1 //===- llvm/BinaryFormat/ELF.h - ELF constants and structures ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This header contains common, non-processor-specific data structures and 10 // constants for the ELF file format. 11 // 12 // The details of the ELF32 bits in this file are largely based on the Tool 13 // Interface Standard (TIS) Executable and Linking Format (ELF) Specification 14 // Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format 15 // Version 1.5, Draft 2, May 1998 as well as OpenBSD header files. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #ifndef LLVM_BINARYFORMAT_ELF_H 20 #define LLVM_BINARYFORMAT_ELF_H 21 22 #include "llvm/ADT/StringRef.h" 23 #include <cstdint> 24 #include <cstring> 25 #include <type_traits> 26 27 namespace llvm { 28 namespace ELF { 29 30 using Elf32_Addr = uint32_t; // Program address 31 using Elf32_Off = uint32_t; // File offset 32 using Elf32_Half = uint16_t; 33 using Elf32_Word = uint32_t; 34 using Elf32_Sword = int32_t; 35 36 using Elf64_Addr = uint64_t; 37 using Elf64_Off = uint64_t; 38 using Elf64_Half = uint16_t; 39 using Elf64_Word = uint32_t; 40 using Elf64_Sword = int32_t; 41 using Elf64_Xword = uint64_t; 42 using Elf64_Sxword = int64_t; 43 44 // Object file magic string. 45 static const char ElfMagic[] = {0x7f, 'E', 'L', 'F', '\0'}; 46 47 // e_ident size and indices. 48 enum { 49 EI_MAG0 = 0, // File identification index. 50 EI_MAG1 = 1, // File identification index. 51 EI_MAG2 = 2, // File identification index. 52 EI_MAG3 = 3, // File identification index. 53 EI_CLASS = 4, // File class. 54 EI_DATA = 5, // Data encoding. 55 EI_VERSION = 6, // File version. 56 EI_OSABI = 7, // OS/ABI identification. 57 EI_ABIVERSION = 8, // ABI version. 58 EI_PAD = 9, // Start of padding bytes. 59 EI_NIDENT = 16 // Number of bytes in e_ident. 60 }; 61 62 struct Elf32_Ehdr { 63 unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes 64 Elf32_Half e_type; // Type of file (see ET_* below) 65 Elf32_Half e_machine; // Required architecture for this file (see EM_*) 66 Elf32_Word e_version; // Must be equal to 1 67 Elf32_Addr e_entry; // Address to jump to in order to start program 68 Elf32_Off e_phoff; // Program header table's file offset, in bytes 69 Elf32_Off e_shoff; // Section header table's file offset, in bytes 70 Elf32_Word e_flags; // Processor-specific flags 71 Elf32_Half e_ehsize; // Size of ELF header, in bytes 72 Elf32_Half e_phentsize; // Size of an entry in the program header table 73 Elf32_Half e_phnum; // Number of entries in the program header table 74 Elf32_Half e_shentsize; // Size of an entry in the section header table 75 Elf32_Half e_shnum; // Number of entries in the section header table 76 Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table 77 78 bool checkMagic() const { 79 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 80 } 81 82 unsigned char getFileClass() const { return e_ident[EI_CLASS]; } 83 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 84 }; 85 86 // 64-bit ELF header. Fields are the same as for ELF32, but with different 87 // types (see above). 88 struct Elf64_Ehdr { 89 unsigned char e_ident[EI_NIDENT]; 90 Elf64_Half e_type; 91 Elf64_Half e_machine; 92 Elf64_Word e_version; 93 Elf64_Addr e_entry; 94 Elf64_Off e_phoff; 95 Elf64_Off e_shoff; 96 Elf64_Word e_flags; 97 Elf64_Half e_ehsize; 98 Elf64_Half e_phentsize; 99 Elf64_Half e_phnum; 100 Elf64_Half e_shentsize; 101 Elf64_Half e_shnum; 102 Elf64_Half e_shstrndx; 103 104 bool checkMagic() const { 105 return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0; 106 } 107 108 unsigned char getFileClass() const { return e_ident[EI_CLASS]; } 109 unsigned char getDataEncoding() const { return e_ident[EI_DATA]; } 110 }; 111 112 // File types. 113 // See current registered ELF types at: 114 // http://www.sco.com/developers/gabi/latest/ch4.eheader.html 115 enum { 116 ET_NONE = 0, // No file type 117 ET_REL = 1, // Relocatable file 118 ET_EXEC = 2, // Executable file 119 ET_DYN = 3, // Shared object file 120 ET_CORE = 4, // Core file 121 ET_LOOS = 0xfe00, // Beginning of operating system-specific codes 122 ET_HIOS = 0xfeff, // Operating system-specific 123 ET_LOPROC = 0xff00, // Beginning of processor-specific codes 124 ET_HIPROC = 0xffff // Processor-specific 125 }; 126 127 // Versioning 128 enum { EV_NONE = 0, EV_CURRENT = 1 }; 129 130 // Machine architectures 131 // See current registered ELF machine architectures at: 132 // http://www.uxsglobal.com/developers/gabi/latest/ch4.eheader.html 133 enum { 134 EM_NONE = 0, // No machine 135 EM_M32 = 1, // AT&T WE 32100 136 EM_SPARC = 2, // SPARC 137 EM_386 = 3, // Intel 386 138 EM_68K = 4, // Motorola 68000 139 EM_88K = 5, // Motorola 88000 140 EM_IAMCU = 6, // Intel MCU 141 EM_860 = 7, // Intel 80860 142 EM_MIPS = 8, // MIPS R3000 143 EM_S370 = 9, // IBM System/370 144 EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian 145 EM_PARISC = 15, // Hewlett-Packard PA-RISC 146 EM_VPP500 = 17, // Fujitsu VPP500 147 EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC 148 EM_960 = 19, // Intel 80960 149 EM_PPC = 20, // PowerPC 150 EM_PPC64 = 21, // PowerPC64 151 EM_S390 = 22, // IBM System/390 152 EM_SPU = 23, // IBM SPU/SPC 153 EM_V800 = 36, // NEC V800 154 EM_FR20 = 37, // Fujitsu FR20 155 EM_RH32 = 38, // TRW RH-32 156 EM_RCE = 39, // Motorola RCE 157 EM_ARM = 40, // ARM 158 EM_ALPHA = 41, // DEC Alpha 159 EM_SH = 42, // Hitachi SH 160 EM_SPARCV9 = 43, // SPARC V9 161 EM_TRICORE = 44, // Siemens TriCore 162 EM_ARC = 45, // Argonaut RISC Core 163 EM_H8_300 = 46, // Hitachi H8/300 164 EM_H8_300H = 47, // Hitachi H8/300H 165 EM_H8S = 48, // Hitachi H8S 166 EM_H8_500 = 49, // Hitachi H8/500 167 EM_IA_64 = 50, // Intel IA-64 processor architecture 168 EM_MIPS_X = 51, // Stanford MIPS-X 169 EM_COLDFIRE = 52, // Motorola ColdFire 170 EM_68HC12 = 53, // Motorola M68HC12 171 EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator 172 EM_PCP = 55, // Siemens PCP 173 EM_NCPU = 56, // Sony nCPU embedded RISC processor 174 EM_NDR1 = 57, // Denso NDR1 microprocessor 175 EM_STARCORE = 58, // Motorola Star*Core processor 176 EM_ME16 = 59, // Toyota ME16 processor 177 EM_ST100 = 60, // STMicroelectronics ST100 processor 178 EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family 179 EM_X86_64 = 62, // AMD x86-64 architecture 180 EM_PDSP = 63, // Sony DSP Processor 181 EM_PDP10 = 64, // Digital Equipment Corp. PDP-10 182 EM_PDP11 = 65, // Digital Equipment Corp. PDP-11 183 EM_FX66 = 66, // Siemens FX66 microcontroller 184 EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller 185 EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller 186 EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller 187 EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller 188 EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller 189 EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller 190 EM_SVX = 73, // Silicon Graphics SVx 191 EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller 192 EM_VAX = 75, // Digital VAX 193 EM_CRIS = 76, // Axis Communications 32-bit embedded processor 194 EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor 195 EM_FIREPATH = 78, // Element 14 64-bit DSP Processor 196 EM_ZSP = 79, // LSI Logic 16-bit DSP Processor 197 EM_MMIX = 80, // Donald Knuth's educational 64-bit processor 198 EM_HUANY = 81, // Harvard University machine-independent object files 199 EM_PRISM = 82, // SiTera Prism 200 EM_AVR = 83, // Atmel AVR 8-bit microcontroller 201 EM_FR30 = 84, // Fujitsu FR30 202 EM_D10V = 85, // Mitsubishi D10V 203 EM_D30V = 86, // Mitsubishi D30V 204 EM_V850 = 87, // NEC v850 205 EM_M32R = 88, // Mitsubishi M32R 206 EM_MN10300 = 89, // Matsushita MN10300 207 EM_MN10200 = 90, // Matsushita MN10200 208 EM_PJ = 91, // picoJava 209 EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor 210 EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old 211 // spelling/synonym: EM_ARC_A5) 212 EM_XTENSA = 94, // Tensilica Xtensa Architecture 213 EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor 214 EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor 215 EM_NS32K = 97, // National Semiconductor 32000 series 216 EM_TPC = 98, // Tenor Network TPC processor 217 EM_SNP1K = 99, // Trebia SNP 1000 processor 218 EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200 219 EM_IP2K = 101, // Ubicom IP2xxx microcontroller family 220 EM_MAX = 102, // MAX Processor 221 EM_CR = 103, // National Semiconductor CompactRISC microprocessor 222 EM_F2MC16 = 104, // Fujitsu F2MC16 223 EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430 224 EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor 225 EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors 226 EM_SEP = 108, // Sharp embedded microprocessor 227 EM_ARCA = 109, // Arca RISC Microprocessor 228 EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC 229 // of Peking University 230 EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU 231 EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor 232 EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor 233 EM_CRX = 114, // National Semiconductor CompactRISC CRX 234 EM_XGATE = 115, // Motorola XGATE embedded processor 235 EM_C166 = 116, // Infineon C16x/XC16x processor 236 EM_M16C = 117, // Renesas M16C series microprocessors 237 EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal 238 // Controller 239 EM_CE = 119, // Freescale