1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file contains some templates that are useful if you are working with 11 /// the STL at all. 12 /// 13 /// No library is required when using these functions. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_ADT_STLEXTRAS_H 18 #define LLVM_ADT_STLEXTRAS_H 19 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLArrayExtras.h" 22 #include "llvm/ADT/STLForwardCompat.h" 23 #include "llvm/ADT/STLFunctionalExtras.h" 24 #include "llvm/ADT/identity.h" 25 #include "llvm/ADT/iterator.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Config/abi-breaking.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdint> 33 #include <cstdlib> 34 #include <functional> 35 #include <initializer_list> 36 #include <iterator> 37 #include <limits> 38 #include <memory> 39 #include <tuple> 40 #include <type_traits> 41 #include <utility> 42 43 #ifdef EXPENSIVE_CHECKS 44 #include <random> // for std::mt19937 45 #endif 46 47 namespace llvm { 48 49 // Only used by compiler if both template types are the same. Useful when 50 // using SFINAE to test for the existence of member functions. 51 template <typename T, T> struct SameType; 52 53 namespace detail { 54 55 template <typename RangeT> 56 using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); 57 58 template <typename RangeT> 59 using ValueOfRange = typename std::remove_reference<decltype( 60 *std::begin(std::declval<RangeT &>()))>::type; 61 62 } // end namespace detail 63 64 //===----------------------------------------------------------------------===// 65 // Extra additions to <type_traits> 66 //===----------------------------------------------------------------------===// 67 68 template <typename T> struct make_const_ptr { 69 using type = 70 typename std::add_pointer<typename std::add_const<T>::type>::type; 71 }; 72 73 template <typename T> struct make_const_ref { 74 using type = typename std::add_lvalue_reference< 75 typename std::add_const<T>::type>::type; 76 }; 77 78 namespace detail { 79 template <typename...> using void_t = void; 80 template <class, template <class...> class Op, class... Args> struct detector { 81 using value_t = std::false_type; 82 }; 83 template <template <class...> class Op, class... Args> 84 struct detector<void_t<Op<Args...>>, Op, Args...> { 85 using value_t = std::true_type; 86 }; 87 } // end namespace detail 88 89 /// Detects if a given trait holds for some set of arguments 'Args'. 90 /// For example, the given trait could be used to detect if a given type 91 /// has a copy assignment operator: 92 /// template<class T> 93 /// using has_copy_assign_t = decltype(std::declval<T&>() 94 /// = std::declval<const T&>()); 95 /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; 96 template <template <class...> class Op, class... Args> 97 using is_detected = typename detail::detector<void, Op, Args...>::value_t; 98 99 namespace detail { 100 template <typename Callable, typename... Args> 101 using is_invocable = 102 decltype(std::declval<Callable &>()(std::declval<Args>()...)); 103 } // namespace detail 104 105 /// Check if a Callable type can be invoked with the given set of arg types. 106 template <typename Callable, typename... Args> 107 using is_invocable = is_detected<detail::is_invocable, Callable, Args...>; 108 109 /// This class provides various trait information about a callable object. 110 /// * To access the number of arguments: Traits::num_args 111 /// * To access the type of an argument: Traits::arg_t<Index> 112 /// * To access the type of the result: Traits::result_t 113 template <typename T, bool isClass = std::is_class<T>::value> 114 struct function_traits : public function_traits<decltype(&T::operator())> {}; 115 116 /// Overload for class function types. 117 template <typename ClassType, typename ReturnType, typename... Args> 118 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { 119 /// The number of arguments to this function. 120 enum { num_args = sizeof...(Args) }; 121 122 /// The result type of this function. 123 using result_t = ReturnType; 124 125 /// The type of an argument to this function. 126 template <size_t Index> 127 using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type; 128 }; 129 /// Overload for class function types. 130 template <typename ClassType, typename ReturnType, typename... Args> 131 struct function_traits<ReturnType (ClassType::*)(Args...), false> 132 : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; 133 /// Overload for non-class function types. 134 template <typename ReturnType, typename... Args> 135 struct function_traits<ReturnType (*)(Args...), false> { 136 /// The number of arguments to this function. 137 enum { num_args = sizeof...(Args) }; 138 139 /// The result type of this function. 140 using result_t = ReturnType; 141 142 /// The type of an argument to this function. 143 template <size_t i> 144 using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type; 145 }; 146 template <typename ReturnType, typename... Args> 147 struct function_traits<ReturnType (*const)(Args...), false> 148 : public function_traits<ReturnType (*)(Args...)> {}; 149 /// Overload for non-class function type references. 150 template <typename ReturnType, typename... Args> 151 struct function_traits<ReturnType (&)(Args...), false> 152 : public function_traits<ReturnType (*)(Args...)> {}; 153 154 /// traits class for checking whether type T is one of any of the given 155 /// types in the variadic list. 156 template <typename T, typename... Ts> 157 using is_one_of = disjunction<std::is_same<T, Ts>...>; 158 159 /// traits class for checking whether type T is a base class for all 160 /// the given types in the variadic list. 161 template <typename T, typename... Ts> 162 using are_base_of = conjunction<std::is_base_of<T, Ts>...>; 163 164 namespace detail { 165 template <typename T, typename... Us> struct TypesAreDistinct; 166 template <typename T, typename... Us> 167 struct TypesAreDistinct 168 : std::integral_constant<bool, !is_one_of<T, Us...>::value && 169 TypesAreDistinct<Us...>::value> {}; 170 template <typename T> struct TypesAreDistinct<T> : std::true_type {}; 171 } // namespace detail 172 173 /// Determine if all types in Ts are distinct. 174 /// 175 /// Useful to statically assert when Ts is intended to describe a non-multi set 176 /// of types. 177 /// 178 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be 179 /// asserted once per instantiation of a type which requires it. 180 template <typename... Ts> struct TypesAreDistinct; 181 template <> struct TypesAreDistinct<> : std::true_type {}; 182 template <typename... Ts> 183 struct TypesAreDistinct 184 : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; 185 186 /// Find the first index where a type appears in a list of types. 187 /// 188 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. 189 /// 190 /// Typically only meaningful when it is otherwise statically known that the 191 /// type pack has no duplicate types. This should be guaranteed explicitly with 192 /// static_assert(TypesAreDistinct<Us...>::value). 193 /// 194 /// It is a compile-time error to instantiate when T is not present in Us, i.e. 195 /// if is_one_of<T, Us...>::value is false. 196 template <typename T, typename... Us> struct FirstIndexOfType; 197 template <typename T, typename U, typename... Us> 198 struct FirstIndexOfType<T, U, Us...> 199 : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; 200 template <typename T, typename... Us> 201 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; 202 203 /// Find the type at a given index in a list of types. 204 /// 205 /// TypeAtIndex<I, Ts...> is the type at index I in Ts. 206 template <size_t I, typename... Ts> 207 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; 208 209 /// Helper which adds two underlying types of enumeration type. 210 /// Implicit conversion to a common type is accepted. 211 template <typename EnumTy1, typename EnumTy2, 212 typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, 213 std::underlying_type_t<EnumTy1>>, 214 typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, 215 std::underlying_type_t<EnumTy2>>> 216 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { 217 return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); 218 } 219 220 //===----------------------------------------------------------------------===// 221 // Extra additions to <iterator> 222 //===----------------------------------------------------------------------===// 223 224 namespace adl_detail { 225 226 using std::begin; 227 228 template <typename ContainerTy> 229 decltype(auto) adl_begin(ContainerTy &&container) { 230 return begin(std::forward<ContainerTy>(container)); 231 } 232 233 using std::end; 234 235 template <typename ContainerTy> 236 decltype(auto) adl_end(ContainerTy &&container) { 237 return end(std::forward<ContainerTy>(container)); 238 } 239 240 using std::swap; 241 242 template <typename T> 243 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), 244 std::declval<T>()))) { 245 swap(std::forward<T>(lhs), std::forward<T>(rhs)); 246 } 247 248 } // end namespace adl_detail 249 250 template <typename ContainerTy> 251 decltype(auto) adl_begin(ContainerTy &&container) { 252 return adl_detail::adl_begin(std::forward<ContainerTy>(container)); 253 } 254 255 template <typename ContainerTy> 256 decltype(auto) adl_end(ContainerTy &&container) { 257 return adl_detail::adl_end(std::forward<ContainerTy>(container)); 258 } 259 260 template <typename T> 261 void adl_swap(T &&lhs, T &&rhs) noexcept( 262 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { 263 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); 264 } 265 266 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty. 267 template <typename T> 268 constexpr bool empty(const T &RangeOrContainer) { 269 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer); 270 } 271 272 /// Returns true if the given container only contains a single element. 273 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { 274 auto B = std::begin(C), E = std::end(C); 275 return B != E && std::next(B) == E; 276 } 277 278 /// Return a range covering \p RangeOrContainer with the first N elements 279 /// excluded. 