1 //===- llvm/ADT/SetVector.h - Set with insert order iteration ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a set that has insertion order iteration 11 /// characteristics. This is useful for keeping a set of things that need to be 12 /// visited later but in a deterministic order (insertion order). The interface 13 /// is purposefully minimal. 14 /// 15 /// This file defines SetVector and SmallSetVector, which performs no 16 /// allocations if the SetVector has less than a certain number of elements. 17 /// 18 //===----------------------------------------------------------------------===// 19 20 #ifndef LLVM_ADT_SETVECTOR_H 21 #define LLVM_ADT_SETVECTOR_H 22 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/Support/Compiler.h" 27 #include <cassert> 28 #include <iterator> 29 #include <vector> 30 31 namespace llvm { 32 33 /// A vector that has set insertion semantics. 34 /// 35 /// This adapter class provides a way to keep a set of things that also has the 36 /// property of a deterministic iteration order. The order of iteration is the 37 /// order of insertion. 38 template <typename T, typename Vector = std::vector<T>, 39 typename Set = DenseSet<T>> 40 class SetVector { 41 public: 42 using value_type = T; 43 using key_type = T; 44 using reference = T&; 45 using const_reference = const T&; 46 using set_type = Set; 47 using vector_type = Vector; 48 using iterator = typename vector_type::const_iterator; 49 using const_iterator = typename vector_type::const_iterator; 50 using reverse_iterator = typename vector_type::const_reverse_iterator; 51 using const_reverse_iterator = typename vector_type::const_reverse_iterator; 52 using size_type = typename vector_type::size_type; 53 54 /// Construct an empty SetVector 55 SetVector() = default; 56 57 /// Initialize a SetVector with a range of elements 58 template<typename It> 59 SetVector(It Start, It End) { 60 insert(Start, End); 61 } 62 63 ArrayRef<T> getArrayRef() const { return vector_; } 64 65 /// Clear the SetVector and return the underlying vector. 66 Vector takeVector() { 67 set_.clear(); 68 return std::move(vector_); 69 } 70 71 /// Determine if the SetVector is empty or not. 72 bool empty() const { 73 return vector_.empty(); 74 } 75 76 /// Determine the number of elements in the SetVector. 77 size_type size() const { 78 return vector_.size(); 79 } 80 81 /// Get an iterator to the beginning of the SetVector. 82 iterator begin() { 83 return vector_.begin(); 84 } 85 86 /// Get a const_iterator to the beginning of the SetVector. 87 const_iterator begin() const { 88 return vector_.begin(); 89 } 90 91 /// Get an iterator to the end of the SetVector. 92 iterator end() { 93 return vector_.end(); 94 } 95 96 /// Get a const_iterator to the end of the SetVector. 97 const_iterator end() const { 98 return vector_.end(); 99 } 100 101 /// Get an reverse_iterator to the end of the SetVector. 102 reverse_iterator rbegin() { 103 return vector_.rbegin(); 104 } 105 106 /// Get a const_reverse_iterator to the end of the SetVector. 107 const_reverse_iterator rbegin() const { 108 return vector_.rbegin(); 109 } 110 111 /// Get a reverse_iterator to the beginning of the SetVector. 112 reverse_iterator rend() { 113 return vector_.rend(); 114 } 115 116 /// Get a const_reverse_iterator to the beginning of the SetVector. 117 const_reverse_iterator rend() const { 118 return vector_.rend(); 119 } 120 121 /// Return the first element of the SetVector. 122 const T &front() const { 123 assert(!empty() && "Cannot call front() on empty SetVector!"); 124 return vector_.front(); 125 } 126 127 /// Return the last element of the SetVector. 128 const T &back() const { 129 assert(!empty() && "Cannot call back() on empty SetVector!"); 130 return vector_.back(); 131 } 132 133 /// Index into the SetVector. 134 const_reference operator[](size_type n) const { 135 assert(n < vector_.size() && "SetVector access out of range!"); 136 return vector_[n]; 137 } 138 139 /// Insert a new element into the SetVector. 140 /// \returns true if the element was inserted into the SetVector. 141 bool insert(const value_type &X) { 142 bool result = set_.insert(X).second; 143 if (result) 144 vector_.push_back(X); 145 return result; 146 } 147 148 /// Insert a range of elements into the SetVector. 149 template<typename It> 150 void insert(It Start, It End) { 151 for (; Start != End; ++Start) 152 if (set_.insert(*Start).second) 153 vector_.push_back(*Start); 154 } 155 156 /// Remove an item from the set vector. 157 bool remove(const value_type& X) { 158 if (set_.erase(X)) { 159 typename vector_type::iterator I = find(vector_, X); 160 assert(I != vector_.end() && "Corrupted SetVector instances!"); 161 vector_.erase(I); 162 return true; 163 } 164 return false; 165 } 166 167 /// Erase a single element from the set vector. 