xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains some templates that are useful if you are working with
11 /// the STL at all.
12 ///
13 /// No library is required when using these functions.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/ADT/ADL.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/STLForwardCompat.h"
23 #include "llvm/ADT/STLFunctionalExtras.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Config/abi-breaking.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <functional>
34 #include <initializer_list>
35 #include <iterator>
36 #include <limits>
37 #include <memory>
38 #include <optional>
39 #include <tuple>
40 #include <type_traits>
41 #include <utility>
42 
43 #ifdef EXPENSIVE_CHECKS
44 #include <random> // for std::mt19937
45 #endif
46 
47 namespace llvm {
48 
49 //===----------------------------------------------------------------------===//
50 //     Extra additions to <type_traits>
51 //===----------------------------------------------------------------------===//
52 
53 template <typename T> struct make_const_ptr {
54   using type = std::add_pointer_t<std::add_const_t<T>>;
55 };
56 
57 template <typename T> struct make_const_ref {
58   using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
59 };
60 
61 namespace detail {
62 template <class, template <class...> class Op, class... Args> struct detector {
63   using value_t = std::false_type;
64 };
65 template <template <class...> class Op, class... Args>
66 struct detector<std::void_t<Op<Args...>>, Op, Args...> {
67   using value_t = std::true_type;
68 };
69 } // end namespace detail
70 
71 /// Detects if a given trait holds for some set of arguments 'Args'.
72 /// For example, the given trait could be used to detect if a given type
73 /// has a copy assignment operator:
74 ///   template<class T>
75 ///   using has_copy_assign_t = decltype(std::declval<T&>()
76 ///                                                 = std::declval<const T&>());
77 ///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
78 template <template <class...> class Op, class... Args>
79 using is_detected = typename detail::detector<void, Op, Args...>::value_t;
80 
81 /// This class provides various trait information about a callable object.
82 ///   * To access the number of arguments: Traits::num_args
83 ///   * To access the type of an argument: Traits::arg_t<Index>
84 ///   * To access the type of the result:  Traits::result_t
85 template <typename T, bool isClass = std::is_class<T>::value>
86 struct function_traits : public function_traits<decltype(&T::operator())> {};
87 
88 /// Overload for class function types.
89 template <typename ClassType, typename ReturnType, typename... Args>
90 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
91   /// The number of arguments to this function.
92   enum { num_args = sizeof...(Args) };
93 
94   /// The result type of this function.
95   using result_t = ReturnType;
96 
97   /// The type of an argument to this function.
98   template <size_t Index>
99   using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
100 };
101 /// Overload for class function types.
102 template <typename ClassType, typename ReturnType, typename... Args>
103 struct function_traits<ReturnType (ClassType::*)(Args...), false>
104     : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
105 /// Overload for non-class function types.
106 template <typename ReturnType, typename... Args>
107 struct function_traits<ReturnType (*)(Args...), false> {
108   /// The number of arguments to this function.
109   enum { num_args = sizeof...(Args) };
110 
111   /// The result type of this function.
112   using result_t = ReturnType;
113 
114   /// The type of an argument to this function.
115   template <size_t i>
116   using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
117 };
118 template <typename ReturnType, typename... Args>
119 struct function_traits<ReturnType (*const)(Args...), false>
120     : public function_traits<ReturnType (*)(Args...)> {};
121 /// Overload for non-class function type references.
122 template <typename ReturnType, typename... Args>
123 struct function_traits<ReturnType (&)(Args...), false>
124     : public function_traits<ReturnType (*)(Args...)> {};
125 
126 /// traits class for checking whether type T is one of any of the given
127 /// types in the variadic list.
128 template <typename T, typename... Ts>
129 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
130 
131 /// traits class for checking whether type T is a base class for all
132 ///  the given types in the variadic list.
133 template <typename T, typename... Ts>
134 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
135 
136 namespace detail {
137 template <typename T, typename... Us> struct TypesAreDistinct;
138 template <typename T, typename... Us>
139 struct TypesAreDistinct
140     : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
141                                        TypesAreDistinct<Us...>::value> {};
142 template <typename T> struct TypesAreDistinct<T> : std::true_type {};
143 } // namespace detail
144 
145 /// Determine if all types in Ts are distinct.
146 ///
147 /// Useful to statically assert when Ts is intended to describe a non-multi set
148 /// of types.
149 ///
150 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
151 /// asserted once per instantiation of a type which requires it.
152 template <typename... Ts> struct TypesAreDistinct;
153 template <> struct TypesAreDistinct<> : std::true_type {};
154 template <typename... Ts>
155 struct TypesAreDistinct
156     : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
157 
158 /// Find the first index where a type appears in a list of types.
