64_t; 36 using Elf64_Half = uint16_t; 37 using Elf64_Word = uint32_t; 38 using Elf64_Sword = int32_t; 39 using Elf64_Xword = uint64_t; 40 using Elf64_Sxword = int64_t; 41 42 // Object file magic string. 43 static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'}; 44 45 // e_ident size and indices. 46 enum { 47 EI_MAG0 = 0, // File identification index. 48 EI_MAG1 = 1, // File identification index. 49 EI_MAG2 = 2, // File identification index. 50 EI_MAG3 = 3, // File identification index. 51 EI_CLASS = 4, // File class. 52 EI_DATA = 5, // Data encoding. 53 EI_VERSION = 6, // File version. 54 EI_OSABI = 7, // OS/ABI identification. 55 EI_ABIVERSION = 8, // ABI version. 56 EI_PAD = 9, // Start of padding bytes. 57 EI_NIDENT = 16 // Number of bytes in e_ident. 58 }; 59 60 struct Elf32_Ehdr { 61 unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes 62 Elf32_Half e_type; // Type of file (see ET_* below) 63 Elf32_Half e_machine; // Required architecture for this file (see EM_*) 64 Elf32_Word e_version; // Must be equal to 1 65 Elf32_Addr e_entry; // Address to jump to in order to start program 66 Elf32_Off e_phoff; // Program header table's file offset, in bytes 67 Elf32_Off e_shoff; // Section header table's file offset, in bytes 68 Elf32_Word e_flags; // Processor-specific flags 69 Elf32_Half e_ehsize; // Size of ELF header, in bytes 70 Elf32_Half e_phentsize; // Size of an entry in the program header table 71 Elf32_Half e_phnum; // Number of entries in the program header table 72 Elf32_Half e_shentsize; // Size of an entry in the section header table 73 Elf32_Half e_shnum; // Number of entries in the section header table 74 Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table 75 76 bool checkMagic() const { 77 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 78 } 79 80 unsigned char getFileClass() const { return e_ident[EI_CLASS]; } 81 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 82 }; 83 84 // 64-bit ELF header. Fields are the same as for ELF32, but with different 85 // types (see above). 86 struct Elf64_Ehdr { 87 unsigned char e_ident[EI_NIDENT]; 88 Elf64_Half e_type; 89 Elf64_Half e_machine; 90 Elf64_Word e_version; 91 Elf64_Addr e_entry; 92 Elf64_Off e_phoff; 93 Elf64_Off e_shoff; 94 Elf64_Word e_flags; 95 Elf64_Half e_ehsize; 96 Elf64_Half e_phentsize; 97 Elf64_Half e_phnum; 98 Elf64_Half e_shentsize; 99 Elf64_Half e_shnum; 100 Elf64_Half e_shstrndx; 101 102 bool checkMagic() const { 103 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 104 } 105 106 unsigned char getFileClass() const { return e_ident[EI_CLASS]; } 107 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 108 }; 109 110 // File types. 111 // See current registered ELF types at: 112 // http://www.sco.com/developers/gabi/latest/ch4.eheader.html 113 enum { 114 ET_NONE = 0, // No file type 115 ET_REL = 1, // Relocatable file 116 ET_EXEC = 2, // Executable file 117 ET_DYN = 3, // Shared object file 118 ET_CORE = 4, // Core file 119 ET_LOOS = 0xfe00, // Beginning of operating system-specific codes 120 ET_HIOS = 0xfeff, // Operating system-specific 121 ET_LOPROC = 0xff00, // Beginning of processor-specific codes 122 ET_HIPROC = 0xffff // Processor-specific 123 }; 124 125 // Versioning 126 enum { EV_NONE = 0, EV_CURRENT = 1 }; 127 128 // Machine architectures 129 // See current registered ELF machine architectures at: 130 // http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html 131 enum { 132 EM_NONE = 0, // No machine 133 EM_M32 = 1, // AT&T WE 32100 134 EM_SPARC = 2, // SPARC 135 EM_386 = 3, // Intel 386 136 EM_68K = 4, // Motorola 68000 137 EM_88K = 5, // Motorola 88000 138 EM_IAMCU = 6, // Intel MCU 139 EM_860 = 7, // Intel 80860 140 EM_MIPS = 8, // MIPS R3000 141 EM_S370 = 9, // IBM System/370 142 EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian 143 EM_PARISC = 15, // Hewlett-Packard PA-RISC 144 EM_VPP500 = 17, // Fujitsu VPP500 145 EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC 146 EM_960 = 19, // Intel 80960 147 EM_PPC = 20, // PowerPC 148 EM_PPC64 = 21, // PowerPC64 149 EM_S390 = 22, // IBM System/390 150 EM_SPU = 23, // IBM SPU/SPC 151 EM_V800 = 36, // NEC V800 152 EM_FR20 = 37, // Fujitsu FR20 153 EM_RH32 = 38, // TRW RH-32 154 EM_RCE = 39, // Motorola RCE 155 EM_ARM = 40, // ARM 156 EM_ALPHA = 41, // DEC Alpha 157 EM_SH = 42, // Hitachi SH 158 EM_SPARCV9 = 43, // SPARC V9 159 EM_TRICORE = 44, // Siemens TriCore 160 EM_ARC = 45, // Argonaut RISC Core 161 EM_H8_300 = 46, // Hitachi H8/300 162 EM_H8_300H = 47, // Hitachi H8/300H 163 EM_H8S = 48, // Hitachi H8S 164 EM_H8_500 = 49, // Hitachi H8/500 165 EM_IA_64 = 50, // Intel IA-64 processor architecture 166 EM_MIPS_X = 51, // Stanford MIPS-X 167 EM_COLDFIRE = 52, // Motorola ColdFire 168 EM_68HC12 = 53, // Motorola M68HC12 169 EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator 170 EM_PCP = 55, // Siemens PCP 171 EM_NCPU = 56, // Sony nCPU embedded RISC processor 172 EM_NDR1 = 57, // Denso NDR1 microprocessor 173 EM_STARCORE = 58, // Motorola Star*Core processor 174 EM_ME16 = 59, // Toyota ME16 processor 175 EM_ST100 = 60, // STMicroelectronics ST100 processor 176 EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family 177 EM_X86_64 = 62, // AMD x86-64 architecture 178 EM_PDSP = 63, // Sony DSP Processor 179 EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 180 EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 181 EM_FX66 = 66, // Siemens FX66 microcontroller 182 EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller 183 EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller 184 EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller 185 EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller 186 EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller 187 EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller 188 EM_SVX = 73, // Silicon Graphics SVx 189 EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller 190 EM_VAX = 75, // Digital VAX 191 EM_CRIS = 76, // Axis Communications 32-bit embedded processor 192 EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor 193 EM_FIREPATH = 78, // Element 14 64-bit DSP Processor 194 EM_ZSP = 79, // LSI Logic 16-bit DSP Processor 195 EM_MMIX = 80, // Donald Knuth's educational 64-bit processor 196 EM_HUANY = 81, // Harvard University machine-independent object files 197 EM_PRISM = 82, // SiTera Prism 198 EM_AVR = 83, // Atmel AVR 8-bit microcontroller 199 EM_FR30 = 84, // Fujitsu FR30 200 EM_D10V = 85, // Mitsubishi D10V 201 EM_D30V = 86, // Mitsubishi D30V 202 EM_V850 = 87, // NEC v850 203 EM_M32R = 88, // Mitsubishi M32R 204 EM_MN10300 = 89, // Matsushita MN10300 205 EM_MN10200 = 90, // Matsushita MN10200 206 EM_PJ = 91, // picoJava 207 EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor 208 EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old 209 // spelling/synonym: EM_ARC_A5) 210 EM_XTENSA = 94, // Tensilica Xtensa Architecture 211 EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor 212 EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor 213 EM_NS32K = 97, // National Semiconductor 32000 series 214 EM_TPC = 98, // Tenor Network TPC processor 215 EM_SNP1K = 99, // Trebia SNP 1000 processor 216 EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 217 EM_IP2K = 101, // Ubicom IP2xxx microcontroller family 218 EM_MAX = 102, // MAX Processor 219 EM_CR = 103, // National Semiconductor CompactRISC microprocessor 220 EM_F2MC16 = 104, // Fujitsu F2MC16 221 EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 222 EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor 223 EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors 224 EM_SEP = 108, // Sharp embedded microprocessor 225 EM_ARCA = 109, // Arca RISC Microprocessor 226 EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC 227 // of Peking University 228 EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU 229 EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor 230 EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor 231 EM_CRX = 114, // National Semiconductor CompactRISC CRX 232 EM_XGATE = 115, // Motorola XGATE embedded processor 233 EM_C166 = 116, // Infineon C16x/XC16x processor 234 EM_M16C = 117, // Renesas M16C series microprocessors 235 EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal 236 // Controller 237 EM_CE = 119, // Freescale Communication Engine RISC core 238 EM_M32C = 120, // Renesas M32C series microprocessors 239 EM_TSK3000 = 131, // Altium TSK3000 core 240 EM_RS08 = 132, // Freescale RS08 embedded processor 241 EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP 242 // processors 243 EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor 244 EM_SCORE7 = 135, // Sunplus S+core7 RISC processor 245 EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor 246 EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor 247 EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture 248 EM_SE_C17 = 139, // Seiko Epson C17 family 249 EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family 250 EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family 251 EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family 252 EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor 253 EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor 254 EM_R32C = 162, // Renesas R32C series microprocessors 255 EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family 256 EM_HEXAGON = 164, // Qualcomm Hexagon processor 257 EM_8051 = 165, // Intel 8051 and variants 258 EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable 259 // and extensible RISC processors 260 EM_NDS32 = 167, // Andes Technology compact code size embedded RISC 261 // processor family 262 EM_ECOG1 = 168, // Cyan Technology eCOG1X family 263 EM_ECOG1X = 168, // Cyan Technology eCOG1X family 264 EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers 265 EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor 266 EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor 267 EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture 268 EM_RX = 173, // Renesas RX family 269 EM_METAG = 174, // Imagination Technologies META processor 270 // architecture 271 EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture 272 EM_ECOG16 = 176, // Cyan Technology eCOG16 family 273 EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit 274 // microprocessor 275 EM_ETPU = 178, // Freescale Extended Time Processing Unit 276 EM_SLE9X = 179, // Infineon Technologies SLE9X core 277 EM_L10M = 180, // Intel L10M 278 EM_K10M = 181, // Intel K10M 279 EM_AARCH64 = 183, // ARM AArch64 280 EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family 281 EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller 282 EM_TILE64 = 187, // Tilera TILE64 multicore architecture family 283 EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family 284 EM_CUDA = 190, // NVIDIA CUDA architecture 285 EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family 286 EM_CLOUDSHIELD = 192, // CloudShield architecture family 287 EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family 288 EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family 289 EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 290 EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core 291 EM_RL78 = 197, // Renesas RL78 family 292 EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor 293 EM_78KOR = 199, // Renesas 78KOR family 294 EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC) 295 EM_BA1 = 201, // Beyond BA1 CPU architecture 296 EM_BA2 = 202, // Beyond BA2 CPU architecture 297 EM_XCORE = 203, // XMOS xCORE processor family 298 EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family 299 EM_INTEL205 = 205, // Reserved by Intel 300 EM_INTEL206 = 206, // Reserved by Intel 301 EM_INTEL207 = 207, // Reserved by Intel 302 EM_INTEL208 = 208, // Reserved by Intel 303 EM_INTEL209 = 209, // Reserved by Intel 304 EM_KM32 = 210, // KM211 KM32 32-bit processor 305 EM_KMX32 = 211, // KM211 KMX32 32-bit processor 306 EM_KMX16 = 212, // KM211 KMX16 16-bit processor 307 EM_KMX8 = 213, // KM211 KMX8 8-bit processor 308 EM_KVARC = 214, // KM211 KVARC processor 309 EM_CDP = 215, // Paneve CDP architecture family 310 EM_COGE = 216, // Cognitive Smart Memory Processor 311 EM_COOL = 217, // iCelero CoolEngine 312 EM_NORC = 218, // Nanoradio Optimized RISC 313 EM_CSR_KALIMBA = 219, // CSR Kalimba architecture family 314 EM_AMDGPU = 224, // AMD GPU architecture 315 EM_RISCV = 243, // RISC-V 316 EM_LANAI = 244, // Lanai 32-bit processor 317 EM_BPF = 247, // Linux kernel bpf virtual machine 318 EM_VE = 251, // NEC SX-Aurora VE 319 EM_CSKY = 252, // C-SKY 32-bit processor 320 }; 321 322 // Object file classes. 323 enum { 324 ELFCLASSNONE = 0, 325 ELFCLASS32 = 1, // 32-bit object file 326 ELFCLASS64 = 2 // 64-bit object file 327 }; 328 329 // Object file byte orderings. 330 enum { 331 ELFDATANONE = 0, // Invalid data encoding. 332 ELFDATA2LSB = 1, // Little-endian object file 333 ELFDATA2MSB = 2 // Big-endian object file 334 }; 335 336 // OS ABI identification. 337 enum { 338 ELFOSABI_NONE = 0, // UNIX System V ABI 339 ELFOSABI_HPUX = 1, // HP-UX operating system 340 ELFOSABI_NETBSD = 2, // NetBSD 341 ELFOSABI_GNU = 3, // GNU/Linux 342 ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU. 343 ELFOSABI_HURD = 4, // GNU/Hurd 344 ELFOSABI_SOLARIS = 6, // Solaris 345 ELFOSABI_AIX = 7, // AIX 346 ELFOSABI_IRIX = 8, // IRIX 347 ELFOSABI_FREEBSD = 9, // FreeBSD 348 ELFOSABI_TRU64 = 10, // TRU64 UNIX 349 ELFOSABI_MODESTO = 11, // Novell Modesto 350 ELFOSABI_OPENBSD = 12, // OpenBSD 351 ELFOSABI_OPENVMS = 13, // OpenVMS 352 ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel 353 ELFOSABI_AROS = 15, // AROS 354 ELFOSABI_FENIXOS = 16, // FenixOS 355 ELFOSABI_CLOUDABI = 17, // Nuxi CloudABI 356 ELFOSABI_FIRST_ARCH = 64, // First architecture-specific OS ABI 357 ELFOSABI_AMDGPU_HSA = 64, // AMD HSA runtime 358 ELFOSABI_AMDGPU_PAL = 65, // AMD PAL runtime 359 ELFOSABI_AMDGPU_MESA3D = 66, // AMD GCN GPUs (GFX6+) for MESA runtime 360 ELFOSABI_ARM = 97, // ARM 361 ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 362 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 363 ELFOSABI_STANDALONE = 255, // Standalone (embedded) application 364 ELFOSABI_LAST_ARCH = 255 // Last Architecture-specific OS ABI 365 }; 366 367 // AMDGPU OS ABI Version identification. 368 enum { 369 // ELFABIVERSION_AMDGPU_HSA_V1 does not exist because OS ABI identification 370 // was never defined for V1. 371 ELFABIVERSION_AMDGPU_HSA_V2 = 0, 372 ELFABIVERSION_AMDGPU_HSA_V3 = 1, 373 }; 374 375 #define ELF_RELOC(name, value) name = value, 376 377 // X86_64 relocations. 378 enum { 379 #include "ELFRelocs/x86_64.def" 380 }; 381 382 // i386 relocations. 383 enum { 384 #include "ELFRelocs/i386.def" 385 }; 386 387 // ELF Relocation types for PPC32 388 enum { 389 #include "ELFRelocs/PowerPC.def" 390 }; 391 392 // Specific e_flags for PPC64 393 enum { 394 // e_flags bits specifying ABI: 395 // 1 for original ABI using function descriptors, 396 // 2 for revised ABI without function descriptors, 397 // 0 for unspecified or not using any features affected by the differences. 