280 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { 281 return make_range(std::next(adl_begin(RangeOrContainer), N), 282 adl_end(RangeOrContainer)); 283 } 284 285 /// Return a range covering \p RangeOrContainer with the last N elements 286 /// excluded. 287 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { 288 return make_range(adl_begin(RangeOrContainer), 289 std::prev(adl_end(RangeOrContainer), N)); 290 } 291 292 // mapped_iterator - This is a simple iterator adapter that causes a function to 293 // be applied whenever operator* is invoked on the iterator. 294 295 template <typename ItTy, typename FuncTy, 296 typename ReferenceTy = 297 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> 298 class mapped_iterator 299 : public iterator_adaptor_base< 300 mapped_iterator<ItTy, FuncTy>, ItTy, 301 typename std::iterator_traits<ItTy>::iterator_category, 302 std::remove_reference_t<ReferenceTy>, 303 typename std::iterator_traits<ItTy>::difference_type, 304 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 305 public: 306 mapped_iterator(ItTy U, FuncTy F) 307 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} 308 309 ItTy getCurrent() { return this->I; } 310 311 const FuncTy &getFunction() const { return F; } 312 313 ReferenceTy operator*() const { return F(*this->I); } 314 315 private: 316 FuncTy F; 317 }; 318 319 // map_iterator - Provide a convenient way to create mapped_iterators, just like 320 // make_pair is useful for creating pairs... 321 template <class ItTy, class FuncTy> 322 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { 323 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); 324 } 325 326 template <class ContainerTy, class FuncTy> 327 auto map_range(ContainerTy &&C, FuncTy F) { 328 return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); 329 } 330 331 /// A base type of mapped iterator, that is useful for building derived 332 /// iterators that do not need/want to store the map function (as in 333 /// mapped_iterator). These iterators must simply provide a `mapElement` method 334 /// that defines how to map a value of the iterator to the provided reference 335 /// type. 336 template <typename DerivedT, typename ItTy, typename ReferenceTy> 337 class mapped_iterator_base 338 : public iterator_adaptor_base< 339 DerivedT, ItTy, 340 typename std::iterator_traits<ItTy>::iterator_category, 341 std::remove_reference_t<ReferenceTy>, 342 typename std::iterator_traits<ItTy>::difference_type, 343 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 344 public: 345 using BaseT = mapped_iterator_base; 346 347 mapped_iterator_base(ItTy U) 348 : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} 349 350 ItTy getCurrent() { return this->I; } 351 352 ReferenceTy operator*() const { 353 return static_cast<const DerivedT &>(*this).mapElement(*this->I); 354 } 355 }; 356 357 /// Helper to determine if type T has a member called rbegin(). 358 template <typename Ty> class has_rbegin_impl { 359 using yes = char[1]; 360 using no = char[2]; 361 362 template <typename Inner> 363 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); 364 365 template <typename> 366 static no& test(...); 367 368 public: 369 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 370 }; 371 372 /// Metafunction to determine if T& or T has a member called rbegin(). 373 template <typename Ty> 374 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { 375 }; 376 377 // Returns an iterator_range over the given container which iterates in reverse. 378 // Note that the container must have rbegin()/rend() methods for this to work. 379 template <typename ContainerTy> 380 auto reverse(ContainerTy &&C, 381 std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) { 382 return make_range(C.rbegin(), C.rend()); 383 } 384 385 // Returns an iterator_range over the given container which iterates in reverse. 386 // Note that the container must have begin()/end() methods which return 387 // bidirectional iterators for this to work. 388 template <typename ContainerTy> 389 auto reverse(ContainerTy &&C, 390 std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) { 391 return make_range(std::make_reverse_iterator(std::end(C)), 392 std::make_reverse_iterator(std::begin(C))); 393 } 394 395 /// An iterator adaptor that filters the elements of given inner iterators. 396 /// 397 /// The predicate parameter should be a callable object that accepts the wrapped 398 /// iterator's reference type and returns a bool. When incrementing or 399 /// decrementing the iterator, it will call the predicate on each element and 400 /// skip any where it returns false. 401 /// 402 /// \code 403 /// int A[] = { 1, 2, 3, 4 }; 404 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); 405 /// // R contains { 1, 3 }. 406 /// \endcode 407 /// 408 /// Note: filter_iterator_base implements support for forward iteration. 409 /// filter_iterator_impl exists to provide support for bidirectional iteration, 410 /// conditional on whether the wrapped iterator supports it. 411 template <typename WrappedIteratorT, typename PredicateT, typename IterTag> 412 class filter_iterator_base 413 : public iterator_adaptor_base< 414 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, 415 WrappedIteratorT, 416 typename std::common_type< 417 IterTag, typename std::iterator_traits< 418 WrappedIteratorT>::iterator_category>::type> { 419 using BaseT = typename filter_iterator_base::iterator_adaptor_base; 420 421 protected: 422 WrappedIteratorT End; 423 PredicateT Pred; 424 425 void findNextValid() { 426 while (this->I != End && !Pred(*this->I)) 427 BaseT::operator++(); 428 } 429 430 // Construct the iterator. The begin iterator needs to know where the end 431 // is, so that it can properly stop when it gets there. The end iterator only 432 // needs the predicate to support bidirectional iteration. 433 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, 434 PredicateT Pred) 435 : BaseT(Begin), End(End), Pred(Pred) { 436 findNextValid(); 437 } 438 439 public: 440 using BaseT::operator++; 441 442 filter_iterator_base &operator++() { 443 BaseT::operator++(); 444 findNextValid(); 445 return *this; 446 } 447 448 decltype(auto) operator*() const { 449 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 450 return BaseT::operator*(); 451 } 452 453 decltype(auto) operator->() const { 454 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 455 return BaseT::operator->(); 456 } 457 }; 458 459 /// Specialization of filter_iterator_base for forward iteration only. 460 template <typename WrappedIteratorT, typename PredicateT, 461 typename IterTag = std::forward_iterator_tag> 462 class filter_iterator_impl 463 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { 464 public: 465 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 466 PredicateT Pred) 467 : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} 468 }; 469 470 /// Specialization of filter_iterator_base for bidirectional iteration. 471 template <typename WrappedIteratorT, typename PredicateT> 472 class filter_iterator_impl<WrappedIteratorT, PredicateT, 473 std::bidirectional_iterator_tag> 474 : public filter_iterator_base<WrappedIteratorT, PredicateT, 475 std::bidirectional_iterator_tag> { 476 using BaseT = typename filter_iterator_impl::filter_iterator_base; 477 478 void findPrevValid() { 479 while (!this->Pred(*this->I)) 480 BaseT::operator--(); 481 } 482 483 public: 484 using BaseT::operator--; 485 486 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 487 PredicateT Pred) 488 : BaseT(Begin, End, Pred) {} 489 490 filter_iterator_impl &operator--() { 491 BaseT::operator--(); 492 findPrevValid(); 493 return *this; 494 } 495 }; 496 497 namespace detail { 498 499 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { 500 using type = std::forward_iterator_tag; 501 }; 502 503 template <> struct fwd_or_bidi_tag_impl<true> { 504 using type = std::bidirectional_iterator_tag; 505 }; 506 507 /// Helper which sets its type member to forward_iterator_tag if the category 508 /// of \p IterT does not derive from bidirectional_iterator_tag, and to 509 /// bidirectional_iterator_tag otherwise. 510 template <typename IterT> struct fwd_or_bidi_tag { 511 using type = typename fwd_or_bidi_tag_impl<std::is_base_of< 512 std::bidirectional_iterator_tag, 513 typename std::iterator_traits<IterT>::iterator_category>::value>::type; 514 }; 515 516 } // namespace detail 517 518 /// Defines filter_iterator to a suitable specialization of 519 /// filter_iterator_impl, based on the underlying iterator's category. 520 template <typename WrappedIteratorT, typename PredicateT> 521 using filter_iterator = filter_iterator_impl< 522 WrappedIteratorT, PredicateT, 523 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; 524 525 /// Convenience function that takes a range of elements and a predicate, 526 /// and return a new filter_iterator range. 527 /// 528 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the 529 /// lifetime of that temporary is not kept by the returned range object, and the 530 /// temporary is going to be dropped on the floor after the make_iterator_range 531 /// full expression that contains this function call. 532 template <typename RangeT, typename PredicateT> 533 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> 534 make_filter_range(RangeT &&Range, PredicateT Pred) { 535 using FilterIteratorT = 536 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; 537 return make_range( 538 FilterIteratorT(std::begin(std::forward<RangeT>(Range)), 539 std::end(std::forward<RangeT>(Range)), Pred), 540 FilterIteratorT(std::end(std::forward<RangeT>(Range)), 541 std::end(std::forward<RangeT>(Range)), Pred)); 542 } 543 544 /// A pseudo-iterator adaptor that is designed to implement "early increment" 545 /// style loops. 546 /// 547 /// This is *not a normal iterator* and should almost never be used directly. It 548 /// is intended primarily to be used with range based for loops and some range 549 /// algorithms. 550 /// 551 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but 552 /// somewhere between them. The constraints of these iterators are: 553 /// 554 /// - On construction or after being incremented, it is comparable and 555 /// dereferencable. It is *not* incrementable. 