Communication Engine RISC core 240 EM_M32C = 120, // Renesas M32C series microprocessors 241 EM_TSK3000 = 131, // Altium TSK3000 core 242 EM_RS08 = 132, // Freescale RS08 embedded processor 243 EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP 244 // processors 245 EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor 246 EM_SCORE7 = 135, // Sunplus S+core7 RISC processor 247 EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor 248 EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor 249 EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture 250 EM_SE_C17 = 139, // Seiko Epson C17 family 251 EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family 252 EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family 253 EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family 254 EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor 255 EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor 256 EM_R32C = 162, // Renesas R32C series microprocessors 257 EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family 258 EM_HEXAGON = 164, // Qualcomm Hexagon processor 259 EM_8051 = 165, // Intel 8051 and variants 260 EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable 261 // and extensible RISC processors 262 EM_NDS32 = 167, // Andes Technology compact code size embedded RISC 263 // processor family 264 EM_ECOG1 = 168, // Cyan Technology eCOG1X family 265 EM_ECOG1X = 168, // Cyan Technology eCOG1X family 266 EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers 267 EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor 268 EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor 269 EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture 270 EM_RX = 173, // Renesas RX family 271 EM_METAG = 174, // Imagination Technologies META processor 272 // architecture 273 EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture 274 EM_ECOG16 = 176, // Cyan Technology eCOG16 family 275 EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit 276 // microprocessor 277 EM_ETPU = 178, // Freescale Extended Time Processing Unit 278 EM_SLE9X = 179, // Infineon Technologies SLE9X core 279 EM_L10M = 180, // Intel L10M 280 EM_K10M = 181, // Intel K10M 281 EM_AARCH64 = 183, // ARM AArch64 282 EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family 283 EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller 284 EM_TILE64 = 187, // Tilera TILE64 multicore architecture family 285 EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family 286 EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core 287 EM_CUDA = 190, // NVIDIA CUDA architecture 288 EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family 289 EM_CLOUDSHIELD = 192, // CloudShield architecture family 290 EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family 291 EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family 292 EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2 293 EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core 294 EM_RL78 = 197, // Renesas RL78 family 295 EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor 296 EM_78KOR = 199, // Renesas 78KOR family 297 EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC) 298 EM_BA1 = 201, // Beyond BA1 CPU architecture 299 EM_BA2 = 202, // Beyond BA2 CPU architecture 300 EM_XCORE = 203, // XMOS xCORE processor family 301 EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family 302 EM_INTEL205 = 205, // Reserved by Intel 303 EM_INTEL206 = 206, // Reserved by Intel 304 EM_INTEL207 = 207, // Reserved by Intel 305 EM_INTEL208 = 208, // Reserved by Intel 306 EM_INTEL209 = 209, // Reserved by Intel 307 EM_KM32 = 210, // KM211 KM32 32-bit processor 308 EM_KMX32 = 211, // KM211 KMX32 32-bit processor 309 EM_KMX16 = 212, // KM211 KMX16 16-bit processor 310 EM_KMX8 = 213, // KM211 KMX8 8-bit processor 311 EM_KVARC = 214, // KM211 KVARC processor 312 EM_CDP = 215, // Paneve CDP architecture family 313 EM_COGE = 216, // Cognitive Smart Memory Processor 314 EM_COOL = 217, // iCelero CoolEngine 315 EM_NORC = 218, // Nanoradio Optimized RISC 316 EM_CSR_KALIMBA = 219, // CSR Kalimba architecture family 317 EM_AMDGPU = 224, // AMD GPU architecture 318 EM_RISCV = 243, // RISC-V 319 EM_LANAI = 244, // Lanai 32-bit processor 320 EM_BPF = 247, // Linux kernel bpf virtual machine 321 EM_VE = 251, // NEC SX-Aurora VE 322 EM_CSKY = 252, // C-SKY 32-bit processor 323 EM_LOONGARCH = 258, // LoongArch 324 }; 325 326 // Object file classes. 327 enum { 328 ELFCLASSNONE = 0, 329 ELFCLASS32 = 1, // 32-bit object file 330 ELFCLASS64 = 2 // 64-bit object file 331 }; 332 333 // Object file byte orderings. 334 enum { 335 ELFDATANONE = 0, // Invalid data encoding. 336 ELFDATA2LSB = 1, // Little-endian object file 337 ELFDATA2MSB = 2 // Big-endian object file 338 }; 339 340 // OS ABI identification. 341 enum { 342 ELFOSABI_NONE = 0, // UNIX System V ABI 343 ELFOSABI_HPUX = 1, // HP-UX operating system 344 ELFOSABI_NETBSD = 2, // NetBSD 345 ELFOSABI_GNU = 3, // GNU/Linux 346 ELFOSABI_LINUX = 3, // Historical alias for ELFOSABI_GNU. 347 ELFOSABI_HURD = 4, // GNU/Hurd 348 ELFOSABI_SOLARIS = 6, // Solaris 349 ELFOSABI_AIX = 7, // AIX 350 ELFOSABI_IRIX = 8, // IRIX 351 ELFOSABI_FREEBSD = 9, // FreeBSD 352 ELFOSABI_TRU64 = 10, // TRU64 UNIX 353 ELFOSABI_MODESTO = 11, // Novell Modesto 354 ELFOSABI_OPENBSD = 12, // OpenBSD 355 ELFOSABI_OPENVMS = 13, // OpenVMS 356 ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel 357 ELFOSABI_AROS = 15, // AROS 358 ELFOSABI_FENIXOS = 16, // FenixOS 359 ELFOSABI_CLOUDABI = 17, // Nuxi CloudABI 360 ELFOSABI_CUDA = 51, // NVIDIA CUDA architecture. 361 ELFOSABI_FIRST_ARCH = 64, // First architecture-specific OS ABI 362 ELFOSABI_AMDGPU_HSA = 64, // AMD HSA runtime 363 ELFOSABI_AMDGPU_PAL = 65, // AMD PAL runtime 364 ELFOSABI_AMDGPU_MESA3D = 66, // AMD GCN GPUs (GFX6+) for MESA runtime 365 ELFOSABI_ARM = 97, // ARM 366 ELFOSABI_ARM_FDPIC = 65, // ARM FDPIC 367 ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000 368 ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000 369 ELFOSABI_STANDALONE = 255, // Standalone (embedded) application 370 ELFOSABI_LAST_ARCH = 255 // Last Architecture-specific OS ABI 371 }; 372 373 // AMDGPU OS ABI Version identification. 374 enum { 375 // ELFABIVERSION_AMDGPU_HSA_V1 does not exist because OS ABI identification 376 // was never defined for V1. 377 ELFABIVERSION_AMDGPU_HSA_V2 = 0, 378 ELFABIVERSION_AMDGPU_HSA_V3 = 1, 379 ELFABIVERSION_AMDGPU_HSA_V4 = 2, 380 ELFABIVERSION_AMDGPU_HSA_V5 = 3, 381 ELFABIVERSION_AMDGPU_HSA_V6 = 4, 382 }; 383 384 #define ELF_RELOC(name, value) name = value, 385 386 // X86_64 relocations. 387 enum { 388 #include "ELFRelocs/x86_64.def" 389 }; 390 391 // i386 relocations. 392 enum { 393 #include "ELFRelocs/i386.def" 394 }; 395 396 // ELF Relocation types for PPC32 397 enum { 398 #include "ELFRelocs/PowerPC.def" 399 }; 400 401 // Specific e_flags for PPC64 402 enum { 403 // e_flags bits specifying ABI: 404 // 1 for original ABI using function descriptors, 405 // 2 for revised ABI without function descriptors, 406 // 0 for unspecified or not using any features affected by the differences. 407 EF_PPC64_ABI = 3 408 }; 409 410 // Special values for the st_other field in the symbol table entry for PPC64. 411 enum { 412 STO_PPC64_LOCAL_BIT = 5, 413 STO_PPC64_LOCAL_MASK = (7 << STO_PPC64_LOCAL_BIT) 414 }; 415 static inline int64_t decodePPC64LocalEntryOffset(unsigned Other) { 416 unsigned Val = (Other & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT; 417 return ((1 << Val) >> 2) << 2; 418 } 419 420 // ELF Relocation types for PPC64 421 enum { 422 #include "ELFRelocs/PowerPC64.def" 423 }; 424 425 // ELF Relocation types for AArch64 426 enum { 427 #include "ELFRelocs/AArch64.def" 428 }; 429 430 // Special values for the st_other field in the symbol table entry for AArch64. 431 enum { 432 // Symbol may follow different calling convention than base PCS. 433 STO_AARCH64_VARIANT_PCS = 0x80 434 }; 435 436 // ARM Specific e_flags 437 enum : unsigned { 438 EF_ARM_SOFT_FLOAT = 0x00000200U, // Legacy pre EABI_VER5 439 EF_ARM_ABI_FLOAT_SOFT = 0x00000200U, // EABI_VER5 440 EF_ARM_VFP_FLOAT = 0x00000400U, // Legacy pre EABI_VER5 441 EF_ARM_ABI_FLOAT_HARD = 0x00000400U, // EABI_VER5 442 EF_ARM_BE8 = 0x00800000U, 443 EF_ARM_EABI_UNKNOWN = 0x00000000U, 444 EF_ARM_EABI_VER1 = 0x01000000U, 445 EF_ARM_EABI_VER2 = 0x02000000U, 446 EF_ARM_EABI_VER3 = 0x03000000U, 447 EF_ARM_EABI_VER4 = 0x04000000U, 448 EF_ARM_EABI_VER5 = 0x05000000U, 449 EF_ARM_EABIMASK = 0xFF000000U 450 }; 451 452 // ELF Relocation types for ARM 453 enum { 454 #include "ELFRelocs/ARM.def" 455 }; 456 457 // ARC Specific e_flags 458 enum : unsigned { 459 EF_ARC_MACH_MSK = 0x000000ff, 460 EF_ARC_OSABI_MSK = 0x00000f00, 461 E_ARC_MACH_ARC600 = 0x00000002, 462 E_ARC_MACH_ARC601 = 0x00000004, 463 E_ARC_MACH_ARC700 = 0x00000003, 464 EF_ARC_CPU_ARCV2EM = 0x00000005, 465 EF_ARC_CPU_ARCV2HS = 0x00000006, 466 E_ARC_OSABI_ORIG = 0x00000000, 467 E_ARC_OSABI_V2 = 0x00000200, 468 E_ARC_OSABI_V3 = 0x00000300, 469 E_ARC_OSABI_V4 = 0x00000400, 470 EF_ARC_PIC = 0x00000100 471 }; 472 473 // ELF Relocation types for ARC 474 enum { 475 #include "ELFRelocs/ARC.def" 476 }; 477 478 // AVR specific e_flags 479 enum : unsigned { 480 EF_AVR_ARCH_AVR1 = 1, 481 EF_AVR_ARCH_AVR2 = 2, 482 EF_AVR_ARCH_AVR25 = 25, 483 EF_AVR_ARCH_AVR3 = 3, 484 EF_AVR_ARCH_AVR31 = 31, 485 EF_AVR_ARCH_AVR35 = 35, 486 EF_AVR_ARCH_AVR4 = 4, 487 EF_AVR_ARCH_AVR5 = 5, 488 EF_AVR_ARCH_AVR51 = 51, 489 EF_AVR_ARCH_AVR6 = 6, 490 EF_AVR_ARCH_AVRTINY = 100, 491 EF_AVR_ARCH_XMEGA1 = 101, 492 EF_AVR_ARCH_XMEGA2 = 102, 493 EF_AVR_ARCH_XMEGA3 = 103, 494 EF_AVR_ARCH_XMEGA4 = 104, 495 EF_AVR_ARCH_XMEGA5 = 105, 496 EF_AVR_ARCH_XMEGA6 = 106, 497 EF_AVR_ARCH_XMEGA7 = 107, 498 499 EF_AVR_ARCH_MASK = 0x7f, // EF_AVR_ARCH_xxx selection mask 500 501 EF_AVR_LINKRELAX_PREPARED = 0x80, // The file is prepared for linker 502 // relaxation to be applied 503 }; 504 505 // ELF Relocation types for AVR 506 enum { 507 #include "ELFRelocs/AVR.def" 508 }; 509 510 // Mips Specific e_flags 511 enum : unsigned { 512 EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions 513 EF_MIPS_PIC = 0x00000002, // Position independent code 514 EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code 515 EF_MIPS_ABI2 = 0x00000020, // File uses N32 ABI 516 EF_MIPS_32BITMODE = 0x00000100, // Code compiled for a 64-bit machine 517 // in 32-bit mode 518 EF_MIPS_FP64 = 0x00000200, // Code compiled for a 32-bit machine 519 // but uses 64-bit FP registers 520 EF_MIPS_NAN2008 = 0x00000400, // Uses IEE 754-2008 NaN encoding 521 522 // ABI flags 523 EF_MIPS_ABI_O32 = 0x00001000, // This file follows the first MIPS 32 bit ABI 524 EF_MIPS_ABI_O64 = 0x00002000, // O32 ABI extended for 64-bit architecture. 