398 EF_PPC64_ABI = 3 399 }; 400 401 // Special values for the st_other field in the symbol table entry for PPC64. 402 enum { 403 STO_PPC64_LOCAL_BIT = 5, 404 STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT) 405 }; 406 static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) { 407 unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT; 408 return ((1 << Val) >> 2) << 2; 409 } 410 411 // ELF Relocation types for PPC64 412 enum { 413 #include "ELFRelocs/PowerPC64.def" 414 }; 415 416 // ELF Relocation types for AArch64 417 enum { 418 #include "ELFRelocs/AArch64.def" 419 }; 420 421 // Special values for the st_other field in the symbol table entry for AArch64. 422 enum { 423 // Symbol may follow different calling convention than base PCS. 424 STO_AARCH64_VARIANT_PCS = 0x80 425 }; 426 427 // ARM Specific e_flags 428 enum : unsigned { 429 EF_ARM_SOFT_FLOAT = 0x00000200U, // Legacy pre EABI_VER5 430 EF_ARM_ABI_FLOAT_SOFT = 0x00000200U, // EABI_VER5 431 EF_ARM_VFP_FLOAT = 0x00000400U, // Legacy pre EABI_VER5 432 EF_ARM_ABI_FLOAT_HARD = 0x00000400U, // EABI_VER5 433 EF_ARM_EABI_UNKNOWN = 0x00000000U, 434 EF_ARM_EABI_VER1 = 0x01000000U, 435 EF_ARM_EABI_VER2 = 0x02000000U, 436 EF_ARM_EABI_VER3 = 0x03000000U, 437 EF_ARM_EABI_VER4 = 0x04000000U, 438 EF_ARM_EABI_VER5 = 0x05000000U, 439 EF_ARM_EABIMASK = 0xFF000000U 440 }; 441 442 // ELF Relocation types for ARM 443 enum { 444 #include "ELFRelocs/ARM.def" 445 }; 446 447 // ARC Specific e_flags 448 enum : unsigned { 449 EF_ARC_MACH_MSK = 0x000000ff, 450 EF_ARC_OSABI_MSK = 0x00000f00, 451 E_ARC_MACH_ARC600 = 0x00000002, 452 E_ARC_MACH_ARC601 = 0x00000004, 453 E_ARC_MACH_ARC700 = 0x00000003, 454 EF_ARC_CPU_ARCV2EM = 0x00000005, 455 EF_ARC_CPU_ARCV2HS = 0x00000006, 456 E_ARC_OSABI_ORIG = 0x00000000, 457 E_ARC_OSABI_V2 = 0x00000200, 458 E_ARC_OSABI_V3 = 0x00000300, 459 E_ARC_OSABI_V4 = 0x00000400, 460 EF_ARC_PIC = 0x00000100 461 }; 462 463 // ELF Relocation types for ARC 464 enum { 465 #include "ELFRelocs/ARC.def" 466 }; 467 468 // AVR specific e_flags 469 enum : unsigned { 470 EF_AVR_ARCH_AVR1 = 1, 471 EF_AVR_ARCH_AVR2 = 2, 472 EF_AVR_ARCH_AVR25 = 25, 473 EF_AVR_ARCH_AVR3 = 3, 474 EF_AVR_ARCH_AVR31 = 31, 475 EF_AVR_ARCH_AVR35 = 35, 476 EF_AVR_ARCH_AVR4 = 4, 477 EF_AVR_ARCH_AVR5 = 5, 478 EF_AVR_ARCH_AVR51 = 51, 479 EF_AVR_ARCH_AVR6 = 6, 480 EF_AVR_ARCH_AVRTINY = 100, 481 EF_AVR_ARCH_XMEGA1 = 101, 482 EF_AVR_ARCH_XMEGA2 = 102, 483 EF_AVR_ARCH_XMEGA3 = 103, 484 EF_AVR_ARCH_XMEGA4 = 104, 485 EF_AVR_ARCH_XMEGA5 = 105, 486 EF_AVR_ARCH_XMEGA6 = 106, 487 EF_AVR_ARCH_XMEGA7 = 107 488 }; 489 490 // ELF Relocation types for AVR 491 enum { 492 #include "ELFRelocs/AVR.def" 493 }; 494 495 // Mips Specific e_flags 496 enum : unsigned { 497 EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions 498 EF_MIPS_PIC = 0x00000002, // Position independent code 499 EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code 500 EF_MIPS_ABI2 = 0x00000020, // File uses N32 ABI 501 EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine 502 // in 32-bit mode 503 EF_MIPS_FP64 = 0x00000200, // Code compiled for a 32-bit machine 504 // but uses 64-bit FP registers 505 EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding 506 507 // ABI flags 508 EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI 509 EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture. 510 EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode. 511 EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode. 512 EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant. 513 514 // MIPS machine variant 515 EF_MIPS_MACH_NONE = 0x00000000, // A standard MIPS implementation. 516 EF_MIPS_MACH_3900 = 0x00810000, // Toshiba R3900 517 EF_MIPS_MACH_4010 = 0x00820000, // LSI R4010 518 EF_MIPS_MACH_4100 = 0x00830000, // NEC VR4100 519 EF_MIPS_MACH_4650 = 0x00850000, // MIPS R4650 520 EF_MIPS_MACH_4120 = 0x00870000, // NEC VR4120 521 EF_MIPS_MACH_4111 = 0x00880000, // NEC VR4111/VR4181 522 EF_MIPS_MACH_SB1 = 0x008a0000, // Broadcom SB-1 523 EF_MIPS_MACH_OCTEON = 0x008b0000, // Cavium Networks Octeon 524 EF_MIPS_MACH_XLR = 0x008c0000, // RMI Xlr 525 EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2 526 EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3 527 EF_MIPS_MACH_5400 = 0x00910000, // NEC VR5400 528 EF_MIPS_MACH_5900 = 0x00920000, // MIPS R5900 529 EF_MIPS_MACH_5500 = 0x00980000, // NEC VR5500 530 EF_MIPS_MACH_9000 = 0x00990000, // Unknown 531 EF_MIPS_MACH_LS2E = 0x00a00000, // ST Microelectronics Loongson 2E 532 EF_MIPS_MACH_LS2F = 0x00a10000, // ST Microelectronics Loongson 2F 533 EF_MIPS_MACH_LS3A = 0x00a20000, // Loongson 3A 534 EF_MIPS_MACH = 0x00ff0000, // EF_MIPS_MACH_xxx selection mask 535 536 // ARCH_ASE 537 EF_MIPS_MICROMIPS = 0x02000000, // microMIPS 538 EF_MIPS_ARCH_ASE_M16 = 0x04000000, // Has Mips-16 ISA extensions 539 EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions 540 EF_MIPS_ARCH_ASE = 0x0f000000, // Mask for EF_MIPS_ARCH_ASE_xxx flags 541 542 // ARCH 543 EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set 544 EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set 545 EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set 546 EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set 547 EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set 548 EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h 549 EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h 550 EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5 551 EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5 552 EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6 553 EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6 554 EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant 555 }; 556 557 // ELF Relocation types for Mips 558 enum { 559 #include "ELFRelocs/Mips.def" 560 }; 561 562 // Special values for the st_other field in the symbol table entry for MIPS. 563 enum { 564 STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional 565 STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record 566 STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC 567 STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips 568 STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16 569 }; 570 571 // .MIPS.options section descriptor kinds 572 enum { 573 ODK_NULL = 0, // Undefined 574 ODK_REGINFO = 1, // Register usage information 575 ODK_EXCEPTIONS = 2, // Exception processing options 576 ODK_PAD = 3, // Section padding options 577 ODK_HWPATCH = 4, // Hardware patches applied 578 ODK_FILL = 5, // Linker fill value 579 ODK_TAGS = 6, // Space for tool identification 580 ODK_HWAND = 7, // Hardware AND patches applied 581 ODK_HWOR = 8, // Hardware OR patches applied 582 ODK_GP_GROUP = 9, // GP group to use for text/data sections 583 ODK_IDENT = 10, // ID information 584 ODK_PAGESIZE = 11 // Page size information 585 }; 586 587 // Hexagon-specific e_flags 588 enum { 589 // Object processor version flags, bits[11:0] 590 EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2 591 EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3 592 EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4 593 EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5 594 EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55 595 EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60 596 EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62 597 EF_HEXAGON_MACH_V65 = 0x00000065, // Hexagon V65 598 EF_HEXAGON_MACH_V66 = 0x00000066, // Hexagon