556 /// - After being dereferenced, it is neither comparable nor dereferencable, it 557 /// is only incrementable. 558 /// 559 /// This means you can only dereference the iterator once, and you can only 560 /// increment it once between dereferences. 561 template <typename WrappedIteratorT> 562 class early_inc_iterator_impl 563 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, 564 WrappedIteratorT, std::input_iterator_tag> { 565 using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; 566 567 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; 568 569 protected: 570 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 571 bool IsEarlyIncremented = false; 572 #endif 573 574 public: 575 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} 576 577 using BaseT::operator*; 578 decltype(*std::declval<WrappedIteratorT>()) operator*() { 579 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 580 assert(!IsEarlyIncremented && "Cannot dereference twice!"); 581 IsEarlyIncremented = true; 582 #endif 583 return *(this->I)++; 584 } 585 586 using BaseT::operator++; 587 early_inc_iterator_impl &operator++() { 588 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 589 assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); 590 IsEarlyIncremented = false; 591 #endif 592 return *this; 593 } 594 595 friend bool operator==(const early_inc_iterator_impl &LHS, 596 const early_inc_iterator_impl &RHS) { 597 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 598 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); 599 #endif 600 return (const BaseT &)LHS == (const BaseT &)RHS; 601 } 602 }; 603 604 /// Make a range that does early increment to allow mutation of the underlying 605 /// range without disrupting iteration. 606 /// 607 /// The underlying iterator will be incremented immediately after it is 608 /// dereferenced, allowing deletion of the current node or insertion of nodes to 609 /// not disrupt iteration provided they do not invalidate the *next* iterator -- 610 /// the current iterator can be invalidated. 611 /// 612 /// This requires a very exact pattern of use that is only really suitable to 613 /// range based for loops and other range algorithms that explicitly guarantee 614 /// to dereference exactly once each element, and to increment exactly once each 615 /// element. 616 template <typename RangeT> 617 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> 618 make_early_inc_range(RangeT &&Range) { 619 using EarlyIncIteratorT = 620 early_inc_iterator_impl<detail::IterOfRange<RangeT>>; 621 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), 622 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); 623 } 624 625 // forward declarations required by zip_shortest/zip_first/zip_longest 626 template <typename R, typename UnaryPredicate> 627 bool all_of(R &&range, UnaryPredicate P); 628 template <typename R, typename UnaryPredicate> 629 bool any_of(R &&range, UnaryPredicate P); 630 631 namespace detail { 632 633 using std::declval; 634 635 // We have to alias this since inlining the actual type at the usage site 636 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. 637 template<typename... Iters> struct ZipTupleType { 638 using type = std::tuple<decltype(*declval<Iters>())...>; 639 }; 640 641 template <typename ZipType, typename... Iters> 642 using zip_traits = iterator_facade_base< 643 ZipType, typename std::common_type<std::bidirectional_iterator_tag, 644 typename std::iterator_traits< 645 Iters>::iterator_category...>::type, 646 // ^ TODO: Implement random access methods. 647 typename ZipTupleType<Iters...>::type, 648 typename std::iterator_traits<typename std::tuple_element< 649 0, std::tuple<Iters...>>::type>::difference_type, 650 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all 651 // inner iterators have the same difference_type. It would fail if, for 652 // instance, the second field's difference_type were non-numeric while the 653 // first is. 654 typename ZipTupleType<Iters...>::type *, 655 typename ZipTupleType<Iters...>::type>; 656 657 template <typename ZipType, typename... Iters> 658 struct zip_common : public zip_traits<ZipType, Iters...> { 659 using Base = zip_traits<ZipType, Iters...>; 660 using value_type = typename Base::value_type; 661 662 std::tuple<Iters...> iterators; 663 664 protected: 665 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 666 return value_type(*std::get<Ns>(iterators)...); 667 } 668 669 template <size_t... Ns> 670 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 671 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); 672 } 673 674 template <size_t... Ns> 675 decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { 676 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); 677 } 678 679 template <size_t... Ns> 680 bool test_all_equals(const zip_common &other, 681 std::index_sequence<Ns...>) const { 682 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) == 683 std::get<Ns>(other.iterators)...}, 684 identity<bool>{}); 685 } 686 687 public: 688 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} 689 690 value_type operator*() const { 691 return deref(std::index_sequence_for<Iters...>{}); 692 } 693 694 ZipType &operator++() { 695 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 696 return *reinterpret_cast<ZipType *>(this); 697 } 698 699 ZipType &operator--() { 700 static_assert(Base::IsBidirectional, 701 "All inner iterators must be at least bidirectional."); 702 iterators = tup_dec(std::index_sequence_for<Iters...>{}); 703 return *reinterpret_cast<ZipType *>(this); 704 } 705 706 /// Return true if all the iterator are matching `other`'s iterators. 707 bool all_equals(zip_common &other) { 708 return test_all_equals(other, std::index_sequence_for<Iters...>{}); 709 } 710 }; 711 712 template <typename... Iters> 713 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { 714 using Base = zip_common<zip_first<Iters...>, Iters...>; 715 716 bool operator==(const zip_first<Iters...> &other) const { 717 return std::get<0>(this->iterators) == std::get<0>(other.iterators); 718 } 719 720 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} 721 }; 722 723 template <typename... Iters> 724 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { 725 template <size_t... Ns> 726 bool test(const zip_shortest<Iters...> &other, 727 std::index_sequence<Ns...>) const { 728 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != 729 std::get<Ns>(other.iterators)...}, 730 identity<bool>{}); 731 } 732 733 public: 734 using Base = zip_common<zip_shortest<Iters...>, Iters...>; 735 736 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} 737 738 bool operator==(const zip_shortest<Iters...> &other) const { 739 return !test(other, std::index_sequence_for<Iters...>{}); 740 } 741 }; 742 743 template <template <typename...> class ItType, typename... Args> class zippy { 744 public: 745 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; 746 using iterator_category = typename iterator::iterator_category; 747 using value_type = typename iterator::value_type; 748 using difference_type = typename iterator::difference_type; 749 using pointer = typename iterator::pointer; 750 using reference = typename iterator::reference; 751 752 private: 753 std::tuple<Args...> ts; 754 755 template <size_t... Ns> 756 iterator begin_impl(std::index_sequence<Ns...>) const { 757 return iterator(std::begin(std::get<Ns>(ts))...); 758 } 759 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 760 return iterator(std::end(std::get<Ns>(ts))...); 761 } 762 763 public: 764 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 765 766 iterator begin() const { 767 return begin_impl(std::index_sequence_for<Args...>{}); 768 } 769 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 770 }; 771 772 } // end namespace detail 773 774 /// zip iterator for two or more iteratable types. 775 template <typename T, typename U, typename... Args> 776 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, 777 Args &&... args) { 778 return detail::zippy<detail::zip_shortest, T, U, Args...>( 779 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 780 } 781 782 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to 783 /// be the shortest. 784 template <typename T, typename U, typename... Args> 785 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, 786 Args &&... args) { 787 return detail::zippy<detail::zip_first, T, U, Args...>( 788 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 789 } 790 791 namespace detail { 792 template <typename Iter> 793 Iter next_or_end(const Iter &I, const Iter &End) { 794 if (I == End) 795 return End; 796 return std::next(I); 797 } 798 799 template <typename Iter> 800 auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional< 801 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { 802 if (I == End) 803 return None; 804 return *I; 805 } 806 807 template <typename Iter> struct ZipLongestItemType { 808 using type = 809 llvm::Optional<typename std::remove_const<typename std::remove_reference< 810 decltype(*std::declval<Iter>())>::type>::type>; 811 }; 812 813 template <typename... Iters> struct ZipLongestTupleType { 814 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; 815 }; 816 817 template <typename... Iters> 818 class zip_longest_iterator 819 : public iterator_facade_base< 820 zip_longest_iterator<Iters...>, 821 typename std::common_type< 822 std::forward_iterator_tag, 823 typename std::iterator_traits<Iters>::iterator_category...>::type, 824 typename ZipLongestTupleType<Iters...>::type, 825 typename std::iterator_traits<typename std::tuple_element< 826 0, std::tuple<Iters...>>::type>::difference_type, 827 typename ZipLongestTupleType<Iters...>::type *, 828 typename ZipLongestTupleType<Iters...>::type> { 829 public: 830 using value_type = typename ZipLongestTupleType<Iters...>::type; 831 832 private: 833 std::tuple<Iters...> iterators; 834 std::tuple<Iters...> end_iterators; 835 836 template <size_t... Ns> 837 bool test(const zip_longest_iterator<Iters...> &other, 838 std::index_sequence<Ns...>) const { 839 return llvm::any_of( 840 std::initializer_list<bool>{std::get<Ns>(this->iterators) != 841 std::get<Ns>(other.iterators)...