xref: /freebsd/contrib/llvm-project/llvm/include/llvm/Analysis/DependenceAnalysis.h (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an implementation of the approach described in
11 //
12 //            Practical Dependence Testing
13 //            Goff, Kennedy, Tseng
14 //            PLDI 1991
15 //
16 // There's a single entry point that analyzes the dependence between a pair
17 // of memory references in a function, returning either NULL, for no dependence,
18 // or a more-or-less detailed description of the dependence between them.
19 //
20 // This pass exists to support the DependenceGraph pass. There are two separate
21 // passes because there's a useful separation of concerns. A dependence exists
22 // if two conditions are met:
23 //
24 //    1) Two instructions reference the same memory location, and
25 //    2) There is a flow of control leading from one instruction to the other.
26 //
27 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
28 // the second (it's not yet ready).
29 //
30 // Please note that this is work in progress and the interface is subject to
31 // change.
32 //
33 // Plausible changes:
34 //    Return a set of more precise dependences instead of just one dependence
35 //    summarizing all.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
40 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41 
42 #include "llvm/ADT/SmallBitVector.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/Pass.h"
46 
47 namespace llvm {
48   class AAResults;
49   template <typename T> class ArrayRef;
50   class Loop;
51   class LoopInfo;
52   class ScalarEvolution;
53   class SCEV;
54   class SCEVConstant;
55   class raw_ostream;
56 
57   /// Dependence - This class represents a dependence between two memory
58   /// memory references in a function. It contains minimal information and
59   /// is used in the very common situation where the compiler is unable to
60   /// determine anything beyond the existence of a dependence; that is, it
61   /// represents a confused dependence (see also FullDependence). In most
62   /// cases (for output, flow, and anti dependences), the dependence implies
63   /// an ordering, where the source must precede the destination; in contrast,
64   /// input dependences are unordered.
65   ///
66   /// When a dependence graph is built, each Dependence will be a member of
67   /// the set of predecessor edges for its destination instruction and a set
68   /// if successor edges for its source instruction. These sets are represented
69   /// as singly-linked lists, with the "next" fields stored in the dependence
70   /// itelf.
71   class Dependence {
72   protected:
73     Dependence(Dependence &&) = default;
74     Dependence &operator=(Dependence &&) = default;
75 
76   public:
77     Dependence(Instruction *Source, Instruction *Destination)
78         : Src(Source), Dst(Destination) {}
79     virtual ~Dependence() = default;
80 
81     /// Dependence::DVEntry - Each level in the distance/direction vector
82     /// has a direction (or perhaps a union of several directions), and
83     /// perhaps a distance.
84     struct DVEntry {
85       enum { NONE = 0,
86              LT = 1,
87              EQ = 2,
88              LE = 3,
89              GT = 4,
90              NE = 5,
91              GE = 6,
92              ALL = 7 };
93       unsigned char Direction : 3; // Init to ALL, then refine.
94       bool Scalar    : 1; // Init to true.
95       bool PeelFirst : 1; // Peeling the first iteration will break dependence.
96       bool PeelLast  : 1; // Peeling the last iteration will break the dependence.
97       bool Splitable : 1; // Splitting the loop will break dependence.
98       const SCEV *Distance = nullptr; // NULL implies no distance available.
99       DVEntry()
100           : Direction(ALL), Scalar(true), PeelFirst(false), PeelLast(false),
101             Splitable(false) {}
102     };
103 
104     /// getSrc - Returns the source instruction for this dependence.
105     ///
106     Instruction *getSrc() const { return Src; }
107 
108     /// getDst - Returns the destination instruction for this dependence.
109     ///
110     Instruction *getDst() const { return Dst; }
111 
112     /// isInput - Returns true if this is an input dependence.
113     ///
114     bool isInput() const;
115 
116     /// isOutput - Returns true if this is an output dependence.
117     ///
118     bool isOutput() const;
119 
120     /// isFlow - Returns true if this is a flow (aka true) dependence.
121     ///
122     bool isFlow() const;
123 
124     /// isAnti - Returns true if this is an anti dependence.
125     ///
126     bool isAnti() const;
127 
128     /// isOrdered - Returns true if dependence is Output, Flow, or Anti
129     ///
130     bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
131 
132     /// isUnordered - Returns true if dependence is Input
133     ///
134     bool isUnordered() const { return isInput(); }
135 
136     /// isLoopIndependent - Returns true if this is a loop-independent
137     /// dependence.
138     virtual bool isLoopIndependent() const { return true; }
139 
140     /// isConfused - Returns true if this dependence is confused
141     /// (the compiler understands nothing and makes worst-case
142     /// assumptions).
143     virtual bool isConfused() const { return true; }
144 
145     /// isConsistent - Returns true if this dependence is consistent
146     /// (occurs every time the source and destination are executed).
147     virtual bool isConsistent() const { return false; }
148 
149     /// getLevels - Returns the number of common loops surrounding the
150     /// source and destination of the dependence.
