xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h (revision fe75646a0234a261c0013bf1840fdac4acaf0cec)
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains some templates that are useful if you are working with
11 /// the STL at all.
12 ///
13 /// No library is required when using these functions.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/ADT/ADL.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/STLForwardCompat.h"
23 #include "llvm/ADT/STLFunctionalExtras.h"
24 #include "llvm/ADT/identity.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Config/abi-breaking.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <cstdlib>
34 #include <functional>
35 #include <initializer_list>
36 #include <iterator>
37 #include <limits>
38 #include <memory>
39 #include <optional>
40 #include <tuple>
41 #include <type_traits>
42 #include <utility>
43 
44 #ifdef EXPENSIVE_CHECKS
45 #include <random> // for std::mt19937
46 #endif
47 
48 namespace llvm {
49 
50 //===----------------------------------------------------------------------===//
51 //     Extra additions to <type_traits>
52 //===----------------------------------------------------------------------===//
53 
54 template <typename T> struct make_const_ptr {
55   using type = std::add_pointer_t<std::add_const_t<T>>;
56 };
57 
58 template <typename T> struct make_const_ref {
59   using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
60 };
61 
62 namespace detail {
63 template <class, template <class...> class Op, class... Args> struct detector {
64   using value_t = std::false_type;
65 };
66 template <template <class...> class Op, class... Args>
67 struct detector<std::void_t<Op<Args...>>, Op, Args...> {
68   using value_t = std::true_type;
69 };
70 } // end namespace detail
71 
72 /// Detects if a given trait holds for some set of arguments 'Args'.
73 /// For example, the given trait could be used to detect if a given type
74 /// has a copy assignment operator:
75 ///   template<class T>
76 ///   using has_copy_assign_t = decltype(std::declval<T&>()
77 ///                                                 = std::declval<const T&>());
78 ///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
79 template <template <class...> class Op, class... Args>
80 using is_detected = typename detail::detector<void, Op, Args...>::value_t;
81 
82 /// This class provides various trait information about a callable object.
83 ///   * To access the number of arguments: Traits::num_args
84 ///   * To access the type of an argument: Traits::arg_t<Index>
85 ///   * To access the type of the result:  Traits::result_t
86 template <typename T, bool isClass = std::is_class<T>::value>
87 struct function_traits : public function_traits<decltype(&T::operator())> {};
88 
89 /// Overload for class function types.
90 template <typename ClassType, typename ReturnType, typename... Args>
91 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
92   /// The number of arguments to this function.
93   enum { num_args = sizeof...(Args) };
94 
95   /// The result type of this function.
96   using result_t = ReturnType;
97 
98   /// The type of an argument to this function.
99   template <size_t Index>
100   using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
101 };
102 /// Overload for class function types.
103 template <typename ClassType, typename ReturnType, typename... Args>
104 struct function_traits<ReturnType (ClassType::*)(Args...), false>
105     : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
106 /// Overload for non-class function types.
107 template <typename ReturnType, typename... Args>
108 struct function_traits<ReturnType (*)(Args...), false> {
109   /// The number of arguments to this function.
110   enum { num_args = sizeof...(Args) };
111 
112   /// The result type of this function.
113   using result_t = ReturnType;
114 
115   /// The type of an argument to this function.
116   template <size_t i>
117   using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
118 };
119 template <typename ReturnType, typename... Args>
120 struct function_traits<ReturnType (*const)(Args...), false>
121     : public function_traits<ReturnType (*)(Args...)> {};
122 /// Overload for non-class function type references.
123 template <typename ReturnType, typename... Args>
124 struct function_traits<ReturnType (&)(Args...), false>
125     : public function_traits<ReturnType (*)(Args...)> {};
126 
127 /// traits class for checking whether type T is one of any of the given
128 /// types in the variadic list.
129 template <typename T, typename... Ts>
130 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
131 
132 /// traits class for checking whether type T is a base class for all
133 ///  the given types in the variadic list.
134 template <typename T, typename... Ts>
135 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
136 
137 namespace detail {
138 template <typename T, typename... Us> struct TypesAreDistinct;
139 template <typename T, typename... Us>
140 struct TypesAreDistinct
141     : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
142                                        TypesAreDistinct<Us...>::value> {};
143 template <typename T> struct TypesAreDistinct<T> : std::true_type {};
144 } // namespace detail
145 
146 /// Determine if all types in Ts are distinct.
147 ///
148 /// Useful to statically assert when Ts is intended to describe a non-multi set
149 /// of types.
150 ///
151 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
152 /// asserted once per instantiation of a type which requires it.
153 template <typename... Ts> struct TypesAreDistinct;
154 template <> struct TypesAreDistinct<> : std::true_type {};
155 template <typename... Ts>
156 struct TypesAreDistinct
157     : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
158 
159 /// Find the first index where a type appears in a list of types.
160 ///
161 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
162 ///
163 /// Typically only meaningful when it is otherwise statically known that the
164 /// type pack has no duplicate types. This should be guaranteed explicitly with
165 /// static_assert(TypesAreDistinct<Us...>::value).
166 ///
167 /// It is a compile-time error to instantiate when T is not present in Us, i.e.
168 /// if is_one_of<T, Us...>::value is false.
169 template <typename T, typename... Us> struct FirstIndexOfType;
170 template <typename T, typename U, typename... Us>
171 struct FirstIndexOfType<T, U, Us...>
172     : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
173 template <typename T, typename... Us>
174 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
175 
176 /// Find the type at a given index in a list of types.
177 ///
178 /// TypeAtIndex<I, Ts...> is the type at index I in Ts.
179 template <size_t I, typename... Ts>
180 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
181 
182 /// Helper which adds two underlying types of enumeration type.
183 /// Implicit conversion to a common type is accepted.
184 template <typename EnumTy1, typename EnumTy2,
185           typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
186                                           std::underlying_type_t<EnumTy1>>,
187           typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
188                                           std::underlying_type_t<EnumTy2>>>
189 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
190   return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
191 }
192 
193 //===----------------------------------------------------------------------===//
194 //     Extra additions to <iterator>
195 //===----------------------------------------------------------------------===//
196 
197 namespace callable_detail {
198 
199 /// Templated storage wrapper for a callable.
200 ///
201 /// This class is consistently default constructible, copy / move
202 /// constructible / assignable.
203 ///
204 /// Supported callable types:
205 ///  - Function pointer
206 ///  - Function reference
207 ///  - Lambda
208 ///  - Function object
209 template <typename T,
210           bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
211 class Callable {
212   using value_type = std::remove_reference_t<T>;
213   using reference = value_type &;
214   using const_reference = value_type const &;
215 
216   std::optional<value_type> Obj;
217 
218   static_assert(!std::is_pointer_v<value_type>,
219                 "Pointers to non-functions are not callable.");
220 
221 public:
222   Callable() = default;
223   Callable(T const &O) : Obj(std::in_place, O) {}
224 
225   Callable(Callable const &Other) = default;
226   Callable(Callable &&Other) = default;
227 
228   Callable &operator=(Callable const &Other) {
229     Obj = std::nullopt;
230     if (Other.Obj)
231       Obj.emplace(*Other.Obj);
232     return *this;
233   }
234 
235   Callable &operator=(Callable &&Other) {
236     Obj = std::nullopt;
237     if (Other.Obj)
238       Obj.emplace(std::move(*Other.Obj));
239     return *this;
240   }
241 
242   template <typename... Pn,
243             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
244   decltype(auto) operator()(Pn &&...Params) {
245     return (*Obj)(std::forward<Pn>(Params)...);
246   }
247 
248   template <typename... Pn,
249             std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
250   decltype(auto) operator()(Pn &&...Params) const {
251     return (*Obj)(std::forward<Pn>(Params)...);
252   }
253 
254   bool valid() const { return Obj != std::nullopt; }
255   bool reset() { return Obj = std::nullopt; }
256 
257   operator reference() { return *Obj; }
258   operator const_reference() const { return *Obj; }
259 };
260 
261 // Function specialization.  No need to waste extra space wrapping with a
262 // std::optional.
263 template <typename T> class Callable<T, true> {
264   static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
265 
266   using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
267   using CastT = std::conditional_t<IsPtr, T, T &>;
268 
269 private:
270   StorageT Func = nullptr;
271 
272 private:
273   template <typename In> static constexpr auto convertIn(In &&I) {
274     if constexpr (IsPtr) {
275       // Pointer... just echo it back.
276       return I;
277     } else {
278       // Must be a function reference.  Return its address.
279       return &I;
280     }
281   }
282 
283 public:
284   Callable() = default;
285 
286   // Construct from a function pointer or reference.
287   //
288   // Disable this constructor for references to 'Callable' so we don't violate
289   // the rule of 0.
290   template < // clang-format off
291     typename FnPtrOrRef,
292     std::enable_if_t<
293       !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
294     > = 0
295   > // clang-format on
296   Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
297 
298   template <typename... Pn,
299             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
300   decltype(auto) operator()(Pn &&...Params) const {
301     return Func(std::forward<Pn>(Params)...);
302   }
303 
304   bool valid() const { return Func != nullptr; }
305   void reset() { Func = nullptr; }
306 
307   operator T const &() const {
308     if constexpr (IsPtr) {
309       // T is a pointer... just echo it back.
310       return Func;
311     } else {
312       static_assert(std::is_reference_v<T>,
313                     "Expected a reference to a function.");
314       // T is a function reference... dereference the stored pointer.
315       return *Func;
316     }
317   }
318 };
319 
320 } // namespace callable_detail
321 
322 /// Returns true if the given container only contains a single element.
323 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
324   auto B = std::begin(C), E = std::end(C);
325   return B != E && std::next(B) == E;
326 }
327 
328 /// Return a range covering \p RangeOrContainer with the first N elements
329 /// excluded.
330 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
331   return make_range(std::next(adl_begin(RangeOrContainer), N),
332                     adl_end(RangeOrContainer));
333 }
334 
335 /// Return a range covering \p RangeOrContainer with the last N elements
336 /// excluded.
337 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
338   return make_range(adl_begin(RangeOrContainer),
339                     std::prev(adl_end(RangeOrContainer), N));
340 }
341 
342 // mapped_iterator - This is a simple iterator adapter that causes a function to
343 // be applied whenever operator* is invoked on the iterator.