}, 842 identity<bool>{}); 843 } 844 845 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 846 return value_type( 847 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 848 } 849 850 template <size_t... Ns> 851 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 852 return std::tuple<Iters...>( 853 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 854 } 855 856 public: 857 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) 858 : iterators(std::forward<Iters>(ts.first)...), 859 end_iterators(std::forward<Iters>(ts.second)...) {} 860 861 value_type operator*() const { 862 return deref(std::index_sequence_for<Iters...>{}); 863 } 864 865 zip_longest_iterator<Iters...> &operator++() { 866 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 867 return *this; 868 } 869 870 bool operator==(const zip_longest_iterator<Iters...> &other) const { 871 return !test(other, std::index_sequence_for<Iters...>{}); 872 } 873 }; 874 875 template <typename... Args> class zip_longest_range { 876 public: 877 using iterator = 878 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; 879 using iterator_category = typename iterator::iterator_category; 880 using value_type = typename iterator::value_type; 881 using difference_type = typename iterator::difference_type; 882 using pointer = typename iterator::pointer; 883 using reference = typename iterator::reference; 884 885 private: 886 std::tuple<Args...> ts; 887 888 template <size_t... Ns> 889 iterator begin_impl(std::index_sequence<Ns...>) const { 890 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), 891 adl_end(std::get<Ns>(ts)))...); 892 } 893 894 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 895 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), 896 adl_end(std::get<Ns>(ts)))...); 897 } 898 899 public: 900 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 901 902 iterator begin() const { 903 return begin_impl(std::index_sequence_for<Args...>{}); 904 } 905 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 906 }; 907 } // namespace detail 908 909 /// Iterate over two or more iterators at the same time. Iteration continues 910 /// until all iterators reach the end. The llvm::Optional only contains a value 911 /// if the iterator has not reached the end. 912 template <typename T, typename U, typename... Args> 913 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, 914 Args &&... args) { 915 return detail::zip_longest_range<T, U, Args...>( 916 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 917 } 918 919 /// Iterator wrapper that concatenates sequences together. 920 /// 921 /// This can concatenate different iterators, even with different types, into 922 /// a single iterator provided the value types of all the concatenated 923 /// iterators expose `reference` and `pointer` types that can be converted to 924 /// `ValueT &` and `ValueT *` respectively. It doesn't support more 925 /// interesting/customized pointer or reference types. 926 /// 927 /// Currently this only supports forward or higher iterator categories as 928 /// inputs and always exposes a forward iterator interface. 929 template <typename ValueT, typename... IterTs> 930 class concat_iterator 931 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, 932 std::forward_iterator_tag, ValueT> { 933 using BaseT = typename concat_iterator::iterator_facade_base; 934 935 /// We store both the current and end iterators for each concatenated 936 /// sequence in a tuple of pairs. 937 /// 938 /// Note that something like iterator_range seems nice at first here, but the 939 /// range properties are of little benefit and end up getting in the way 940 /// because we need to do mutation on the current iterators. 941 std::tuple<IterTs...> Begins; 942 std::tuple<IterTs...> Ends; 943 944 /// Attempts to increment a specific iterator. 945 /// 946 /// Returns true if it was able to increment the iterator. Returns false if 947 /// the iterator is already at the end iterator. 948 template <size_t Index> bool incrementHelper() { 949 auto &Begin = std::get<Index>(Begins); 950 auto &End = std::get<Index>(Ends); 951 if (Begin == End) 952 return false; 953 954 ++Begin; 955 return true; 956 } 957 958 /// Increments the first non-end iterator. 959 /// 960 /// It is an error to call this with all iterators at the end. 961 template <size_t... Ns> void increment(std::index_sequence<Ns...>) { 962 // Build a sequence of functions to increment each iterator if possible. 963 bool (concat_iterator::*IncrementHelperFns[])() = { 964 &concat_iterator::incrementHelper<Ns>...}; 965 966 // Loop over them, and stop as soon as we succeed at incrementing one. 967 for (auto &IncrementHelperFn : IncrementHelperFns) 968 if ((this->*IncrementHelperFn)()) 969 return; 970 971 llvm_unreachable("Attempted to increment an end concat iterator!"); 972 } 973 974 /// Returns null if the specified iterator is at the end. Otherwise, 975 /// dereferences the iterator and returns the address of the resulting 976 /// reference. 977 template <size_t Index> ValueT *getHelper() const { 978 auto &Begin = std::get<Index>(Begins); 979 auto &End = std::get<Index>(Ends); 980 if (Begin == End) 981 return nullptr; 982 983 return &*Begin; 984 } 985 986 /// Finds the first non-end iterator, dereferences, and returns the resulting 987 /// reference. 988 /// 989 /// It is an error to call this with all iterators at the end. 990 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { 991 // Build a sequence of functions to get from iterator if possible. 992 ValueT *(concat_iterator::*GetHelperFns[])() const = { 993 &concat_iterator::getHelper<Ns>...}; 994 995 // Loop over them, and return the first result we find. 996 for (auto &GetHelperFn : GetHelperFns) 997 if (ValueT *P = (this->*GetHelperFn)()) 998 return *P; 999 1000 llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); 1001 } 1002 1003 public: 1004 /// Constructs an iterator from a sequence of ranges. 1005 /// 1006 /// We need the full range to know how to switch between each of the 1007 /// iterators. 1008 template <typename... RangeTs> 1009 explicit concat_iterator(RangeTs &&... Ranges) 1010 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} 1011 1012 using BaseT::operator++; 1013 1014 concat_iterator &operator++() { 1015 increment(std::index_sequence_for<IterTs...>()); 1016 return *this; 1017 } 1018 1019 ValueT &operator*() const { 1020 return get(std::index_sequence_for<IterTs...>()); 1021 } 1022 1023 bool operator==(const concat_iterator &RHS) const { 1024 return Begins == RHS.Begins && Ends == RHS.Ends; 1025 } 1026 }; 1027 1028 namespace detail { 1029 1030 /// Helper to store a sequence of ranges being concatenated and access them. 1031 /// 1032 /// This is designed to facilitate providing actual storage when temporaries 1033 /// are passed into the constructor such that we can use it as part of range 1034 /// based for loops. 1035 template <typename ValueT, typename... RangeTs> class concat_range { 1036 public: 1037 using iterator = 1038 concat_iterator<ValueT, 1039 decltype(std::begin(std::declval<RangeTs &>()))...>; 1040 1041 private: 1042 std::tuple<RangeTs...> Ranges; 1043 1044 template <size_t... Ns> 1045 iterator begin_impl(std::index_sequence<Ns...>) { 1046 return iterator(std::get<Ns>(Ranges)...); 1047 } 1048 template <size_t... Ns> 1049 iterator begin_impl(std::index_sequence<Ns...>) const { 1050 return iterator(std::get<Ns>(Ranges)...); 1051 } 1052 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 1053 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1054 std::end(std::get<Ns>(Ranges)))...); 1055 } 1056 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 1057 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1058 std::end(std::get<Ns>(Ranges)))...); 1059 } 1060 1061 public: 1062 concat_range(RangeTs &&... Ranges) 1063 : Ranges(std::forward<RangeTs>(Ranges)...) {} 1064 1065 iterator begin() { 1066 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1067 } 1068 iterator begin() const { 1069 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1070 } 1071 iterator end() { 1072 return end_impl(std::index_sequence_for<RangeTs...>{}); 1073 } 1074 iterator end() const { 1075 return end_impl(std::index_sequence_for<RangeTs...>{}); 1076 } 1077 }; 1078 1079 } // end namespace detail 1080 1081 /// Concatenated range across two or more ranges. 1082 /// 1083 /// The desired value type must be explicitly specified. 1084 template <typename ValueT, typename... RangeTs> 1085 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { 1086 static_assert(sizeof...(RangeTs) > 1, 1087 "Need more than one range to concatenate!"); 1088 return detail::concat_range<ValueT, RangeTs...>( 1089 std::forward<RangeTs>(Ranges)...); 1090 } 1091 1092 /// A utility class used to implement an iterator that contains some base object 1093 /// and an index. The iterator moves the index but keeps the base constant. 1094 template <typename DerivedT, typename BaseT, typename T, 1095 typename PointerT = T *, typename ReferenceT = T &> 1096 class indexed_accessor_iterator 1097 : public llvm::iterator_facade_base<DerivedT, 1098 std::random_access_iterator_tag, T, 1099 std::ptrdiff_t, PointerT, ReferenceT> { 1100 public: 1101 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { 1102 assert(base == rhs.base && "incompatible iterators"); 1103 return index - rhs.index; 1104 } 1105 bool operator==(const indexed_accessor_iterator &rhs) const { 1106 return base == rhs.base && index == rhs.index; 1107 } 1108 bool operator<(const indexed_accessor_iterator &rhs) const { 1109 assert(base == rhs.base && "incompatible iterators"); 1110 return index < rhs.index; 1111 } 1112 1113 DerivedT &operator+=(ptrdiff_t offset) { 1114 this->index += offset; 1115 return static_cast<DerivedT &>(*this); 1116 } 1117 DerivedT &operator-=(ptrdiff_t offset) { 1118 this->index -= offset; 1119 return static_cast<DerivedT &>(*this); 1120 } 1121 1122 /// Returns the current index of the iterator. 1123 ptrdiff_t getIndex() const { return index; } 1124 1125 /// Returns the current base of the iterator. 