159 ///
160 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
161 ///
162 /// Typically only meaningful when it is otherwise statically known that the
163 /// type pack has no duplicate types. This should be guaranteed explicitly with
164 /// static_assert(TypesAreDistinct<Us...>::value).
165 ///
166 /// It is a compile-time error to instantiate when T is not present in Us, i.e.
167 /// if is_one_of<T, Us...>::value is false.
168 template <typename T, typename... Us> struct FirstIndexOfType;
169 template <typename T, typename U, typename... Us>
170 struct FirstIndexOfType<T, U, Us...>
171     : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
172 template <typename T, typename... Us>
173 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
174 
175 /// Find the type at a given index in a list of types.
176 ///
177 /// TypeAtIndex<I, Ts...> is the type at index I in Ts.
178 template <size_t I, typename... Ts>
179 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
180 
181 /// Helper which adds two underlying types of enumeration type.
182 /// Implicit conversion to a common type is accepted.
183 template <typename EnumTy1, typename EnumTy2,
184           typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
185                                           std::underlying_type_t<EnumTy1>>,
186           typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
187                                           std::underlying_type_t<EnumTy2>>>
188 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
189   return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
190 }
191 
192 //===----------------------------------------------------------------------===//
193 //     Extra additions to <iterator>
194 //===----------------------------------------------------------------------===//
195 
196 namespace callable_detail {
197 
198 /// Templated storage wrapper for a callable.
199 ///
200 /// This class is consistently default constructible, copy / move
201 /// constructible / assignable.
202 ///
203 /// Supported callable types:
204 ///  - Function pointer
205 ///  - Function reference
206 ///  - Lambda
207 ///  - Function object
208 template <typename T,
209           bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
210 class Callable {
211   using value_type = std::remove_reference_t<T>;
212   using reference = value_type &;
213   using const_reference = value_type const &;
214 
215   std::optional<value_type> Obj;
216 
217   static_assert(!std::is_pointer_v<value_type>,
218                 "Pointers to non-functions are not callable.");
219 
220 public:
221   Callable() = default;
222   Callable(T const &O) : Obj(std::in_place, O) {}
223 
224   Callable(Callable const &Other) = default;
225   Callable(Callable &&Other) = default;
226 
227   Callable &operator=(Callable const &Other) {
228     Obj = std::nullopt;
229     if (Other.Obj)
230       Obj.emplace(*Other.Obj);
231     return *this;
232   }
233 
234   Callable &operator=(Callable &&Other) {
235     Obj = std::nullopt;
236     if (Other.Obj)
237       Obj.emplace(std::move(*Other.Obj));
238     return *this;
239   }
240 
241   template <typename... Pn,
242             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
243   decltype(auto) operator()(Pn &&...Params) {
244     return (*Obj)(std::forward<Pn>(Params)...);
245   }
246 
247   template <typename... Pn,
248             std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
249   decltype(auto) operator()(Pn &&...Params) const {
250     return (*Obj)(std::forward<Pn>(Params)...);
251   }
252 
253   bool valid() const { return Obj != std::nullopt; }
254   bool reset() { return Obj = std::nullopt; }
255 
256   operator reference() { return *Obj; }
257   operator const_reference() const { return *Obj; }
258 };
259 
260 // Function specialization.  No need to waste extra space wrapping with a
261 // std::optional.
262 template <typename T> class Callable<T, true> {
263   static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
264 
265   using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
266   using CastT = std::conditional_t<IsPtr, T, T &>;
267 
268 private:
269   StorageT Func = nullptr;
270 
271 private:
272   template <typename In> static constexpr auto convertIn(In &&I) {
273     if constexpr (IsPtr) {
274       // Pointer... just echo it back.
275       return I;
276     } else {
277       // Must be a function reference.  Return its address.
278       return &I;
279     }
280   }
281 
282 public:
283   Callable() = default;
284 
285   // Construct from a function pointer or reference.
286   //
287   // Disable this constructor for references to 'Callable' so we don't violate
288   // the rule of 0.
289   template < // clang-format off
290     typename FnPtrOrRef,
291     std::enable_if_t<
292       !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
293     > = 0
294   > // clang-format on
295   Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
296 
297   template <typename... Pn,
298             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
299   decltype(auto) operator()(Pn &&...Params) const {
300     return Func(std::forward<Pn>(Params)...);
301   }
302 
303   bool valid() const { return Func != nullptr; }
304   void reset() { Func = nullptr; }
305 
306   operator T const &() const {
307     if constexpr (IsPtr) {
308       // T is a pointer... just echo it back.
309       return Func;
310     } else {
311       static_assert(std::is_reference_v<T>,
312                     "Expected a reference to a function.");
313       // T is a function reference... dereference the stored pointer.