151     virtual unsigned getLevels() const { return 0; }
152 
153     /// getDirection - Returns the direction associated with a particular
154     /// level.
155     virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
156 
157     /// getDistance - Returns the distance (or NULL) associated with a
158     /// particular level.
159     virtual const SCEV *getDistance(unsigned Level) const { return nullptr; }
160 
161     /// isPeelFirst - Returns true if peeling the first iteration from
162     /// this loop will break this dependence.
163     virtual bool isPeelFirst(unsigned Level) const { return false; }
164 
165     /// isPeelLast - Returns true if peeling the last iteration from
166     /// this loop will break this dependence.
167     virtual bool isPeelLast(unsigned Level) const { return false; }
168 
169     /// isSplitable - Returns true if splitting this loop will break
170     /// the dependence.
171     virtual bool isSplitable(unsigned Level) const { return false; }
172 
173     /// isScalar - Returns true if a particular level is scalar; that is,
174     /// if no subscript in the source or destination mention the induction
175     /// variable associated with the loop at this level.
176     virtual bool isScalar(unsigned Level) const;
177 
178     /// getNextPredecessor - Returns the value of the NextPredecessor
179     /// field.
180     const Dependence *getNextPredecessor() const { return NextPredecessor; }
181 
182     /// getNextSuccessor - Returns the value of the NextSuccessor
183     /// field.
184     const Dependence *getNextSuccessor() const { return NextSuccessor; }
185 
186     /// setNextPredecessor - Sets the value of the NextPredecessor
187     /// field.
188     void setNextPredecessor(const Dependence *pred) { NextPredecessor = pred; }
189 
190     /// setNextSuccessor - Sets the value of the NextSuccessor
191     /// field.
192     void setNextSuccessor(const Dependence *succ) { NextSuccessor = succ; }
193 
194     /// dump - For debugging purposes, dumps a dependence to OS.
195     ///
196     void dump(raw_ostream &OS) const;
197 
198   private:
199     Instruction *Src, *Dst;
200     const Dependence *NextPredecessor = nullptr, *NextSuccessor = nullptr;
201     friend class DependenceInfo;
202   };
203 
204   /// FullDependence - This class represents a dependence between two memory
205   /// references in a function. It contains detailed information about the
206   /// dependence (direction vectors, etc.) and is used when the compiler is
207   /// able to accurately analyze the interaction of the references; that is,
208   /// it is not a confused dependence (see Dependence). In most cases
209   /// (for output, flow, and anti dependences), the dependence implies an
210   /// ordering, where the source must precede the destination; in contrast,
211   /// input dependences are unordered.
212   class FullDependence final : public Dependence {
213   public:
214     FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent,
215                    unsigned Levels);
216 
217     /// isLoopIndependent - Returns true if this is a loop-independent
218     /// dependence.
219     bool isLoopIndependent() const override { return LoopIndependent; }
220 
221     /// isConfused - Returns true if this dependence is confused
222     /// (the compiler understands nothing and makes worst-case
223     /// assumptions).
224     bool isConfused() const override { return false; }
225 
226     /// isConsistent - Returns true if this dependence is consistent
227     /// (occurs every time the source and destination are executed).
228     bool isConsistent() const override { return Consistent; }
229 
230     /// getLevels - Returns the number of common loops surrounding the
231     /// source and destination of the dependence.
232     unsigned getLevels() const override { return Levels; }
233 
234     /// getDirection - Returns the direction associated with a particular
235     /// level.
236     unsigned getDirection(unsigned Level) const override;
237 
238     /// getDistance - Returns the distance (or NULL) associated with a
239     /// particular level.
240     const SCEV *getDistance(unsigned Level) const override;
241 
242     /// isPeelFirst - Returns true if peeling the first iteration from
243     /// this loop will break this dependence.
244     bool isPeelFirst(unsigned Level) const override;
245 
246     /// isPeelLast - Returns true if peeling the last iteration from
247     /// this loop will break this dependence.
248     bool isPeelLast(unsigned Level) const override;
249 
250     /// isSplitable - Returns true if splitting the loop will break
251     /// the dependence.
252     bool isSplitable(unsigned Level) const override;
253 
254     /// isScalar - Returns true if a particular level is scalar; that is,
255     /// if no subscript in the source or destination mention the induction
256     /// variable associated with the loop at this level.
257     bool isScalar(unsigned Level) const override;
258 
259   private:
260     unsigned short Levels;
261     bool LoopIndependent;
262     bool Consistent; // Init to true, then refine.
263     std::unique_ptr<DVEntry[]> DV;
264     friend class DependenceInfo;
265   };
266 
267   /// DependenceInfo - This class is the main dependence-analysis driver.
268   ///
269   class DependenceInfo {
270   public:
271     DependenceInfo(Function *F, AAResults *AA, ScalarEvolution *SE,
272                    LoopInfo *LI)
273         : AA(AA), SE(SE), LI(LI), F(F) {}
274 
275     /// Handle transitive invalidation when the cached analysis results go away.