525 EF_MIPS_ABI_EABI32 = 0x00003000, // EABI in 32 bit mode. 526 EF_MIPS_ABI_EABI64 = 0x00004000, // EABI in 64 bit mode. 527 EF_MIPS_ABI = 0x0000f000, // Mask for selecting EF_MIPS_ABI_ variant. 528 529 // MIPS machine variant 530 EF_MIPS_MACH_NONE = 0x00000000, // A standard MIPS implementation. 531 EF_MIPS_MACH_3900 = 0x00810000, // Toshiba R3900 532 EF_MIPS_MACH_4010 = 0x00820000, // LSI R4010 533 EF_MIPS_MACH_4100 = 0x00830000, // NEC VR4100 534 EF_MIPS_MACH_4650 = 0x00850000, // MIPS R4650 535 EF_MIPS_MACH_4120 = 0x00870000, // NEC VR4120 536 EF_MIPS_MACH_4111 = 0x00880000, // NEC VR4111/VR4181 537 EF_MIPS_MACH_SB1 = 0x008a0000, // Broadcom SB-1 538 EF_MIPS_MACH_OCTEON = 0x008b0000, // Cavium Networks Octeon 539 EF_MIPS_MACH_XLR = 0x008c0000, // RMI Xlr 540 EF_MIPS_MACH_OCTEON2 = 0x008d0000, // Cavium Networks Octeon2 541 EF_MIPS_MACH_OCTEON3 = 0x008e0000, // Cavium Networks Octeon3 542 EF_MIPS_MACH_5400 = 0x00910000, // NEC VR5400 543 EF_MIPS_MACH_5900 = 0x00920000, // MIPS R5900 544 EF_MIPS_MACH_5500 = 0x00980000, // NEC VR5500 545 EF_MIPS_MACH_9000 = 0x00990000, // Unknown 546 EF_MIPS_MACH_LS2E = 0x00a00000, // ST Microelectronics Loongson 2E 547 EF_MIPS_MACH_LS2F = 0x00a10000, // ST Microelectronics Loongson 2F 548 EF_MIPS_MACH_LS3A = 0x00a20000, // Loongson 3A 549 EF_MIPS_MACH = 0x00ff0000, // EF_MIPS_MACH_xxx selection mask 550 551 // ARCH_ASE 552 EF_MIPS_MICROMIPS = 0x02000000, // microMIPS 553 EF_MIPS_ARCH_ASE_M16 = 0x04000000, // Has Mips-16 ISA extensions 554 EF_MIPS_ARCH_ASE_MDMX = 0x08000000, // Has MDMX multimedia extensions 555 EF_MIPS_ARCH_ASE = 0x0f000000, // Mask for EF_MIPS_ARCH_ASE_xxx flags 556 557 // ARCH 558 EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set 559 EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set 560 EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set 561 EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set 562 EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set 563 EF_MIPS_ARCH_32 = 0x50000000, // MIPS32 instruction set per linux not elf.h 564 EF_MIPS_ARCH_64 = 0x60000000, // MIPS64 instruction set per linux not elf.h 565 EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2, mips32r3, mips32r5 566 EF_MIPS_ARCH_64R2 = 0x80000000, // mips64r2, mips64r3, mips64r5 567 EF_MIPS_ARCH_32R6 = 0x90000000, // mips32r6 568 EF_MIPS_ARCH_64R6 = 0xa0000000, // mips64r6 569 EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant 570 }; 571 572 // MIPS-specific section indexes 573 enum { 574 SHN_MIPS_ACOMMON = 0xff00, // Common symbols which are defined and allocated 575 SHN_MIPS_TEXT = 0xff01, // Not ABI compliant 576 SHN_MIPS_DATA = 0xff02, // Not ABI compliant 577 SHN_MIPS_SCOMMON = 0xff03, // Common symbols for global data area 578 SHN_MIPS_SUNDEFINED = 0xff04 // Undefined symbols for global data area 579 }; 580 581 // ELF Relocation types for Mips 582 enum { 583 #include "ELFRelocs/Mips.def" 584 }; 585 586 // Special values for the st_other field in the symbol table entry for MIPS. 587 enum { 588 STO_MIPS_OPTIONAL = 0x04, // Symbol whose definition is optional 589 STO_MIPS_PLT = 0x08, // PLT entry related dynamic table record 590 STO_MIPS_PIC = 0x20, // PIC func in an object mixes PIC/non-PIC 591 STO_MIPS_MICROMIPS = 0x80, // MIPS Specific ISA for MicroMips 592 STO_MIPS_MIPS16 = 0xf0 // MIPS Specific ISA for Mips16 593 }; 594 595 // .MIPS.options section descriptor kinds 596 enum { 597 ODK_NULL = 0, // Undefined 598 ODK_REGINFO = 1, // Register usage information 599 ODK_EXCEPTIONS = 2, // Exception processing options 600 ODK_PAD = 3, // Section padding options 601 ODK_HWPATCH = 4, // Hardware patches applied 602 ODK_FILL = 5, // Linker fill value 603 ODK_TAGS = 6, // Space for tool identification 604 ODK_HWAND = 7, // Hardware AND patches applied 605 ODK_HWOR = 8, // Hardware OR patches applied 606 ODK_GP_GROUP = 9, // GP group to use for text/data sections 607 ODK_IDENT = 10, // ID information 608 ODK_PAGESIZE = 11 // Page size information 609 }; 610 611 // Hexagon-specific e_flags 612 enum { 613 // Object processor version flags, bits[11:0] 614 EF_HEXAGON_MACH_V2 = 0x00000001, // Hexagon V2 615 EF_HEXAGON_MACH_V3 = 0x00000002, // Hexagon V3 616 EF_HEXAGON_MACH_V4 = 0x00000003, // Hexagon V4 617 EF_HEXAGON_MACH_V5 = 0x00000004, // Hexagon V5 618 EF_HEXAGON_MACH_V55 = 0x00000005, // Hexagon V55 619 EF_HEXAGON_MACH_V60 = 0x00000060, // Hexagon V60 620 EF_HEXAGON_MACH_V62 = 0x00000062, // Hexagon V62 621 EF_HEXAGON_MACH_V65 = 0x00000065, // Hexagon V65 622 EF_HEXAGON_MACH_V66 = 0x00000066, // Hexagon V66 623 EF_HEXAGON_MACH_V67 = 0x00000067, // Hexagon V67 624 EF_HEXAGON_MACH_V67T = 0x00008067, // Hexagon V67T 625 EF_HEXAGON_MACH_V68 = 0x00000068, // Hexagon V68 626 EF_HEXAGON_MACH_V69 = 0x00000069, // Hexagon V69 627 EF_HEXAGON_MACH_V71 = 0x00000071, // Hexagon V71 628 EF_HEXAGON_MACH_V71T = 0x00008071, // Hexagon V71T 629 EF_HEXAGON_MACH_V73 = 0x00000073, // Hexagon V73 630 EF_HEXAGON_MACH = 0x000003ff, // Hexagon V.. 631 632 // Highest ISA version flags 633 EF_HEXAGON_ISA_MACH = 0x00000000, // Same as specified in bits[11:0] 634 // of e_flags 635 EF_HEXAGON_ISA_V2 = 0x00000010, // Hexagon V2 ISA 636 EF_HEXAGON_ISA_V3 = 0x00000020, // Hexagon V3 ISA 637 EF_HEXAGON_ISA_V4 = 0x00000030, // Hexagon V4 ISA 638 EF_HEXAGON_ISA_V5 = 0x00000040, // Hexagon V5 ISA 639 EF_HEXAGON_ISA_V55 = 0x00000050, // Hexagon V55 ISA 640 EF_HEXAGON_ISA_V60 = 0x00000060, // Hexagon V60 ISA 641 EF_HEXAGON_ISA_V62 = 0x00000062, // Hexagon V62 ISA 642 EF_HEXAGON_ISA_V65 = 0x00000065, // Hexagon V65 ISA 643 EF_HEXAGON_ISA_V66 = 0x00000066, // Hexagon V66 ISA 644 EF_HEXAGON_ISA_V67 = 0x00000067, // Hexagon V67 ISA 645 EF_HEXAGON_ISA_V68 = 0x00000068, // Hexagon V68 ISA 646 EF_HEXAGON_ISA_V69 = 0x00000069, // Hexagon V69 ISA 647 EF_HEXAGON_ISA_V71 = 0x00000071, // Hexagon V71 ISA 648 EF_HEXAGON_ISA_V73 = 0x00000073, // Hexagon V73 ISA 649 EF_HEXAGON_ISA_V75 = 0x00000075, // Hexagon V75 ISA 650 EF_HEXAGON_ISA = 0x000003ff, // Hexagon V.. ISA 651 }; 652 653 // Hexagon-specific section indexes for common small data 654 enum { 655 SHN_HEXAGON_SCOMMON = 0xff00, // Other access sizes 656 SHN_HEXAGON_SCOMMON_1 = 0xff01, // Byte-sized access 657 SHN_HEXAGON_SCOMMON_2 = 0xff02, // Half-word-sized access 658 SHN_HEXAGON_SCOMMON_4 = 0xff03, // Word-sized access 659 SHN_HEXAGON_SCOMMON_8 = 0xff04 // Double-word-size access 660 }; 661 662 // ELF Relocation types for Hexagon 663 enum { 664 #include "ELFRelocs/Hexagon.def" 665 }; 666 667 // ELF Relocation type for Lanai. 668 enum { 669 #include "ELFRelocs/Lanai.def" 670 }; 671 672 // RISCV Specific e_flags 673 enum : unsigned { 674 EF_RISCV_RVC = 0x0001, 675 EF_RISCV_FLOAT_ABI = 0x0006, 676 EF_RISCV_FLOAT_ABI_SOFT = 0x0000, 677 EF_RISCV_FLOAT_ABI_SINGLE = 0x0002, 678 EF_RISCV_FLOAT_ABI_DOUBLE = 0x0004, 679 EF_RISCV_FLOAT_ABI_QUAD = 0x0006, 680 EF_RISCV_RVE = 0x0008, 681 EF_RISCV_TSO = 0x0010, 682 }; 683 684 // ELF Relocation types for RISC-V 685 enum { 686 #include "ELFRelocs/RISCV.def" 687 }; 688 689 enum { 690 // Symbol may follow different calling convention than the standard calling 691 // convention. 692 STO_RISCV_VARIANT_CC = 0x80 693 }; 694 695 // ELF Relocation types for S390/zSeries 696 enum { 697 #include "ELFRelocs/SystemZ.def" 698 }; 699 700 // ELF Relocation type for Sparc. 701 enum { 702 #include "ELFRelocs/Sparc.def" 703 }; 704 705 // AMDGPU specific e_flags. 706 enum : unsigned { 707 // Processor selection mask for EF_AMDGPU_MACH_* values. 708 EF_AMDGPU_MACH = 0x0ff, 709 710 // Not specified processor. 711 EF_AMDGPU_MACH_NONE = 0x000, 712 713 // R600-based processors. 714 715 // Radeon HD 2000/3000 Series (R600). 716 EF_AMDGPU_MACH_R600_R600 = 0x001, 717 EF_AMDGPU_MACH_R600_R630 = 0x002, 718 EF_AMDGPU_MACH_R600_RS880 = 0x003, 719 EF_AMDGPU_MACH_R600_RV670 = 0x004, 720 // Radeon HD 4000 Series (R700). 721 EF_AMDGPU_MACH_R600_RV710 = 0x005, 722 EF_AMDGPU_MACH_R600_RV730 = 0x006, 723 EF_AMDGPU_MACH_R600_RV770 = 0x007, 724 // Radeon HD 5000 Series (Evergreen). 