1126 const BaseT &getBase() const { return base; } 1127 1128 protected: 1129 indexed_accessor_iterator(BaseT base, ptrdiff_t index) 1130 : base(base), index(index) {} 1131 BaseT base; 1132 ptrdiff_t index; 1133 }; 1134 1135 namespace detail { 1136 /// The class represents the base of a range of indexed_accessor_iterators. It 1137 /// provides support for many different range functionalities, e.g. 1138 /// drop_front/slice/etc.. Derived range classes must implement the following 1139 /// static methods: 1140 /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) 1141 /// - Dereference an iterator pointing to the base object at the given 1142 /// index. 1143 /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) 1144 /// - Return a new base that is offset from the provide base by 'index' 1145 /// elements. 1146 template <typename DerivedT, typename BaseT, typename T, 1147 typename PointerT = T *, typename ReferenceT = T &> 1148 class indexed_accessor_range_base { 1149 public: 1150 using RangeBaseT = indexed_accessor_range_base; 1151 1152 /// An iterator element of this range. 1153 class iterator : public indexed_accessor_iterator<iterator, BaseT, T, 1154 PointerT, ReferenceT> { 1155 public: 1156 // Index into this iterator, invoking a static method on the derived type. 1157 ReferenceT operator*() const { 1158 return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); 1159 } 1160 1161 private: 1162 iterator(BaseT owner, ptrdiff_t curIndex) 1163 : iterator::indexed_accessor_iterator(owner, curIndex) {} 1164 1165 /// Allow access to the constructor. 1166 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1167 ReferenceT>; 1168 }; 1169 1170 indexed_accessor_range_base(iterator begin, iterator end) 1171 : base(offset_base(begin.getBase(), begin.getIndex())), 1172 count(end.getIndex() - begin.getIndex()) {} 1173 indexed_accessor_range_base(const iterator_range<iterator> &range) 1174 : indexed_accessor_range_base(range.begin(), range.end()) {} 1175 indexed_accessor_range_base(BaseT base, ptrdiff_t count) 1176 : base(base), count(count) {} 1177 1178 iterator begin() const { return iterator(base, 0); } 1179 iterator end() const { return iterator(base, count); } 1180 ReferenceT operator[](size_t Index) const { 1181 assert(Index < size() && "invalid index for value range"); 1182 return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); 1183 } 1184 ReferenceT front() const { 1185 assert(!empty() && "expected non-empty range"); 1186 return (*this)[0]; 1187 } 1188 ReferenceT back() const { 1189 assert(!empty() && "expected non-empty range"); 1190 return (*this)[size() - 1]; 1191 } 1192 1193 /// Compare this range with another. 1194 template <typename OtherT> 1195 friend bool operator==(const indexed_accessor_range_base &lhs, 1196 const OtherT &rhs) { 1197 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); 1198 } 1199 template <typename OtherT> 1200 friend bool operator!=(const indexed_accessor_range_base &lhs, 1201 const OtherT &rhs) { 1202 return !(lhs == rhs); 1203 } 1204 1205 /// Return the size of this range. 1206 size_t size() const { return count; } 1207 1208 /// Return if the range is empty. 1209 bool empty() const { return size() == 0; } 1210 1211 /// Drop the first N elements, and keep M elements. 1212 DerivedT slice(size_t n, size_t m) const { 1213 assert(n + m <= size() && "invalid size specifiers"); 1214 return DerivedT(offset_base(base, n), m); 1215 } 1216 1217 /// Drop the first n elements. 1218 DerivedT drop_front(size_t n = 1) const { 1219 assert(size() >= n && "Dropping more elements than exist"); 1220 return slice(n, size() - n); 1221 } 1222 /// Drop the last n elements. 1223 DerivedT drop_back(size_t n = 1) const { 1224 assert(size() >= n && "Dropping more elements than exist"); 1225 return DerivedT(base, size() - n); 1226 } 1227 1228 /// Take the first n elements. 1229 DerivedT take_front(size_t n = 1) const { 1230 return n < size() ? drop_back(size() - n) 1231 : static_cast<const DerivedT &>(*this); 1232 } 1233 1234 /// Take the last n elements. 1235 DerivedT take_back(size_t n = 1) const { 1236 return n < size() ? drop_front(size() - n) 1237 : static_cast<const DerivedT &>(*this); 1238 } 1239 1240 /// Allow conversion to any type accepting an iterator_range. 1241 template <typename RangeT, typename = std::enable_if_t<std::is_constructible< 1242 RangeT, iterator_range<iterator>>::value>> 1243 operator RangeT() const { 1244 return RangeT(iterator_range<iterator>(*this)); 1245 } 1246 1247 /// Returns the base of this range. 1248 const BaseT &getBase() const { return base; } 1249 1250 private: 1251 /// Offset the given base by the given amount. 1252 static BaseT offset_base(const BaseT &base, size_t n) { 1253 return n == 0 ? base : DerivedT::offset_base(base, n); 1254 } 1255 1256 protected: 1257 indexed_accessor_range_base(const indexed_accessor_range_base &) = default; 1258 indexed_accessor_range_base(indexed_accessor_range_base &&) = default; 1259 indexed_accessor_range_base & 1260 operator=(const indexed_accessor_range_base &) = default; 1261 1262 /// The base that owns the provided range of values. 1263 BaseT base; 1264 /// The size from the owning range. 1265 ptrdiff_t count; 1266 }; 1267 } // end namespace detail 1268 1269 /// This class provides an implementation of a range of 1270 /// indexed_accessor_iterators where the base is not indexable. Ranges with 1271 /// bases that are offsetable should derive from indexed_accessor_range_base 1272 /// instead. Derived range classes are expected to implement the following 1273 /// static method: 1274 /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) 1275 /// - Dereference an iterator pointing to a parent base at the given index. 1276 template <typename DerivedT, typename BaseT, typename T, 1277 typename PointerT = T *, typename ReferenceT = T &> 1278 class indexed_accessor_range 1279 : public detail::indexed_accessor_range_base< 1280 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { 1281 public: 1282 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) 1283 : detail::indexed_accessor_range_base< 1284 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( 1285 std::make_pair(base, startIndex), count) {} 1286 using detail::indexed_accessor_range_base< 1287 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, 1288 ReferenceT>::indexed_accessor_range_base; 1289 1290 /// Returns the current base of the range. 1291 const BaseT &getBase() const { return this->base.first; } 1292 1293 /// Returns the current start index of the range. 1294 ptrdiff_t getStartIndex() const { return this->base.second; } 1295 1296 /// See `detail::indexed_accessor_range_base` for details. 1297 static std::pair<BaseT, ptrdiff_t> 1298 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { 1299 // We encode the internal base as a pair of the derived base and a start 1300 // index into the derived base. 1301 return std::make_pair(base.first, base.second + index); 1302 } 1303 /// See `detail::indexed_accessor_range_base` for details. 1304 static ReferenceT 1305 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, 1306 ptrdiff_t index) { 1307 return DerivedT::dereference(base.first, base.second + index); 1308 } 1309 }; 1310 1311 namespace detail { 1312 /// Return a reference to the first or second member of a reference. Otherwise, 1313 /// return a copy of the member of a temporary. 1314 /// 1315 /// When passing a range whose iterators return values instead of references, 1316 /// the reference must be dropped from `decltype((elt.first))`, which will 1317 /// always be a reference, to avoid returning a reference to a temporary. 1318 template <typename EltTy, typename FirstTy> class first_or_second_type { 1319 public: 1320 using type = 1321 typename std::conditional_t<std::is_reference<EltTy>::value, FirstTy, 1322 std::remove_reference_t<FirstTy>>; 1323 }; 1324 } // end namespace detail 1325 1326 /// Given a container of pairs, return a range over the first elements. 1327 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { 1328 using EltTy = decltype((*std::begin(c))); 1329 return llvm::map_range(std::forward<ContainerTy>(c), 1330 [](EltTy elt) -> typename detail::first_or_second_type< 1331 EltTy, decltype((elt.first))>::type { 1332 return elt.first; 1333 }); 1334 } 1335 1336 /// Given a container of pairs, return a range over the second elements. 1337 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { 1338 using EltTy = decltype((*std::begin(c))); 1339 return llvm::map_range( 1340 std::forward<ContainerTy>(c), 1341 [](EltTy elt) -> 1342 typename detail::first_or_second_type<EltTy, 1343 decltype((elt.second))>::type { 1344 return elt.second; 1345 }); 1346 } 1347 1348 //===----------------------------------------------------------------------===// 1349 // Extra additions to <utility> 1350 //===----------------------------------------------------------------------===// 1351 1352 /// Function object to check whether the first component of a std::pair 1353 /// compares less than the first component of another std::pair. 1354 struct less_first { 1355 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1356 return std::less<>()(lhs.first, rhs.first); 1357 } 1358 }; 1359 1360 /// Function object to check whether the second component of a std::pair 1361 /// compares less than the second component of another std::pair. 1362 struct less_second { 1363 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1364 return std::less<>()(lhs.second, rhs.second); 1365 } 1366 }; 1367 1368 /// \brief Function object to apply a binary function to the first component of 1369 /// a std::pair. 1370 template<typename FuncTy> 1371 struct on_first { 1372 FuncTy func; 1373 1374 template <typename T> 1375 decltype(auto) operator()(const T &lhs, const T &rhs) const { 1376 return func(lhs.first, rhs.first); 1377 } 1378 }; 1379 1380 /// Utility type to build an inheritance chain that makes it easy to rank 1381 /// overload candidates. 1382 template <int N> struct rank : rank<N - 1> {}; 1383 template <> struct rank<0> {}; 1384 1385 /// traits class for checking whether type T is one of any of the given 1386 /// types in the variadic list. 1387 template <typename T, typename... Ts> 1388 using is_one_of = disjunction<std::is_same<T, Ts>...>; 1389 1390 /// traits class for checking whether type T is a base class for all 1391 /// the given types in the variadic list. 1392 template <typename T, typename... Ts> 1393 using are_base_of = conjunction<std::is_base_of<T, Ts>...