276     bool invalidate(Function &F, const PreservedAnalyses &PA,
277                     FunctionAnalysisManager::Invalidator &Inv);
278 
279     /// depends - Tests for a dependence between the Src and Dst instructions.
280     /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
281     /// FullDependence) with as much information as can be gleaned.
282     /// The flag PossiblyLoopIndependent should be set by the caller
283     /// if it appears that control flow can reach from Src to Dst
284     /// without traversing a loop back edge.
285     std::unique_ptr<Dependence> depends(Instruction *Src,
286                                         Instruction *Dst,
287                                         bool PossiblyLoopIndependent);
288 
289     /// getSplitIteration - Give a dependence that's splittable at some
290     /// particular level, return the iteration that should be used to split
291     /// the loop.
292     ///
293     /// Generally, the dependence analyzer will be used to build
294     /// a dependence graph for a function (basically a map from instructions
295     /// to dependences). Looking for cycles in the graph shows us loops
296     /// that cannot be trivially vectorized/parallelized.
297     ///
298     /// We can try to improve the situation by examining all the dependences
299     /// that make up the cycle, looking for ones we can break.
300     /// Sometimes, peeling the first or last iteration of a loop will break
301     /// dependences, and there are flags for those possibilities.
302     /// Sometimes, splitting a loop at some other iteration will do the trick,
303     /// and we've got a flag for that case. Rather than waste the space to
304     /// record the exact iteration (since we rarely know), we provide
305     /// a method that calculates the iteration. It's a drag that it must work
306     /// from scratch, but wonderful in that it's possible.
307     ///
308     /// Here's an example:
309     ///
310     ///    for (i = 0; i < 10; i++)
311     ///        A[i] = ...
312     ///        ... = A[11 - i]
313     ///
314     /// There's a loop-carried flow dependence from the store to the load,
315     /// found by the weak-crossing SIV test. The dependence will have a flag,
316     /// indicating that the dependence can be broken by splitting the loop.
317     /// Calling getSplitIteration will return 5.
318     /// Splitting the loop breaks the dependence, like so:
319     ///
320     ///    for (i = 0; i <= 5; i++)
321     ///        A[i] = ...
322     ///        ... = A[11 - i]
323     ///    for (i = 6; i < 10; i++)
324     ///        A[i] = ...
325     ///        ... = A[11 - i]
326     ///
327     /// breaks the dependence and allows us to vectorize/parallelize
328     /// both loops.
329     const SCEV *getSplitIteration(const Dependence &Dep, unsigned Level);
330 
331     Function *getFunction() const { return F; }
332 
333   private:
334     AAResults *AA;
335     ScalarEvolution *SE;
336     LoopInfo *LI;
337     Function *F;
338 
339     /// Subscript - This private struct represents a pair of subscripts from
340     /// a pair of potentially multi-dimensional array references. We use a
341     /// vector of them to guide subscript partitioning.
342     struct Subscript {
343       const SCEV *Src;
344       const SCEV *Dst;
345       enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
346       SmallBitVector Loops;
347       SmallBitVector GroupLoops;
348       SmallBitVector Group;
349     };
350 
351     struct CoefficientInfo {
352       const SCEV *Coeff;
353       const SCEV *PosPart;
354       const SCEV *NegPart;
355       const SCEV *Iterations;
356     };
357 
358     struct BoundInfo {
359       const SCEV *Iterations;
360       const SCEV *Upper[8];
361       const SCEV *Lower[8];
362       unsigned char Direction;
363       unsigned char DirSet;
364     };
365 
366     /// Constraint - This private class represents a constraint, as defined
367     /// in the paper
368     ///
369     ///           Practical Dependence Testing
370     ///           Goff, Kennedy, Tseng
371     ///           PLDI 1991
372     ///
373     /// There are 5 kinds of constraint, in a hierarchy.
374     ///   1) Any - indicates no constraint, any dependence is possible.
375     ///   2) Line - A line ax + by = c, where a, b, and c are parameters,
376     ///             representing the dependence equation.
377     ///   3) Distance - The value d of the dependence distance;
378     ///   4) Point - A point <x, y> representing the dependence from
379     ///              iteration x to iteration y.
380     ///   5) Empty - No dependence is possible.
381     class Constraint {
382     private:
383       enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
384       ScalarEvolution *SE;
385       const SCEV *A;
386       const SCEV *B;
387       const SCEV *C;
388       const Loop *AssociatedLoop;
389 
390     public:
391       /// isEmpty - Return true if the constraint is of kind Empty.
392       bool isEmpty() const { return Kind == Empty; }
393 
394       /// isPoint - Return true if the constraint is of kind Point.
395       bool isPoint() const { return Kind == Point; }
396 
397       /// isDistance - Return true if the constraint is of kind Distance.
398       bool isDistance() const { return Kind == Distance; }
399 
400       /// isLine - Return true if the constraint is of kind Line.
401       /// Since Distance's can also be represented as Lines, we also return
402       /// true if the constraint is of kind Distance.