168 /// \returns an iterator pointing to the next element that followed the 169 /// element erased. This is the end of the SetVector if the last element is 170 /// erased. 171 iterator erase(const_iterator I) { 172 const key_type &V = *I; 173 assert(set_.count(V) && "Corrupted SetVector instances!"); 174 set_.erase(V); 175 return vector_.erase(I); 176 } 177 178 /// Remove items from the set vector based on a predicate function. 179 /// 180 /// This is intended to be equivalent to the following code, if we could 181 /// write it: 182 /// 183 /// \code 184 /// V.erase(remove_if(V, P), V.end()); 185 /// \endcode 186 /// 187 /// However, SetVector doesn't expose non-const iterators, making any 188 /// algorithm like remove_if impossible to use. 189 /// 190 /// \returns true if any element is removed. 191 template <typename UnaryPredicate> 192 bool remove_if(UnaryPredicate P) { 193 typename vector_type::iterator I = 194 llvm::remove_if(vector_, TestAndEraseFromSet<UnaryPredicate>(P, set_)); 195 if (I == vector_.end()) 196 return false; 197 vector_.erase(I, vector_.end()); 198 return true; 199 } 200 201 /// Check if the SetVector contains the given key. 202 bool contains(const key_type &key) const { 203 return set_.find(key) != set_.end(); 204 } 205 206 /// Count the number of elements of a given key in the SetVector. 207 /// \returns 0 if the element is not in the SetVector, 1 if it is. 208 size_type count(const key_type &key) const { 209 return set_.count(key); 210 } 211 212 /// Completely clear the SetVector 213 void clear() { 214 set_.clear(); 215 vector_.clear(); 216 } 217 218 /// Remove the last element of the SetVector. 219 void pop_back() { 220 assert(!empty() && "Cannot remove an element from an empty SetVector!"); 221 set_.erase(back()); 222 vector_.pop_back(); 223 } 224 225 [[nodiscard]] T pop_back_val() { 226 T Ret = back(); 227 pop_back(); 228 return Ret; 229 } 230 231 bool operator==(const SetVector &that) const { 232 return vector_ == that.vector_; 233 } 234 235 bool operator!=(const SetVector &that) const { 236 return vector_ != that.vector_; 237 } 238 239 /// Compute This := This u S, return whether 'This' changed. 240 /// TODO: We should be able to use set_union from SetOperations.h, but 241 /// SetVector interface is inconsistent with DenseSet. 242 template <class STy> 243 bool set_union(const STy &S) { 244 bool Changed = false; 245 246 for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE; 247 ++SI) 248 if (insert(*SI)) 249 Changed = true; 250 251 return Changed; 252 } 253 254 /// Compute This := This - B 255 /// TODO: We should be able to use set_subtract from SetOperations.h, but 256 /// SetVector interface is inconsistent with DenseSet. 257 template <class STy> 258 void set_subtract(const STy &S) { 259 for (typename STy::const_iterator SI = S.begin(), SE = S.end(); SI != SE; 260 ++SI) 261 remove(*SI); 262 } 263 264 void swap(SetVector<T, Vector, Set> &RHS) { 265 set_.swap(RHS.set_); 266 vector_.swap(RHS.vector_); 267 } 268 269 private: 270 /// A wrapper predicate designed for use with std::remove_if. 271 /// 272 /// This predicate wraps a predicate suitable for use with std::remove_if to 273 /// call set_.erase(x) on each element which is slated for removal. 274 template <typename UnaryPredicate> 275 class TestAndEraseFromSet { 276 UnaryPredicate P; 277 set_type &set_; 278 279 public: 280 TestAndEraseFromSet(UnaryPredicate P, set_type &set_) 281 : P(std::move(P)), set_(set_) {} 282 283 template <typename ArgumentT> 284 bool operator()(const ArgumentT &Arg) { 285 if (P(Arg)) { 286 set_.erase(Arg); 287 return true; 288 } 289 return false; 290 } 291 }; 292 293 set_type set_; ///< The set. 294 vector_type vector_; ///< The vector. 295 }; 296 297 /// A SetVector that performs no allocations if smaller than 298 /// a certain size. 299 template <typename T, unsigned N> 300 class SmallSetVector 301 : public SetVector<T, SmallVector<T, N>, SmallDenseSet<T, N>> { 302 public: 303 SmallSetVector() = default; 304 305 /// Initialize a SmallSetVector with a range of elements 306 template<typename It> 307 SmallSetVector(It Start, It End) { 308 this->insert(Start, End); 309 } 310 }; 311 312 } // end namespace llvm 313 314 namespace std { 315 316 /// Implement std::swap in terms of SetVector swap. 317 template<typename T, typename V, typename S> 318 inline void 319 swap(llvm::SetVector<T, V, S> &LHS, llvm::SetVector<T, V, S> &RHS) { 320 LHS.swap(RHS); 321 } 322 323 /// Implement std::swap in terms of SmallSetVector swap. 324 template<typename T, unsigned N> 325 inline void 326 swap(llvm::SmallSetVector<T, N> &LHS, llvm::SmallSetVector<T, N> &RHS) { 327 LHS.swap(RHS); 328 } 329 330 } // end namespace std 331 332 #endif // LLVM_ADT_SETVECTOR_H 333