V66 599 EF_HEXAGON_MACH_V67 = 0x00000067, // Hexagon V67 600 EF_HEXAGON_MACH_V67T = 0x00008067, // Hexagon V67T 601 602 // Highest ISA version flags 603 EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0] 604 // of e_flags 605 EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA 606 EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA 607 EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA 608 EF_HEXAGON_ISA_V5 = 0x00000040, // Hexagon V5 ISA 609 EF_HEXAGON_ISA_V55 = 0x00000050, // Hexagon V55 ISA 610 EF_HEXAGON_ISA_V60 = 0x00000060, // Hexagon V60 ISA 611 EF_HEXAGON_ISA_V62 = 0x00000062, // Hexagon V62 ISA 612 EF_HEXAGON_ISA_V65 = 0x00000065, // Hexagon V65 ISA 613 EF_HEXAGON_ISA_V66 = 0x00000066, // Hexagon V66 ISA 614 EF_HEXAGON_ISA_V67 = 0x00000067, // Hexagon V67 ISA 615 }; 616 617 // Hexagon-specific section indexes for common small data 618 enum { 619 SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes 620 SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access 621 SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access 622 SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access 623 SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access 624 }; 625 626 // ELF Relocation types for Hexagon 627 enum { 628 #include "ELFRelocs/Hexagon.def" 629 }; 630 631 // ELF Relocation type for Lanai. 632 enum { 633 #include "ELFRelocs/Lanai.def" 634 }; 635 636 // RISCV Specific e_flags 637 enum : unsigned { 638 EF_RISCV_RVC = 0x0001, 639 EF_RISCV_FLOAT_ABI = 0x0006, 640 EF_RISCV_FLOAT_ABI_SOFT = 0x0000, 641 EF_RISCV_FLOAT_ABI_SINGLE = 0x0002, 642 EF_RISCV_FLOAT_ABI_DOUBLE = 0x0004, 643 EF_RISCV_FLOAT_ABI_QUAD = 0x0006, 644 EF_RISCV_RVE = 0x0008 645 }; 646 647 // ELF Relocation types for RISC-V 648 enum { 649 #include "ELFRelocs/RISCV.def" 650 }; 651 652 // ELF Relocation types for S390/zSeries 653 enum { 654 #include "ELFRelocs/SystemZ.def" 655 }; 656 657 // ELF Relocation type for Sparc. 658 enum { 659 #include "ELFRelocs/Sparc.def" 660 }; 661 662 // AMDGPU specific e_flags. 663 enum : unsigned { 664 // Processor selection mask for EF_AMDGPU_MACH_* values. 665 EF_AMDGPU_MACH = 0x0ff, 666 667 // Not specified processor. 668 EF_AMDGPU_MACH_NONE = 0x000, 669 670 // R600-based processors. 671 672 // Radeon HD 2000/3000 Series (R600). 673 EF_AMDGPU_MACH_R600_R600 = 0x001, 674 EF_AMDGPU_MACH_R600_R630 = 0x002, 675 EF_AMDGPU_MACH_R600_RS880 = 0x003, 676 EF_AMDGPU_MACH_R600_RV670 = 0x004, 677 // Radeon HD 4000 Series (R700). 678 EF_AMDGPU_MACH_R600_RV710 = 0x005, 679 EF_AMDGPU_MACH_R600_RV730 = 0x006, 680 EF_AMDGPU_MACH_R600_RV770 = 0x007, 681 // Radeon HD 5000 Series (Evergreen). 682 EF_AMDGPU_MACH_R600_CEDAR = 0x008, 683 EF_AMDGPU_MACH_R600_CYPRESS = 0x009, 684 EF_AMDGPU_MACH_R600_JUNIPER = 0x00a, 685 EF_AMDGPU_MACH_R600_REDWOOD = 0x00b, 686 EF_AMDGPU_MACH_R600_SUMO = 0x00c, 687 // Radeon HD 6000 Series (Northern Islands). 688 EF_AMDGPU_MACH_R600_BARTS = 0x00d, 689 EF_AMDGPU_MACH_R600_CAICOS = 0x00e, 690 EF_AMDGPU_MACH_R600_CAYMAN = 0x00f, 691 EF_AMDGPU_MACH_R600_TURKS = 0x010, 692 693 // Reserved for R600-based processors. 694 EF_AMDGPU_MACH_R600_RESERVED_FIRST = 0x011, 695 EF_AMDGPU_MACH_R600_RESERVED_LAST = 0x01f, 696 697 // First/last R600-based processors. 698 EF_AMDGPU_MACH_R600_FIRST = EF_AMDGPU_MACH_R600_R600, 699 EF_AMDGPU_MACH_R600_LAST = EF_AMDGPU_MACH_R600_TURKS, 700 701 // AMDGCN-based processors. 702 EF_AMDGPU_MACH_AMDGCN_GFX600 = 0x020, 703 EF_AMDGPU_MACH_AMDGCN_GFX601 = 0x021, 704 EF_AMDGPU_MACH_AMDGCN_GFX700 = 0x022, 705 EF_AMDGPU_MACH_AMDGCN_GFX701 = 0x023, 706 EF_AMDGPU_MACH_AMDGCN_GFX702 = 0x024, 707 EF_AMDGPU_MACH_AMDGCN_GFX703 = 0x025, 708 EF_AMDGPU_MACH_AMDGCN_GFX704 = 0x026, 709 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X27 = 0x027, 710 EF_AMDGPU_MACH_AMDGCN_GFX801 = 0x028, 711 EF_AMDGPU_MACH_AMDGCN_GFX802 = 0x029, 712 EF_AMDGPU_MACH_AMDGCN_GFX803 = 0x02a, 713 EF_AMDGPU_MACH_AMDGCN_GFX810 = 0x02b, 714 EF_AMDGPU_MACH_AMDGCN_GFX900 = 0x02c, 715 EF_AMDGPU_MACH_AMDGCN_GFX902 = 0x02d, 716 EF_AMDGPU_MACH_AMDGCN_GFX904 = 0x02e, 717 EF_AMDGPU_MACH_AMDGCN_GFX906 = 0x02f, 718 EF_AMDGPU_MACH_AMDGCN_GFX908 = 0x030, 719 EF_AMDGPU_MACH_AMDGCN_GFX909 = 0x031, 720 EF_AMDGPU_MACH_AMDGCN_GFX90C = 0x032, 721 EF_AMDGPU_MACH_AMDGCN_GFX1010 = 0x033, 722 EF_AMDGPU_MACH_AMDGCN_GFX1011 = 0x034, 723 EF_AMDGPU_MACH_AMDGCN_GFX1012 = 0x035, 724 EF_AMDGPU_MACH_AMDGCN_GFX1030 = 0x036, 725 EF_AMDGPU_MACH_AMDGCN_GFX1031 = 0x037, 726 EF_AMDGPU_MACH_AMDGCN_GFX1032 = 0x038, 727 EF_AMDGPU_MACH_AMDGCN_GFX1033 = 0x039, 728 EF_AMDGPU_MACH_AMDGCN_GFX602 = 0x03a, 729 EF_AMDGPU_MACH_AMDGCN_GFX705 = 0x03b, 730 EF_AMDGPU_MACH_AMDGCN_GFX805 = 0x03c, 731 732 // First/last AMDGCN-based processors. 733 EF_AMDGPU_MACH_AMDGCN_FIRST = EF_AMDGPU_MACH_AMDGCN_GFX600, 734 EF_AMDGPU_MACH_AMDGCN_LAST = EF_AMDGPU_MACH_AMDGCN_GFX805, 735 736 // Indicates if the "xnack" target feature is enabled for all code contained 737 // in the object. 738 EF_AMDGPU_XNACK = 0x100, 739 // Indicates if the "sram-ecc" target feature is enabled for all code 740 // contained in the object. 741 EF_AMDGPU_SRAM_ECC = 0x200, 742 }; 743 744 // ELF Relocation types for AMDGPU 745 enum { 746 #include "ELFRelocs/AMDGPU.def" 747 }; 748 749 // ELF Relocation types for BPF 750 enum { 751 #include "ELFRelocs/BPF.def" 752 }; 753 754 // MSP430 specific e_flags 755 enum : unsigned { 756 EF_MSP430_MACH_MSP430x11 = 11, 757 EF_MSP430_MACH_MSP430x11x1 = 110, 758 EF_MSP430_MACH_MSP430x12 = 12, 759 EF_MSP430_MACH_MSP430x13 = 13, 760 EF_MSP430_MACH_MSP430x14 = 14, 761 EF_MSP430_MACH_MSP430x15 = 15, 762 EF_MSP430_MACH_MSP430x16 = 16, 763 EF_MSP430_MACH_MSP430x20 = 20, 764 EF_MSP430_MACH_MSP430x22 = 22, 765 EF_MSP430_MACH_MSP430x23 = 23, 766 EF_MSP430_MACH_MSP430x24 = 24, 767 EF_MSP430_MACH_MSP430x26 = 26, 768 EF_MSP430_MACH_MSP430x31 = 31, 769 EF_MSP430_MACH_MSP430x32 = 32, 770 EF_MSP430_MACH_MSP430x33 = 33, 771 EF_MSP430_MACH_MSP430x41 = 41, 772 EF_MSP430_MACH_MSP430x42 = 42, 773 EF_MSP430_MACH_MSP430x43 = 43, 774 EF_MSP430_MACH_MSP430x44 = 44, 775 EF_MSP430_MACH_MSP430X = 45, 776 EF_MSP430_MACH_MSP430x46 = 46, 777 EF_MSP430_MACH_MSP430x47 = 47, 778 EF_MSP430_MACH_MSP430x54 = 54, 779 }; 780 781 // ELF Relocation types for MSP430 782 enum { 783 #include "ELFRelocs/MSP430.def" 784 }; 785 786 // ELF Relocation type for VE. 787 enum { 788 #include "ELFRelocs/VE.def" 789 }; 790 791 792 // ELF Relocation types for CSKY 793 enum { 794 #include "ELFRelocs/CSKY.def" 795 }; 796 797 #undef ELF_RELOC 798 799 // Section header. 800 struct Elf32_Shdr { 801 Elf32_Word sh_name; // Section name (index into string table) 802 Elf32_Word sh_type; // Section type (SHT_*) 803 Elf32_Word sh_flags; // Section flags (SHF_*) 804 Elf32_Addr sh_addr; // Address where section is to be loaded 805 Elf32_Off sh_offset; // File offset of section data, in bytes 806 Elf32_Word sh_size; // Size of section, in bytes 807 Elf32_Word sh_link; // Section type-specific header table index link 808 Elf32_Word sh_info; // Section type-specific extra information 809 Elf32_Word sh_addralign; // Section address alignment 810 Elf32_Word sh_entsize; // Size of records contained within the section 811 }; 812 813 // Section header for ELF64 - same fields as ELF32, different types. 814 struct Elf64_Shdr { 815 Elf64_Word sh_name; 816 Elf64_Word sh_type; 817 Elf64_Xword sh_flags; 818 Elf64_Addr sh_addr; 819 Elf64_Off sh_offset; 820 Elf64_Xword sh_size; 821 Elf64_Word sh_link; 822 Elf64_Word sh_info; 823 Elf64_Xword sh_addralign; 824 Elf64_Xword sh_entsize; 825 }; 826 827 // Special section indices. 