>; 1394 1395 namespace detail { 1396 template <typename... Ts> struct Visitor; 1397 1398 template <typename HeadT, typename... TailTs> 1399 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { 1400 explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) 1401 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), 1402 Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} 1403 using remove_cvref_t<HeadT>::operator(); 1404 using Visitor<TailTs...>::operator(); 1405 }; 1406 1407 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { 1408 explicit constexpr Visitor(HeadT &&Head) 1409 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} 1410 using remove_cvref_t<HeadT>::operator(); 1411 }; 1412 } // namespace detail 1413 1414 /// Returns an opaquely-typed Callable object whose operator() overload set is 1415 /// the sum of the operator() overload sets of each CallableT in CallableTs. 1416 /// 1417 /// The type of the returned object derives from each CallableT in CallableTs. 1418 /// The returned object is constructed by invoking the appropriate copy or move 1419 /// constructor of each CallableT, as selected by overload resolution on the 1420 /// corresponding argument to makeVisitor. 1421 /// 1422 /// Example: 1423 /// 1424 /// \code 1425 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, 1426 /// [](int i) { return "int"; }, 1427 /// [](std::string s) { return "str"; }); 1428 /// auto a = visitor(42); // `a` is now "int". 1429 /// auto b = visitor("foo"); // `b` is now "str". 1430 /// auto c = visitor(3.14f); // `c` is now "unhandled type". 1431 /// \endcode 1432 /// 1433 /// Example of making a visitor with a lambda which captures a move-only type: 1434 /// 1435 /// \code 1436 /// std::unique_ptr<FooHandler> FH = /* ... */; 1437 /// auto visitor = makeVisitor( 1438 /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, 1439 /// [](int i) { return i; }, 1440 /// [](std::string s) { return atoi(s); }); 1441 /// \endcode 1442 template <typename... CallableTs> 1443 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { 1444 return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); 1445 } 1446 1447 //===----------------------------------------------------------------------===// 1448 // Extra additions to <algorithm> 1449 //===----------------------------------------------------------------------===// 1450 1451 // We have a copy here so that LLVM behaves the same when using different 1452 // standard libraries. 1453 template <class Iterator, class RNG> 1454 void shuffle(Iterator first, Iterator last, RNG &&g) { 1455 // It would be better to use a std::uniform_int_distribution, 1456 // but that would be stdlib dependent. 1457 typedef 1458 typename std::iterator_traits<Iterator>::difference_type difference_type; 1459 for (auto size = last - first; size > 1; ++first, (void)--size) { 1460 difference_type offset = g() % size; 1461 // Avoid self-assignment due to incorrect assertions in libstdc++ 1462 // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). 1463 if (offset != difference_type(0)) 1464 std::iter_swap(first, first + offset); 1465 } 1466 } 1467 1468 /// Adapt std::less<T> for array_pod_sort. 1469 template<typename T> 1470 inline int array_pod_sort_comparator(const void *P1, const void *P2) { 1471 if (std::less<T>()(*reinterpret_cast<const T*>(P1), 1472 *reinterpret_cast<const T*>(P2))) 1473 return -1; 1474 if (std::less<T>()(*reinterpret_cast<const T*>(P2), 1475 *reinterpret_cast<const T*>(P1))) 1476 return 1; 1477 return 0; 1478 } 1479 1480 /// get_array_pod_sort_comparator - This is an internal helper function used to 1481 /// get type deduction of T right. 1482 template<typename T> 1483 inline int (*get_array_pod_sort_comparator(const T &)) 1484 (const void*, const void*) { 1485 return array_pod_sort_comparator<T>; 1486 } 1487 1488 #ifdef EXPENSIVE_CHECKS 1489 namespace detail { 1490 1491 inline unsigned presortShuffleEntropy() { 1492 static unsigned Result(std::random_device{}()); 1493 return Result; 1494 } 1495 1496 template <class IteratorTy> 1497 inline void presortShuffle(IteratorTy Start, IteratorTy End) { 1498 std::mt19937 Generator(presortShuffleEntropy()); 1499 llvm::shuffle(Start, End, Generator); 1500 } 1501 1502 } // end namespace detail 1503 #endif 1504 1505 /// array_pod_sort - This sorts an array with the specified start and end 1506 /// extent. This is just like std::sort, except that it calls qsort instead of 1507 /// using an inlined template. qsort is slightly slower than std::sort, but 1508 /// most sorts are not performance critical in LLVM and std::sort has to be 1509 /// template instantiated for each type, leading to significant measured code 1510 /// bloat. This function should generally be used instead of std::sort where 1511 /// possible. 1512 /// 1513 /// This function assumes that you have simple POD-like types that can be 1514 /// compared with std::less and can be moved with memcpy. If this isn't true, 1515 /// you should use std::sort. 1516 /// 1517 /// NOTE: If qsort_r were portable, we could allow a custom comparator and 1518 /// default to std::less. 1519 template<class IteratorTy> 1520 inline void array_pod_sort(IteratorTy Start, IteratorTy End) { 1521 // Don't inefficiently call qsort with one element or trigger undefined 1522 // behavior with an empty sequence. 1523 auto NElts = End - Start; 1524 if (NElts <= 1) return; 1525 #ifdef EXPENSIVE_CHECKS 1526 detail::presortShuffle<IteratorTy>(Start, End); 1527 #endif 1528 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); 1529 } 1530 1531 template <class IteratorTy> 1532 inline void array_pod_sort( 1533 IteratorTy Start, IteratorTy End, 1534 int (*Compare)( 1535 const typename std::iterator_traits<IteratorTy>::value_type *, 1536 const typename std::iterator_traits<IteratorTy>::value_type *)) { 1537 // Don't inefficiently call qsort with one element or trigger undefined 1538 // behavior with an empty sequence. 1539 auto NElts = End - Start; 1540 if (NElts <= 1) return; 1541 #ifdef EXPENSIVE_CHECKS 1542 detail::presortShuffle<IteratorTy>(Start, End); 1543 #endif 1544 qsort(&*Start, NElts, sizeof(*Start), 1545 reinterpret_cast<int (*)(const void *, const void *)>(Compare)); 1546 } 1547 1548 namespace detail { 1549 template <typename T> 1550 // We can use qsort if the iterator type is a pointer and the underlying value 1551 // is trivially copyable. 1552 using sort_trivially_copyable = conjunction< 1553 std::is_pointer<T>, 1554 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; 1555 } // namespace detail 1556 1557 // Provide wrappers to std::sort which shuffle the elements before sorting 1558 // to help uncover non-deterministic behavior (PR35135). 1559 template <typename IteratorTy, 1560 std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value, 1561 int> = 0> 1562 inline void sort(IteratorTy Start, IteratorTy End) { 1563 #ifdef EXPENSIVE_CHECKS 1564 detail::presortShuffle<IteratorTy>(Start, End); 1565 #endif 1566 std::sort(Start, End); 1567 } 1568 1569 // Forward trivially copyable types to array_pod_sort. This avoids a large 1570 // amount of code bloat for a minor performance hit. 1571 template <typename IteratorTy, 1572 std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value, 1573 int> = 0> 1574 inline void sort(IteratorTy Start, IteratorTy End) { 1575 array_pod_sort(Start, End); 1576 } 1577 1578 template <typename Container> inline void sort(Container &&C) { 1579 llvm::sort(adl_begin(C), adl_end(C)); 1580 } 1581 1582 template <typename IteratorTy, typename Compare> 1583 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { 1584 #ifdef EXPENSIVE_CHECKS 1585 detail::presortShuffle<IteratorTy>(Start, End); 1586 #endif 1587 std::sort(Start, End, Comp); 1588 } 1589 1590 template <typename Container, typename Compare> 1591 inline void sort(Container &&C, Compare Comp) { 1592 llvm::sort(adl_begin(C), adl_end(C), Comp); 1593 } 1594 1595 /// Get the size of a range. This is a wrapper function around std::distance 1596 /// which is only enabled when the operation is O(1). 1597 template <typename R> 1598 auto size(R &&Range, 1599 std::enable_if_t< 1600 std::is_base_of<std::random_access_iterator_tag, 1601 typename std::iterator_traits<decltype( 1602 Range.begin())>::iterator_category>::value, 1603 void> * = nullptr) { 1604 return std::distance(Range.begin(), Range.end()); 1605 } 1606 1607 /// Provide wrappers to std::for_each which take ranges instead of having to 1608 /// pass begin/end explicitly. 1609 template <typename R, typename UnaryFunction> 1610 UnaryFunction for_each(R &&Range, UnaryFunction F) { 1611 return std::for_each(adl_begin(Range), adl_end(Range), F); 1612 } 1613 1614 /// Provide wrappers to std::all_of which take ranges instead of having to pass 1615 /// begin/end explicitly. 1616 template <typename R, typename UnaryPredicate> 1617 bool all_of(R &&Range, UnaryPredicate P) { 1618 return std::all_of(adl_begin(Range), adl_end(Range), P); 1619 } 1620 1621 /// Provide wrappers to std::any_of which take ranges instead of having to pass 1622 /// begin/end explicitly. 1623 template <typename R, typename UnaryPredicate> 1624 bool any_of(R &&Range, UnaryPredicate P) { 1625 return std::any_of(adl_begin(Range), adl_end(Range), P); 1626 } 1627 1628 /// Provide wrappers to std::none_of which take ranges instead of having to pass 1629 /// begin/end explicitly. 1630 template <typename R, typename UnaryPredicate> 1631 bool none_of(R &&Range, UnaryPredicate P) { 1632 return std::none_of(adl_begin(Range), adl_end(Range), P); 1633 } 1634 1635 /// Provide wrappers to std::find which take ranges instead of having to pass 1636 /// begin/end explicitly. 1637 template <typename R, typename T> auto find(R &&Range, const T &Val) { 1638 return std::find(adl_begin(Range), adl_end(Range), Val); 1639 } 1640 1641 /// Provide wrappers to std::find_if which take ranges instead of having to pass 1642 /// begin/end explicitly. 1643 template <typename R, typename UnaryPredicate> 1644 auto find_if(R &&Range, UnaryPredicate P) { 1645 return std::find_if(adl_begin(Range), adl_end(Range), P); 1646 } 1647 1648 template <typename R, typename UnaryPredicate> 1649 auto find_if_not(R &&Range, UnaryPredicate P) { 1650 return std::find_if_not(adl_begin(Range), adl_end(Range), P); 1651 } 1652 1653 /// Provide wrappers to std::remove_if which take ranges instead of having to 1654 /// pass begin/end explicitly. 