725 EF_AMDGPU_MACH_R600_CEDAR = 0x008, 726 EF_AMDGPU_MACH_R600_CYPRESS = 0x009, 727 EF_AMDGPU_MACH_R600_JUNIPER = 0x00a, 728 EF_AMDGPU_MACH_R600_REDWOOD = 0x00b, 729 EF_AMDGPU_MACH_R600_SUMO = 0x00c, 730 // Radeon HD 6000 Series (Northern Islands). 731 EF_AMDGPU_MACH_R600_BARTS = 0x00d, 732 EF_AMDGPU_MACH_R600_CAICOS = 0x00e, 733 EF_AMDGPU_MACH_R600_CAYMAN = 0x00f, 734 EF_AMDGPU_MACH_R600_TURKS = 0x010, 735 736 // Reserved for R600-based processors. 737 EF_AMDGPU_MACH_R600_RESERVED_FIRST = 0x011, 738 EF_AMDGPU_MACH_R600_RESERVED_LAST = 0x01f, 739 740 // First/last R600-based processors. 741 EF_AMDGPU_MACH_R600_FIRST = EF_AMDGPU_MACH_R600_R600, 742 EF_AMDGPU_MACH_R600_LAST = EF_AMDGPU_MACH_R600_TURKS, 743 744 // AMDGCN-based processors. 745 // clang-format off 746 EF_AMDGPU_MACH_AMDGCN_GFX600 = 0x020, 747 EF_AMDGPU_MACH_AMDGCN_GFX601 = 0x021, 748 EF_AMDGPU_MACH_AMDGCN_GFX700 = 0x022, 749 EF_AMDGPU_MACH_AMDGCN_GFX701 = 0x023, 750 EF_AMDGPU_MACH_AMDGCN_GFX702 = 0x024, 751 EF_AMDGPU_MACH_AMDGCN_GFX703 = 0x025, 752 EF_AMDGPU_MACH_AMDGCN_GFX704 = 0x026, 753 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X27 = 0x027, 754 EF_AMDGPU_MACH_AMDGCN_GFX801 = 0x028, 755 EF_AMDGPU_MACH_AMDGCN_GFX802 = 0x029, 756 EF_AMDGPU_MACH_AMDGCN_GFX803 = 0x02a, 757 EF_AMDGPU_MACH_AMDGCN_GFX810 = 0x02b, 758 EF_AMDGPU_MACH_AMDGCN_GFX900 = 0x02c, 759 EF_AMDGPU_MACH_AMDGCN_GFX902 = 0x02d, 760 EF_AMDGPU_MACH_AMDGCN_GFX904 = 0x02e, 761 EF_AMDGPU_MACH_AMDGCN_GFX906 = 0x02f, 762 EF_AMDGPU_MACH_AMDGCN_GFX908 = 0x030, 763 EF_AMDGPU_MACH_AMDGCN_GFX909 = 0x031, 764 EF_AMDGPU_MACH_AMDGCN_GFX90C = 0x032, 765 EF_AMDGPU_MACH_AMDGCN_GFX1010 = 0x033, 766 EF_AMDGPU_MACH_AMDGCN_GFX1011 = 0x034, 767 EF_AMDGPU_MACH_AMDGCN_GFX1012 = 0x035, 768 EF_AMDGPU_MACH_AMDGCN_GFX1030 = 0x036, 769 EF_AMDGPU_MACH_AMDGCN_GFX1031 = 0x037, 770 EF_AMDGPU_MACH_AMDGCN_GFX1032 = 0x038, 771 EF_AMDGPU_MACH_AMDGCN_GFX1033 = 0x039, 772 EF_AMDGPU_MACH_AMDGCN_GFX602 = 0x03a, 773 EF_AMDGPU_MACH_AMDGCN_GFX705 = 0x03b, 774 EF_AMDGPU_MACH_AMDGCN_GFX805 = 0x03c, 775 EF_AMDGPU_MACH_AMDGCN_GFX1035 = 0x03d, 776 EF_AMDGPU_MACH_AMDGCN_GFX1034 = 0x03e, 777 EF_AMDGPU_MACH_AMDGCN_GFX90A = 0x03f, 778 EF_AMDGPU_MACH_AMDGCN_GFX940 = 0x040, 779 EF_AMDGPU_MACH_AMDGCN_GFX1100 = 0x041, 780 EF_AMDGPU_MACH_AMDGCN_GFX1013 = 0x042, 781 EF_AMDGPU_MACH_AMDGCN_GFX1150 = 0x043, 782 EF_AMDGPU_MACH_AMDGCN_GFX1103 = 0x044, 783 EF_AMDGPU_MACH_AMDGCN_GFX1036 = 0x045, 784 EF_AMDGPU_MACH_AMDGCN_GFX1101 = 0x046, 785 EF_AMDGPU_MACH_AMDGCN_GFX1102 = 0x047, 786 EF_AMDGPU_MACH_AMDGCN_GFX1200 = 0x048, 787 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X49 = 0x049, 788 EF_AMDGPU_MACH_AMDGCN_GFX1151 = 0x04a, 789 EF_AMDGPU_MACH_AMDGCN_GFX941 = 0x04b, 790 EF_AMDGPU_MACH_AMDGCN_GFX942 = 0x04c, 791 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X4D = 0x04d, 792 EF_AMDGPU_MACH_AMDGCN_GFX1201 = 0x04e, 793 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X4F = 0x04f, 794 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X50 = 0x050, 795 EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC = 0x051, 796 EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC = 0x052, 797 EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC = 0x053, 798 EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC = 0x054, 799 EF_AMDGPU_MACH_AMDGCN_GFX1152 = 0x055, 800 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X56 = 0x056, 801 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X57 = 0x057, 802 EF_AMDGPU_MACH_AMDGCN_RESERVED_0X58 = 0x058, 803 EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC = 0x059, 804 // clang-format on 805 806 // First/last AMDGCN-based processors. 807 EF_AMDGPU_MACH_AMDGCN_FIRST = EF_AMDGPU_MACH_AMDGCN_GFX600, 808 EF_AMDGPU_MACH_AMDGCN_LAST = EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC, 809 810 // Indicates if the "xnack" target feature is enabled for all code contained 811 // in the object. 812 // 813 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2. 814 EF_AMDGPU_FEATURE_XNACK_V2 = 0x01, 815 // Indicates if the trap handler is enabled for all code contained 816 // in the object. 817 // 818 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V2. 819 EF_AMDGPU_FEATURE_TRAP_HANDLER_V2 = 0x02, 820 821 // Indicates if the "xnack" target feature is enabled for all code contained 822 // in the object. 823 // 824 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3. 825 EF_AMDGPU_FEATURE_XNACK_V3 = 0x100, 826 // Indicates if the "sramecc" target feature is enabled for all code 827 // contained in the object. 828 // 829 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V3. 830 EF_AMDGPU_FEATURE_SRAMECC_V3 = 0x200, 831 832 // XNACK selection mask for EF_AMDGPU_FEATURE_XNACK_* values. 833 // 834 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4. 835 EF_AMDGPU_FEATURE_XNACK_V4 = 0x300, 836 // XNACK is not supported. 837 EF_AMDGPU_FEATURE_XNACK_UNSUPPORTED_V4 = 0x000, 838 // XNACK is any/default/unspecified. 839 EF_AMDGPU_FEATURE_XNACK_ANY_V4 = 0x100, 840 // XNACK is off. 841 EF_AMDGPU_FEATURE_XNACK_OFF_V4 = 0x200, 842 // XNACK is on. 843 EF_AMDGPU_FEATURE_XNACK_ON_V4 = 0x300, 844 845 // SRAMECC selection mask for EF_AMDGPU_FEATURE_SRAMECC_* values. 846 // 847 // Only valid for ELFOSABI_AMDGPU_HSA and ELFABIVERSION_AMDGPU_HSA_V4. 848 EF_AMDGPU_FEATURE_SRAMECC_V4 = 0xc00, 849 // SRAMECC is not supported. 850 EF_AMDGPU_FEATURE_SRAMECC_UNSUPPORTED_V4 = 0x000, 851 // SRAMECC is any/default/unspecified. 852 EF_AMDGPU_FEATURE_SRAMECC_ANY_V4 = 0x400, 853 // SRAMECC is off. 854 EF_AMDGPU_FEATURE_SRAMECC_OFF_V4 = 0x800, 855 // SRAMECC is on. 856 EF_AMDGPU_FEATURE_SRAMECC_ON_V4 = 0xc00, 857 858 // Generic target versioning. This is contained in the list byte of EFLAGS. 859 EF_AMDGPU_GENERIC_VERSION = 0xff000000, 860 EF_AMDGPU_GENERIC_VERSION_OFFSET = 24, 861 EF_AMDGPU_GENERIC_VERSION_MIN = 1, 862 EF_AMDGPU_GENERIC_VERSION_MAX = 0xff, 863 }; 864 865 // ELF Relocation types for AMDGPU 866 enum { 867 #include "ELFRelocs/AMDGPU.def" 868 }; 869 870 // NVPTX specific e_flags. 871 enum : unsigned { 872 // Processor selection mask for EF_CUDA_SM* values. 873 EF_CUDA_SM = 0xff, 874 875 // SM based processor values. 876 EF_CUDA_SM20 = 0x14, 877 EF_CUDA_SM21 = 0x15, 878 EF_CUDA_SM30 = 0x1e, 879 EF_CUDA_SM32 = 0x20, 880 EF_CUDA_SM35 = 0x23, 881 EF_CUDA_SM37 = 0x25, 882 EF_CUDA_SM50 = 0x32, 883 EF_CUDA_SM52 = 0x34, 884 EF_CUDA_SM53 = 0x35, 885 EF_CUDA_SM60 = 0x3c, 886 EF_CUDA_SM61 = 0x3d, 887 EF_CUDA_SM62 = 0x3e, 888 EF_CUDA_SM70 = 0x46, 889 EF_CUDA_SM72 = 0x48, 890 EF_CUDA_SM75 = 0x4b, 891 EF_CUDA_SM80 = 0x50, 892 EF_CUDA_SM86 = 0x56, 893 EF_CUDA_SM87 = 0x57, 894 EF_CUDA_SM89 = 0x59, 895 // The sm_90a variant uses the same machine flag. 896 EF_CUDA_SM90 = 0x5a, 897 898 // Unified texture binding is enabled. 899 EF_CUDA_TEXMODE_UNIFIED = 0x100, 900 // Independent texture binding is enabled. 901 EF_CUDA_TEXMODE_INDEPENDANT = 0x200, 902 // The target is using 64-bit addressing. 903 EF_CUDA_64BIT_ADDRESS = 0x400, 904 // Set when using the sm_90a processor. 905 EF_CUDA_ACCELERATORS = 0x800, 906 // Undocumented software feature. 907 EF_CUDA_SW_FLAG_V2 = 0x1000, 908 909 // Virtual processor selection mask for EF_CUDA_VIRTUAL_SM* values. 910 EF_CUDA_VIRTUAL_SM = 0xff0000, 911 }; 912 913 // ELF Relocation types for BPF 914 enum { 915 #include "ELFRelocs/BPF.def" 916 }; 917 918 // ELF Relocation types for M68k 919 enum { 920 #include "ELFRelocs/M68k.def" 921 }; 922 923 // MSP430 specific e_flags 924 enum : unsigned { 925 EF_MSP430_MACH_MSP430x11 = 11, 926 EF_MSP430_MACH_MSP430x11x1 = 110, 927 EF_MSP430_MACH_MSP430x12 = 12, 928 EF_MSP430_MACH_MSP430x13 = 13, 929 EF_MSP430_MACH_MSP430x14 = 14, 930 EF_MSP430_MACH_MSP430x15 = 15, 931 EF_MSP430_MACH_MSP430x16 = 16, 932 EF_MSP430_MACH_MSP430x20 = 20, 933 EF_MSP430_MACH_MSP430x22 = 22, 934 EF_MSP430_MACH_MSP430x23 = 23, 935 EF_MSP430_MACH_MSP430x24 = 24, 936 EF_MSP430_MACH_MSP430x26 = 26, 937 EF_MSP430_MACH_MSP430x31 = 31, 938 EF_MSP430_MACH_MSP430x32 = 32, 939 EF_MSP430_MACH_MSP430x33 = 33, 940 EF_MSP430_MACH_MSP430x41 = 41, 941 EF_MSP430_MACH_MSP430x42 = 42, 942 EF_MSP430_MACH_MSP430x43 = 43, 943 EF_MSP430_MACH_MSP430x44 = 44, 944 EF_MSP430_MACH_MSP430X = 45, 945 EF_MSP430_MACH_MSP430x46 = 46, 946 EF_MSP430_MACH_MSP430x47 = 47, 947 EF_MSP430_MACH_MSP430x54 = 54, 948 }; 949 950 // ELF Relocation types for MSP430 951 enum { 952 #include "ELFRelocs/MSP430.def" 953 }; 954 955 // ELF Relocation type for VE. 956 enum { 957 #include "ELFRelocs/VE.def" 958 }; 959 960 // CSKY Specific e_flags 961 enum : unsigned { 962 EF_CSKY_801 = 0xa, 963 EF_CSKY_802 = 0x10, 964 EF_CSKY_803 = 0x9, 965 EF_CSKY_805 = 0x11, 966 EF_CSKY_807 = 0x6, 967 EF_CSKY_810 = 0x8, 968 EF_CSKY_860 = 0xb, 969 EF_CSKY_800 = 0x1f, 970 EF_CSKY_FLOAT = 0x2000, 971 EF_CSKY_DSP = 0x4000, 972 EF_CSKY_ABIV2 = 0x20000000, 973 EF_CSKY_EFV1 = 0x1000000, 974 EF_CSKY_EFV2 = 0x2000000, 975 EF_CSKY_EFV3 = 0x3000000 976 }; 977 978 // ELF Relocation types for CSKY 979 enum { 980 #include "ELFRelocs/CSKY.def" 981 }; 982 983 // LoongArch Specific e_flags 984 enum : unsigned { 985 // Definitions from LoongArch ELF psABI v2.01. 986 // Reference: https://github.com/loongson/LoongArch-Documentation 987 // (commit hash 296de4def055c871809068e0816325a4ac04eb12) 988 989 // Base ABI Modifiers 990 EF_LOONGARCH_ABI_SOFT_FLOAT = 0x1, 991 EF_LOONGARCH_ABI_SINGLE_FLOAT = 0x2, 992 EF_LOONGARCH_ABI_DOUBLE_FLOAT = 0x3, 993 EF_LOONGARCH_ABI_MODIFIER_MASK = 0x7, 994 995 // Object file ABI versions 996 EF_LOONGARCH_OBJABI_V0 = 0x0, 997 EF_LOONGARCH_OBJABI_V1 = 0x40, 998 EF_LOONGARCH_OBJABI_MASK = 0xC0, 999 }; 1000 1001 // ELF Relocation types for LoongArch 1002 enum { 1003 #include "ELFRelocs/LoongArch.def" 1004 }; 1005 1006 // Xtensa specific e_flags 1007 enum : unsigned { 1008 // Four-bit Xtensa machine type mask. 1009 EF_XTENSA_MACH = 0x0000000f, 1010 // Various CPU types. 