828 enum { 829 SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless 830 SHN_LORESERVE = 0xff00, // Lowest reserved index 831 SHN_LOPROC = 0xff00, // Lowest processor-specific index 832 SHN_HIPROC = 0xff1f, // Highest processor-specific index 833 SHN_LOOS = 0xff20, // Lowest operating system-specific index 834 SHN_HIOS = 0xff3f, // Highest operating system-specific index 835 SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation 836 SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables 837 SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE 838 SHN_HIRESERVE = 0xffff // Highest reserved index 839 }; 840 841 // Section types. 842 enum : unsigned { 843 SHT_NULL = 0, // No associated section (inactive entry). 844 SHT_PROGBITS = 1, // Program-defined contents. 845 SHT_SYMTAB = 2, // Symbol table. 846 SHT_STRTAB = 3, // String table. 847 SHT_RELA = 4, // Relocation entries; explicit addends. 848 SHT_HASH = 5, // Symbol hash table. 849 SHT_DYNAMIC = 6, // Information for dynamic linking. 850 SHT_NOTE = 7, // Information about the file. 851 SHT_NOBITS = 8, // Data occupies no space in the file. 852 SHT_REL = 9, // Relocation entries; no explicit addends. 853 SHT_SHLIB = 10, // Reserved. 854 SHT_DYNSYM = 11, // Symbol table. 855 SHT_INIT_ARRAY = 14, // Pointers to initialization functions. 856 SHT_FINI_ARRAY = 15, // Pointers to termination functions. 857 SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. 858 SHT_GROUP = 17, // Section group. 859 SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. 860 // Experimental support for SHT_RELR sections. For details, see proposal 861 // at https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 862 SHT_RELR = 19, // Relocation entries; only offsets. 863 SHT_LOOS = 0x60000000, // Lowest operating system-specific type. 864 // Android packed relocation section types. 865 // https://android.googlesource.com/platform/bionic/+/6f12bfece5dcc01325e0abba56a46b1bcf991c69/tools/relocation_packer/src/elf_file.cc#37 866 SHT_ANDROID_REL = 0x60000001, 867 SHT_ANDROID_RELA = 0x60000002, 868 SHT_LLVM_ODRTAB = 0x6fff4c00, // LLVM ODR table. 869 SHT_LLVM_LINKER_OPTIONS = 0x6fff4c01, // LLVM Linker Options. 870 SHT_LLVM_CALL_GRAPH_PROFILE = 0x6fff4c02, // LLVM Call Graph Profile. 871 SHT_LLVM_ADDRSIG = 0x6fff4c03, // List of address-significant symbols 872 // for safe ICF. 873 SHT_LLVM_DEPENDENT_LIBRARIES = 874 0x6fff4c04, // LLVM Dependent Library Specifiers. 875 SHT_LLVM_SYMPART = 0x6fff4c05, // Symbol partition specification. 876 SHT_LLVM_PART_EHDR = 0x6fff4c06, // ELF header for loadable partition. 877 SHT_LLVM_PART_PHDR = 0x6fff4c07, // Phdrs for loadable partition. 878 SHT_LLVM_BB_ADDR_MAP = 0x6fff4c08, // LLVM Basic Block Address Map. 879 // Android's experimental support for SHT_RELR sections. 880 // https://android.googlesource.com/platform/bionic/+/b7feec74547f84559a1467aca02708ff61346d2a/libc/include/elf.h#512 881 SHT_ANDROID_RELR = 0x6fffff00, // Relocation entries; only offsets. 882 SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes. 883 SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table. 884 SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions. 885 SHT_GNU_verneed = 0x6ffffffe, // GNU version references. 886 SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table. 887 SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. 888 SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type. 889 // Fixme: All this is duplicated in MCSectionELF. Why?? 890 // Exception Index table 891 SHT_ARM_EXIDX = 0x70000001U, 892 // BPABI DLL dynamic linking pre-emption map 893 SHT_ARM_PREEMPTMAP = 0x70000002U, 894 // Object file compatibility attributes 895 SHT_ARM_ATTRIBUTES = 0x70000003U, 896 SHT_ARM_DEBUGOVERLAY = 0x70000004U, 897 SHT_ARM_OVERLAYSECTION = 0x70000005U, 898 SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in 899 // this section based on their sizes 900 SHT_X86_64_UNWIND = 0x70000001, // Unwind information 901 902 SHT_MIPS_REGINFO = 0x70000006, // Register usage information 903 SHT_MIPS_OPTIONS = 0x7000000d, // General options 904 SHT_MIPS_DWARF = 0x7000001e, // DWARF debugging section. 905 SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information. 906 907 SHT_MSP430_ATTRIBUTES = 0x70000003U, 908 909 SHT_RISCV_ATTRIBUTES = 0x70000003U, 910 911 SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type. 912 SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. 913 SHT_HIUSER = 0xffffffff // Highest type reserved for applications. 914 }; 915 916 // Section flags. 917 enum : unsigned { 918 // Section data should be writable during execution. 919 SHF_WRITE = 0x1, 920 921 // Section occupies memory during program execution. 922 SHF_ALLOC = 0x2, 923 924 // Section contains executable machine instructions. 925 SHF_EXECINSTR = 0x4, 926 927 // The data in this section may be merged. 928 SHF_MERGE = 0x10, 929 930 // The data in this section is null-terminated strings. 931 SHF_STRINGS = 0x20, 932 933 // A field in this section holds a section header table index. 934 SHF_INFO_LINK = 0x40U, 935 936 // Adds special ordering requirements for link editors. 937 SHF_LINK_ORDER = 0x80U, 938 939 // This section requires special OS-specific processing to avoid incorrect 940 // behavior. 941 SHF_OS_NONCONFORMING = 0x100U, 942 943 // This section is a member of a section group. 944 SHF_GROUP = 0x200U, 945 946 // This section holds Thread-Local Storage. 947 SHF_TLS = 0x400U, 948 949 // Identifies a section containing compressed data. 950 SHF_COMPRESSED = 0x800U, 951 952 // This section is excluded from the final executable or shared library. 953 SHF_EXCLUDE = 0x80000000U, 954 955 // Start of target-specific flags. 956 957 SHF_MASKOS = 0x0ff00000, 958 959 // Bits indicating processor-specific flags. 960 SHF_MASKPROC = 0xf0000000, 961 962 /// All sections with the "d" flag are grouped together by the linker to form 963 /// the data section and the dp register is set to the start of the section by 964 /// the boot code. 965 XCORE_SHF_DP_SECTION = 0x10000000, 966 967 /// All sections with the "c" flag are grouped together by the linker to form 968 /// the constant pool and the cp register is set to the start of the constant 969 /// pool by the boot code. 970 XCORE_SHF_CP_SECTION = 0x20000000, 971 972 // If an object file section does not have this flag set, then it may not hold 973 // more than 2GB and can be freely referred to in objects using smaller code 974 // models. Otherwise, only objects using larger code models can refer to them. 975 // For example, a medium code model object can refer to data in a section that 976 // sets this flag besides being able to refer to data in a section that does 977 // not set it; likewise, a small code model object can refer only to code in a 978 // section that does not set this flag. 979 SHF_X86_64_LARGE = 0x10000000, 980 981 // All sections with the GPREL flag are grouped into a global data area 982 // for faster accesses 983 SHF_HEX_GPREL = 0x10000000, 984 985 // Section contains text/data which may be replicated in other sections. 986 // Linker must retain only one copy. 987 SHF_MIPS_NODUPES = 0x01000000, 988 989 // Linker must generate implicit hidden weak names. 990 SHF_MIPS_NAMES = 0x02000000, 991 992 // Section data local to process. 993 SHF_MIPS_LOCAL = 0x04000000, 994 995 // Do not strip this section. 996 SHF_MIPS_NOSTRIP = 0x08000000, 997 998 // Section must be part of global data area. 999 SHF_MIPS_GPREL = 0x10000000, 1000 1001 // This section should be merged. 