1655 template <typename R, typename UnaryPredicate> 1656 auto remove_if(R &&Range, UnaryPredicate P) { 1657 return std::remove_if(adl_begin(Range), adl_end(Range), P); 1658 } 1659 1660 /// Provide wrappers to std::copy_if which take ranges instead of having to 1661 /// pass begin/end explicitly. 1662 template <typename R, typename OutputIt, typename UnaryPredicate> 1663 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { 1664 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); 1665 } 1666 1667 template <typename R, typename OutputIt> 1668 OutputIt copy(R &&Range, OutputIt Out) { 1669 return std::copy(adl_begin(Range), adl_end(Range), Out); 1670 } 1671 1672 /// Provide wrappers to std::move which take ranges instead of having to 1673 /// pass begin/end explicitly. 1674 template <typename R, typename OutputIt> 1675 OutputIt move(R &&Range, OutputIt Out) { 1676 return std::move(adl_begin(Range), adl_end(Range), Out); 1677 } 1678 1679 /// Wrapper function around std::find to detect if an element exists 1680 /// in a container. 1681 template <typename R, typename E> 1682 bool is_contained(R &&Range, const E &Element) { 1683 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); 1684 } 1685 1686 template <typename T> 1687 constexpr bool is_contained(std::initializer_list<T> Set, T Value) { 1688 // TODO: Use std::find when we switch to C++20. 1689 for (T V : Set) 1690 if (V == Value) 1691 return true; 1692 return false; 1693 } 1694 1695 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1696 /// are sorted with respect to a comparator \p C. 1697 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { 1698 return std::is_sorted(adl_begin(Range), adl_end(Range), C); 1699 } 1700 1701 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1702 /// are sorted in non-descending order. 1703 template <typename R> bool is_sorted(R &&Range) { 1704 return std::is_sorted(adl_begin(Range), adl_end(Range)); 1705 } 1706 1707 /// Wrapper function around std::count to count the number of times an element 1708 /// \p Element occurs in the given range \p Range. 1709 template <typename R, typename E> auto count(R &&Range, const E &Element) { 1710 return std::count(adl_begin(Range), adl_end(Range), Element); 1711 } 1712 1713 /// Wrapper function around std::count_if to count the number of times an 1714 /// element satisfying a given predicate occurs in a range. 1715 template <typename R, typename UnaryPredicate> 1716 auto count_if(R &&Range, UnaryPredicate P) { 1717 return std::count_if(adl_begin(Range), adl_end(Range), P); 1718 } 1719 1720 /// Wrapper function around std::transform to apply a function to a range and 1721 /// store the result elsewhere. 1722 template <typename R, typename OutputIt, typename UnaryFunction> 1723 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { 1724 return std::transform(adl_begin(Range), adl_end(Range), d_first, F); 1725 } 1726 1727 /// Provide wrappers to std::partition which take ranges instead of having to 1728 /// pass begin/end explicitly. 1729 template <typename R, typename UnaryPredicate> 1730 auto partition(R &&Range, UnaryPredicate P) { 1731 return std::partition(adl_begin(Range), adl_end(Range), P); 1732 } 1733 1734 /// Provide wrappers to std::lower_bound which take ranges instead of having to 1735 /// pass begin/end explicitly. 1736 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { 1737 return std::lower_bound(adl_begin(Range), adl_end(Range), 1738 std::forward<T>(Value)); 1739 } 1740 1741 template <typename R, typename T, typename Compare> 1742 auto lower_bound(R &&Range, T &&Value, Compare C) { 1743 return std::lower_bound(adl_begin(Range), adl_end(Range), 1744 std::forward<T>(Value), C); 1745 } 1746 1747 /// Provide wrappers to std::upper_bound which take ranges instead of having to 1748 /// pass begin/end explicitly. 1749 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { 1750 return std::upper_bound(adl_begin(Range), adl_end(Range), 1751 std::forward<T>(Value)); 1752 } 1753 1754 template <typename R, typename T, typename Compare> 1755 auto upper_bound(R &&Range, T &&Value, Compare C) { 1756 return std::upper_bound(adl_begin(Range), adl_end(Range), 1757 std::forward<T>(Value), C); 1758 } 1759 1760 template <typename R> 1761 void stable_sort(R &&Range) { 1762 std::stable_sort(adl_begin(Range), adl_end(Range)); 1763 } 1764 1765 template <typename R, typename Compare> 1766 void stable_sort(R &&Range, Compare C) { 1767 std::stable_sort(adl_begin(Range), adl_end(Range), C); 1768 } 1769 1770 /// Binary search for the first iterator in a range where a predicate is false. 1771 /// Requires that C is always true below some limit, and always false above it. 1772 template <typename R, typename Predicate, 1773 typename Val = decltype(*adl_begin(std::declval<R>()))> 1774 auto partition_point(R &&Range, Predicate P) { 1775 return std::partition_point(adl_begin(Range), adl_end(Range), P); 1776 } 1777 1778 template<typename Range, typename Predicate> 1779 auto unique(Range &&R, Predicate P) { 1780 return std::unique(adl_begin(R), adl_end(R), P); 1781 } 1782 1783 /// Wrapper function around std::equal to detect if pair-wise elements between 1784 /// two ranges are the same. 1785 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { 1786 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), 1787 adl_end(RRange)); 1788 } 1789 1790 /// Wrapper function around std::equal to detect if all elements 1791 /// in a container are same. 1792 template <typename R> 1793 bool is_splat(R &&Range) { 1794 size_t range_size = size(Range); 1795 return range_size != 0 && (range_size == 1 || 1796 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range))); 1797 } 1798 1799 /// Provide a container algorithm similar to C++ Library Fundamentals v2's 1800 /// `erase_if` which is equivalent to: 1801 /// 1802 /// C.erase(remove_if(C, pred), C.end()); 1803 /// 1804 /// This version works for any container with an erase method call accepting 1805 /// two iterators. 1806 template <typename Container, typename UnaryPredicate> 1807 void erase_if(Container &C, UnaryPredicate P) { 1808 C.erase(remove_if(C, P), C.end()); 1809 } 1810 1811 /// Wrapper function to remove a value from a container: 1812 /// 1813 /// C.erase(remove(C.begin(), C.end(), V), C.end()); 1814 template <typename Container, typename ValueType> 1815 void erase_value(Container &C, ValueType V) { 1816 C.erase(std::remove(C.begin(), C.end(), V), C.end()); 1817 } 1818 1819 /// Wrapper function to append a range to a container. 1820 /// 1821 /// C.insert(C.end(), R.begin(), R.end()); 1822 template <typename Container, typename Range> 1823 inline void append_range(Container &C, Range &&R) { 1824 C.insert(C.end(), R.begin(), R.end()); 1825 } 1826 1827 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 1828 /// the range [ValIt, ValEnd) (which is not from the same container). 1829 template<typename Container, typename RandomAccessIterator> 1830 void replace(Container &Cont, typename Container::iterator ContIt, 1831 typename Container::iterator ContEnd, RandomAccessIterator ValIt, 1832 RandomAccessIterator ValEnd) { 1833 while (true) { 1834 if (ValIt == ValEnd) { 1835 Cont.erase(ContIt, ContEnd); 1836 return; 1837 } else if (ContIt == ContEnd) { 1838 Cont.insert(ContIt, ValIt, ValEnd); 1839 return; 1840 } 1841 *ContIt++ = *ValIt++; 1842 } 1843 } 1844 1845 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 1846 /// the range R. 1847 template<typename Container, typename Range = std::initializer_list< 1848 typename Container::value_type>> 1849 void replace(Container &Cont, typename Container::iterator ContIt, 1850 typename Container::iterator ContEnd, Range R) { 1851 replace(Cont, ContIt, ContEnd, R.begin(), R.end()); 1852 } 1853 1854 /// An STL-style algorithm similar to std::for_each that applies a second 1855 /// functor between every pair of elements. 1856 /// 1857 /// This provides the control flow logic to, for example, print a 1858 /// comma-separated list: 1859 /// \code 1860 /// interleave(names.begin(), names.end(), 1861 /// [&](StringRef name) { os << name; }, 1862 /// [&] { os << ", "; }); 1863 /// \endcode 1864 template <typename ForwardIterator, typename UnaryFunctor, 1865 typename NullaryFunctor, 1866 typename = typename std::enable_if< 1867 !std::is_constructible<StringRef, UnaryFunctor>::value && 1868 !std::is_constructible<StringRef, NullaryFunctor>::value>::type> 1869 inline void interleave(ForwardIterator begin, ForwardIterator end, 1870 UnaryFunctor each_fn, NullaryFunctor between_fn) { 1871 if (begin == end) 1872 return; 1873 each_fn(*begin); 1874 ++begin; 1875 for (; begin != end; ++begin) { 1876 between_fn(); 1877 each_fn(*begin); 1878 } 1879 } 1880 1881 template <typename Container, typename UnaryFunctor, typename NullaryFunctor, 1882 typename = typename std::enable_if< 1883 !std::is_constructible<StringRef, UnaryFunctor>::value && 1884 !std::is_constructible<StringRef, NullaryFunctor>::value>::type> 1885 inline void interleave(const Container &c, UnaryFunctor each_fn, 1886 NullaryFunctor between_fn) { 1887 interleave(c.begin(), c.end(), each_fn, between_fn); 1888 } 1889 1890 /// Overload of interleave for the common case of string separator. 1891 template <typename Container, typename UnaryFunctor, typename StreamT, 1892 typename T = detail::ValueOfRange<Container>> 1893 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, 1894 const StringRef &separator) { 1895 interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); 1896 } 1897 template <typename Container, typename StreamT, 1898 typename T = detail::ValueOfRange<Container>> 1899 inline void interleave(const Container &c, StreamT &os, 1900 const StringRef &separator) { 1901 interleave( 1902 c, os, [&](const T &a) { os << a; }, separator); 1903 } 1904 1905 template <typename Container, typename UnaryFunctor, typename StreamT, 1906 typename T = detail::ValueOfRange<Container>> 1907 inline void interleaveComma(const Container &c, StreamT &os, 1908 UnaryFunctor each_fn) { 1909 interleave(c, os, each_fn, ", "); 1910 } 1911 template <typename Container, typename StreamT, 1912 typename T = detail::ValueOfRange<Container>> 1913 inline void interleaveComma(const Container &c, StreamT &os) { 1914 interleaveComma(c, os, [&](const T &a) { os << a; }); 1915 } 1916 1917 //===----------------------------------------------------------------------===// 1918 // Extra additions to <memory> 1919 //===----------------------------------------------------------------------===// 1920 1921 struct FreeDeleter { 1922 void operator()(void* v) { 1923 ::free(v); 1924 } 1925 }; 1926 1927 template<typename First, typename Second> 1928 struct pair_hash { 1929 size_t operator()(const std::pair<First, Second> &P) const { 1930 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); 1931 } 1932 }; 1933 1934 /// Binary functor that adapts to any other binary functor after dereferencing 1935 /// operands. 