403       bool isLine() const { return Kind == Line || Kind == Distance; }
404 
405       /// isAny - Return true if the constraint is of kind Any;
406       bool isAny() const { return Kind == Any; }
407 
408       /// getX - If constraint is a point <X, Y>, returns X.
409       /// Otherwise assert.
410       const SCEV *getX() const;
411 
412       /// getY - If constraint is a point <X, Y>, returns Y.
413       /// Otherwise assert.
414       const SCEV *getY() const;
415 
416       /// getA - If constraint is a line AX + BY = C, returns A.
417       /// Otherwise assert.
418       const SCEV *getA() const;
419 
420       /// getB - If constraint is a line AX + BY = C, returns B.
421       /// Otherwise assert.
422       const SCEV *getB() const;
423 
424       /// getC - If constraint is a line AX + BY = C, returns C.
425       /// Otherwise assert.
426       const SCEV *getC() const;
427 
428       /// getD - If constraint is a distance, returns D.
429       /// Otherwise assert.
430       const SCEV *getD() const;
431 
432       /// getAssociatedLoop - Returns the loop associated with this constraint.
433       const Loop *getAssociatedLoop() const;
434 
435       /// setPoint - Change a constraint to Point.
436       void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
437 
438       /// setLine - Change a constraint to Line.
439       void setLine(const SCEV *A, const SCEV *B,
440                    const SCEV *C, const Loop *CurrentLoop);
441 
442       /// setDistance - Change a constraint to Distance.
443       void setDistance(const SCEV *D, const Loop *CurrentLoop);
444 
445       /// setEmpty - Change a constraint to Empty.
446       void setEmpty();
447 
448       /// setAny - Change a constraint to Any.
449       void setAny(ScalarEvolution *SE);
450 
451       /// dump - For debugging purposes. Dumps the constraint
452       /// out to OS.
453       void dump(raw_ostream &OS) const;
454     };
455 
456     /// establishNestingLevels - Examines the loop nesting of the Src and Dst
457     /// instructions and establishes their shared loops. Sets the variables
458     /// CommonLevels, SrcLevels, and MaxLevels.
459     /// The source and destination instructions needn't be contained in the same
460     /// loop. The routine establishNestingLevels finds the level of most deeply
461     /// nested loop that contains them both, CommonLevels. An instruction that's
462     /// not contained in a loop is at level = 0. MaxLevels is equal to the level
463     /// of the source plus the level of the destination, minus CommonLevels.
464     /// This lets us allocate vectors MaxLevels in length, with room for every
465     /// distinct loop referenced in both the source and destination subscripts.
466     /// The variable SrcLevels is the nesting depth of the source instruction.
467     /// It's used to help calculate distinct loops referenced by the destination.
468     /// Here's the map from loops to levels:
469     ///            0 - unused
470     ///            1 - outermost common loop
471     ///          ... - other common loops
472     /// CommonLevels - innermost common loop
473     ///          ... - loops containing Src but not Dst
474     ///    SrcLevels - innermost loop containing Src but not Dst
475     ///          ... - loops containing Dst but not Src
476     ///    MaxLevels - innermost loop containing Dst but not Src
477     /// Consider the follow code fragment:
478     ///    for (a = ...) {
479     ///      for (b = ...) {
480     ///        for (c = ...) {
481     ///          for (d = ...) {
482     ///            A[] = ...;
483     ///          }
484     ///        }
485     ///        for (e = ...) {
486     ///          for (f = ...) {
487     ///            for (g = ...) {
488     ///              ... = A[];
489     ///            }
490     ///          }
491     ///        }
492     ///      }
493     ///    }
494     /// If we're looking at the possibility of a dependence between the store
495     /// to A (the Src) and the load from A (the Dst), we'll note that they
496     /// have 2 loops in common, so CommonLevels will equal 2 and the direction
497     /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
498     /// A map from loop names to level indices would look like
499     ///     a - 1
500     ///     b - 2 = CommonLevels
501     ///     c - 3
502     ///     d - 4 = SrcLevels
503     ///     e - 5
504     ///     f - 6
505     ///     g - 7 = MaxLevels
506     void establishNestingLevels(const Instruction *Src,
507                                 const Instruction *Dst);
508 
509     unsigned CommonLevels, SrcLevels, MaxLevels;
510 
511     /// mapSrcLoop - Given one of the loops containing the source, return
512     /// its level index in our numbering scheme.
513     unsigned mapSrcLoop(const Loop *SrcLoop) const;
514 
515     /// mapDstLoop - Given one of the loops containing the destination,
516     /// return its level index in our numbering scheme.
517     unsigned mapDstLoop(const Loop *DstLoop) const;
518 
519     /// isLoopInvariant - Returns true if Expression is loop invariant
520     /// in LoopNest.
521     bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
522 
523     /// Makes sure all subscript pairs share the same integer type by
524     /// sign-extending as necessary.
525     /// Sign-extending a subscript is safe because getelementptr assumes the
526     /// array subscripts are signed.
527     void unifySubscriptType(ArrayRef<Subscript *> Pairs);
528 
529     /// removeMatchingExtensions - Examines a subscript pair.