1002 SHF_MIPS_MERGE = 0x20000000, 1003 1004 // Address size to be inferred from section entry size. 1005 SHF_MIPS_ADDR = 0x40000000, 1006 1007 // Section data is string data by default. 1008 SHF_MIPS_STRING = 0x80000000, 1009 1010 // Make code section unreadable when in execute-only mode 1011 SHF_ARM_PURECODE = 0x20000000 1012 }; 1013 1014 // Section Group Flags 1015 enum : unsigned { 1016 GRP_COMDAT = 0x1, 1017 GRP_MASKOS = 0x0ff00000, 1018 GRP_MASKPROC = 0xf0000000 1019 }; 1020 1021 // Symbol table entries for ELF32. 1022 struct Elf32_Sym { 1023 Elf32_Word st_name; // Symbol name (index into string table) 1024 Elf32_Addr st_value; // Value or address associated with the symbol 1025 Elf32_Word st_size; // Size of the symbol 1026 unsigned char st_info; // Symbol's type and binding attributes 1027 unsigned char st_other; // Must be zero; reserved 1028 Elf32_Half st_shndx; // Which section (header table index) it's defined in 1029 1030 // These accessors and mutators correspond to the ELF32_ST_BIND, 1031 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: 1032 unsigned char getBinding() const { return st_info >> 4; } 1033 unsigned char getType() const { return st_info & 0x0f; } 1034 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 1035 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 1036 void setBindingAndType(unsigned char b, unsigned char t) { 1037 st_info = (b << 4) + (t & 0x0f); 1038 } 1039 }; 1040 1041 // Symbol table entries for ELF64. 1042 struct Elf64_Sym { 1043 Elf64_Word st_name; // Symbol name (index into string table) 1044 unsigned char st_info; // Symbol's type and binding attributes 1045 unsigned char st_other; // Must be zero; reserved 1046 Elf64_Half st_shndx; // Which section (header tbl index) it's defined in 1047 Elf64_Addr st_value; // Value or address associated with the symbol 1048 Elf64_Xword st_size; // Size of the symbol 1049 1050 // These accessors and mutators are identical to those defined for ELF32 1051 // symbol table entries. 1052 unsigned char getBinding() const { return st_info >> 4; } 1053 unsigned char getType() const { return st_info & 0x0f; } 1054 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 1055 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 1056 void setBindingAndType(unsigned char b, unsigned char t) { 1057 st_info = (b << 4) + (t & 0x0f); 1058 } 1059 }; 1060 1061 // The size (in bytes) of symbol table entries. 1062 enum { 1063 SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size 1064 SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. 1065 }; 1066 1067 // Symbol bindings. 1068 enum { 1069 STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def 1070 STB_GLOBAL = 1, // Global symbol, visible to all object files being combined 1071 STB_WEAK = 2, // Weak symbol, like global but lower-precedence 1072 STB_GNU_UNIQUE = 10, 1073 STB_LOOS = 10, // Lowest operating system-specific binding type 1074 STB_HIOS = 12, // Highest operating system-specific binding type 1075 STB_LOPROC = 13, // Lowest processor-specific binding type 1076 STB_HIPROC = 15 // Highest processor-specific binding type 1077 }; 1078 1079 // Symbol types. 1080 enum { 1081 STT_NOTYPE = 0, // Symbol's type is not specified 1082 STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) 1083 STT_FUNC = 2, // Symbol is executable code (function, etc.) 1084 STT_SECTION = 3, // Symbol refers to a section 1085 STT_FILE = 4, // Local, absolute symbol that refers to a file 1086 STT_COMMON = 5, // An uninitialized common block 1087 STT_TLS = 6, // Thread local data object 1088 STT_GNU_IFUNC = 10, // GNU indirect function 1089 STT_LOOS = 10, // Lowest operating system-specific symbol type 1090 STT_HIOS = 12, // Highest operating system-specific symbol type 1091 STT_LOPROC = 13, // Lowest processor-specific symbol type 1092 STT_HIPROC = 15, // Highest processor-specific symbol type 1093 1094 // AMDGPU symbol types 1095 STT_AMDGPU_HSA_KERNEL = 10 1096 }; 1097 1098 enum { 1099 STV_DEFAULT = 0, // Visibility is specified by binding type 1100 STV_INTERNAL = 1, // Defined by processor supplements 1101 STV_HIDDEN = 2, // Not visible to other components 1102 STV_PROTECTED = 3 // Visible in other components but not preemptable 1103 }; 1104 1105 // Symbol number. 1106 enum { STN_UNDEF = 0 }; 1107 1108 // Special relocation symbols used in the MIPS64 ELF relocation entries 1109 enum { 1110 RSS_UNDEF = 0, // None 1111 RSS_GP = 1, // Value of gp 1112 RSS_GP0 = 2, // Value of gp used to create object being relocated 1113 RSS_LOC = 3 // Address of location being relocated 1114 }; 1115 1116 // Relocation entry, without explicit addend. 1117 struct Elf32_Rel { 1118 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 1119 Elf32_Word r_info; // Symbol table index and type of relocation to apply 1120 1121 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 1122 // and ELF32_R_INFO macros defined in the ELF specification: 1123 Elf32_Word getSymbol() const { return (r_info >> 8); } 1124 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } 1125 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } 1126 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } 1127 void setSymbolAndType(Elf32_Word s, unsigned char t) { 1128 r_info = (s << 8) + t; 1129 } 1130 }; 1131 1132 // Relocation entry with explicit addend. 1133 struct Elf32_Rela { 1134 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 1135 Elf32_Word r_info; // Symbol table index and type of relocation to apply 1136 Elf32_Sword r_addend; // Compute value for relocatable field by adding this 1137 1138 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 1139 // and ELF32_R_INFO macros defined in the ELF specification: 1140 Elf32_Word getSymbol() const { return (r_info >> 8); } 1141 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } 1142 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } 1143 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } 1144 void setSymbolAndType(Elf32_Word s, unsigned char t) { 1145 r_info = (s << 8) + t; 1146 } 1147 }; 1148 1149 // Relocation entry without explicit addend or info (relative relocations only). 1150 typedef Elf32_Word Elf32_Relr; // offset/bitmap for relative relocations 1151 1152 // Relocation entry, without explicit addend. 1153 struct Elf64_Rel { 1154 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 1155 Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 1156 1157 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 1158 // and ELF64_R_INFO macros defined in the ELF specification: 1159 Elf64_Word getSymbol() const { return (r_info >> 32); } 1160 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } 1161 void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } 1162 void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } 1163 void setSymbolAndType(Elf64_Word s, Elf64_Word t) { 1164 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); 1165 } 1166 }; 1167 1168 // Relocation entry with explicit addend. 1169 struct Elf64_Rela { 1170 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 1171 Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 1172 Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. 1173 1174 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 1175 // and ELF64_R_INFO macros defined in the ELF specification: 1176 Elf64_Word getSymbol() const { return (r_info >> 32); } 1177 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } 1178 void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } 1179 void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } 1180 void setSymbolAndType(Elf64_Word s, Elf64_Word t) { 1181 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); 1182 } 1183 }; 1184 1185 // Relocation entry without explicit addend or info (relative relocations only). 