344 
345 template <typename ItTy, typename FuncTy,
346           typename ReferenceTy =
347               decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
348 class mapped_iterator
349     : public iterator_adaptor_base<
350           mapped_iterator<ItTy, FuncTy>, ItTy,
351           typename std::iterator_traits<ItTy>::iterator_category,
352           std::remove_reference_t<ReferenceTy>,
353           typename std::iterator_traits<ItTy>::difference_type,
354           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
355 public:
356   mapped_iterator() = default;
357   mapped_iterator(ItTy U, FuncTy F)
358     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
359 
360   ItTy getCurrent() { return this->I; }
361 
362   const FuncTy &getFunction() const { return F; }
363 
364   ReferenceTy operator*() const { return F(*this->I); }
365 
366 private:
367   callable_detail::Callable<FuncTy> F{};
368 };
369 
370 // map_iterator - Provide a convenient way to create mapped_iterators, just like
371 // make_pair is useful for creating pairs...
372 template <class ItTy, class FuncTy>
373 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
374   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
375 }
376 
377 template <class ContainerTy, class FuncTy>
378 auto map_range(ContainerTy &&C, FuncTy F) {
379   return make_range(map_iterator(std::begin(C), F),
380                     map_iterator(std::end(C), F));
381 }
382 
383 /// A base type of mapped iterator, that is useful for building derived
384 /// iterators that do not need/want to store the map function (as in
385 /// mapped_iterator). These iterators must simply provide a `mapElement` method
386 /// that defines how to map a value of the iterator to the provided reference
387 /// type.
388 template <typename DerivedT, typename ItTy, typename ReferenceTy>
389 class mapped_iterator_base
390     : public iterator_adaptor_base<
391           DerivedT, ItTy,
392           typename std::iterator_traits<ItTy>::iterator_category,
393           std::remove_reference_t<ReferenceTy>,
394           typename std::iterator_traits<ItTy>::difference_type,
395           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
396 public:
397   using BaseT = mapped_iterator_base;
398 
399   mapped_iterator_base(ItTy U)
400       : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
401 
402   ItTy getCurrent() { return this->I; }
403 
404   ReferenceTy operator*() const {
405     return static_cast<const DerivedT &>(*this).mapElement(*this->I);
406   }
407 };
408 
409 /// Helper to determine if type T has a member called rbegin().
410 template <typename Ty> class has_rbegin_impl {
411   using yes = char[1];
412   using no = char[2];
413 
414   template <typename Inner>
415   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
416 
417   template <typename>
418   static no& test(...);
419 
420 public:
421   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
422 };
423 
424 /// Metafunction to determine if T& or T has a member called rbegin().
425 template <typename Ty>
426 struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
427 
428 // Returns an iterator_range over the given container which iterates in reverse.
429 template <typename ContainerTy> auto reverse(ContainerTy &&C) {
430   if constexpr (has_rbegin<ContainerTy>::value)
431     return make_range(C.rbegin(), C.rend());
432   else
433     return make_range(std::make_reverse_iterator(std::end(C)),
434                       std::make_reverse_iterator(std::begin(C)));
435 }
436 
437 /// An iterator adaptor that filters the elements of given inner iterators.
438 ///
439 /// The predicate parameter should be a callable object that accepts the wrapped
440 /// iterator's reference type and returns a bool. When incrementing or
441 /// decrementing the iterator, it will call the predicate on each element and
442 /// skip any where it returns false.
443 ///
444 /// \code
445 ///   int A[] = { 1, 2, 3, 4 };
446 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
447 ///   // R contains { 1, 3 }.
448 /// \endcode
449 ///
450 /// Note: filter_iterator_base implements support for forward iteration.
451 /// filter_iterator_impl exists to provide support for bidirectional iteration,
452 /// conditional on whether the wrapped iterator supports it.
453 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
454 class filter_iterator_base
455     : public iterator_adaptor_base<
456           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
457           WrappedIteratorT,
458           std::common_type_t<IterTag,
459                              typename std::iterator_traits<
460                                  WrappedIteratorT>::iterator_category>> {
461   using BaseT = typename filter_iterator_base::iterator_adaptor_base;
462 
463 protected:
464   WrappedIteratorT End;
465   PredicateT Pred;
466 
467   void findNextValid() {
468     while (this->I != End && !Pred(*this->I))
469       BaseT::operator++();
470   }
471 
472   filter_iterator_base() = default;
473 
474   // Construct the iterator. The begin iterator needs to know where the end
475   // is, so that it can properly stop when it gets there. The end iterator only
476   // needs the predicate to support bidirectional iteration.
477   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
478                        PredicateT Pred)
479       : BaseT(Begin), End(End), Pred(Pred) {
480     findNextValid();
481   }
482 
483 public:
484   using BaseT::operator++;
485 
486   filter_iterator_base &operator++() {
487     BaseT::operator++();
488     findNextValid();
489     return *this;
490   }
491 
492   decltype(auto) operator*() const {
493     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
494     return BaseT::operator*();
495   }
496 
497   decltype(auto) operator->() const {
498     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
499     return BaseT::operator->();
500   }
501 };
502 
503 /// Specialization of filter_iterator_base for forward iteration only.
504 template <typename WrappedIteratorT, typename PredicateT,
505           typename IterTag = std::forward_iterator_tag>
506 class filter_iterator_impl
507     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
508 public:
509   filter_iterator_impl() = default;
510 
511   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
512                        PredicateT Pred)
513       : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
514 };
515 
516 /// Specialization of filter_iterator_base for bidirectional iteration.
517 template <typename WrappedIteratorT, typename PredicateT>
518 class filter_iterator_impl<WrappedIteratorT, PredicateT,
519                            std::bidirectional_iterator_tag>
520     : public filter_iterator_base<WrappedIteratorT, PredicateT,
521                                   std::bidirectional_iterator_tag> {
522   using BaseT = typename filter_iterator_impl::filter_iterator_base;
523 
524   void findPrevValid() {
525     while (!this->Pred(*this->I))
526       BaseT::operator--();
527   }
528 
529 public:
530   using BaseT::operator--;
531 
532   filter_iterator_impl() = default;
533 
534   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
535                        PredicateT Pred)
536       : BaseT(Begin, End, Pred) {}
537 
538   filter_iterator_impl &operator--() {
539     BaseT::operator--();
540     findPrevValid();
541     return *this;
542   }
543 };
544 
545 namespace detail {
546 
547 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
548   using type = std::forward_iterator_tag;
549 };
550 
551 template <> struct fwd_or_bidi_tag_impl<true> {
552   using type = std::bidirectional_iterator_tag;
553 };
554 
555 /// Helper which sets its type member to forward_iterator_tag if the category
556 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
557 /// bidirectional_iterator_tag otherwise.
558 template <typename IterT> struct fwd_or_bidi_tag {
559   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
560       std::bidirectional_iterator_tag,
561       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
562 };
563 
564 } // namespace detail
565 
566 /// Defines filter_iterator to a suitable specialization of
567 /// filter_iterator_impl, based on the underlying iterator's category.
568 template <typename WrappedIteratorT, typename PredicateT>
569 using filter_iterator = filter_iterator_impl<
570     WrappedIteratorT, PredicateT,
571     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
572 
573 /// Convenience function that takes a range of elements and a predicate,
574 /// and return a new filter_iterator range.
575 ///
576 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
577 /// lifetime of that temporary is not kept by the returned range object, and the
578 /// temporary is going to be dropped on the floor after the make_iterator_range
579 /// full expression that contains this function call.
580 template <typename RangeT, typename PredicateT>
581 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
582 make_filter_range(RangeT &&Range, PredicateT Pred) {
583   using FilterIteratorT =
584       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
585   return make_range(
586       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
587                       std::end(std::forward<RangeT>(Range)), Pred),
588       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
589                       std::end(std::forward<RangeT>(Range)), Pred));
590 }
591 
592 /// A pseudo-iterator adaptor that is designed to implement "early increment"
593 /// style loops.
594 ///
595 /// This is *not a normal iterator* and should almost never be used directly. It
596 /// is intended primarily to be used with range based for loops and some range
597 /// algorithms.
598 ///
599 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
600 /// somewhere between them. The constraints of these iterators are:
601 ///
602 /// - On construction or after being incremented, it is comparable and
603 ///   dereferencable. It is *not* incrementable.
604 /// - After being dereferenced, it is neither comparable nor dereferencable, it
605 ///   is only incrementable.
606 ///
607 /// This means you can only dereference the iterator once, and you can only
608 /// increment it once between dereferences.
609 template <typename WrappedIteratorT>
610 class early_inc_iterator_impl
611     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
612                                    WrappedIteratorT, std::input_iterator_tag> {
613   using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
614 
615   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
616 
617 protected:
618 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
619   bool IsEarlyIncremented = false;
620 #endif
621 
622 public:
623   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
624 
625   using BaseT::operator*;
626   decltype(*std::declval<WrappedIteratorT>()) operator*() {
627 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
628     assert(!IsEarlyIncremented && "Cannot dereference twice!");
629     IsEarlyIncremented = true;
630 #endif
631     return *(this->I)++;
632   }
633 
634   using BaseT::operator++;
635   early_inc_iterator_impl &operator++() {
636 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
637     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
638     IsEarlyIncremented = false;
639 #endif
640     return *this;
641   }
642 
643   friend bool operator==(const early_inc_iterator_impl &LHS,
644                          const early_inc_iterator_impl &RHS) {
645 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
646     assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
647 #endif
648     return (const BaseT &)LHS == (const BaseT &)RHS;
649   }
650 };
651 
652 /// Make a range that does early increment to allow mutation of the underlying
653 /// range without disrupting iteration.
654 ///
655 /// The underlying iterator will be incremented immediately after it is
656 /// dereferenced, allowing deletion of the current node or insertion of nodes to
657 /// not disrupt iteration provided they do not invalidate the *next* iterator --
658 /// the current iterator can be invalidated.
659 ///
660 /// This requires a very exact pattern of use that is only really suitable to
661 /// range based for loops and other range algorithms that explicitly guarantee
662 /// to dereference exactly once each element, and to increment exactly once each
663 /// element.
664 template <typename RangeT>
665 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
666 make_early_inc_range(RangeT &&Range) {
667   using EarlyIncIteratorT =
668       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
669   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
670                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
671 }
672 
673 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
674 template <typename R, typename UnaryPredicate>
675 bool all_of(R &&range, UnaryPredicate P);
676 
677 template <typename R, typename UnaryPredicate>
678 bool any_of(R &&range, UnaryPredicate P);
679 
680 template <typename T> bool all_equal(std::initializer_list<T> Values);
681 
682 template <typename R> constexpr size_t range_size(R &&Range);
683 
684 namespace detail {
685 
686 using std::declval;
687 
688 // We have to alias this since inlining the actual type at the usage site
689 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
690 template<typename... Iters> struct ZipTupleType {
691   using type = std::tuple<decltype(*declval<Iters>())...>;
692 };
693 
694 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
695 using zip_traits = iterator_facade_base<
696     ZipType,
697     std::common_type_t<
698         std::bidirectional_iterator_tag,
699         typename std::iterator_traits<Iters>::iterator_category...>,
700     // ^ TODO: Implement random access methods.