530     /// If the source and destination are identically sign (or zero)
531     /// extended, it strips off the extension in an effort to
532     /// simplify the actual analysis.
533     void removeMatchingExtensions(Subscript *Pair);
534 
535     /// collectCommonLoops - Finds the set of loops from the LoopNest that
536     /// have a level <= CommonLevels and are referred to by the SCEV Expression.
537     void collectCommonLoops(const SCEV *Expression,
538                             const Loop *LoopNest,
539                             SmallBitVector &Loops) const;
540 
541     /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
542     /// linear. Collect the set of loops mentioned by Src.
543     bool checkSrcSubscript(const SCEV *Src,
544                            const Loop *LoopNest,
545                            SmallBitVector &Loops);
546 
547     /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
548     /// linear. Collect the set of loops mentioned by Dst.
549     bool checkDstSubscript(const SCEV *Dst,
550                            const Loop *LoopNest,
551                            SmallBitVector &Loops);
552 
553     /// isKnownPredicate - Compare X and Y using the predicate Pred.
554     /// Basically a wrapper for SCEV::isKnownPredicate,
555     /// but tries harder, especially in the presence of sign and zero
556     /// extensions and symbolics.
557     bool isKnownPredicate(ICmpInst::Predicate Pred,
558                           const SCEV *X,
559                           const SCEV *Y) const;
560 
561     /// isKnownLessThan - Compare to see if S is less than Size
562     /// Another wrapper for isKnownNegative(S - max(Size, 1)) with some extra
563     /// checking if S is an AddRec and we can prove lessthan using the loop
564     /// bounds.
565     bool isKnownLessThan(const SCEV *S, const SCEV *Size) const;
566 
567     /// isKnownNonNegative - Compare to see if S is known not to be negative
568     /// Uses the fact that S comes from Ptr, which may be an inbound GEP,
569     /// Proving there is no wrapping going on.
570     bool isKnownNonNegative(const SCEV *S, const Value *Ptr) const;
571 
572     /// collectUpperBound - All subscripts are the same type (on my machine,
573     /// an i64). The loop bound may be a smaller type. collectUpperBound
574     /// find the bound, if available, and zero extends it to the Type T.
575     /// (I zero extend since the bound should always be >= 0.)
576     /// If no upper bound is available, return NULL.
577     const SCEV *collectUpperBound(const Loop *l, Type *T) const;
578 
579     /// collectConstantUpperBound - Calls collectUpperBound(), then
580     /// attempts to cast it to SCEVConstant. If the cast fails,
581     /// returns NULL.
582     const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
583 
584     /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
585     /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
586     /// Collects the associated loops in a set.
587     Subscript::ClassificationKind classifyPair(const SCEV *Src,
588                                            const Loop *SrcLoopNest,
589                                            const SCEV *Dst,
590                                            const Loop *DstLoopNest,
591                                            SmallBitVector &Loops);
592 
593     /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
594     /// Returns true if any possible dependence is disproved.
595     /// If there might be a dependence, returns false.
596     /// If the dependence isn't proven to exist,
597     /// marks the Result as inconsistent.
598     bool testZIV(const SCEV *Src,
599                  const SCEV *Dst,
600                  FullDependence &Result) const;
601 
602     /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
603     /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
604     /// i and j are induction variables, c1 and c2 are loop invariant,
605     /// and a1 and a2 are constant.
606     /// Returns true if any possible dependence is disproved.
607     /// If there might be a dependence, returns false.
608     /// Sets appropriate direction vector entry and, when possible,
609     /// the distance vector entry.
610     /// If the dependence isn't proven to exist,
611     /// marks the Result as inconsistent.
612     bool testSIV(const SCEV *Src,
613                  const SCEV *Dst,
614                  unsigned &Level,
615                  FullDependence &Result,
616                  Constraint &NewConstraint,
617                  const SCEV *&SplitIter) const;
618 
619     /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
620     /// Things of the form [c1 + a1*i] and [c2 + a2*j]
621     /// where i and j are induction variables, c1 and c2 are loop invariant,
622     /// and a1 and a2 are constant.
623     /// With minor algebra, this test can also be used for things like
624     /// [c1 + a1*i + a2*j][c2].
625     /// Returns true if any possible dependence is disproved.
626     /// If there might be a dependence, returns false.
627     /// Marks the Result as inconsistent.
628     bool testRDIV(const SCEV *Src,
629                   const SCEV *Dst,
630                   FullDependence &Result) const;
631 
632     /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
633     /// Returns true if dependence disproved.
634     /// Can sometimes refine direction vectors.
635     bool testMIV(const SCEV *Src,
636                  const SCEV *Dst,
637                  const SmallBitVector &Loops,
638                  FullDependence &Result) const;
639 
640     /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
641     /// for dependence.
642     /// Things of the form [c1 + a*i] and [c2 + a*i],
643     /// where i is an induction variable, c1 and c2 are loop invariant,
644     /// and a is a constant
645     /// Returns true if any possible dependence is disproved.