1186 typedef Elf64_Xword Elf64_Relr; // offset/bitmap for relative relocations 1187 1188 // Program header for ELF32. 1189 struct Elf32_Phdr { 1190 Elf32_Word p_type; // Type of segment 1191 Elf32_Off p_offset; // File offset where segment is located, in bytes 1192 Elf32_Addr p_vaddr; // Virtual address of beginning of segment 1193 Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 1194 Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) 1195 Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) 1196 Elf32_Word p_flags; // Segment flags 1197 Elf32_Word p_align; // Segment alignment constraint 1198 }; 1199 1200 // Program header for ELF64. 1201 struct Elf64_Phdr { 1202 Elf64_Word p_type; // Type of segment 1203 Elf64_Word p_flags; // Segment flags 1204 Elf64_Off p_offset; // File offset where segment is located, in bytes 1205 Elf64_Addr p_vaddr; // Virtual address of beginning of segment 1206 Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific) 1207 Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) 1208 Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) 1209 Elf64_Xword p_align; // Segment alignment constraint 1210 }; 1211 1212 // Segment types. 1213 enum { 1214 PT_NULL = 0, // Unused segment. 1215 PT_LOAD = 1, // Loadable segment. 1216 PT_DYNAMIC = 2, // Dynamic linking information. 1217 PT_INTERP = 3, // Interpreter pathname. 1218 PT_NOTE = 4, // Auxiliary information. 1219 PT_SHLIB = 5, // Reserved. 1220 PT_PHDR = 6, // The program header table itself. 1221 PT_TLS = 7, // The thread-local storage template. 1222 PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. 1223 PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. 1224 PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. 1225 PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type. 1226 1227 // x86-64 program header types. 1228 // These all contain stack unwind tables. 1229 PT_GNU_EH_FRAME = 0x6474e550, 1230 PT_SUNW_EH_FRAME = 0x6474e550, 1231 PT_SUNW_UNWIND = 0x6464e550, 1232 1233 PT_GNU_STACK = 0x6474e551, // Indicates stack executability. 1234 PT_GNU_RELRO = 0x6474e552, // Read-only after relocation. 1235 PT_GNU_PROPERTY = 0x6474e553, // .note.gnu.property notes sections. 1236 1237 PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data. 1238 PT_OPENBSD_WXNEEDED = 0x65a3dbe7, // Program does W^X violations. 1239 PT_OPENBSD_BOOTDATA = 0x65a41be6, // Section for boot arguments. 1240 1241 // ARM program header types. 1242 PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info 1243 // These all contain stack unwind tables. 1244 PT_ARM_EXIDX = 0x70000001, 1245 PT_ARM_UNWIND = 0x70000001, 1246 1247 // MIPS program header types. 1248 PT_MIPS_REGINFO = 0x70000000, // Register usage information. 1249 PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table. 1250 PT_MIPS_OPTIONS = 0x70000002, // Options segment. 1251 PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment. 1252 }; 1253 1254 // Segment flag bits. 1255 enum : unsigned { 1256 PF_X = 1, // Execute 1257 PF_W = 2, // Write 1258 PF_R = 4, // Read 1259 PF_MASKOS = 0x0ff00000, // Bits for operating system-specific semantics. 1260 PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. 1261 }; 1262 1263 // Dynamic table entry for ELF32. 1264 struct Elf32_Dyn { 1265 Elf32_Sword d_tag; // Type of dynamic table entry. 1266 union { 1267 Elf32_Word d_val; // Integer value of entry. 1268 Elf32_Addr d_ptr; // Pointer value of entry. 1269 } d_un; 1270 }; 1271 1272 // Dynamic table entry for ELF64. 1273 struct Elf64_Dyn { 1274 Elf64_Sxword d_tag; // Type of dynamic table entry. 1275 union { 1276 Elf64_Xword d_val; // Integer value of entry. 1277 Elf64_Addr d_ptr; // Pointer value of entry. 1278 } d_un; 1279 }; 1280 1281 // Dynamic table entry tags. 1282 enum { 1283 #define DYNAMIC_TAG(name, value) DT_##name = value, 1284 #include "DynamicTags.def" 1285 #undef DYNAMIC_TAG 1286 }; 1287 1288 // DT_FLAGS values. 1289 enum { 1290 DF_ORIGIN = 0x01, // The object may reference $ORIGIN. 1291 DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. 1292 DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. 1293 DF_BIND_NOW = 0x08, // Process all relocations on load. 1294 DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. 1295 }; 1296 1297 // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry. 1298 enum { 1299 DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object. 1300 DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object. 1301 DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object. 1302 DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object. 1303 DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime. 1304 DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object. 1305 DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object. 1306 DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled. 1307 DF_1_DIRECT = 0x00000100, // Direct binding enabled. 1308 DF_1_TRANS = 0x00000200, 1309 DF_1_INTERPOSE = 0x00000400, // Object is used to interpose. 1310 DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path. 1311 DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed. 1312 DF_1_CONFALT = 0x00002000, // Configuration alternative created. 1313 DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search. 1314 DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time. 1315 DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time. 1316 DF_1_NODIRECT = 0x00020000, // Object has no-direct binding. 1317 DF_1_IGNMULDEF = 0x00040000, 1318 DF_1_NOKSYMS = 0x00080000, 1319 DF_1_NOHDR = 0x00100000, 1320 DF_1_EDITED = 0x00200000, // Object is modified after built. 1321 DF_1_NORELOC = 0x00400000, 1322 DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers. 1323 DF_1_GLOBAUDIT = 0x01000000, // Global auditing required. 1324 DF_1_SINGLETON = 0x02000000, // Singleton symbols are used. 1325 DF_1_PIE = 0x08000000, // Object is a position-independent executable. 1326 }; 1327 1328 // DT_MIPS_FLAGS values. 1329 enum { 1330 RHF_NONE = 0x00000000, // No flags. 1331 RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers. 1332 RHF_NOTPOT = 0x00000002, // Hash size is not a power of two. 1333 RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH. 1334 RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated. 1335 RHF_SGI_ONLY = 0x00000010, // SGI specific features. 1336 RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish 1337 // executing before any non-init 1338 // code in DSO is called. 1339 RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code. 1340 RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start 1341 // executing before any non-init 1342 // code in DSO is called. 1343 RHF_PIXIE = 0x00000100, // Generated by pixie. 1344 RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default. 1345 RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted 1346 RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted 1347 RHF_CORD = 0x00001000, // Generated by cord. 1348 RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved 1349 // undef symbols. 1350 RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order. 