701     ReferenceTupleType,
702     typename std::iterator_traits<
703         std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
704     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
705     // inner iterators have the same difference_type. It would fail if, for
706     // instance, the second field's difference_type were non-numeric while the
707     // first is.
708     ReferenceTupleType *, ReferenceTupleType>;
709 
710 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
711 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
712   using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
713   using IndexSequence = std::index_sequence_for<Iters...>;
714   using value_type = typename Base::value_type;
715 
716   std::tuple<Iters...> iterators;
717 
718 protected:
719   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
720     return value_type(*std::get<Ns>(iterators)...);
721   }
722 
723   template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
724     (++std::get<Ns>(iterators), ...);
725   }
726 
727   template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
728     (--std::get<Ns>(iterators), ...);
729   }
730 
731   template <size_t... Ns>
732   bool test_all_equals(const zip_common &other,
733                        std::index_sequence<Ns...>) const {
734     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
735             ...);
736   }
737 
738 public:
739   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
740 
741   value_type operator*() const { return deref(IndexSequence{}); }
742 
743   ZipType &operator++() {
744     tup_inc(IndexSequence{});
745     return static_cast<ZipType &>(*this);
746   }
747 
748   ZipType &operator--() {
749     static_assert(Base::IsBidirectional,
750                   "All inner iterators must be at least bidirectional.");
751     tup_dec(IndexSequence{});
752     return static_cast<ZipType &>(*this);
753   }
754 
755   /// Return true if all the iterator are matching `other`'s iterators.
756   bool all_equals(zip_common &other) {
757     return test_all_equals(other, IndexSequence{});
758   }
759 };
760 
761 template <typename... Iters>
762 struct zip_first : zip_common<zip_first<Iters...>,
763                               typename ZipTupleType<Iters...>::type, Iters...> {
764   using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
765                    Iters...>::zip_common;
766 
767   bool operator==(const zip_first &other) const {
768     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
769   }
770 };
771 
772 template <typename... Iters>
773 struct zip_shortest
774     : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
775                  Iters...> {
776   using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
777                    Iters...>::zip_common;
778 
779   bool operator==(const zip_shortest &other) const {
780     return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
781   }
782 
783 private:
784   template <size_t... Ns>
785   bool any_iterator_equals(const zip_shortest &other,
786                            std::index_sequence<Ns...>) const {
787     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
788             ...);
789   }
790 };
791 
792 /// Helper to obtain the iterator types for the tuple storage within `zippy`.
793 template <template <typename...> class ItType, typename TupleStorageType,
794           typename IndexSequence>
795 struct ZippyIteratorTuple;
796 
797 /// Partial specialization for non-const tuple storage.
798 template <template <typename...> class ItType, typename... Args,
799           std::size_t... Ns>
800 struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
801                           std::index_sequence<Ns...>> {
802   using type = ItType<decltype(adl_begin(
803       std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
804 };
805 
806 /// Partial specialization for const tuple storage.
807 template <template <typename...> class ItType, typename... Args,
808           std::size_t... Ns>
809 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
810                           std::index_sequence<Ns...>> {
811   using type = ItType<decltype(adl_begin(
812       std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
813 };
814 
815 template <template <typename...> class ItType, typename... Args> class zippy {
816 private:
817   std::tuple<Args...> storage;
818   using IndexSequence = std::index_sequence_for<Args...>;
819 
820 public:
821   using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
822                                                IndexSequence>::type;
823   using const_iterator =
824       typename ZippyIteratorTuple<ItType, const decltype(storage),
825                                   IndexSequence>::type;
826   using iterator_category = typename iterator::iterator_category;
827   using value_type = typename iterator::value_type;
828   using difference_type = typename iterator::difference_type;
829   using pointer = typename iterator::pointer;
830   using reference = typename iterator::reference;
831   using const_reference = typename const_iterator::reference;
832 
833   zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}
834 
835   const_iterator begin() const { return begin_impl(IndexSequence{}); }
836   iterator begin() { return begin_impl(IndexSequence{}); }
837   const_iterator end() const { return end_impl(IndexSequence{}); }
838   iterator end() { return end_impl(IndexSequence{}); }
839 
840 private:
841   template <size_t... Ns>
842   const_iterator begin_impl(std::index_sequence<Ns...>) const {
843     return const_iterator(adl_begin(std::get<Ns>(storage))...);
844   }
845   template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
846     return iterator(adl_begin(std::get<Ns>(storage))...);
847   }
848 
849   template <size_t... Ns>
850   const_iterator end_impl(std::index_sequence<Ns...>) const {
851     return const_iterator(adl_end(std::get<Ns>(storage))...);
852   }
853   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
854     return iterator(adl_end(std::get<Ns>(storage))...);
855   }
856 };
857 
858 } // end namespace detail
859 
860 /// zip iterator for two or more iteratable types. Iteration continues until the
861 /// end of the *shortest* iteratee is reached.
862 template <typename T, typename U, typename... Args>
863 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
864                                                        Args &&...args) {
865   return detail::zippy<detail::zip_shortest, T, U, Args...>(
866       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
867 }
868 
869 /// zip iterator that assumes that all iteratees have the same length.
870 /// In builds with assertions on, this assumption is checked before the
871 /// iteration starts.
872 template <typename T, typename U, typename... Args>
873 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
874                                                           Args &&...args) {
875   assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
876          "Iteratees do not have equal length");
877   return detail::zippy<detail::zip_first, T, U, Args...>(
878       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
879 }
880 
881 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
882 /// be the shortest. Iteration continues until the end of the first iteratee is
883 /// reached. In builds with assertions on, we check that the assumption about
884 /// the first iteratee being the shortest holds.
885 template <typename T, typename U, typename... Args>
886 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
887                                                           Args &&...args) {
888   assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
889          "First iteratee is not the shortest");
890 
891   return detail::zippy<detail::zip_first, T, U, Args...>(
892       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
893 }
894 
895 namespace detail {
896 template <typename Iter>
897 Iter next_or_end(const Iter &I, const Iter &End) {
898   if (I == End)
899     return End;
900   return std::next(I);
901 }
902 
903 template <typename Iter>
904 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
905     std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
906   if (I == End)
907     return std::nullopt;
908   return *I;
909 }
910 
911 template <typename Iter> struct ZipLongestItemType {
912   using type = std::optional<std::remove_const_t<
913       std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
914 };
915 
916 template <typename... Iters> struct ZipLongestTupleType {
917   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
918 };
919 
920 template <typename... Iters>
921 class zip_longest_iterator
922     : public iterator_facade_base<
923           zip_longest_iterator<Iters...>,
924           std::common_type_t<
925               std::forward_iterator_tag,
926               typename std::iterator_traits<Iters>::iterator_category...>,
927           typename ZipLongestTupleType<Iters...>::type,
928           typename std::iterator_traits<
929               std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
930           typename ZipLongestTupleType<Iters...>::type *,
931           typename ZipLongestTupleType<Iters...>::type> {
932 public:
933   using value_type = typename ZipLongestTupleType<Iters...>::type;
934 
935 private:
936   std::tuple<Iters...> iterators;
937   std::tuple<Iters...> end_iterators;
938 
939   template <size_t... Ns>
940   bool test(const zip_longest_iterator<Iters...> &other,
941             std::index_sequence<Ns...>) const {
942     return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
943             ...);
944   }
945 
946   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
947     return value_type(
948         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
949   }
950 
951   template <size_t... Ns>
952   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
953     return std::tuple<Iters...>(
954         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
955   }
956 
957 public:
958   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
959       : iterators(std::forward<Iters>(ts.first)...),
960         end_iterators(std::forward<Iters>(ts.second)...) {}
961 
962   value_type operator*() const {
963     return deref(std::index_sequence_for<Iters...>{});
964   }
965 
966   zip_longest_iterator<Iters...> &operator++() {
967     iterators = tup_inc(std::index_sequence_for<Iters...>{});
968     return *this;
969   }
970 
971   bool operator==(const zip_longest_iterator<Iters...> &other) const {
972     return !test(other, std::index_sequence_for<Iters...>{});
973   }
974 };
975 
976 template <typename... Args> class zip_longest_range {
977 public:
978   using iterator =
979       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
980   using iterator_category = typename iterator::iterator_category;
981   using value_type = typename iterator::value_type;
982   using difference_type = typename iterator::difference_type;
983   using pointer = typename iterator::pointer;
984   using reference = typename iterator::reference;
985 
986 private:
987   std::tuple<Args...> ts;
988 
989   template <size_t... Ns>
990   iterator begin_impl(std::index_sequence<Ns...>) const {
991     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
992                                    adl_end(std::get<Ns>(ts)))...);
993   }
994 
995   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
996     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
997                                    adl_end(std::get<Ns>(ts)))...);
998   }
999 
1000 public:
1001   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
1002 
1003   iterator begin() const {
1004     return begin_impl(std::index_sequence_for<Args...>{});
1005   }
1006   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
1007 };
1008 } // namespace detail
1009 
1010 /// Iterate over two or more iterators at the same time. Iteration continues
1011 /// until all iterators reach the end. The std::optional only contains a value
1012 /// if the iterator has not reached the end.
1013 template <typename T, typename U, typename... Args>
1014 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1015                                                      Args &&... args) {
1016   return detail::zip_longest_range<T, U, Args...>(
1017       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1018 }
1019 
1020 /// Iterator wrapper that concatenates sequences together.
1021 ///
1022 /// This can concatenate different iterators, even with different types, into
1023 /// a single iterator provided the value types of all the concatenated
1024 /// iterators expose `reference` and `pointer` types that can be converted to
1025 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
1026 /// interesting/customized pointer or reference types.
1027 ///
1028 /// Currently this only supports forward or higher iterator categories as
1029 /// inputs and always exposes a forward iterator interface.
1030 template <typename ValueT, typename... IterTs>
1031 class concat_iterator
1032     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1033                                   std::forward_iterator_tag, ValueT> {
1034   using BaseT = typename concat_iterator::iterator_facade_base;
1035 
1036   /// We store both the current and end iterators for each concatenated
1037   /// sequence in a tuple of pairs.
1038   ///
1039   /// Note that something like iterator_range seems nice at first here, but the
1040   /// range properties are of little benefit and end up getting in the way
1041   /// because we need to do mutation on the current iterators.