1011 EF_XTENSA_MACH_NONE = 0x00000000, // A base Xtensa implementation 1012 EF_XTENSA_XT_INSN = 0x00000100, 1013 EF_XTENSA_XT_LIT = 0x00000200, 1014 }; 1015 1016 // ELF Relocation types for Xtensa 1017 enum { 1018 #include "ELFRelocs/Xtensa.def" 1019 }; 1020 1021 #undef ELF_RELOC 1022 1023 // Section header. 1024 struct Elf32_Shdr { 1025 Elf32_Word sh_name; // Section name (index into string table) 1026 Elf32_Word sh_type; // Section type (SHT_*) 1027 Elf32_Word sh_flags; // Section flags (SHF_*) 1028 Elf32_Addr sh_addr; // Address where section is to be loaded 1029 Elf32_Off sh_offset; // File offset of section data, in bytes 1030 Elf32_Word sh_size; // Size of section, in bytes 1031 Elf32_Word sh_link; // Section type-specific header table index link 1032 Elf32_Word sh_info; // Section type-specific extra information 1033 Elf32_Word sh_addralign; // Section address alignment 1034 Elf32_Word sh_entsize; // Size of records contained within the section 1035 }; 1036 1037 // Section header for ELF64 - same fields as ELF32, different types. 1038 struct Elf64_Shdr { 1039 Elf64_Word sh_name; 1040 Elf64_Word sh_type; 1041 Elf64_Xword sh_flags; 1042 Elf64_Addr sh_addr; 1043 Elf64_Off sh_offset; 1044 Elf64_Xword sh_size; 1045 Elf64_Word sh_link; 1046 Elf64_Word sh_info; 1047 Elf64_Xword sh_addralign; 1048 Elf64_Xword sh_entsize; 1049 }; 1050 1051 // Special section indices. 1052 enum { 1053 SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless 1054 SHN_LORESERVE = 0xff00, // Lowest reserved index 1055 SHN_LOPROC = 0xff00, // Lowest processor-specific index 1056 SHN_HIPROC = 0xff1f, // Highest processor-specific index 1057 SHN_LOOS = 0xff20, // Lowest operating system-specific index 1058 SHN_HIOS = 0xff3f, // Highest operating system-specific index 1059 SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation 1060 SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables 1061 SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE 1062 SHN_HIRESERVE = 0xffff // Highest reserved index 1063 }; 1064 1065 // Section types. 1066 enum : unsigned { 1067 SHT_NULL = 0, // No associated section (inactive entry). 1068 SHT_PROGBITS = 1, // Program-defined contents. 1069 SHT_SYMTAB = 2, // Symbol table. 1070 SHT_STRTAB = 3, // String table. 1071 SHT_RELA = 4, // Relocation entries; explicit addends. 1072 SHT_HASH = 5, // Symbol hash table. 1073 SHT_DYNAMIC = 6, // Information for dynamic linking. 1074 SHT_NOTE = 7, // Information about the file. 1075 SHT_NOBITS = 8, // Data occupies no space in the file. 1076 SHT_REL = 9, // Relocation entries; no explicit addends. 1077 SHT_SHLIB = 10, // Reserved. 1078 SHT_DYNSYM = 11, // Symbol table. 1079 SHT_INIT_ARRAY = 14, // Pointers to initialization functions. 1080 SHT_FINI_ARRAY = 15, // Pointers to termination functions. 1081 SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions. 1082 SHT_GROUP = 17, // Section group. 1083 SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries. 1084 // Experimental support for SHT_RELR sections. For details, see proposal 1085 // at https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg 1086 SHT_RELR = 19, // Relocation entries; only offsets. 1087 // TODO: Experimental CREL relocations. LLVM will change the value and 1088 // break compatibility in the future. 1089 SHT_CREL = 0x40000014, 1090 SHT_LOOS = 0x60000000, // Lowest operating system-specific type. 1091 // Android packed relocation section types. 1092 // https://android.googlesource.com/platform/bionic/+/6f12bfece5dcc01325e0abba56a46b1bcf991c69/tools/relocation_packer/src/elf_file.cc#37 1093 SHT_ANDROID_REL = 0x60000001, 1094 SHT_ANDROID_RELA = 0x60000002, 1095 SHT_LLVM_ODRTAB = 0x6fff4c00, // LLVM ODR table. 1096 SHT_LLVM_LINKER_OPTIONS = 0x6fff4c01, // LLVM Linker Options. 1097 SHT_LLVM_ADDRSIG = 0x6fff4c03, // List of address-significant symbols 1098 // for safe ICF. 1099 SHT_LLVM_DEPENDENT_LIBRARIES = 1100 0x6fff4c04, // LLVM Dependent Library Specifiers. 1101 SHT_LLVM_SYMPART = 0x6fff4c05, // Symbol partition specification. 1102 SHT_LLVM_PART_EHDR = 0x6fff4c06, // ELF header for loadable partition. 1103 SHT_LLVM_PART_PHDR = 0x6fff4c07, // Phdrs for loadable partition. 1104 SHT_LLVM_BB_ADDR_MAP_V0 = 1105 0x6fff4c08, // LLVM Basic Block Address Map (old version kept for 1106 // backward-compatibility). 1107 SHT_LLVM_CALL_GRAPH_PROFILE = 0x6fff4c09, // LLVM Call Graph Profile. 1108 SHT_LLVM_BB_ADDR_MAP = 0x6fff4c0a, // LLVM Basic Block Address Map. 1109 SHT_LLVM_OFFLOADING = 0x6fff4c0b, // LLVM device offloading data. 1110 SHT_LLVM_LTO = 0x6fff4c0c, // .llvm.lto for fat LTO. 1111 // Android's experimental support for SHT_RELR sections. 1112 // https://android.googlesource.com/platform/bionic/+/b7feec74547f84559a1467aca02708ff61346d2a/libc/include/elf.h#512 1113 SHT_ANDROID_RELR = 0x6fffff00, // Relocation entries; only offsets. 1114 SHT_GNU_ATTRIBUTES = 0x6ffffff5, // Object attributes. 1115 SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table. 1116 SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions. 1117 SHT_GNU_verneed = 0x6ffffffe, // GNU version references. 1118 SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table. 1119 SHT_HIOS = 0x6fffffff, // Highest operating system-specific type. 1120 SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type. 1121 // Fixme: All this is duplicated in MCSectionELF. Why?? 1122 // Exception Index table 1123 SHT_ARM_EXIDX = 0x70000001U, 1124 // BPABI DLL dynamic linking pre-emption map 1125 SHT_ARM_PREEMPTMAP = 0x70000002U, 1126 // Object file compatibility attributes 1127 SHT_ARM_ATTRIBUTES = 0x70000003U, 1128 SHT_ARM_DEBUGOVERLAY = 0x70000004U, 1129 SHT_ARM_OVERLAYSECTION = 0x70000005U, 1130 // Special aarch64-specific section for MTE support, as described in: 1131 // https://github.com/ARM-software/abi-aa/blob/main/pauthabielf64/pauthabielf64.rst#section-types 1132 SHT_AARCH64_AUTH_RELR = 0x70000004U, 1133 // Special aarch64-specific sections for MTE support, as described in: 1134 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#7section-types 1135 SHT_AARCH64_MEMTAG_GLOBALS_STATIC = 0x70000007U, 1136 SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC = 0x70000008U, 1137 SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in 1138 // this section based on their sizes 1139 SHT_X86_64_UNWIND = 0x70000001, // Unwind information 1140 1141 SHT_MIPS_REGINFO = 0x70000006, // Register usage information 1142 SHT_MIPS_OPTIONS = 0x7000000d, // General options 1143 SHT_MIPS_DWARF = 0x7000001e, // DWARF debugging section. 1144 SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information. 1145 1146 SHT_MSP430_ATTRIBUTES = 0x70000003U, 1147 1148 SHT_RISCV_ATTRIBUTES = 0x70000003U, 1149 1150 SHT_CSKY_ATTRIBUTES = 0x70000001U, 1151 1152 SHT_HEXAGON_ATTRIBUTES = 0x70000003U, 1153 1154 SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type. 1155 SHT_LOUSER = 0x80000000, // Lowest type reserved for applications. 1156 SHT_HIUSER = 0xffffffff // Highest type reserved for applications. 1157 }; 1158 1159 // Section flags. 1160 enum : unsigned { 1161 // Section data should be writable during execution. 1162 SHF_WRITE = 0x1, 1163 1164 // Section occupies memory during program execution. 1165 SHF_ALLOC = 0x2, 1166 1167 // Section contains executable machine instructions. 1168 SHF_EXECINSTR = 0x4, 1169 1170 // The data in this section may be merged. 1171 SHF_MERGE = 0x10, 1172 1173 // The data in this section is null-terminated strings. 1174 SHF_STRINGS = 0x20, 1175 1176 // A field in this section holds a section header table index. 1177 SHF_INFO_LINK = 0x40U, 1178 1179 // Adds special ordering requirements for link editors. 1180 SHF_LINK_ORDER = 0x80U, 1181 1182 // This section requires special OS-specific processing to avoid incorrect 1183 // behavior. 1184 SHF_OS_NONCONFORMING = 0x100U, 1185 1186 // This section is a member of a section group. 1187 SHF_GROUP = 0x200U, 1188 1189 // This section holds Thread-Local Storage. 1190 SHF_TLS = 0x400U, 1191 1192 // Identifies a section containing compressed data. 1193 SHF_COMPRESSED = 0x800U, 1194 1195 // This section should not be garbage collected by the linker. 1196 SHF_GNU_RETAIN = 0x200000, 1197 1198 // This section is excluded from the final executable or shared library. 1199 SHF_EXCLUDE = 0x80000000U, 1200 1201 // Start of target-specific flags. 1202 1203 SHF_MASKOS = 0x0ff00000, 1204 1205 // Solaris equivalent of SHF_GNU_RETAIN. 1206 SHF_SUNW_NODISCARD = 0x00100000, 1207 1208 // Bits indicating processor-specific flags. 