646     /// If there might be a dependence, returns false.
647     /// Sets appropriate direction and distance.
648     bool strongSIVtest(const SCEV *Coeff,
649                        const SCEV *SrcConst,
650                        const SCEV *DstConst,
651                        const Loop *CurrentLoop,
652                        unsigned Level,
653                        FullDependence &Result,
654                        Constraint &NewConstraint) const;
655 
656     /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
657     /// (Src and Dst) for dependence.
658     /// Things of the form [c1 + a*i] and [c2 - a*i],
659     /// where i is an induction variable, c1 and c2 are loop invariant,
660     /// and a is a constant.
661     /// Returns true if any possible dependence is disproved.
662     /// If there might be a dependence, returns false.
663     /// Sets appropriate direction entry.
664     /// Set consistent to false.
665     /// Marks the dependence as splitable.
666     bool weakCrossingSIVtest(const SCEV *SrcCoeff,
667                              const SCEV *SrcConst,
668                              const SCEV *DstConst,
669                              const Loop *CurrentLoop,
670                              unsigned Level,
671                              FullDependence &Result,
672                              Constraint &NewConstraint,
673                              const SCEV *&SplitIter) const;
674 
675     /// ExactSIVtest - Tests the SIV subscript pair
676     /// (Src and Dst) for dependence.
677     /// Things of the form [c1 + a1*i] and [c2 + a2*i],
678     /// where i is an induction variable, c1 and c2 are loop invariant,
679     /// and a1 and a2 are constant.
680     /// Returns true if any possible dependence is disproved.
681     /// If there might be a dependence, returns false.
682     /// Sets appropriate direction entry.
683     /// Set consistent to false.
684     bool exactSIVtest(const SCEV *SrcCoeff,
685                       const SCEV *DstCoeff,
686                       const SCEV *SrcConst,
687                       const SCEV *DstConst,
688                       const Loop *CurrentLoop,
689                       unsigned Level,
690                       FullDependence &Result,
691                       Constraint &NewConstraint) const;
692 
693     /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
694     /// (Src and Dst) for dependence.
695     /// Things of the form [c1] and [c2 + a*i],
696     /// where i is an induction variable, c1 and c2 are loop invariant,
697     /// and a is a constant. See also weakZeroDstSIVtest.
698     /// Returns true if any possible dependence is disproved.
699     /// If there might be a dependence, returns false.
700     /// Sets appropriate direction entry.
701     /// Set consistent to false.
702     /// If loop peeling will break the dependence, mark appropriately.
703     bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
704                             const SCEV *SrcConst,
705                             const SCEV *DstConst,
706                             const Loop *CurrentLoop,
707                             unsigned Level,
708                             FullDependence &Result,
709                             Constraint &NewConstraint) const;
710 
711     /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
712     /// (Src and Dst) for dependence.
713     /// Things of the form [c1 + a*i] and [c2],
714     /// where i is an induction variable, c1 and c2 are loop invariant,
715     /// and a is a constant. See also weakZeroSrcSIVtest.
716     /// Returns true if any possible dependence is disproved.
717     /// If there might be a dependence, returns false.
718     /// Sets appropriate direction entry.
719     /// Set consistent to false.
720     /// If loop peeling will break the dependence, mark appropriately.
721     bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
722                             const SCEV *SrcConst,
723                             const SCEV *DstConst,
724                             const Loop *CurrentLoop,
725                             unsigned Level,
726                             FullDependence &Result,
727                             Constraint &NewConstraint) const;
728 
729     /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
730     /// Things of the form [c1 + a*i] and [c2 + b*j],
731     /// where i and j are induction variable, c1 and c2 are loop invariant,
732     /// and a and b are constants.
733     /// Returns true if any possible dependence is disproved.
734     /// Marks the result as inconsistent.
735     /// Works in some cases that symbolicRDIVtest doesn't,
736     /// and vice versa.
737     bool exactRDIVtest(const SCEV *SrcCoeff,
738                        const SCEV *DstCoeff,
739                        const SCEV *SrcConst,
740                        const SCEV *DstConst,
741                        const Loop *SrcLoop,
742                        const Loop *DstLoop,
743                        FullDependence &Result) const;
744 
745     /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
746     /// Things of the form [c1 + a*i] and [c2 + b*j],
747     /// where i and j are induction variable, c1 and c2 are loop invariant,
748     /// and a and b are constants.
749     /// Returns true if any possible dependence is disproved.
750     /// Marks the result as inconsistent.
751     /// Works in some cases that exactRDIVtest doesn't,
752     /// and vice versa. Can also be used as a backup for
753     /// ordinary SIV tests.
754     bool symbolicRDIVtest(const SCEV *SrcCoeff,
755                           const SCEV *DstCoeff,
756                           const SCEV *SrcConst,
757                           const SCEV *DstConst,
758                           const Loop *SrcLoop,
759                           const Loop *DstLoop) const;
760 
761     /// gcdMIVtest - Tests an MIV subscript pair for dependence.