1042   std::tuple<IterTs...> Begins;
1043   std::tuple<IterTs...> Ends;
1044 
1045   /// Attempts to increment a specific iterator.
1046   ///
1047   /// Returns true if it was able to increment the iterator. Returns false if
1048   /// the iterator is already at the end iterator.
1049   template <size_t Index> bool incrementHelper() {
1050     auto &Begin = std::get<Index>(Begins);
1051     auto &End = std::get<Index>(Ends);
1052     if (Begin == End)
1053       return false;
1054 
1055     ++Begin;
1056     return true;
1057   }
1058 
1059   /// Increments the first non-end iterator.
1060   ///
1061   /// It is an error to call this with all iterators at the end.
1062   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1063     // Build a sequence of functions to increment each iterator if possible.
1064     bool (concat_iterator::*IncrementHelperFns[])() = {
1065         &concat_iterator::incrementHelper<Ns>...};
1066 
1067     // Loop over them, and stop as soon as we succeed at incrementing one.
1068     for (auto &IncrementHelperFn : IncrementHelperFns)
1069       if ((this->*IncrementHelperFn)())
1070         return;
1071 
1072     llvm_unreachable("Attempted to increment an end concat iterator!");
1073   }
1074 
1075   /// Returns null if the specified iterator is at the end. Otherwise,
1076   /// dereferences the iterator and returns the address of the resulting
1077   /// reference.
1078   template <size_t Index> ValueT *getHelper() const {
1079     auto &Begin = std::get<Index>(Begins);
1080     auto &End = std::get<Index>(Ends);
1081     if (Begin == End)
1082       return nullptr;
1083 
1084     return &*Begin;
1085   }
1086 
1087   /// Finds the first non-end iterator, dereferences, and returns the resulting
1088   /// reference.
1089   ///
1090   /// It is an error to call this with all iterators at the end.
1091   template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1092     // Build a sequence of functions to get from iterator if possible.
1093     ValueT *(concat_iterator::*GetHelperFns[])() const = {
1094         &concat_iterator::getHelper<Ns>...};
1095 
1096     // Loop over them, and return the first result we find.
1097     for (auto &GetHelperFn : GetHelperFns)
1098       if (ValueT *P = (this->*GetHelperFn)())
1099         return *P;
1100 
1101     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1102   }
1103 
1104 public:
1105   /// Constructs an iterator from a sequence of ranges.
1106   ///
1107   /// We need the full range to know how to switch between each of the
1108   /// iterators.
1109   template <typename... RangeTs>
1110   explicit concat_iterator(RangeTs &&... Ranges)
1111       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1112 
1113   using BaseT::operator++;
1114 
1115   concat_iterator &operator++() {
1116     increment(std::index_sequence_for<IterTs...>());
1117     return *this;
1118   }
1119 
1120   ValueT &operator*() const {
1121     return get(std::index_sequence_for<IterTs...>());
1122   }
1123 
1124   bool operator==(const concat_iterator &RHS) const {
1125     return Begins == RHS.Begins && Ends == RHS.Ends;
1126   }
1127 };
1128 
1129 namespace detail {
1130 
1131 /// Helper to store a sequence of ranges being concatenated and access them.
1132 ///
1133 /// This is designed to facilitate providing actual storage when temporaries
1134 /// are passed into the constructor such that we can use it as part of range
1135 /// based for loops.
1136 template <typename ValueT, typename... RangeTs> class concat_range {
1137 public:
1138   using iterator =
1139       concat_iterator<ValueT,
1140                       decltype(std::begin(std::declval<RangeTs &>()))...>;
1141 
1142 private:
1143   std::tuple<RangeTs...> Ranges;
1144 
1145   template <size_t... Ns>
1146   iterator begin_impl(std::index_sequence<Ns...>) {
1147     return iterator(std::get<Ns>(Ranges)...);
1148   }
1149   template <size_t... Ns>
1150   iterator begin_impl(std::index_sequence<Ns...>) const {
1151     return iterator(std::get<Ns>(Ranges)...);
1152   }
1153   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1154     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1155                                std::end(std::get<Ns>(Ranges)))...);
1156   }
1157   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1158     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1159                                std::end(std::get<Ns>(Ranges)))...);
1160   }
1161 
1162 public:
1163   concat_range(RangeTs &&... Ranges)
1164       : Ranges(std::forward<RangeTs>(Ranges)...) {}
1165 
1166   iterator begin() {
1167     return begin_impl(std::index_sequence_for<RangeTs...>{});
1168   }
1169   iterator begin() const {
1170     return begin_impl(std::index_sequence_for<RangeTs...>{});
1171   }
1172   iterator end() {
1173     return end_impl(std::index_sequence_for<RangeTs...>{});
1174   }
1175   iterator end() const {
1176     return end_impl(std::index_sequence_for<RangeTs...>{});
1177   }
1178 };
1179 
1180 } // end namespace detail
1181 
1182 /// Concatenated range across two or more ranges.
1183 ///
1184 /// The desired value type must be explicitly specified.
1185 template <typename ValueT, typename... RangeTs>
1186 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1187   static_assert(sizeof...(RangeTs) > 1,
1188                 "Need more than one range to concatenate!");
1189   return detail::concat_range<ValueT, RangeTs...>(
1190       std::forward<RangeTs>(Ranges)...);
1191 }
1192 
1193 /// A utility class used to implement an iterator that contains some base object
1194 /// and an index. The iterator moves the index but keeps the base constant.
1195 template <typename DerivedT, typename BaseT, typename T,
1196           typename PointerT = T *, typename ReferenceT = T &>
1197 class indexed_accessor_iterator
1198     : public llvm::iterator_facade_base<DerivedT,
1199                                         std::random_access_iterator_tag, T,
1200                                         std::ptrdiff_t, PointerT, ReferenceT> {
1201 public:
1202   ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1203     assert(base == rhs.base && "incompatible iterators");
1204     return index - rhs.index;
1205   }
1206   bool operator==(const indexed_accessor_iterator &rhs) const {
1207     return base == rhs.base && index == rhs.index;
1208   }
1209   bool operator<(const indexed_accessor_iterator &rhs) const {
1210     assert(base == rhs.base && "incompatible iterators");
1211     return index < rhs.index;
1212   }
1213 
1214   DerivedT &operator+=(ptrdiff_t offset) {
1215     this->index += offset;
1216     return static_cast<DerivedT &>(*this);
1217   }
1218   DerivedT &operator-=(ptrdiff_t offset) {
1219     this->index -= offset;
1220     return static_cast<DerivedT &>(*this);
1221   }
1222 
1223   /// Returns the current index of the iterator.
1224   ptrdiff_t getIndex() const { return index; }
1225 
1226   /// Returns the current base of the iterator.
1227   const BaseT &getBase() const { return base; }
1228 
1229 protected:
1230   indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1231       : base(base), index(index) {}
1232   BaseT base;
1233   ptrdiff_t index;
1234 };
1235 
1236 namespace detail {
1237 /// The class represents the base of a range of indexed_accessor_iterators. It
1238 /// provides support for many different range functionalities, e.g.
1239 /// drop_front/slice/etc.. Derived range classes must implement the following
1240 /// static methods:
1241 ///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1242 ///     - Dereference an iterator pointing to the base object at the given
1243 ///       index.
1244 ///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1245 ///     - Return a new base that is offset from the provide base by 'index'
1246 ///       elements.
1247 template <typename DerivedT, typename BaseT, typename T,
1248           typename PointerT = T *, typename ReferenceT = T &>
1249 class indexed_accessor_range_base {
1250 public:
1251   using RangeBaseT = indexed_accessor_range_base;
1252 
1253   /// An iterator element of this range.
1254   class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1255                                                     PointerT, ReferenceT> {
1256   public:
1257     // Index into this iterator, invoking a static method on the derived type.
1258     ReferenceT operator*() const {
1259       return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1260     }
1261 
1262   private:
1263     iterator(BaseT owner, ptrdiff_t curIndex)
1264         : iterator::indexed_accessor_iterator(owner, curIndex) {}
1265 
1266     /// Allow access to the constructor.
1267     friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1268                                        ReferenceT>;
1269   };
1270 
1271   indexed_accessor_range_base(iterator begin, iterator end)
1272       : base(offset_base(begin.getBase(), begin.getIndex())),
1273         count(end.getIndex() - begin.getIndex()) {}
1274   indexed_accessor_range_base(const iterator_range<iterator> &range)
1275       : indexed_accessor_range_base(range.begin(), range.end()) {}
1276   indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1277       : base(base), count(count) {}
1278 
1279   iterator begin() const { return iterator(base, 0); }
1280   iterator end() const { return iterator(base, count); }
1281   ReferenceT operator[](size_t Index) const {
1282     assert(Index < size() && "invalid index for value range");
1283     return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1284   }
1285   ReferenceT front() const {
1286     assert(!empty() && "expected non-empty range");
1287     return (*this)[0];
1288   }
1289   ReferenceT back() const {
1290     assert(!empty() && "expected non-empty range");
1291     return (*this)[size() - 1];
1292   }
1293 
1294   /// Compare this range with another.
1295   template <typename OtherT>
1296   friend bool operator==(const indexed_accessor_range_base &lhs,
1297                          const OtherT &rhs) {
1298     return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1299   }
1300   template <typename OtherT>
1301   friend bool operator!=(const indexed_accessor_range_base &lhs,
1302                          const OtherT &rhs) {
1303     return !(lhs == rhs);
1304   }
1305 
1306   /// Return the size of this range.
1307   size_t size() const { return count; }
1308 
1309   /// Return if the range is empty.
1310   bool empty() const { return size() == 0; }
1311 
1312   /// Drop the first N elements, and keep M elements.
1313   DerivedT slice(size_t n, size_t m) const {
1314     assert(n + m <= size() && "invalid size specifiers");
1315     return DerivedT(offset_base(base, n), m);
1316   }
1317 
1318   /// Drop the first n elements.
1319   DerivedT drop_front(size_t n = 1) const {
1320     assert(size() >= n && "Dropping more elements than exist");
1321     return slice(n, size() - n);
1322   }
1323   /// Drop the last n elements.
1324   DerivedT drop_back(size_t n = 1) const {
1325     assert(size() >= n && "Dropping more elements than exist");
1326     return DerivedT(base, size() - n);
1327   }
1328 
1329   /// Take the first n elements.
1330   DerivedT take_front(size_t n = 1) const {
1331     return n < size() ? drop_back(size() - n)
1332                       : static_cast<const DerivedT &>(*this);
1333   }
1334 
1335   /// Take the last n elements.