1209 SHF_MASKPROC = 0xf0000000, 1210 1211 /// All sections with the "d" flag are grouped together by the linker to form 1212 /// the data section and the dp register is set to the start of the section by 1213 /// the boot code. 1214 XCORE_SHF_DP_SECTION = 0x10000000, 1215 1216 /// All sections with the "c" flag are grouped together by the linker to form 1217 /// the constant pool and the cp register is set to the start of the constant 1218 /// pool by the boot code. 1219 XCORE_SHF_CP_SECTION = 0x20000000, 1220 1221 // If an object file section does not have this flag set, then it may not hold 1222 // more than 2GB and can be freely referred to in objects using smaller code 1223 // models. Otherwise, only objects using larger code models can refer to them. 1224 // For example, a medium code model object can refer to data in a section that 1225 // sets this flag besides being able to refer to data in a section that does 1226 // not set it; likewise, a small code model object can refer only to code in a 1227 // section that does not set this flag. 1228 SHF_X86_64_LARGE = 0x10000000, 1229 1230 // All sections with the GPREL flag are grouped into a global data area 1231 // for faster accesses 1232 SHF_HEX_GPREL = 0x10000000, 1233 1234 // Section contains text/data which may be replicated in other sections. 1235 // Linker must retain only one copy. 1236 SHF_MIPS_NODUPES = 0x01000000, 1237 1238 // Linker must generate implicit hidden weak names. 1239 SHF_MIPS_NAMES = 0x02000000, 1240 1241 // Section data local to process. 1242 SHF_MIPS_LOCAL = 0x04000000, 1243 1244 // Do not strip this section. 1245 SHF_MIPS_NOSTRIP = 0x08000000, 1246 1247 // Section must be part of global data area. 1248 SHF_MIPS_GPREL = 0x10000000, 1249 1250 // This section should be merged. 1251 SHF_MIPS_MERGE = 0x20000000, 1252 1253 // Address size to be inferred from section entry size. 1254 SHF_MIPS_ADDR = 0x40000000, 1255 1256 // Section data is string data by default. 1257 SHF_MIPS_STRING = 0x80000000, 1258 1259 // Make code section unreadable when in execute-only mode 1260 SHF_ARM_PURECODE = 0x20000000 1261 }; 1262 1263 // Section Group Flags 1264 enum : unsigned { 1265 GRP_COMDAT = 0x1, 1266 GRP_MASKOS = 0x0ff00000, 1267 GRP_MASKPROC = 0xf0000000 1268 }; 1269 1270 // Symbol table entries for ELF32. 1271 struct Elf32_Sym { 1272 Elf32_Word st_name; // Symbol name (index into string table) 1273 Elf32_Addr st_value; // Value or address associated with the symbol 1274 Elf32_Word st_size; // Size of the symbol 1275 unsigned char st_info; // Symbol's type and binding attributes 1276 unsigned char st_other; // Must be zero; reserved 1277 Elf32_Half st_shndx; // Which section (header table index) it's defined in 1278 1279 // These accessors and mutators correspond to the ELF32_ST_BIND, 1280 // ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification: 1281 unsigned char getBinding() const { return st_info >> 4; } 1282 unsigned char getType() const { return st_info & 0x0f; } 1283 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 1284 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 1285 void setBindingAndType(unsigned char b, unsigned char t) { 1286 st_info = (b << 4) + (t & 0x0f); 1287 } 1288 }; 1289 1290 // Symbol table entries for ELF64. 1291 struct Elf64_Sym { 1292 Elf64_Word st_name; // Symbol name (index into string table) 1293 unsigned char st_info; // Symbol's type and binding attributes 1294 unsigned char st_other; // Must be zero; reserved 1295 Elf64_Half st_shndx; // Which section (header tbl index) it's defined in 1296 Elf64_Addr st_value; // Value or address associated with the symbol 1297 Elf64_Xword st_size; // Size of the symbol 1298 1299 // These accessors and mutators are identical to those defined for ELF32 1300 // symbol table entries. 1301 unsigned char getBinding() const { return st_info >> 4; } 1302 unsigned char getType() const { return st_info & 0x0f; } 1303 void setBinding(unsigned char b) { setBindingAndType(b, getType()); } 1304 void setType(unsigned char t) { setBindingAndType(getBinding(), t); } 1305 void setBindingAndType(unsigned char b, unsigned char t) { 1306 st_info = (b << 4) + (t & 0x0f); 1307 } 1308 }; 1309 1310 // The size (in bytes) of symbol table entries. 1311 enum { 1312 SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size 1313 SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size. 1314 }; 1315 1316 // Symbol bindings. 1317 enum { 1318 STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def 1319 STB_GLOBAL = 1, // Global symbol, visible to all object files being combined 1320 STB_WEAK = 2, // Weak symbol, like global but lower-precedence 1321 STB_GNU_UNIQUE = 10, 1322 STB_LOOS = 10, // Lowest operating system-specific binding type 1323 STB_HIOS = 12, // Highest operating system-specific binding type 1324 STB_LOPROC = 13, // Lowest processor-specific binding type 1325 STB_HIPROC = 15 // Highest processor-specific binding type 1326 }; 1327 1328 // Symbol types. 1329 enum { 1330 STT_NOTYPE = 0, // Symbol's type is not specified 1331 STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.) 1332 STT_FUNC = 2, // Symbol is executable code (function, etc.) 1333 STT_SECTION = 3, // Symbol refers to a section 1334 STT_FILE = 4, // Local, absolute symbol that refers to a file 1335 STT_COMMON = 5, // An uninitialized common block 1336 STT_TLS = 6, // Thread local data object 1337 STT_GNU_IFUNC = 10, // GNU indirect function 1338 STT_LOOS = 10, // Lowest operating system-specific symbol type 1339 STT_HIOS = 12, // Highest operating system-specific symbol type 1340 STT_LOPROC = 13, // Lowest processor-specific symbol type 1341 STT_HIPROC = 15, // Highest processor-specific symbol type 1342 1343 // AMDGPU symbol types 1344 STT_AMDGPU_HSA_KERNEL = 10 1345 }; 1346 1347 enum { 1348 STV_DEFAULT = 0, // Visibility is specified by binding type 1349 STV_INTERNAL = 1, // Defined by processor supplements 1350 STV_HIDDEN = 2, // Not visible to other components 1351 STV_PROTECTED = 3 // Visible in other components but not preemptable 1352 }; 1353 1354 // Symbol number. 1355 enum { STN_UNDEF = 0 }; 1356 1357 // Special relocation symbols used in the MIPS64 ELF relocation entries 1358 enum { 1359 RSS_UNDEF = 0, // None 1360 RSS_GP = 1, // Value of gp 1361 RSS_GP0 = 2, // Value of gp used to create object being relocated 1362 RSS_LOC = 3 // Address of location being relocated 1363 }; 1364 1365 // Relocation entry, without explicit addend. 1366 struct Elf32_Rel { 1367 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 1368 Elf32_Word r_info; // Symbol table index and type of relocation to apply 1369 1370 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 1371 // and ELF32_R_INFO macros defined in the ELF specification: 1372 Elf32_Word getSymbol() const { return (r_info >> 8); } 1373 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } 1374 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } 1375 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } 1376 void setSymbolAndType(Elf32_Word s, unsigned char t) { 1377 r_info = (s << 8) + t; 1378 } 1379 }; 1380 1381 // Relocation entry with explicit addend. 1382 struct Elf32_Rela { 1383 Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr) 1384 Elf32_Word r_info; // Symbol table index and type of relocation to apply 1385 Elf32_Sword r_addend; // Compute value for relocatable field by adding this 1386 1387 // These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE, 1388 // and ELF32_R_INFO macros defined in the ELF specification: 1389 Elf32_Word getSymbol() const { return (r_info >> 8); } 1390 unsigned char getType() const { return (unsigned char)(r_info & 0x0ff); } 1391 void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); } 1392 void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); } 1393 void setSymbolAndType(Elf32_Word s, unsigned char t) { 1394 r_info = (s << 8) + t; 1395 } 1396 }; 1397 1398 // Relocation entry without explicit addend or info (relative relocations only). 1399 typedef Elf32_Word Elf32_Relr; // offset/bitmap for relative relocations 1400 1401 // Relocation entry, without explicit addend. 1402 struct Elf64_Rel { 1403 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 1404 Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 1405 1406 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 1407 // and ELF64_R_INFO macros defined in the ELF specification: 1408 Elf64_Word getSymbol() const { return (r_info >> 32); } 1409 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } 1410 void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } 1411 void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } 1412 void setSymbolAndType(Elf64_Word s, Elf64_Word t) { 1413 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); 1414 } 1415 }; 1416 1417 // Relocation entry with explicit addend. 1418 struct Elf64_Rela { 1419 Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr). 1420 Elf64_Xword r_info; // Symbol table index and type of relocation to apply. 1421 Elf64_Sxword r_addend; // Compute value for relocatable field by adding this. 1422 1423 // These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE, 1424 // and ELF64_R_INFO macros defined in the ELF specification: 1425 Elf64_Word getSymbol() const { return (r_info >> 32); } 1426 Elf64_Word getType() const { return (Elf64_Word)(r_info & 0xffffffffL); } 1427 void setSymbol(Elf64_Word s) { setSymbolAndType(s, getType()); } 1428 void setType(Elf64_Word t) { setSymbolAndType(getSymbol(), t); } 1429 void setSymbolAndType(Elf64_Word s, Elf64_Word t) { 1430 r_info = ((Elf64_Xword)s << 32) + (t & 0xffffffffL); 1431 } 1432 }; 1433 1434 // In-memory representation of CREL. The serialized representation uses LEB128. 1435 template <bool Is64> struct Elf_Crel { 1436 std::conditional_t<Is64, uint64_t, uint32_t> r_offset; 1437 uint32_t r_symidx; 1438 uint32_t r_type; 1439 std::conditional_t<Is64, int64_t, int32_t> r_addend; 1440 }; 1441 1442 // Relocation entry without explicit addend or info (relative relocations only). 