762     /// Returns true if any possible dependence is disproved.
763     /// Marks the result as inconsistent.
764     /// Can sometimes disprove the equal direction for 1 or more loops.
765     //  Can handle some symbolics that even the SIV tests don't get,
766     /// so we use it as a backup for everything.
767     bool gcdMIVtest(const SCEV *Src,
768                     const SCEV *Dst,
769                     FullDependence &Result) const;
770 
771     /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
772     /// Returns true if any possible dependence is disproved.
773     /// Marks the result as inconsistent.
774     /// Computes directions.
775     bool banerjeeMIVtest(const SCEV *Src,
776                          const SCEV *Dst,
777                          const SmallBitVector &Loops,
778                          FullDependence &Result) const;
779 
780     /// collectCoefficientInfo - Walks through the subscript,
781     /// collecting each coefficient, the associated loop bounds,
782     /// and recording its positive and negative parts for later use.
783     CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
784                                       bool SrcFlag,
785                                       const SCEV *&Constant) const;
786 
787     /// getPositivePart - X^+ = max(X, 0).
788     ///
789     const SCEV *getPositivePart(const SCEV *X) const;
790 
791     /// getNegativePart - X^- = min(X, 0).
792     ///
793     const SCEV *getNegativePart(const SCEV *X) const;
794 
795     /// getLowerBound - Looks through all the bounds info and
796     /// computes the lower bound given the current direction settings
797     /// at each level.
798     const SCEV *getLowerBound(BoundInfo *Bound) const;
799 
800     /// getUpperBound - Looks through all the bounds info and
801     /// computes the upper bound given the current direction settings
802     /// at each level.
803     const SCEV *getUpperBound(BoundInfo *Bound) const;
804 
805     /// exploreDirections - Hierarchically expands the direction vector
806     /// search space, combining the directions of discovered dependences
807     /// in the DirSet field of Bound. Returns the number of distinct
808     /// dependences discovered. If the dependence is disproved,
809     /// it will return 0.
810     unsigned exploreDirections(unsigned Level,
811                                CoefficientInfo *A,
812                                CoefficientInfo *B,
813                                BoundInfo *Bound,
814                                const SmallBitVector &Loops,
815                                unsigned &DepthExpanded,
816                                const SCEV *Delta) const;
817 
818     /// testBounds - Returns true iff the current bounds are plausible.
819     bool testBounds(unsigned char DirKind,
820                     unsigned Level,
821                     BoundInfo *Bound,
822                     const SCEV *Delta) const;
823 
824     /// findBoundsALL - Computes the upper and lower bounds for level K
825     /// using the * direction. Records them in Bound.
826     void findBoundsALL(CoefficientInfo *A,
827                        CoefficientInfo *B,
828                        BoundInfo *Bound,
829                        unsigned K) const;
830 
831     /// findBoundsLT - Computes the upper and lower bounds for level K
832     /// using the < direction. Records them in Bound.
833     void findBoundsLT(CoefficientInfo *A,
834                       CoefficientInfo *B,
835                       BoundInfo *Bound,
836                       unsigned K) const;
837 
838     /// findBoundsGT - Computes the upper and lower bounds for level K
839     /// using the > direction. Records them in Bound.
840     void findBoundsGT(CoefficientInfo *A,
841                       CoefficientInfo *B,
842                       BoundInfo *Bound,
843                       unsigned K) const;
844 
845     /// findBoundsEQ - Computes the upper and lower bounds for level K
846     /// using the = direction. Records them in Bound.
847     void findBoundsEQ(CoefficientInfo *A,
848                       CoefficientInfo *B,
849                       BoundInfo *Bound,
850                       unsigned K) const;
851 
852     /// intersectConstraints - Updates X with the intersection
853     /// of the Constraints X and Y. Returns true if X has changed.
854     bool intersectConstraints(Constraint *X,
855                               const Constraint *Y);
856 
857     /// propagate - Review the constraints, looking for opportunities
858     /// to simplify a subscript pair (Src and Dst).
859     /// Return true if some simplification occurs.
860     /// If the simplification isn't exact (that is, if it is conservative
861     /// in terms of dependence), set consistent to false.
862     bool propagate(const SCEV *&Src,
863                    const SCEV *&Dst,
864                    SmallBitVector &Loops,
865                    SmallVectorImpl<Constraint> &Constraints,
866                    bool &Consistent);
867 
868     /// propagateDistance - Attempt to propagate a distance
869     /// constraint into a subscript pair (Src and Dst).
870     /// Return true if some simplification occurs.
871     /// If the simplification isn't exact (that is, if it is conservative
872     /// in terms of dependence), set consistent to false.
873     bool propagateDistance(const SCEV *&Src,
874                            const SCEV *&Dst,
875                            Constraint &CurConstraint,
876                            bool &Consistent);
877 
878     /// propagatePoint - Attempt to propagate a point
879     /// constraint into a subscript pair (Src and Dst).
880     /// Return true if some simplification occurs.