1336   DerivedT take_back(size_t n = 1) const {
1337     return n < size() ? drop_front(size() - n)
1338                       : static_cast<const DerivedT &>(*this);
1339   }
1340 
1341   /// Allow conversion to any type accepting an iterator_range.
1342   template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1343                                  RangeT, iterator_range<iterator>>::value>>
1344   operator RangeT() const {
1345     return RangeT(iterator_range<iterator>(*this));
1346   }
1347 
1348   /// Returns the base of this range.
1349   const BaseT &getBase() const { return base; }
1350 
1351 private:
1352   /// Offset the given base by the given amount.
1353   static BaseT offset_base(const BaseT &base, size_t n) {
1354     return n == 0 ? base : DerivedT::offset_base(base, n);
1355   }
1356 
1357 protected:
1358   indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1359   indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1360   indexed_accessor_range_base &
1361   operator=(const indexed_accessor_range_base &) = default;
1362 
1363   /// The base that owns the provided range of values.
1364   BaseT base;
1365   /// The size from the owning range.
1366   ptrdiff_t count;
1367 };
1368 } // end namespace detail
1369 
1370 /// This class provides an implementation of a range of
1371 /// indexed_accessor_iterators where the base is not indexable. Ranges with
1372 /// bases that are offsetable should derive from indexed_accessor_range_base
1373 /// instead. Derived range classes are expected to implement the following
1374 /// static method:
1375 ///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1376 ///     - Dereference an iterator pointing to a parent base at the given index.
1377 template <typename DerivedT, typename BaseT, typename T,
1378           typename PointerT = T *, typename ReferenceT = T &>
1379 class indexed_accessor_range
1380     : public detail::indexed_accessor_range_base<
1381           DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1382 public:
1383   indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1384       : detail::indexed_accessor_range_base<
1385             DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1386             std::make_pair(base, startIndex), count) {}
1387   using detail::indexed_accessor_range_base<
1388       DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1389       ReferenceT>::indexed_accessor_range_base;
1390 
1391   /// Returns the current base of the range.
1392   const BaseT &getBase() const { return this->base.first; }
1393 
1394   /// Returns the current start index of the range.
1395   ptrdiff_t getStartIndex() const { return this->base.second; }
1396 
1397   /// See `detail::indexed_accessor_range_base` for details.
1398   static std::pair<BaseT, ptrdiff_t>
1399   offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1400     // We encode the internal base as a pair of the derived base and a start
1401     // index into the derived base.
1402     return std::make_pair(base.first, base.second + index);
1403   }
1404   /// See `detail::indexed_accessor_range_base` for details.
1405   static ReferenceT
1406   dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1407                        ptrdiff_t index) {
1408     return DerivedT::dereference(base.first, base.second + index);
1409   }
1410 };
1411 
1412 namespace detail {
1413 /// Return a reference to the first or second member of a reference. Otherwise,
1414 /// return a copy of the member of a temporary.
1415 ///
1416 /// When passing a range whose iterators return values instead of references,
1417 /// the reference must be dropped from `decltype((elt.first))`, which will
1418 /// always be a reference, to avoid returning a reference to a temporary.
1419 template <typename EltTy, typename FirstTy> class first_or_second_type {
1420 public:
1421   using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1422                                   std::remove_reference_t<FirstTy>>;
1423 };
1424 } // end namespace detail
1425 
1426 /// Given a container of pairs, return a range over the first elements.
1427 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1428   using EltTy = decltype((*std::begin(c)));
1429   return llvm::map_range(std::forward<ContainerTy>(c),
1430                          [](EltTy elt) -> typename detail::first_or_second_type<
1431                                            EltTy, decltype((elt.first))>::type {
1432                            return elt.first;
1433                          });
1434 }
1435 
1436 /// Given a container of pairs, return a range over the second elements.
1437 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1438   using EltTy = decltype((*std::begin(c)));
1439   return llvm::map_range(
1440       std::forward<ContainerTy>(c),
1441       [](EltTy elt) ->
1442       typename detail::first_or_second_type<EltTy,
1443                                             decltype((elt.second))>::type {
1444         return elt.second;
1445       });
1446 }
1447 
1448 //===----------------------------------------------------------------------===//
1449 //     Extra additions to <utility>
1450 //===----------------------------------------------------------------------===//
1451 
1452 /// Function object to check whether the first component of a container
1453 /// supported by std::get (like std::pair and std::tuple) compares less than the
1454 /// first component of another container.
1455 struct less_first {
1456   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1457     return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
1458   }
1459 };
1460 
1461 /// Function object to check whether the second component of a container
1462 /// supported by std::get (like std::pair and std::tuple) compares less than the
1463 /// second component of another container.
1464 struct less_second {
1465   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1466     return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
1467   }
1468 };
1469 
1470 /// \brief Function object to apply a binary function to the first component of
1471 /// a std::pair.
1472 template<typename FuncTy>
1473 struct on_first {
1474   FuncTy func;
1475 
1476   template <typename T>
1477   decltype(auto) operator()(const T &lhs, const T &rhs) const {
1478     return func(lhs.first, rhs.first);
1479   }
1480 };
1481 
1482 /// Utility type to build an inheritance chain that makes it easy to rank
1483 /// overload candidates.
1484 template <int N> struct rank : rank<N - 1> {};
1485 template <> struct rank<0> {};
1486 
1487 /// traits class for checking whether type T is one of any of the given
1488 /// types in the variadic list.
1489 template <typename T, typename... Ts>
1490 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
1491 
1492 /// traits class for checking whether type T is a base class for all
1493 ///  the given types in the variadic list.
1494 template <typename T, typename... Ts>
1495 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
1496 
1497 namespace detail {
1498 template <typename... Ts> struct Visitor;
1499 
1500 template <typename HeadT, typename... TailTs>
1501 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1502   explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1503       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1504         Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1505   using remove_cvref_t<HeadT>::operator();
1506   using Visitor<TailTs...>::operator();
1507 };
1508 
1509 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1510   explicit constexpr Visitor(HeadT &&Head)
1511       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1512   using remove_cvref_t<HeadT>::operator();
1513 };
1514 } // namespace detail
1515 
1516 /// Returns an opaquely-typed Callable object whose operator() overload set is
1517 /// the sum of the operator() overload sets of each CallableT in CallableTs.
1518 ///
1519 /// The type of the returned object derives from each CallableT in CallableTs.
1520 /// The returned object is constructed by invoking the appropriate copy or move
1521 /// constructor of each CallableT, as selected by overload resolution on the
1522 /// corresponding argument to makeVisitor.
1523 ///
1524 /// Example:
1525 ///
1526 /// \code
1527 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1528 ///                            [](int i) { return "int"; },
1529 ///                            [](std::string s) { return "str"; });
1530 /// auto a = visitor(42);    // `a` is now "int".
1531 /// auto b = visitor("foo"); // `b` is now "str".
1532 /// auto c = visitor(3.14f); // `c` is now "unhandled type".
1533 /// \endcode
1534 ///
1535 /// Example of making a visitor with a lambda which captures a move-only type:
1536 ///
1537 /// \code
1538 /// std::unique_ptr<FooHandler> FH = /* ... */;
1539 /// auto visitor = makeVisitor(
1540 ///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1541 ///     [](int i) { return i; },
1542 ///     [](std::string s) { return atoi(s); });
1543 /// \endcode
1544 template <typename... CallableTs>
1545 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1546   return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1547 }
1548 
1549 //===----------------------------------------------------------------------===//
1550 //     Extra additions to <algorithm>
1551 //===----------------------------------------------------------------------===//
1552 
1553 // We have a copy here so that LLVM behaves the same when using different
1554 // standard libraries.
1555 template <class Iterator, class RNG>
1556 void shuffle(Iterator first, Iterator last, RNG &&g) {
1557   // It would be better to use a std::uniform_int_distribution,
1558   // but that would be stdlib dependent.
1559   typedef
1560       typename std::iterator_traits<Iterator>::difference_type difference_type;
1561   for (auto size = last - first; size > 1; ++first, (void)--size) {
1562     difference_type offset = g() % size;
1563     // Avoid self-assignment due to incorrect assertions in libstdc++
1564     // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1565     if (offset != difference_type(0))
1566       std::iter_swap(first, first + offset);
1567   }
1568 }
1569 
1570 /// Adapt std::less<T> for array_pod_sort.
1571 template<typename T>
1572 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1573   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1574                      *reinterpret_cast<const T*>(P2)))
1575     return -1;
1576   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1577                      *reinterpret_cast<const T*>(P1)))
1578     return 1;
1579   return 0;
1580 }
1581 
1582 /// get_array_pod_sort_comparator - This is an internal helper function used to
1583 /// get type deduction of T right.
1584 template<typename T>
1585 inline int (*get_array_pod_sort_comparator(const T &))
1586              (const void*, const void*) {
1587   return array_pod_sort_comparator<T>;
1588 }
1589 
1590 #ifdef EXPENSIVE_CHECKS
1591 namespace detail {
1592 
1593 inline unsigned presortShuffleEntropy() {
1594   static unsigned Result(std::random_device{}());
1595   return Result;
1596 }
1597 
1598 template <class IteratorTy>
1599 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1600   std::mt19937 Generator(presortShuffleEntropy());
1601   llvm::shuffle(Start, End, Generator);
1602 }
1603 
1604 } // end namespace detail
1605 #endif
1606 
1607 /// array_pod_sort - This sorts an array with the specified start and end
1608 /// extent.  This is just like std::sort, except that it calls qsort instead of
1609 /// using an inlined template.  qsort is slightly slower than std::sort, but
1610 /// most sorts are not performance critical in LLVM and std::sort has to be
1611 /// template instantiated for each type, leading to significant measured code
1612 /// bloat.  This function should generally be used instead of std::sort where
1613 /// possible.
1614 ///
1615 /// This function assumes that you have simple POD-like types that can be
1616 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1617 /// you should use std::sort.
1618 ///
1619 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1620 /// default to std::less.
1621 template<class IteratorTy>
1622 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1623   // Don't inefficiently call qsort with one element or trigger undefined
1624   // behavior with an empty sequence.
1625   auto NElts = End - Start;
1626   if (NElts <= 1) return;
1627 #ifdef EXPENSIVE_CHECKS
1628   detail::presortShuffle<IteratorTy>(Start, End);
1629 #endif
1630   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1631 }
1632 
1633 template <class IteratorTy>
1634 inline void array_pod_sort(
1635     IteratorTy Start, IteratorTy End,
1636     int (*Compare)(
1637         const typename std::iterator_traits<IteratorTy>::value_type *,
1638         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1639   // Don't inefficiently call qsort with one element or trigger undefined
1640   // behavior with an empty sequence.