1443 typedef Elf64_Xword Elf64_Relr; // offset/bitmap for relative relocations 1444 1445 // Program header for ELF32. 1446 struct Elf32_Phdr { 1447 Elf32_Word p_type; // Type of segment 1448 Elf32_Off p_offset; // File offset where segment is located, in bytes 1449 Elf32_Addr p_vaddr; // Virtual address of beginning of segment 1450 Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific) 1451 Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero) 1452 Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero) 1453 Elf32_Word p_flags; // Segment flags 1454 Elf32_Word p_align; // Segment alignment constraint 1455 }; 1456 1457 // Program header for ELF64. 1458 struct Elf64_Phdr { 1459 Elf64_Word p_type; // Type of segment 1460 Elf64_Word p_flags; // Segment flags 1461 Elf64_Off p_offset; // File offset where segment is located, in bytes 1462 Elf64_Addr p_vaddr; // Virtual address of beginning of segment 1463 Elf64_Addr p_paddr; // Physical addr of beginning of segment (OS-specific) 1464 Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero) 1465 Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero) 1466 Elf64_Xword p_align; // Segment alignment constraint 1467 }; 1468 1469 // Segment types. 1470 enum { 1471 PT_NULL = 0, // Unused segment. 1472 PT_LOAD = 1, // Loadable segment. 1473 PT_DYNAMIC = 2, // Dynamic linking information. 1474 PT_INTERP = 3, // Interpreter pathname. 1475 PT_NOTE = 4, // Auxiliary information. 1476 PT_SHLIB = 5, // Reserved. 1477 PT_PHDR = 6, // The program header table itself. 1478 PT_TLS = 7, // The thread-local storage template. 1479 PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type. 1480 PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type. 1481 PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type. 1482 PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type. 1483 1484 // x86-64 program header types. 1485 // These all contain stack unwind tables. 1486 PT_GNU_EH_FRAME = 0x6474e550, 1487 PT_SUNW_EH_FRAME = 0x6474e550, 1488 PT_SUNW_UNWIND = 0x6464e550, 1489 1490 PT_GNU_STACK = 0x6474e551, // Indicates stack executability. 1491 PT_GNU_RELRO = 0x6474e552, // Read-only after relocation. 1492 PT_GNU_PROPERTY = 0x6474e553, // .note.gnu.property notes sections. 1493 1494 PT_OPENBSD_MUTABLE = 0x65a3dbe5, // Like bss, but not immutable. 1495 PT_OPENBSD_RANDOMIZE = 0x65a3dbe6, // Fill with random data. 1496 PT_OPENBSD_WXNEEDED = 0x65a3dbe7, // Program does W^X violations. 1497 PT_OPENBSD_NOBTCFI = 0x65a3dbe8, // Do not enforce branch target CFI. 1498 PT_OPENBSD_SYSCALLS = 0x65a3dbe9, // System call sites. 1499 PT_OPENBSD_BOOTDATA = 0x65a41be6, // Section for boot arguments. 1500 1501 // ARM program header types. 1502 PT_ARM_ARCHEXT = 0x70000000, // Platform architecture compatibility info 1503 // These all contain stack unwind tables. 1504 PT_ARM_EXIDX = 0x70000001, 1505 PT_ARM_UNWIND = 0x70000001, 1506 // MTE memory tag segment type 1507 PT_AARCH64_MEMTAG_MTE = 0x70000002, 1508 1509 // MIPS program header types. 1510 PT_MIPS_REGINFO = 0x70000000, // Register usage information. 1511 PT_MIPS_RTPROC = 0x70000001, // Runtime procedure table. 1512 PT_MIPS_OPTIONS = 0x70000002, // Options segment. 1513 PT_MIPS_ABIFLAGS = 0x70000003, // Abiflags segment. 1514 1515 // RISCV program header types. 1516 PT_RISCV_ATTRIBUTES = 0x70000003, 1517 }; 1518 1519 // Segment flag bits. 1520 enum : unsigned { 1521 PF_X = 1, // Execute 1522 PF_W = 2, // Write 1523 PF_R = 4, // Read 1524 PF_MASKOS = 0x0ff00000, // Bits for operating system-specific semantics. 1525 PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics. 1526 }; 1527 1528 // Dynamic table entry for ELF32. 1529 struct Elf32_Dyn { 1530 Elf32_Sword d_tag; // Type of dynamic table entry. 1531 union { 1532 Elf32_Word d_val; // Integer value of entry. 1533 Elf32_Addr d_ptr; // Pointer value of entry. 1534 } d_un; 1535 }; 1536 1537 // Dynamic table entry for ELF64. 1538 struct Elf64_Dyn { 1539 Elf64_Sxword d_tag; // Type of dynamic table entry. 1540 union { 1541 Elf64_Xword d_val; // Integer value of entry. 1542 Elf64_Addr d_ptr; // Pointer value of entry. 1543 } d_un; 1544 }; 1545 1546 // Dynamic table entry tags. 1547 enum { 1548 #define DYNAMIC_TAG(name, value) DT_##name = value, 1549 #include "DynamicTags.def" 1550 #undef DYNAMIC_TAG 1551 }; 1552 1553 // DT_FLAGS values. 1554 enum { 1555 DF_ORIGIN = 0x01, // The object may reference $ORIGIN. 1556 DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe. 1557 DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment. 1558 DF_BIND_NOW = 0x08, // Process all relocations on load. 1559 DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically. 1560 }; 1561 1562 // State flags selectable in the `d_un.d_val' element of the DT_FLAGS_1 entry. 1563 enum { 1564 DF_1_NOW = 0x00000001, // Set RTLD_NOW for this object. 1565 DF_1_GLOBAL = 0x00000002, // Set RTLD_GLOBAL for this object. 1566 DF_1_GROUP = 0x00000004, // Set RTLD_GROUP for this object. 1567 DF_1_NODELETE = 0x00000008, // Set RTLD_NODELETE for this object. 1568 DF_1_LOADFLTR = 0x00000010, // Trigger filtee loading at runtime. 1569 DF_1_INITFIRST = 0x00000020, // Set RTLD_INITFIRST for this object. 1570 DF_1_NOOPEN = 0x00000040, // Set RTLD_NOOPEN for this object. 1571 DF_1_ORIGIN = 0x00000080, // $ORIGIN must be handled. 1572 DF_1_DIRECT = 0x00000100, // Direct binding enabled. 1573 DF_1_TRANS = 0x00000200, 1574 DF_1_INTERPOSE = 0x00000400, // Object is used to interpose. 1575 DF_1_NODEFLIB = 0x00000800, // Ignore default lib search path. 1576 DF_1_NODUMP = 0x00001000, // Object can't be dldump'ed. 1577 DF_1_CONFALT = 0x00002000, // Configuration alternative created. 1578 DF_1_ENDFILTEE = 0x00004000, // Filtee terminates filters search. 1579 DF_1_DISPRELDNE = 0x00008000, // Disp reloc applied at build time. 1580 DF_1_DISPRELPND = 0x00010000, // Disp reloc applied at run-time. 1581 DF_1_NODIRECT = 0x00020000, // Object has no-direct binding. 1582 DF_1_IGNMULDEF = 0x00040000, 1583 DF_1_NOKSYMS = 0x00080000, 1584 DF_1_NOHDR = 0x00100000, 1585 DF_1_EDITED = 0x00200000, // Object is modified after built. 1586 DF_1_NORELOC = 0x00400000, 1587 DF_1_SYMINTPOSE = 0x00800000, // Object has individual interposers. 1588 DF_1_GLOBAUDIT = 0x01000000, // Global auditing required. 1589 DF_1_SINGLETON = 0x02000000, // Singleton symbols are used. 1590 DF_1_PIE = 0x08000000, // Object is a position-independent executable. 1591 }; 1592 1593 // DT_MIPS_FLAGS values. 1594 enum { 1595 RHF_NONE = 0x00000000, // No flags. 1596 RHF_QUICKSTART = 0x00000001, // Uses shortcut pointers. 1597 RHF_NOTPOT = 0x00000002, // Hash size is not a power of two. 1598 RHS_NO_LIBRARY_REPLACEMENT = 0x00000004, // Ignore LD_LIBRARY_PATH. 1599 RHF_NO_MOVE = 0x00000008, // DSO address may not be relocated. 1600 RHF_SGI_ONLY = 0x00000010, // SGI specific features. 1601 RHF_GUARANTEE_INIT = 0x00000020, // Guarantee that .init will finish 1602 // executing before any non-init 1603 // code in DSO is called. 1604 RHF_DELTA_C_PLUS_PLUS = 0x00000040, // Contains Delta C++ code. 1605 RHF_GUARANTEE_START_INIT = 0x00000080, // Guarantee that .init will start 1606 // executing before any non-init 1607 // code in DSO is called. 1608 RHF_PIXIE = 0x00000100, // Generated by pixie. 1609 RHF_DEFAULT_DELAY_LOAD = 0x00000200, // Delay-load DSO by default. 1610 RHF_REQUICKSTART = 0x00000400, // Object may be requickstarted 1611 RHF_REQUICKSTARTED = 0x00000800, // Object has been requickstarted 1612 RHF_CORD = 0x00001000, // Generated by cord. 1613 RHF_NO_UNRES_UNDEF = 0x00002000, // Object contains no unresolved 1614 // undef symbols. 1615 RHF_RLD_ORDER_SAFE = 0x00004000 // Symbol table is in a safe order. 1616 }; 1617 1618 // ElfXX_VerDef structure version (GNU versioning) 1619 enum { VER_DEF_NONE = 0, VER_DEF_CURRENT = 1 }; 1620 1621 // VerDef Flags (ElfXX_VerDef::vd_flags) 1622 enum { VER_FLG_BASE = 0x1, VER_FLG_WEAK = 0x2, VER_FLG_INFO = 0x4 }; 1623 1624 // Special constants for the version table. (SHT_GNU_versym/.gnu.version) 1625 enum { 1626 VER_NDX_LOCAL = 0, // Unversioned local symbol 1627 VER_NDX_GLOBAL = 1, // Unversioned global symbol 1628 VERSYM_VERSION = 0x7fff, // Version Index mask 1629 VERSYM_HIDDEN = 0x8000 // Hidden bit (non-default version) 1630 }; 1631 1632 // ElfXX_VerNeed structure version (GNU versioning) 1633 enum { VER_NEED_NONE = 0, VER_NEED_CURRENT = 1 }; 1634 1635 // SHT_NOTE section types. 1636 1637 // Generic note types. 1638 enum : unsigned { 1639 NT_VERSION = 1, 1640 NT_ARCH = 2, 1641 NT_GNU_BUILD_ATTRIBUTE_OPEN = 0x100, 1642 NT_GNU_BUILD_ATTRIBUTE_FUNC = 0x101, 1643 }; 1644 1645 // Core note types. 