1351 }; 1352 1353 // ElfXX_VerDef structure version (GNU versioning) 1354 enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 }; 1355 1356 // VerDef Flags (ElfXX_VerDef::vd_flags) 1357 enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 }; 1358 1359 // Special constants for the version table. (SHT_GNU_versym/.gnu.version) 1360 enum { 1361 VER_NDX_LOCAL = 0, // Unversioned local symbol 1362 VER_NDX_GLOBAL = 1, // Unversioned global symbol 1363 VERSYM_VERSION = 0x7fff, // Version Index mask 1364 VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version) 1365 }; 1366 1367 // ElfXX_VerNeed structure version (GNU versioning) 1368 enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 }; 1369 1370 // SHT_NOTE section types 1371 enum { 1372 NT_FREEBSD_THRMISC = 7, 1373 NT_FREEBSD_PROCSTAT_PROC = 8, 1374 NT_FREEBSD_PROCSTAT_FILES = 9, 1375 NT_FREEBSD_PROCSTAT_VMMAP = 10, 1376 NT_FREEBSD_PROCSTAT_GROUPS = 11, 1377 NT_FREEBSD_PROCSTAT_UMASK = 12, 1378 NT_FREEBSD_PROCSTAT_RLIMIT = 13, 1379 NT_FREEBSD_PROCSTAT_OSREL = 14, 1380 NT_FREEBSD_PROCSTAT_PSSTRINGS = 15, 1381 NT_FREEBSD_PROCSTAT_AUXV = 16, 1382 }; 1383 1384 // Generic note types 1385 enum : unsigned { 1386 NT_VERSION = 1, 1387 NT_ARCH = 2, 1388 NT_GNU_BUILD_ATTRIBUTE_OPEN = 0x100, 1389 NT_GNU_BUILD_ATTRIBUTE_FUNC = 0x101, 1390 }; 1391 1392 // Core note types 1393 enum : unsigned { 1394 NT_PRSTATUS = 1, 1395 NT_FPREGSET = 2, 1396 NT_PRPSINFO = 3, 1397 NT_TASKSTRUCT = 4, 1398 NT_AUXV = 6, 1399 NT_PSTATUS = 10, 1400 NT_FPREGS = 12, 1401 NT_PSINFO = 13, 1402 NT_LWPSTATUS = 16, 1403 NT_LWPSINFO = 17, 1404 NT_WIN32PSTATUS = 18, 1405 1406 NT_PPC_VMX = 0x100, 1407 NT_PPC_VSX = 0x102, 1408 NT_PPC_TAR = 0x103, 1409 NT_PPC_PPR = 0x104, 1410 NT_PPC_DSCR = 0x105, 1411 NT_PPC_EBB = 0x106, 1412 NT_PPC_PMU = 0x107, 1413 NT_PPC_TM_CGPR = 0x108, 1414 NT_PPC_TM_CFPR = 0x109, 1415 NT_PPC_TM_CVMX = 0x10a, 1416 NT_PPC_TM_CVSX = 0x10b, 1417 NT_PPC_TM_SPR = 0x10c, 1418 NT_PPC_TM_CTAR = 0x10d, 1419 NT_PPC_TM_CPPR = 0x10e, 1420 NT_PPC_TM_CDSCR = 0x10f, 1421 1422 NT_386_TLS = 0x200, 1423 NT_386_IOPERM = 0x201, 1424 NT_X86_XSTATE = 0x202, 1425 1426 NT_S390_HIGH_GPRS = 0x300, 1427 NT_S390_TIMER = 0x301, 1428 NT_S390_TODCMP = 0x302, 1429 NT_S390_TODPREG = 0x303, 1430 NT_S390_CTRS = 0x304, 1431 NT_S390_PREFIX = 0x305, 1432 NT_S390_LAST_BREAK = 0x306, 1433 NT_S390_SYSTEM_CALL = 0x307, 1434 NT_S390_TDB = 0x308, 1435 NT_S390_VXRS_LOW = 0x309, 1436 NT_S390_VXRS_HIGH = 0x30a, 1437 NT_S390_GS_CB = 0x30b, 1438 NT_S390_GS_BC = 0x30c, 1439 1440 NT_ARM_VFP = 0x400, 1441 NT_ARM_TLS = 0x401, 1442 NT_ARM_HW_BREAK = 0x402, 1443 NT_ARM_HW_WATCH = 0x403, 1444 NT_ARM_SVE = 0x405, 1445 NT_ARM_PAC_MASK = 0x406, 1446 1447 NT_FILE = 0x46494c45, 1448 NT_PRXFPREG = 0x46e62b7f, 1449 NT_SIGINFO = 0x53494749, 1450 }; 1451 1452 // LLVM-specific notes. 1453 enum { 1454 NT_LLVM_HWASAN_GLOBALS = 3, 1455 }; 1456 1457 // GNU note types 1458 enum { 1459 NT_GNU_ABI_TAG = 1, 1460 NT_GNU_HWCAP = 2, 1461 NT_GNU_BUILD_ID = 3, 1462 NT_GNU_GOLD_VERSION = 4, 1463 NT_GNU_PROPERTY_TYPE_0 = 5, 1464 }; 1465 1466 // Property types used in GNU_PROPERTY_TYPE_0 notes. 1467 enum : unsigned { 1468 GNU_PROPERTY_STACK_SIZE = 1, 1469 GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2, 1470 GNU_PROPERTY_AARCH64_FEATURE_1_AND = 0xc0000000, 1471 GNU_PROPERTY_X86_FEATURE_1_AND = 0xc0000002, 1472 GNU_PROPERTY_X86_ISA_1_NEEDED = 0xc0008000, 1473 GNU_PROPERTY_X86_FEATURE_2_NEEDED = 0xc0008001, 1474 GNU_PROPERTY_X86_ISA_1_USED = 0xc0010000, 1475 GNU_PROPERTY_X86_FEATURE_2_USED = 0xc0010001, 1476 }; 1477 1478 // aarch64 processor feature bits. 1479 enum : unsigned { 1480 GNU_PROPERTY_AARCH64_FEATURE_1_BTI = 1 << 0, 1481 GNU_PROPERTY_AARCH64_FEATURE_1_PAC = 1 << 1, 1482 }; 1483 1484 // x86 processor feature bits. 1485 enum : unsigned { 1486 GNU_PROPERTY_X86_FEATURE_1_IBT = 1 << 0, 1487 GNU_PROPERTY_X86_FEATURE_1_SHSTK = 1 << 1, 1488 1489 GNU_PROPERTY_X86_ISA_1_CMOV = 1 << 0, 1490 GNU_PROPERTY_X86_ISA_1_SSE = 1 << 1, 1491 GNU_PROPERTY_X86_ISA_1_SSE2 = 1 << 2, 1492 GNU_PROPERTY_X86_ISA_1_SSE3 = 1 << 3, 1493 GNU_PROPERTY_X86_ISA_1_SSSE3 = 1 << 4, 1494 GNU_PROPERTY_X86_ISA_1_SSE4_1 = 1 << 5, 1495 GNU_PROPERTY_X86_ISA_1_SSE4_2 = 1 << 6, 1496 GNU_PROPERTY_X86_ISA_1_AVX = 1 << 7, 1497 GNU_PROPERTY_X86_ISA_1_AVX2 = 1 << 8, 1498 GNU_PROPERTY_X86_ISA_1_FMA = 1 << 9, 1499 GNU_PROPERTY_X86_ISA_1_AVX512F = 1 << 10, 1500 GNU_PROPERTY_X86_ISA_1_AVX512CD = 1 << 11, 1501 GNU_PROPERTY_X86_ISA_1_AVX512ER = 1 << 12, 1502 GNU_PROPERTY_X86_ISA_1_AVX512PF = 1 << 13, 1503 GNU_PROPERTY_X86_ISA_1_AVX512VL = 1 << 14, 1504 GNU_PROPERTY_X86_ISA_1_AVX512DQ = 1 << 15, 1505 GNU_PROPERTY_X86_ISA_1_AVX512BW = 1 << 16, 1506 GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS = 1 << 17, 1507 GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW = 1 << 18, 1508 GNU_PROPERTY_X86_ISA_1_AVX512_BITALG = 1 << 19, 1509 GNU_PROPERTY_X86_ISA_1_AVX512_IFMA = 1 << 20, 1510 GNU_PROPERTY_X86_ISA_1_AVX512_VBMI = 1 << 21, 1511 GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2 = 1 << 22, 1512 GNU_PROPERTY_X86_ISA_1_AVX512_VNNI = 1 << 23, 1513 1514 GNU_PROPERTY_X86_FEATURE_2_X86 = 1 << 0, 1515 GNU_PROPERTY_X86_FEATURE_2_X87 = 1 << 1, 1516 GNU_PROPERTY_X86_FEATURE_2_MMX = 1 << 2, 1517 GNU_PROPERTY_X86_FEATURE_2_XMM = 1 << 3, 1518 GNU_PROPERTY_X86_FEATURE_2_YMM = 1 << 4, 1519 GNU_PROPERTY_X86_FEATURE_2_ZMM = 1 << 5, 1520 GNU_PROPERTY_X86_FEATURE_2_FXSR = 1 << 6, 1521 GNU_PROPERTY_X86_FEATURE_2_XSAVE = 1 << 7, 1522 GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT = 1 << 8, 1523 GNU_PROPERTY_X86_FEATURE_2_XSAVEC = 1 << 9, 1524 }; 1525 1526 // AMDGPU-specific section indices. 1527 enum { 1528 SHN_AMDGPU_LDS = 0xff00, // Variable in LDS; symbol encoded like SHN_COMMON 1529 }; 1530 1531 // AMD specific notes. (Code Object V2) 1532 enum { 1533 // Note types with values between 0 and 9 (inclusive) are reserved. 1534 NT_AMD_AMDGPU_HSA_METADATA = 10, 1535 NT_AMD_AMDGPU_ISA = 11, 1536 NT_AMD_AMDGPU_PAL_METADATA = 12 1537 }; 1538 1539 // AMDGPU specific notes. (Code Object V3) 1540 enum { 1541 // Note types with values between 0 and 31 (inclusive) are reserved. 1542 NT_AMDGPU_METADATA = 32 1543 }; 1544 1545 enum { 1546 GNU_ABI_TAG_LINUX = 0, 1547 GNU_ABI_TAG_HURD = 1, 1548 GNU_ABI_TAG_SOLARIS = 2, 1549 GNU_ABI_TAG_FREEBSD = 3, 1550 GNU_ABI_TAG_NETBSD = 4, 1551 GNU_ABI_TAG_SYLLABLE = 5, 1552 GNU_ABI_TAG_NACL = 6, 1553 }; 1554 1555 constexpr const char *ELF_NOTE_GNU = "GNU"; 1556 1557 // Android packed relocation group flags. 1558 enum { 1559 RELOCATION_GROUPED_BY_INFO_FLAG = 1, 1560 RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG = 2, 1561 RELOCATION_GROUPED_BY_ADDEND_FLAG = 4, 1562 RELOCATION_GROUP_HAS_ADDEND_FLAG = 8, 1563 }; 1564 1565 // Compressed section header for ELF32. 1566 struct Elf32_Chdr { 1567 Elf32_Word ch_type; 1568 Elf32_Word ch_size; 1569 Elf32_Word ch_addralign; 1570 }; 1571 1572 // Compressed section header for ELF64. 1573 struct Elf64_Chdr { 1574 Elf64_Word ch_type; 1575 Elf64_Word ch_reserved; 1576 Elf64_Xword ch_size; 1577 Elf64_Xword ch_addralign; 1578 }; 1579 1580 // Node header for ELF32. 1581 struct Elf32_Nhdr { 1582 Elf32_Word n_namesz; 1583 Elf32_Word n_descsz; 1584 Elf32_Word n_type; 1585 }; 1586 1587 // Node header for ELF64. 1588 struct Elf64_Nhdr { 1589 Elf64_Word n_namesz; 1590 Elf64_Word n_descsz; 1591 Elf64_Word n_type; 1592 }; 1593 1594 // Legal values for ch_type field of compressed section header. 1595 enum { 1596 ELFCOMPRESS_ZLIB = 1, // ZLIB/DEFLATE algorithm. 1597 ELFCOMPRESS_LOOS = 0x60000000, // Start of OS-specific. 1598 ELFCOMPRESS_HIOS = 0x6fffffff, // End of OS-specific. 1599 ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific. 1600 ELFCOMPRESS_HIPROC = 0x7fffffff // End of processor-specific. 1601 }; 1602 1603 } // end namespace ELF 1604 } // end namespace llvm 1605 1606 #endif // LLVM_BINARYFORMAT_ELF_H 1607