1641   auto NElts = End - Start;
1642   if (NElts <= 1) return;
1643 #ifdef EXPENSIVE_CHECKS
1644   detail::presortShuffle<IteratorTy>(Start, End);
1645 #endif
1646   qsort(&*Start, NElts, sizeof(*Start),
1647         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1648 }
1649 
1650 namespace detail {
1651 template <typename T>
1652 // We can use qsort if the iterator type is a pointer and the underlying value
1653 // is trivially copyable.
1654 using sort_trivially_copyable = std::conjunction<
1655     std::is_pointer<T>,
1656     std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1657 } // namespace detail
1658 
1659 // Provide wrappers to std::sort which shuffle the elements before sorting
1660 // to help uncover non-deterministic behavior (PR35135).
1661 template <typename IteratorTy>
1662 inline void sort(IteratorTy Start, IteratorTy End) {
1663   if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1664     // Forward trivially copyable types to array_pod_sort. This avoids a large
1665     // amount of code bloat for a minor performance hit.
1666     array_pod_sort(Start, End);
1667   } else {
1668 #ifdef EXPENSIVE_CHECKS
1669     detail::presortShuffle<IteratorTy>(Start, End);
1670 #endif
1671     std::sort(Start, End);
1672   }
1673 }
1674 
1675 template <typename Container> inline void sort(Container &&C) {
1676   llvm::sort(adl_begin(C), adl_end(C));
1677 }
1678 
1679 template <typename IteratorTy, typename Compare>
1680 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1681 #ifdef EXPENSIVE_CHECKS
1682   detail::presortShuffle<IteratorTy>(Start, End);
1683 #endif
1684   std::sort(Start, End, Comp);
1685 }
1686 
1687 template <typename Container, typename Compare>
1688 inline void sort(Container &&C, Compare Comp) {
1689   llvm::sort(adl_begin(C), adl_end(C), Comp);
1690 }
1691 
1692 /// Get the size of a range. This is a wrapper function around std::distance
1693 /// which is only enabled when the operation is O(1).
1694 template <typename R>
1695 auto size(R &&Range,
1696           std::enable_if_t<
1697               std::is_base_of<std::random_access_iterator_tag,
1698                               typename std::iterator_traits<decltype(
1699                                   Range.begin())>::iterator_category>::value,
1700               void> * = nullptr) {
1701   return std::distance(Range.begin(), Range.end());
1702 }
1703 
1704 namespace detail {
1705 template <typename Range>
1706 using check_has_free_function_size =
1707     decltype(adl_size(std::declval<Range &>()));
1708 
1709 template <typename Range>
1710 static constexpr bool HasFreeFunctionSize =
1711     is_detected<check_has_free_function_size, Range>::value;
1712 } // namespace detail
1713 
1714 /// Returns the size of the \p Range, i.e., the number of elements. This
1715 /// implementation takes inspiration from `std::ranges::size` from C++20 and
1716 /// delegates the size check to `adl_size` or `std::distance`, in this order of
1717 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
1718 /// running time, and is intended to be used in generic code that does not know
1719 /// the exact range type.
1720 template <typename R> constexpr size_t range_size(R &&Range) {
1721   if constexpr (detail::HasFreeFunctionSize<R>)
1722     return adl_size(Range);
1723   else
1724     return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
1725 }
1726 
1727 /// Provide wrappers to std::for_each which take ranges instead of having to
1728 /// pass begin/end explicitly.
1729 template <typename R, typename UnaryFunction>
1730 UnaryFunction for_each(R &&Range, UnaryFunction F) {
1731   return std::for_each(adl_begin(Range), adl_end(Range), F);
1732 }
1733 
1734 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1735 /// begin/end explicitly.
1736 template <typename R, typename UnaryPredicate>
1737 bool all_of(R &&Range, UnaryPredicate P) {
1738   return std::all_of(adl_begin(Range), adl_end(Range), P);
1739 }
1740 
1741 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1742 /// begin/end explicitly.
1743 template <typename R, typename UnaryPredicate>
1744 bool any_of(R &&Range, UnaryPredicate P) {
1745   return std::any_of(adl_begin(Range), adl_end(Range), P);
1746 }
1747 
1748 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1749 /// begin/end explicitly.
1750 template <typename R, typename UnaryPredicate>
1751 bool none_of(R &&Range, UnaryPredicate P) {
1752   return std::none_of(adl_begin(Range), adl_end(Range), P);
1753 }
1754 
1755 /// Provide wrappers to std::find which take ranges instead of having to pass
1756 /// begin/end explicitly.
1757 template <typename R, typename T> auto find(R &&Range, const T &Val) {
1758   return std::find(adl_begin(Range), adl_end(Range), Val);
1759 }
1760 
1761 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1762 /// begin/end explicitly.
1763 template <typename R, typename UnaryPredicate>
1764 auto find_if(R &&Range, UnaryPredicate P) {
1765   return std::find_if(adl_begin(Range), adl_end(Range), P);
1766 }
1767 
1768 template <typename R, typename UnaryPredicate>
1769 auto find_if_not(R &&Range, UnaryPredicate P) {
1770   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1771 }
1772 
1773 /// Provide wrappers to std::remove_if which take ranges instead of having to
1774 /// pass begin/end explicitly.
1775 template <typename R, typename UnaryPredicate>
1776 auto remove_if(R &&Range, UnaryPredicate P) {
1777   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1778 }
1779 
1780 /// Provide wrappers to std::copy_if which take ranges instead of having to
1781 /// pass begin/end explicitly.
1782 template <typename R, typename OutputIt, typename UnaryPredicate>
1783 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1784   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1785 }
1786 
1787 /// Return the single value in \p Range that satisfies
1788 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1789 /// when no values or multiple values were found.
1790 /// When \p AllowRepeats is true, multiple values that compare equal
1791 /// are allowed.
1792 template <typename T, typename R, typename Predicate>
1793 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1794   T *RC = nullptr;
1795   for (auto *A : Range) {
1796     if (T *PRC = P(A, AllowRepeats)) {
1797       if (RC) {
1798         if (!AllowRepeats || PRC != RC)
1799           return nullptr;
1800       } else
1801         RC = PRC;
1802     }
1803   }
1804   return RC;
1805 }
1806 
1807 /// Return a pair consisting of the single value in \p Range that satisfies
1808 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1809 /// nullptr when no values or multiple values were found, and a bool indicating
1810 /// whether multiple values were found to cause the nullptr.
1811 /// When \p AllowRepeats is true, multiple values that compare equal are
1812 /// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1813 /// singleton while the bool indicates whether multiples have already been
1814 /// found.  It is expected that first will be nullptr when second is true.
1815 /// This allows using find_singleton_nested within the predicate \P.
1816 template <typename T, typename R, typename Predicate>
1817 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1818                                            bool AllowRepeats = false) {
1819   T *RC = nullptr;
1820   for (auto *A : Range) {
1821     std::pair<T *, bool> PRC = P(A, AllowRepeats);
1822     if (PRC.second) {
1823       assert(PRC.first == nullptr &&
1824              "Inconsistent return values in find_singleton_nested.");
1825       return PRC;
1826     }
1827     if (PRC.first) {
1828       if (RC) {
1829         if (!AllowRepeats || PRC.first != RC)
1830           return {nullptr, true};
1831       } else
1832         RC = PRC.first;
1833     }
1834   }
1835   return {RC, false};
1836 }
1837 
1838 template <typename R, typename OutputIt>
1839 OutputIt copy(R &&Range, OutputIt Out) {
1840   return std::copy(adl_begin(Range), adl_end(Range), Out);
1841 }
1842 
1843 /// Provide wrappers to std::replace_copy_if which take ranges instead of having
1844 /// to pass begin/end explicitly.
1845 template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1846 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1847                          const T &NewValue) {
1848   return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1849                               NewValue);
1850 }
1851 
1852 /// Provide wrappers to std::replace_copy which take ranges instead of having to
1853 /// pass begin/end explicitly.
1854 template <typename R, typename OutputIt, typename T>
1855 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1856                       const T &NewValue) {
1857   return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1858                            NewValue);
1859 }
1860 
1861 /// Provide wrappers to std::move which take ranges instead of having to
1862 /// pass begin/end explicitly.
1863 template <typename R, typename OutputIt>
1864 OutputIt move(R &&Range, OutputIt Out) {
1865   return std::move(adl_begin(Range), adl_end(Range), Out);
1866 }
1867 
1868 namespace detail {
1869 template <typename Range, typename Element>
1870 using check_has_member_contains_t =
1871     decltype(std::declval<Range &>().contains(std::declval<const Element &>()));
1872 
1873 template <typename Range, typename Element>
1874 static constexpr bool HasMemberContains =
1875     is_detected<check_has_member_contains_t, Range, Element>::value;
1876 
1877 template <typename Range, typename Element>
1878 using check_has_member_find_t =
1879     decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
1880              std::declval<Range &>().end());
1881 
1882 template <typename Range, typename Element>
1883 static constexpr bool HasMemberFind =
1884     is_detected<check_has_member_find_t, Range, Element>::value;
1885 
1886 } // namespace detail
1887 
1888 /// Returns true if \p Element is found in \p Range. Delegates the check to
1889 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
1890 /// order of preference. This is intended as the canonical way to check if an
1891 /// element exists in a range in generic code or range type that does not
1892 /// expose a `.contains(Element)` member.
1893 template <typename R, typename E>
1894 bool is_contained(R &&Range, const E &Element) {
1895   if constexpr (detail::HasMemberContains<R, E>)
1896     return Range.contains(Element);
1897   else if constexpr (detail::HasMemberFind<R, E>)
1898     return Range.find(Element) != Range.end();
1899   else
1900     return std::find(adl_begin(Range), adl_end(Range), Element) !=
1901            adl_end(Range);
1902 }
1903 
1904 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
1905 /// an initializer list and is `constexpr`-friendly.
1906 template <typename T, typename E>
1907 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
1908   // TODO: Use std::find when we switch to C++20.
1909   for (const T &V : Set)
1910     if (V == Element)
1911       return true;
1912   return false;
1913 }
1914 
1915 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1916 /// are sorted with respect to a comparator \p C.
1917 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1918   return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1919 }
1920 
1921 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1922 /// are sorted in non-descending order.