881     bool propagatePoint(const SCEV *&Src,
882                         const SCEV *&Dst,
883                         Constraint &CurConstraint);
884 
885     /// propagateLine - Attempt to propagate a line
886     /// constraint into a subscript pair (Src and Dst).
887     /// Return true if some simplification occurs.
888     /// If the simplification isn't exact (that is, if it is conservative
889     /// in terms of dependence), set consistent to false.
890     bool propagateLine(const SCEV *&Src,
891                        const SCEV *&Dst,
892                        Constraint &CurConstraint,
893                        bool &Consistent);
894 
895     /// findCoefficient - Given a linear SCEV,
896     /// return the coefficient corresponding to specified loop.
897     /// If there isn't one, return the SCEV constant 0.
898     /// For example, given a*i + b*j + c*k, returning the coefficient
899     /// corresponding to the j loop would yield b.
900     const SCEV *findCoefficient(const SCEV *Expr,
901                                 const Loop *TargetLoop) const;
902 
903     /// zeroCoefficient - Given a linear SCEV,
904     /// return the SCEV given by zeroing out the coefficient
905     /// corresponding to the specified loop.
906     /// For example, given a*i + b*j + c*k, zeroing the coefficient
907     /// corresponding to the j loop would yield a*i + c*k.
908     const SCEV *zeroCoefficient(const SCEV *Expr,
909                                 const Loop *TargetLoop) const;
910 
911     /// addToCoefficient - Given a linear SCEV Expr,
912     /// return the SCEV given by adding some Value to the
913     /// coefficient corresponding to the specified TargetLoop.
914     /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
915     /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
916     const SCEV *addToCoefficient(const SCEV *Expr,
917                                  const Loop *TargetLoop,
918                                  const SCEV *Value)  const;
919 
920     /// updateDirection - Update direction vector entry
921     /// based on the current constraint.
922     void updateDirection(Dependence::DVEntry &Level,
923                          const Constraint &CurConstraint) const;
924 
925     /// Given a linear access function, tries to recover subscripts
926     /// for each dimension of the array element access.
927     bool tryDelinearize(Instruction *Src, Instruction *Dst,
928                         SmallVectorImpl<Subscript> &Pair);
929 
930     /// Tries to delinearize access function for a fixed size multi-dimensional
931     /// array, by deriving subscripts from GEP instructions. Returns true upon
932     /// success and false otherwise.
933     bool tryDelinearizeFixedSize(Instruction *Src, Instruction *Dst,
934                                  const SCEV *SrcAccessFn,
935                                  const SCEV *DstAccessFn,
936                                  SmallVectorImpl<const SCEV *> &SrcSubscripts,
937                                  SmallVectorImpl<const SCEV *> &DstSubscripts);
938 
939     /// Tries to delinearize access function for a multi-dimensional array with
940     /// symbolic runtime sizes.
941     /// Returns true upon success and false otherwise.
942     bool tryDelinearizeParametricSize(
943         Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
944         const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
945         SmallVectorImpl<const SCEV *> &DstSubscripts);
946 
947     /// checkSubscript - Helper function for checkSrcSubscript and
948     /// checkDstSubscript to avoid duplicate code
949     bool checkSubscript(const SCEV *Expr, const Loop *LoopNest,
950                         SmallBitVector &Loops, bool IsSrc);
951   }; // class DependenceInfo
952 
953   /// AnalysisPass to compute dependence information in a function
954   class DependenceAnalysis : public AnalysisInfoMixin<DependenceAnalysis> {
955   public:
956     typedef DependenceInfo Result;
957     Result run(Function &F, FunctionAnalysisManager &FAM);
958 
959   private:
960     static AnalysisKey Key;
961     friend struct AnalysisInfoMixin<DependenceAnalysis>;
962   }; // class DependenceAnalysis
963 
964   /// Printer pass to dump DA results.
965   struct DependenceAnalysisPrinterPass
966       : public PassInfoMixin<DependenceAnalysisPrinterPass> {
967     DependenceAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
968 
969     PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
970 
971   private:
972     raw_ostream &OS;
973   }; // class DependenceAnalysisPrinterPass
974 
975   /// Legacy pass manager pass to access dependence information
976   class DependenceAnalysisWrapperPass : public FunctionPass {
977   public:
978     static char ID; // Class identification, replacement for typeinfo
979     DependenceAnalysisWrapperPass();
980 
981     bool runOnFunction(Function &F) override;
982     void releaseMemory() override;
983     void getAnalysisUsage(AnalysisUsage &) const override;
984     void print(raw_ostream &, const Module * = nullptr) const override;
985     DependenceInfo &getDI() const;
986 
987   private:
988     std::unique_ptr<DependenceInfo> info;
989   }; // class DependenceAnalysisWrapperPass
990 
991   /// createDependenceAnalysisPass - This creates an instance of the
992   /// DependenceAnalysis wrapper pass.
993   FunctionPass *createDependenceAnalysisWrapperPass();
994 
995 } // namespace llvm
996 
997 #endif
998