1936 template <typename T> struct deref { 1937 T func; 1938 1939 // Could be further improved to cope with non-derivable functors and 1940 // non-binary functors (should be a variadic template member function 1941 // operator()). 1942 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { 1943 assert(lhs); 1944 assert(rhs); 1945 return func(*lhs, *rhs); 1946 } 1947 }; 1948 1949 namespace detail { 1950 1951 template <typename R> class enumerator_iter; 1952 1953 template <typename R> struct result_pair { 1954 using value_reference = 1955 typename std::iterator_traits<IterOfRange<R>>::reference; 1956 1957 friend class enumerator_iter<R>; 1958 1959 result_pair() = default; 1960 result_pair(std::size_t Index, IterOfRange<R> Iter) 1961 : Index(Index), Iter(Iter) {} 1962 1963 result_pair(const result_pair<R> &Other) 1964 : Index(Other.Index), Iter(Other.Iter) {} 1965 result_pair &operator=(const result_pair &Other) { 1966 Index = Other.Index; 1967 Iter = Other.Iter; 1968 return *this; 1969 } 1970 1971 std::size_t index() const { return Index; } 1972 value_reference value() const { return *Iter; } 1973 1974 private: 1975 std::size_t Index = std::numeric_limits<std::size_t>::max(); 1976 IterOfRange<R> Iter; 1977 }; 1978 1979 template <typename R> 1980 class enumerator_iter 1981 : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag, 1982 const result_pair<R>> { 1983 using result_type = result_pair<R>; 1984 1985 public: 1986 explicit enumerator_iter(IterOfRange<R> EndIter) 1987 : Result(std::numeric_limits<size_t>::max(), EndIter) {} 1988 1989 enumerator_iter(std::size_t Index, IterOfRange<R> Iter) 1990 : Result(Index, Iter) {} 1991 1992 const result_type &operator*() const { return Result; } 1993 1994 enumerator_iter &operator++() { 1995 assert(Result.Index != std::numeric_limits<size_t>::max()); 1996 ++Result.Iter; 1997 ++Result.Index; 1998 return *this; 1999 } 2000 2001 bool operator==(const enumerator_iter &RHS) const { 2002 // Don't compare indices here, only iterators. It's possible for an end 2003 // iterator to have different indices depending on whether it was created 2004 // by calling std::end() versus incrementing a valid iterator. 2005 return Result.Iter == RHS.Result.Iter; 2006 } 2007 2008 enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {} 2009 enumerator_iter &operator=(const enumerator_iter &Other) { 2010 Result = Other.Result; 2011 return *this; 2012 } 2013 2014 private: 2015 result_type Result; 2016 }; 2017 2018 template <typename R> class enumerator { 2019 public: 2020 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} 2021 2022 enumerator_iter<R> begin() { 2023 return enumerator_iter<R>(0, std::begin(TheRange)); 2024 } 2025 enumerator_iter<R> begin() const { 2026 return enumerator_iter<R>(0, std::begin(TheRange)); 2027 } 2028 2029 enumerator_iter<R> end() { 2030 return enumerator_iter<R>(std::end(TheRange)); 2031 } 2032 enumerator_iter<R> end() const { 2033 return enumerator_iter<R>(std::end(TheRange)); 2034 } 2035 2036 private: 2037 R TheRange; 2038 }; 2039 2040 } // end namespace detail 2041 2042 /// Given an input range, returns a new range whose values are are pair (A,B) 2043 /// such that A is the 0-based index of the item in the sequence, and B is 2044 /// the value from the original sequence. Example: 2045 /// 2046 /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; 2047 /// for (auto X : enumerate(Items)) { 2048 /// printf("Item %d - %c\n", X.index(), X.value()); 2049 /// } 2050 /// 2051 /// Output: 2052 /// Item 0 - A 2053 /// Item 1 - B 2054 /// Item 2 - C 2055 /// Item 3 - D 2056 /// 2057 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { 2058 return detail::enumerator<R>(std::forward<R>(TheRange)); 2059 } 2060 2061 namespace detail { 2062 2063 template <typename F, typename Tuple, std::size_t... I> 2064 decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) { 2065 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); 2066 } 2067 2068 } // end namespace detail 2069 2070 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the 2071 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and 2072 /// return the result. 2073 template <typename F, typename Tuple> 2074 decltype(auto) apply_tuple(F &&f, Tuple &&t) { 2075 using Indices = std::make_index_sequence< 2076 std::tuple_size<typename std::decay<Tuple>::type>::value>; 2077 2078 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), 2079 Indices{}); 2080 } 2081 2082 namespace detail { 2083 2084 template <typename Predicate, typename... Args> 2085 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { 2086 auto z = zip(args...); 2087 auto it = z.begin(); 2088 auto end = z.end(); 2089 while (it != end) { 2090 if (!apply_tuple([&](auto &&...args) { return P(args...); }, *it)) 2091 return false; 2092 ++it; 2093 } 2094 return it.all_equals(end); 2095 } 2096 2097 // Just an adaptor to switch the order of argument and have the predicate before 2098 // the zipped inputs. 2099 template <typename... ArgsThenPredicate, size_t... InputIndexes> 2100 bool all_of_zip_predicate_last( 2101 std::tuple<ArgsThenPredicate...> argsThenPredicate, 2102 std::index_sequence<InputIndexes...>) { 2103 auto constexpr OutputIndex = 2104 std::tuple_size<decltype(argsThenPredicate)>::value - 1; 2105 return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), 2106 std::get<InputIndexes>(argsThenPredicate)...); 2107 } 2108 2109 } // end namespace detail 2110 2111 /// Compare two zipped ranges using the provided predicate (as last argument). 2112 /// Return true if all elements satisfy the predicate and false otherwise. 2113 // Return false if the zipped iterator aren't all at end (size mismatch). 2114 template <typename... ArgsAndPredicate> 2115 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { 2116 return detail::all_of_zip_predicate_last( 2117 std::forward_as_tuple(argsAndPredicate...), 2118 std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); 2119 } 2120 2121 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) 2122 /// time. Not meant for use with random-access iterators. 2123 /// Can optionally take a predicate to filter lazily some items. 2124 template <typename IterTy, 2125 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2126 bool hasNItems( 2127 IterTy &&Begin, IterTy &&End, unsigned N, 2128 Pred &&ShouldBeCounted = 2129 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2130 std::enable_if_t< 2131 !std::is_base_of<std::random_access_iterator_tag, 2132 typename std::iterator_traits<std::remove_reference_t< 2133 decltype(Begin)>>::iterator_category>::value, 2134 void> * = nullptr) { 2135 for (; N; ++Begin) { 2136 if (Begin == End) 2137 return false; // Too few. 2138 N -= ShouldBeCounted(*Begin); 2139 } 2140 for (; Begin != End; ++Begin) 2141 if (ShouldBeCounted(*Begin)) 2142 return false; // Too many. 2143 return true; 2144 } 2145 2146 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) 2147 /// time. Not meant for use with random-access iterators. 2148 /// Can optionally take a predicate to lazily filter some items. 2149 template <typename IterTy, 2150 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2151 bool hasNItemsOrMore( 2152 IterTy &&Begin, IterTy &&End, unsigned N, 2153 Pred &&ShouldBeCounted = 2154 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2155 std::enable_if_t< 2156 !std::is_base_of<std::random_access_iterator_tag, 2157 typename std::iterator_traits<std::remove_reference_t< 2158 decltype(Begin)>>::iterator_category>::value, 2159 void> * = nullptr) { 2160 for (; N; ++Begin) { 2161 if (Begin == End) 2162 return false; // Too few. 2163 N -= ShouldBeCounted(*Begin); 2164 } 2165 return true; 2166 } 2167 2168 /// Returns true if the sequence [Begin, End) has N or less items. Can 2169 /// optionally take a predicate to lazily filter some items. 2170 template <typename IterTy, 2171 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2172 bool hasNItemsOrLess( 2173 IterTy &&Begin, IterTy &&End, unsigned N, 2174 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { 2175 return true; 2176 }) { 2177 assert(N != std::numeric_limits<unsigned>::max()); 2178 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); 2179 } 2180 2181 /// Returns true if the given container has exactly N items 2182 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { 2183 return hasNItems(std::begin(C), std::end(C), N); 2184 } 2185 2186 /// Returns true if the given container has N or more items 2187 template <typename ContainerTy> 2188 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { 2189 return hasNItemsOrMore(std::begin(C), std::end(C), N); 2190 } 2191 2192 /// Returns true if the given container has N or less items 2193 template <typename ContainerTy> 2194 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { 2195 return hasNItemsOrLess(std::begin(C), std::end(C), N); 2196 } 2197 2198 /// Returns a raw pointer that represents the same address as the argument. 2199 /// 2200 /// This implementation can be removed once we move to C++20 where it's defined 2201 /// as std::to_address(). 2202 /// 2203 /// The std::pointer_traits<>::to_address(p) variations of these overloads has 2204 /// not been implemented. 2205 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } 2206 template <class T> constexpr T *to_address(T *P) { return P; } 2207 2208 } // end namespace llvm 2209 2210 #endif // LLVM_ADT_STLEXTRAS_H 2211