1923 template <typename R> bool is_sorted(R &&Range) {
1924   return std::is_sorted(adl_begin(Range), adl_end(Range));
1925 }
1926 
1927 /// Wrapper function around std::count to count the number of times an element
1928 /// \p Element occurs in the given range \p Range.
1929 template <typename R, typename E> auto count(R &&Range, const E &Element) {
1930   return std::count(adl_begin(Range), adl_end(Range), Element);
1931 }
1932 
1933 /// Wrapper function around std::count_if to count the number of times an
1934 /// element satisfying a given predicate occurs in a range.
1935 template <typename R, typename UnaryPredicate>
1936 auto count_if(R &&Range, UnaryPredicate P) {
1937   return std::count_if(adl_begin(Range), adl_end(Range), P);
1938 }
1939 
1940 /// Wrapper function around std::transform to apply a function to a range and
1941 /// store the result elsewhere.
1942 template <typename R, typename OutputIt, typename UnaryFunction>
1943 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1944   return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1945 }
1946 
1947 /// Provide wrappers to std::partition which take ranges instead of having to
1948 /// pass begin/end explicitly.
1949 template <typename R, typename UnaryPredicate>
1950 auto partition(R &&Range, UnaryPredicate P) {
1951   return std::partition(adl_begin(Range), adl_end(Range), P);
1952 }
1953 
1954 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1955 /// pass begin/end explicitly.
1956 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1957   return std::lower_bound(adl_begin(Range), adl_end(Range),
1958                           std::forward<T>(Value));
1959 }
1960 
1961 template <typename R, typename T, typename Compare>
1962 auto lower_bound(R &&Range, T &&Value, Compare C) {
1963   return std::lower_bound(adl_begin(Range), adl_end(Range),
1964                           std::forward<T>(Value), C);
1965 }
1966 
1967 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1968 /// pass begin/end explicitly.
1969 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1970   return std::upper_bound(adl_begin(Range), adl_end(Range),
1971                           std::forward<T>(Value));
1972 }
1973 
1974 template <typename R, typename T, typename Compare>
1975 auto upper_bound(R &&Range, T &&Value, Compare C) {
1976   return std::upper_bound(adl_begin(Range), adl_end(Range),
1977                           std::forward<T>(Value), C);
1978 }
1979 
1980 template <typename R>
1981 void stable_sort(R &&Range) {
1982   std::stable_sort(adl_begin(Range), adl_end(Range));
1983 }
1984 
1985 template <typename R, typename Compare>
1986 void stable_sort(R &&Range, Compare C) {
1987   std::stable_sort(adl_begin(Range), adl_end(Range), C);
1988 }
1989 
1990 /// Binary search for the first iterator in a range where a predicate is false.
1991 /// Requires that C is always true below some limit, and always false above it.
1992 template <typename R, typename Predicate,
1993           typename Val = decltype(*adl_begin(std::declval<R>()))>
1994 auto partition_point(R &&Range, Predicate P) {
1995   return std::partition_point(adl_begin(Range), adl_end(Range), P);
1996 }
1997 
1998 template<typename Range, typename Predicate>
1999 auto unique(Range &&R, Predicate P) {
2000   return std::unique(adl_begin(R), adl_end(R), P);
2001 }
2002 
2003 /// Wrapper function around std::equal to detect if pair-wise elements between
2004 /// two ranges are the same.
2005 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
2006   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2007                     adl_end(RRange));
2008 }
2009 
2010 /// Returns true if all elements in Range are equal or when the Range is empty.
2011 template <typename R> bool all_equal(R &&Range) {
2012   auto Begin = adl_begin(Range);
2013   auto End = adl_end(Range);
2014   return Begin == End || std::equal(Begin + 1, End, Begin);
2015 }
2016 
2017 /// Returns true if all Values in the initializer lists are equal or the list
2018 // is empty.
2019 template <typename T> bool all_equal(std::initializer_list<T> Values) {
2020   return all_equal<std::initializer_list<T>>(std::move(Values));
2021 }
2022 
2023 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
2024 /// `erase_if` which is equivalent to:
2025 ///
2026 ///   C.erase(remove_if(C, pred), C.end());
2027 ///
2028 /// This version works for any container with an erase method call accepting
2029 /// two iterators.
2030 template <typename Container, typename UnaryPredicate>
2031 void erase_if(Container &C, UnaryPredicate P) {
2032   C.erase(remove_if(C, P), C.end());
2033 }
2034 
2035 /// Wrapper function to remove a value from a container:
2036 ///
2037 /// C.erase(remove(C.begin(), C.end(), V), C.end());
2038 template <typename Container, typename ValueType>
2039 void erase_value(Container &C, ValueType V) {
2040   C.erase(std::remove(C.begin(), C.end(), V), C.end());
2041 }
2042 
2043 /// Wrapper function to append a range to a container.
2044 ///
2045 /// C.insert(C.end(), R.begin(), R.end());
2046 template <typename Container, typename Range>
2047 inline void append_range(Container &C, Range &&R) {
2048   C.insert(C.end(), adl_begin(R), adl_end(R));
2049 }
2050 
2051 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2052 /// the range [ValIt, ValEnd) (which is not from the same container).
2053 template<typename Container, typename RandomAccessIterator>
2054 void replace(Container &Cont, typename Container::iterator ContIt,
2055              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2056              RandomAccessIterator ValEnd) {
2057   while (true) {
2058     if (ValIt == ValEnd) {
2059       Cont.erase(ContIt, ContEnd);
2060       return;
2061     } else if (ContIt == ContEnd) {
2062       Cont.insert(ContIt, ValIt, ValEnd);
2063       return;
2064     }
2065     *ContIt++ = *ValIt++;
2066   }
2067 }
2068 
2069 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2070 /// the range R.
2071 template<typename Container, typename Range = std::initializer_list<
2072                                  typename Container::value_type>>
2073 void replace(Container &Cont, typename Container::iterator ContIt,
2074              typename Container::iterator ContEnd, Range R) {
2075   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2076 }
2077 
2078 /// An STL-style algorithm similar to std::for_each that applies a second
2079 /// functor between every pair of elements.
2080 ///
2081 /// This provides the control flow logic to, for example, print a
2082 /// comma-separated list:
2083 /// \code
2084 ///   interleave(names.begin(), names.end(),
2085 ///              [&](StringRef name) { os << name; },
2086 ///              [&] { os << ", "; });
2087 /// \endcode
2088 template <typename ForwardIterator, typename UnaryFunctor,
2089           typename NullaryFunctor,
2090           typename = std::enable_if_t<
2091               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2092               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2093 inline void interleave(ForwardIterator begin, ForwardIterator end,
2094                        UnaryFunctor each_fn, NullaryFunctor between_fn) {
2095   if (begin == end)
2096     return;
2097   each_fn(*begin);
2098   ++begin;
2099   for (; begin != end; ++begin) {
2100     between_fn();
2101     each_fn(*begin);
2102   }
2103 }
2104 
2105 template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2106           typename = std::enable_if_t<
2107               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2108               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2109 inline void interleave(const Container &c, UnaryFunctor each_fn,
2110                        NullaryFunctor between_fn) {
2111   interleave(c.begin(), c.end(), each_fn, between_fn);
2112 }
2113 
2114 /// Overload of interleave for the common case of string separator.
2115 template <typename Container, typename UnaryFunctor, typename StreamT,
2116           typename T = detail::ValueOfRange<Container>>
2117 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2118                        const StringRef &separator) {
2119   interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
2120 }
2121 template <typename Container, typename StreamT,
2122           typename T = detail::ValueOfRange<Container>>
2123 inline void interleave(const Container &c, StreamT &os,
2124                        const StringRef &separator) {
2125   interleave(
2126       c, os, [&](const T &a) { os << a; }, separator);
2127 }
2128 
2129 template <typename Container, typename UnaryFunctor, typename StreamT,
2130           typename T = detail::ValueOfRange<Container>>
2131 inline void interleaveComma(const Container &c, StreamT &os,
2132                             UnaryFunctor each_fn) {
2133   interleave(c, os, each_fn, ", ");
2134 }
2135 template <typename Container, typename StreamT,
2136           typename T = detail::ValueOfRange<Container>>
2137 inline void interleaveComma(const Container &c, StreamT &os) {
2138   interleaveComma(c, os, [&](const T &a) { os << a; });
2139 }
2140 
2141 //===----------------------------------------------------------------------===//
2142 //     Extra additions to <memory>
2143 //===----------------------------------------------------------------------===//
2144 
2145 struct FreeDeleter {
2146   void operator()(void* v) {
2147     ::free(v);
2148   }
2149 };
2150 
2151 template<typename First, typename Second>
2152 struct pair_hash {
2153   size_t operator()(const std::pair<First, Second> &P) const {
2154     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2155   }
2156 };
2157 
2158 /// Binary functor that adapts to any other binary functor after dereferencing
2159 /// operands.
2160 template <typename T> struct deref {
2161   T func;
2162 
2163   // Could be further improved to cope with non-derivable functors and
2164   // non-binary functors (should be a variadic template member function
2165   // operator()).
2166   template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2167     assert(lhs);
2168     assert(rhs);
2169     return func(*lhs, *rhs);
2170   }
2171 };
2172 
2173 namespace detail {
2174 
2175 /// Tuple-like type for `zip_enumerator` dereference.
2176 template <typename... Refs> struct enumerator_result;
2177 
2178 template <typename... Iters>
2179 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;
2180 
2181 /// Zippy iterator that uses the second iterator for comparisons. For the
2182 /// increment to be safe, the second range has to be the shortest.
2183 /// Returns `enumerator_result` on dereference to provide `.index()` and
2184 /// `.value()` member functions.
2185 /// Note: Because the dereference operator returns `enumerator_result` as a
2186 /// value instead of a reference and does not strictly conform to the C++17's
2187 /// definition of forward iterator. However, it satisfies all the
2188 /// forward_iterator requirements that the `zip_common` and `zippy` depend on
2189 /// and fully conforms to the C++20 definition of forward iterator.
2190 /// This is similar to `std::vector<bool>::iterator` that returns bit reference
2191 /// wrappers on dereference.
2192 template <typename... Iters>
2193 struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
2194                                    EnumeratorTupleType<Iters...>, Iters...> {
2195   static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
2196   using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
2197                    Iters...>::zip_common;
2198 
2199   bool operator==(const zip_enumerator &Other) const {
2200     return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
2201   }
2202 };
2203 
2204 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
2205   static constexpr std::size_t NumRefs = sizeof...(Refs);
2206   static_assert(NumRefs != 0);
2207   // `NumValues` includes the index.
2208   static constexpr std::size_t NumValues = NumRefs + 1;
2209 
2210   // Tuple type whose element types are references for each `Ref`.