1646 enum : unsigned { 1647 NT_PRSTATUS = 1, 1648 NT_FPREGSET = 2, 1649 NT_PRPSINFO = 3, 1650 NT_TASKSTRUCT = 4, 1651 NT_AUXV = 6, 1652 NT_PSTATUS = 10, 1653 NT_FPREGS = 12, 1654 NT_PSINFO = 13, 1655 NT_LWPSTATUS = 16, 1656 NT_LWPSINFO = 17, 1657 NT_WIN32PSTATUS = 18, 1658 1659 NT_PPC_VMX = 0x100, 1660 NT_PPC_VSX = 0x102, 1661 NT_PPC_TAR = 0x103, 1662 NT_PPC_PPR = 0x104, 1663 NT_PPC_DSCR = 0x105, 1664 NT_PPC_EBB = 0x106, 1665 NT_PPC_PMU = 0x107, 1666 NT_PPC_TM_CGPR = 0x108, 1667 NT_PPC_TM_CFPR = 0x109, 1668 NT_PPC_TM_CVMX = 0x10a, 1669 NT_PPC_TM_CVSX = 0x10b, 1670 NT_PPC_TM_SPR = 0x10c, 1671 NT_PPC_TM_CTAR = 0x10d, 1672 NT_PPC_TM_CPPR = 0x10e, 1673 NT_PPC_TM_CDSCR = 0x10f, 1674 1675 NT_386_TLS = 0x200, 1676 NT_386_IOPERM = 0x201, 1677 NT_X86_XSTATE = 0x202, 1678 1679 NT_S390_HIGH_GPRS = 0x300, 1680 NT_S390_TIMER = 0x301, 1681 NT_S390_TODCMP = 0x302, 1682 NT_S390_TODPREG = 0x303, 1683 NT_S390_CTRS = 0x304, 1684 NT_S390_PREFIX = 0x305, 1685 NT_S390_LAST_BREAK = 0x306, 1686 NT_S390_SYSTEM_CALL = 0x307, 1687 NT_S390_TDB = 0x308, 1688 NT_S390_VXRS_LOW = 0x309, 1689 NT_S390_VXRS_HIGH = 0x30a, 1690 NT_S390_GS_CB = 0x30b, 1691 NT_S390_GS_BC = 0x30c, 1692 1693 NT_ARM_VFP = 0x400, 1694 NT_ARM_TLS = 0x401, 1695 NT_ARM_HW_BREAK = 0x402, 1696 NT_ARM_HW_WATCH = 0x403, 1697 NT_ARM_SVE = 0x405, 1698 NT_ARM_PAC_MASK = 0x406, 1699 NT_ARM_TAGGED_ADDR_CTRL = 0x409, 1700 NT_ARM_SSVE = 0x40b, 1701 NT_ARM_ZA = 0x40c, 1702 NT_ARM_ZT = 0x40d, 1703 1704 NT_FILE = 0x46494c45, 1705 NT_PRXFPREG = 0x46e62b7f, 1706 NT_SIGINFO = 0x53494749, 1707 }; 1708 1709 // LLVM-specific notes. 1710 enum { 1711 NT_LLVM_HWASAN_GLOBALS = 3, 1712 }; 1713 1714 // GNU note types. 1715 enum { 1716 NT_GNU_ABI_TAG = 1, 1717 NT_GNU_HWCAP = 2, 1718 NT_GNU_BUILD_ID = 3, 1719 NT_GNU_GOLD_VERSION = 4, 1720 NT_GNU_PROPERTY_TYPE_0 = 5, 1721 FDO_PACKAGING_METADATA = 0xcafe1a7e, 1722 }; 1723 1724 // Android note types. 1725 enum { 1726 NT_ANDROID_TYPE_IDENT = 1, 1727 NT_ANDROID_TYPE_KUSER = 3, 1728 NT_ANDROID_TYPE_MEMTAG = 4, 1729 }; 1730 1731 // Memory tagging values used in NT_ANDROID_TYPE_MEMTAG notes. 1732 enum { 1733 // Enumeration to determine the tagging mode. In Android-land, 'SYNC' means 1734 // running all threads in MTE Synchronous mode, and 'ASYNC' means to use the 1735 // kernels auto-upgrade feature to allow for either MTE Asynchronous, 1736 // Asymmetric, or Synchronous mode. This allows silicon vendors to specify, on 1737 // a per-cpu basis what 'ASYNC' should mean. Generally, the expectation is 1738 // "pick the most precise mode that's very fast". 1739 NT_MEMTAG_LEVEL_NONE = 0, 1740 NT_MEMTAG_LEVEL_ASYNC = 1, 1741 NT_MEMTAG_LEVEL_SYNC = 2, 1742 NT_MEMTAG_LEVEL_MASK = 3, 1743 // Bits indicating whether the loader should prepare for MTE to be enabled on 1744 // the heap and/or stack. 1745 NT_MEMTAG_HEAP = 4, 1746 NT_MEMTAG_STACK = 8, 1747 }; 1748 1749 // Property types used in GNU_PROPERTY_TYPE_0 notes. 1750 enum : unsigned { 1751 GNU_PROPERTY_STACK_SIZE = 1, 1752 GNU_PROPERTY_NO_COPY_ON_PROTECTED = 2, 1753 GNU_PROPERTY_AARCH64_FEATURE_1_AND = 0xc0000000, 1754 GNU_PROPERTY_AARCH64_FEATURE_PAUTH = 0xc0000001, 1755 GNU_PROPERTY_X86_FEATURE_1_AND = 0xc0000002, 1756 1757 GNU_PROPERTY_X86_UINT32_OR_LO = 0xc0008000, 1758 GNU_PROPERTY_X86_FEATURE_2_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 1, 1759 GNU_PROPERTY_X86_ISA_1_NEEDED = GNU_PROPERTY_X86_UINT32_OR_LO + 2, 1760 1761 GNU_PROPERTY_X86_UINT32_OR_AND_LO = 0xc0010000, 1762 GNU_PROPERTY_X86_FEATURE_2_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 1, 1763 GNU_PROPERTY_X86_ISA_1_USED = GNU_PROPERTY_X86_UINT32_OR_AND_LO + 2, 1764 }; 1765 1766 // aarch64 processor feature bits. 1767 enum : unsigned { 1768 GNU_PROPERTY_AARCH64_FEATURE_1_BTI = 1 << 0, 1769 GNU_PROPERTY_AARCH64_FEATURE_1_PAC = 1 << 1, 1770 GNU_PROPERTY_AARCH64_FEATURE_1_GCS = 1 << 2, 1771 }; 1772 1773 // aarch64 PAuth platforms. 1774 enum : unsigned { 1775 AARCH64_PAUTH_PLATFORM_INVALID = 0x0, 1776 AARCH64_PAUTH_PLATFORM_BAREMETAL = 0x1, 1777 AARCH64_PAUTH_PLATFORM_LLVM_LINUX = 0x10000002, 1778 }; 1779 1780 // Bit positions of version flags for AARCH64_PAUTH_PLATFORM_LLVM_LINUX. 1781 enum : unsigned { 1782 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS = 0, 1783 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS = 1, 1784 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS = 2, 1785 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS = 3, 1786 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR = 4, 1787 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR = 5, 1788 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI = 6, 1789 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST = 1790 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI, 1791 }; 1792 1793 // x86 processor feature bits. 1794 enum : unsigned { 1795 GNU_PROPERTY_X86_FEATURE_1_IBT = 1 << 0, 1796 GNU_PROPERTY_X86_FEATURE_1_SHSTK = 1 << 1, 1797 1798 GNU_PROPERTY_X86_FEATURE_2_X86 = 1 << 0, 1799 GNU_PROPERTY_X86_FEATURE_2_X87 = 1 << 1, 1800 GNU_PROPERTY_X86_FEATURE_2_MMX = 1 << 2, 1801 GNU_PROPERTY_X86_FEATURE_2_XMM = 1 << 3, 1802 GNU_PROPERTY_X86_FEATURE_2_YMM = 1 << 4, 1803 GNU_PROPERTY_X86_FEATURE_2_ZMM = 1 << 5, 1804 GNU_PROPERTY_X86_FEATURE_2_FXSR = 1 << 6, 1805 GNU_PROPERTY_X86_FEATURE_2_XSAVE = 1 << 7, 1806 GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT = 1 << 8, 1807 GNU_PROPERTY_X86_FEATURE_2_XSAVEC = 1 << 9, 1808 1809 GNU_PROPERTY_X86_ISA_1_BASELINE = 1 << 0, 1810 GNU_PROPERTY_X86_ISA_1_V2 = 1 << 1, 1811 GNU_PROPERTY_X86_ISA_1_V3 = 1 << 2, 1812 GNU_PROPERTY_X86_ISA_1_V4 = 1 << 3, 1813 }; 1814 1815 // FreeBSD note types. 1816 enum { 1817 NT_FREEBSD_ABI_TAG = 1, 1818 NT_FREEBSD_NOINIT_TAG = 2, 1819 NT_FREEBSD_ARCH_TAG = 3, 1820 NT_FREEBSD_FEATURE_CTL = 4, 1821 }; 1822 1823 // NT_FREEBSD_FEATURE_CTL values (see FreeBSD's sys/sys/elf_common.h). 1824 enum { 1825 NT_FREEBSD_FCTL_ASLR_DISABLE = 0x00000001, 1826 NT_FREEBSD_FCTL_PROTMAX_DISABLE = 0x00000002, 1827 NT_FREEBSD_FCTL_STKGAP_DISABLE = 0x00000004, 1828 NT_FREEBSD_FCTL_WXNEEDED = 0x00000008, 1829 NT_FREEBSD_FCTL_LA48 = 0x00000010, 1830 NT_FREEBSD_FCTL_ASG_DISABLE = 0x00000020, 1831 }; 1832 1833 // FreeBSD core note types. 1834 enum { 1835 NT_FREEBSD_THRMISC = 7, 1836 NT_FREEBSD_PROCSTAT_PROC = 8, 1837 NT_FREEBSD_PROCSTAT_FILES = 9, 1838 NT_FREEBSD_PROCSTAT_VMMAP = 10, 1839 NT_FREEBSD_PROCSTAT_GROUPS = 11, 1840 NT_FREEBSD_PROCSTAT_UMASK = 12, 1841 NT_FREEBSD_PROCSTAT_RLIMIT = 13, 1842 NT_FREEBSD_PROCSTAT_OSREL = 14, 1843 NT_FREEBSD_PROCSTAT_PSSTRINGS = 15, 1844 NT_FREEBSD_PROCSTAT_AUXV = 16, 1845 }; 1846 1847 // NetBSD core note types. 1848 enum { 1849 NT_NETBSDCORE_PROCINFO = 1, 1850 NT_NETBSDCORE_AUXV = 2, 1851 NT_NETBSDCORE_LWPSTATUS = 24, 1852 }; 1853 1854 // OpenBSD core note types. 1855 enum { 1856 NT_OPENBSD_PROCINFO = 10, 1857 NT_OPENBSD_AUXV = 11, 1858 NT_OPENBSD_REGS = 20, 1859 NT_OPENBSD_FPREGS = 21, 1860 NT_OPENBSD_XFPREGS = 22, 1861 NT_OPENBSD_WCOOKIE = 23, 1862 }; 1863 1864 // AMDGPU-specific section indices. 1865 enum { 1866 SHN_AMDGPU_LDS = 0xff00, // Variable in LDS; symbol encoded like SHN_COMMON 1867 }; 1868 1869 // AMD vendor specific notes. (Code Object V2) 1870 enum { 1871 NT_AMD_HSA_CODE_OBJECT_VERSION = 1, 1872 NT_AMD_HSA_HSAIL = 2, 1873 NT_AMD_HSA_ISA_VERSION = 3, 1874 // Note types with values between 4 and 9 (inclusive) are reserved. 1875 NT_AMD_HSA_METADATA = 10, 1876 NT_AMD_HSA_ISA_NAME = 11, 1877 NT_AMD_PAL_METADATA = 12 1878 }; 1879 1880 // AMDGPU vendor specific notes. (Code Object V3) 1881 enum { 1882 // Note types with values between 0 and 31 (inclusive) are reserved. 1883 NT_AMDGPU_METADATA = 32 1884 }; 1885 1886 // LLVMOMPOFFLOAD specific notes. 1887 enum : unsigned { 1888 NT_LLVM_OPENMP_OFFLOAD_VERSION = 1, 1889 NT_LLVM_OPENMP_OFFLOAD_PRODUCER = 2, 1890 NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION = 3 1891 }; 1892 1893 enum { 1894 GNU_ABI_TAG_LINUX = 0, 1895 GNU_ABI_TAG_HURD = 1, 1896 GNU_ABI_TAG_SOLARIS = 2, 1897 GNU_ABI_TAG_FREEBSD = 3, 1898 GNU_ABI_TAG_NETBSD = 4, 1899 GNU_ABI_TAG_SYLLABLE = 5, 1900 GNU_ABI_TAG_NACL = 6, 1901 }; 1902 1903 constexpr const char *ELF_NOTE_GNU = "GNU"; 1904 1905 // Android packed relocation group flags. 1906 enum { 1907 RELOCATION_GROUPED_BY_INFO_FLAG = 1, 1908 RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG = 2, 1909 RELOCATION_GROUPED_BY_ADDEND_FLAG = 4, 1910 RELOCATION_GROUP_HAS_ADDEND_FLAG = 8, 1911 }; 1912 1913 // Compressed section header for ELF32. 1914 struct Elf32_Chdr { 1915 Elf32_Word ch_type; 1916 Elf32_Word ch_size; 1917 Elf32_Word ch_addralign; 1918 }; 1919 1920 // Compressed section header for ELF64. 1921 struct Elf64_Chdr { 1922 Elf64_Word ch_type; 1923 Elf64_Word ch_reserved; 1924 Elf64_Xword ch_size; 1925 Elf64_Xword ch_addralign; 1926 }; 1927 1928 // Note header for ELF32. 1929 struct Elf32_Nhdr { 1930 Elf32_Word n_namesz; 1931 Elf32_Word n_descsz; 1932 Elf32_Word n_type; 1933 }; 1934 1935 // Note header for ELF64. 1936 struct Elf64_Nhdr { 1937 Elf64_Word n_namesz; 1938 Elf64_Word n_descsz; 1939 Elf64_Word n_type; 1940 }; 1941 1942 // Legal values for ch_type field of compressed section header. 1943 enum { 1944 ELFCOMPRESS_ZLIB = 1, // ZLIB/DEFLATE algorithm. 1945 ELFCOMPRESS_ZSTD = 2, // Zstandard algorithm 1946 ELFCOMPRESS_LOOS = 0x60000000, // Start of OS-specific. 1947 ELFCOMPRESS_HIOS = 0x6fffffff, // End of OS-specific. 1948 ELFCOMPRESS_LOPROC = 0x70000000, // Start of processor-specific. 1949 ELFCOMPRESS_HIPROC = 0x7fffffff // End of processor-specific. 1950 }; 1951 1952 constexpr unsigned CREL_HDR_ADDEND = 4; 1953 1954 /// Convert an architecture name into ELF's e_machine value. 1955 uint16_t convertArchNameToEMachine(StringRef Arch); 1956 1957 /// Convert an ELF's e_machine value into an architecture name. 1958 StringRef convertEMachineToArchName(uint16_t EMachine); 1959 1960 // Convert a lowercase string identifier into an OSABI value. 1961 uint8_t convertNameToOSABI(StringRef Name); 1962 1963 // Convert an OSABI value into a string that identifies the OS- or ABI- 1964 // specific ELF extension. 1965 StringRef convertOSABIToName(uint8_t OSABI); 1966 1967 } // end namespace ELF 1968 } // end namespace llvm 1969 1970 #endif // LLVM_BINARYFORMAT_ELF_H 1971