2211   using range_reference_tuple = std::tuple<Refs...>;
2212   // Tuple type who elements are references to all values, including both
2213   // the index and `Refs` reference types.
2214   using value_reference_tuple = std::tuple<std::size_t, Refs...>;
2215 
2216   enumerator_result(std::size_t Index, Refs &&...Rs)
2217       : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}
2218 
2219   /// Returns the 0-based index of the current position within the original
2220   /// input range(s).
2221   std::size_t index() const { return Idx; }
2222 
2223   /// Returns the value(s) for the current iterator. This does not include the
2224   /// index.
2225   decltype(auto) value() const {
2226     if constexpr (NumRefs == 1)
2227       return std::get<0>(Storage);
2228     else
2229       return Storage;
2230   }
2231 
2232   /// Returns the value at index `I`. This case covers the index.
2233   template <std::size_t I, typename = std::enable_if_t<I == 0>>
2234   friend std::size_t get(const enumerator_result &Result) {
2235     return Result.Idx;
2236   }
2237 
2238   /// Returns the value at index `I`. This case covers references to the
2239   /// iteratees.
2240   template <std::size_t I, typename = std::enable_if_t<I != 0>>
2241   friend decltype(auto) get(const enumerator_result &Result) {
2242     // Note: This is a separate function from the other `get`, instead of an
2243     // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
2244     // (Visual Studio 2022 17.1) return type deduction bug.
2245     return std::get<I - 1>(Result.Storage);
2246   }
2247 
2248   template <typename... Ts>
2249   friend bool operator==(const enumerator_result &Result,
2250                          const std::tuple<std::size_t, Ts...> &Other) {
2251     static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
2252     if (Result.Idx != std::get<0>(Other))
2253       return false;
2254     return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
2255   }
2256 
2257 private:
2258   template <typename Tuple, std::size_t... Idx>
2259   bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
2260     return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
2261   }
2262 
2263   std::size_t Idx;
2264   // Make this tuple mutable to avoid casts that obfuscate const-correctness
2265   // issues. Const-correctness of references is taken care of by `zippy` that
2266   // defines const-non and const iterator types that will propagate down to
2267   // `enumerator_result`'s `Refs`.
2268   //  Note that unlike the results of `zip*` functions, `enumerate`'s result are
2269   //  supposed to be modifiable even when defined as
2270   // `const`.
2271   mutable range_reference_tuple Storage;
2272 };
2273 
2274 /// Infinite stream of increasing 0-based `size_t` indices.
2275 struct index_stream {
2276   struct iterator : iterator_facade_base<iterator, std::forward_iterator_tag,
2277                                          const iterator> {
2278     iterator &operator++() {
2279       assert(Index != std::numeric_limits<std::size_t>::max() &&
2280              "Attempting to increment end iterator");
2281       ++Index;
2282       return *this;
2283     }
2284 
2285     // Note: This dereference operator returns a value instead of a reference
2286     // and does not strictly conform to the C++17's definition of forward
2287     // iterator. However, it satisfies all the forward_iterator requirements
2288     // that the `zip_common` depends on and fully conforms to the C++20
2289     // definition of forward iterator.
2290     std::size_t operator*() const { return Index; }
2291 
2292     friend bool operator==(const iterator &Lhs, const iterator &Rhs) {
2293       return Lhs.Index == Rhs.Index;
2294     }
2295 
2296     std::size_t Index = 0;
2297   };
2298 
2299   iterator begin() const { return {}; }
2300   iterator end() const {
2301     // We approximate 'infinity' with the max size_t value, which should be good
2302     // enough to index over any container.
2303     iterator It;
2304     It.Index = std::numeric_limits<std::size_t>::max();
2305     return It;
2306   }
2307 };
2308 
2309 } // end namespace detail
2310 
2311 /// Given two or more input ranges, returns a new range whose values are are
2312 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
2313 /// sequence, and B, C, ..., are the values from the original input ranges. All
2314 /// input ranges are required to have equal lengths. Note that the returned
2315 /// iterator allows for the values (B, C, ...) to be modified.  Example:
2316 ///
2317 /// ```c++
2318 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
2319 /// std::vector<int> Vals = {10, 11, 12, 13};
2320 ///
2321 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
2322 ///   printf("Item %zu - %c: %d\n", Index, Letter, Value);
2323 ///   Value -= 10;
2324 /// }
2325 /// ```
2326 ///
2327 /// Output:
2328 ///   Item 0 - A: 10
2329 ///   Item 1 - B: 11
2330 ///   Item 2 - C: 12
2331 ///   Item 3 - D: 13
2332 ///
2333 /// or using an iterator:
2334 /// ```c++
2335 /// for (auto it : enumerate(Vals)) {
2336 ///   it.value() += 10;
2337 ///   printf("Item %zu: %d\n", it.index(), it.value());
2338 /// }
2339 /// ```
2340 ///
2341 /// Output:
2342 ///   Item 0: 20
2343 ///   Item 1: 21
2344 ///   Item 2: 22
2345 ///   Item 3: 23
2346 ///
2347 template <typename FirstRange, typename... RestRanges>
2348 auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
2349   if constexpr (sizeof...(Rest) != 0) {
2350 #ifndef NDEBUG
2351     // Note: Create an array instead of an initializer list to work around an
2352     // Apple clang 14 compiler bug.
2353     size_t sizes[] = {range_size(First), range_size(Rest)...};
2354     assert(all_equal(sizes) && "Ranges have different length");
2355 #endif
2356   }
2357   using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
2358                                    FirstRange, RestRanges...>;
2359   return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
2360                     std::forward<RestRanges>(Rest)...);
2361 }
2362 
2363 namespace detail {
2364 
2365 template <typename Predicate, typename... Args>
2366 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2367   auto z = zip(args...);
2368   auto it = z.begin();
2369   auto end = z.end();
2370   while (it != end) {
2371     if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2372       return false;
2373     ++it;
2374   }
2375   return it.all_equals(end);
2376 }
2377 
2378 // Just an adaptor to switch the order of argument and have the predicate before
2379 // the zipped inputs.
2380 template <typename... ArgsThenPredicate, size_t... InputIndexes>
2381 bool all_of_zip_predicate_last(
2382     std::tuple<ArgsThenPredicate...> argsThenPredicate,
2383     std::index_sequence<InputIndexes...>) {
2384   auto constexpr OutputIndex =
2385       std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2386   return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2387                              std::get<InputIndexes>(argsThenPredicate)...);
2388 }
2389 
2390 } // end namespace detail
2391 
2392 /// Compare two zipped ranges using the provided predicate (as last argument).
2393 /// Return true if all elements satisfy the predicate and false otherwise.
2394 //  Return false if the zipped iterator aren't all at end (size mismatch).
2395 template <typename... ArgsAndPredicate>
2396 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2397   return detail::all_of_zip_predicate_last(
2398       std::forward_as_tuple(argsAndPredicate...),
2399       std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2400 }
2401 
2402 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2403 /// time. Not meant for use with random-access iterators.
2404 /// Can optionally take a predicate to filter lazily some items.
2405 template <typename IterTy,
2406           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2407 bool hasNItems(
2408     IterTy &&Begin, IterTy &&End, unsigned N,
2409     Pred &&ShouldBeCounted =
2410         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2411     std::enable_if_t<
2412         !std::is_base_of<std::random_access_iterator_tag,
2413                          typename std::iterator_traits<std::remove_reference_t<
2414                              decltype(Begin)>>::iterator_category>::value,
2415         void> * = nullptr) {
2416   for (; N; ++Begin) {
2417     if (Begin == End)
2418       return false; // Too few.
2419     N -= ShouldBeCounted(*Begin);
2420   }
2421   for (; Begin != End; ++Begin)
2422     if (ShouldBeCounted(*Begin))
2423       return false; // Too many.
2424   return true;
2425 }
2426 
2427 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2428 /// time. Not meant for use with random-access iterators.
2429 /// Can optionally take a predicate to lazily filter some items.
2430 template <typename IterTy,
2431           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2432 bool hasNItemsOrMore(
2433     IterTy &&Begin, IterTy &&End, unsigned N,
2434     Pred &&ShouldBeCounted =
2435         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2436     std::enable_if_t<
2437         !std::is_base_of<std::random_access_iterator_tag,
2438                          typename std::iterator_traits<std::remove_reference_t<
2439                              decltype(Begin)>>::iterator_category>::value,
2440         void> * = nullptr) {
2441   for (; N; ++Begin) {
2442     if (Begin == End)
2443       return false; // Too few.
2444     N -= ShouldBeCounted(*Begin);
2445   }
2446   return true;
2447 }
2448 
2449 /// Returns true if the sequence [Begin, End) has N or less items. Can
2450 /// optionally take a predicate to lazily filter some items.
2451 template <typename IterTy,
2452           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2453 bool hasNItemsOrLess(
2454     IterTy &&Begin, IterTy &&End, unsigned N,
2455     Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2456       return true;
2457     }) {
2458   assert(N != std::numeric_limits<unsigned>::max());
2459   return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2460 }
2461 
2462 /// Returns true if the given container has exactly N items
2463 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2464   return hasNItems(std::begin(C), std::end(C), N);
2465 }
2466 
2467 /// Returns true if the given container has N or more items
2468 template <typename ContainerTy>
2469 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2470   return hasNItemsOrMore(std::begin(C), std::end(C), N);
2471 }
2472 
2473 /// Returns true if the given container has N or less items
2474 template <typename ContainerTy>
2475 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2476   return hasNItemsOrLess(std::begin(C), std::end(C), N);
2477 }
2478 
2479 /// Returns a raw pointer that represents the same address as the argument.
2480 ///
2481 /// This implementation can be removed once we move to C++20 where it's defined
2482 /// as std::to_address().
2483 ///
2484 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
2485 /// not been implemented.
2486 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2487 template <class T> constexpr T *to_address(T *P) { return P; }
2488 
2489 } // end namespace llvm
2490 
2491 namespace std {
2492 template <typename... Refs>
2493 struct tuple_size<llvm::detail::enumerator_result<Refs...>>
2494     : std::integral_constant<std::size_t, sizeof...(Refs)> {};
2495 
2496 template <std::size_t I, typename... Refs>
2497 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
2498     : std::tuple_element<I, std::tuple<Refs...>> {};
2499 
2500 template <std::size_t I, typename... Refs>
2501 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
2502     : std::tuple_element<I, std::tuple<Refs...>> {};
2503 
2504 } // namespace std
2505 
2506 #endif // LLVM_ADT_STLEXTRAS_H
2507