314       return *Func;
315     }
316   }
317 };
318 
319 } // namespace callable_detail
320 
321 /// Returns true if the given container only contains a single element.
322 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
323   auto B = std::begin(C), E = std::end(C);
324   return B != E && std::next(B) == E;
325 }
326 
327 /// Return a range covering \p RangeOrContainer with the first N elements
328 /// excluded.
329 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
330   return make_range(std::next(adl_begin(RangeOrContainer), N),
331                     adl_end(RangeOrContainer));
332 }
333 
334 /// Return a range covering \p RangeOrContainer with the last N elements
335 /// excluded.
336 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
337   return make_range(adl_begin(RangeOrContainer),
338                     std::prev(adl_end(RangeOrContainer), N));
339 }
340 
341 // mapped_iterator - This is a simple iterator adapter that causes a function to
342 // be applied whenever operator* is invoked on the iterator.
343 
344 template <typename ItTy, typename FuncTy,
345           typename ReferenceTy =
346               decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
347 class mapped_iterator
348     : public iterator_adaptor_base<
349           mapped_iterator<ItTy, FuncTy>, ItTy,
350           typename std::iterator_traits<ItTy>::iterator_category,
351           std::remove_reference_t<ReferenceTy>,
352           typename std::iterator_traits<ItTy>::difference_type,
353           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
354 public:
355   mapped_iterator() = default;
356   mapped_iterator(ItTy U, FuncTy F)
357     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
358 
359   ItTy getCurrent() { return this->I; }
360 
361   const FuncTy &getFunction() const { return F; }
362 
363   ReferenceTy operator*() const { return F(*this->I); }
364 
365 private:
366   callable_detail::Callable<FuncTy> F{};
367 };
368 
369 // map_iterator - Provide a convenient way to create mapped_iterators, just like
370 // make_pair is useful for creating pairs...
371 template <class ItTy, class FuncTy>
372 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
373   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
374 }
375 
376 template <class ContainerTy, class FuncTy>
377 auto map_range(ContainerTy &&C, FuncTy F) {
378   return make_range(map_iterator(std::begin(C), F),
379                     map_iterator(std::end(C), F));
380 }
381 
382 /// A base type of mapped iterator, that is useful for building derived
383 /// iterators that do not need/want to store the map function (as in
384 /// mapped_iterator). These iterators must simply provide a `mapElement` method
385 /// that defines how to map a value of the iterator to the provided reference
386 /// type.
387 template <typename DerivedT, typename ItTy, typename ReferenceTy>
388 class mapped_iterator_base
389     : public iterator_adaptor_base<
390           DerivedT, ItTy,
391           typename std::iterator_traits<ItTy>::iterator_category,
392           std::remove_reference_t<ReferenceTy>,
393           typename std::iterator_traits<ItTy>::difference_type,
394           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
395 public:
396   using BaseT = mapped_iterator_base;
397 
398   mapped_iterator_base(ItTy U)
399       : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
400 
401   ItTy getCurrent() { return this->I; }
402 
403   ReferenceTy operator*() const {
404     return static_cast<const DerivedT &>(*this).mapElement(*this->I);
405   }
406 };
407 
408 namespace detail {
409 template <typename Range>
410 using check_has_free_function_rbegin =
411     decltype(adl_rbegin(std::declval<Range &>()));
412 
413 template <typename Range>
414 static constexpr bool HasFreeFunctionRBegin =
415     is_detected<check_has_free_function_rbegin, Range>::value;
416 } // namespace detail
417 
418 // Returns an iterator_range over the given container which iterates in reverse.
419 template <typename ContainerTy> auto reverse(ContainerTy &&C) {
420   if constexpr (detail::HasFreeFunctionRBegin<ContainerTy>)
421     return make_range(adl_rbegin(C), adl_rend(C));
422   else
423     return make_range(std::make_reverse_iterator(adl_end(C)),
424                       std::make_reverse_iterator(adl_begin(C)));
425 }
426 
427 /// An iterator adaptor that filters the elements of given inner iterators.
428 ///
429 /// The predicate parameter should be a callable object that accepts the wrapped
430 /// iterator's reference type and returns a bool. When incrementing or
431 /// decrementing the iterator, it will call the predicate on each element and
432 /// skip any where it returns false.
433 ///
434 /// \code
435 ///   int A[] = { 1, 2, 3, 4 };
436 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
437 ///   // R contains { 1, 3 }.
438 /// \endcode
439 ///
440 /// Note: filter_iterator_base implements support for forward iteration.
441 /// filter_iterator_impl exists to provide support for bidirectional iteration,
442 /// conditional on whether the wrapped iterator supports it.
443 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
444 class filter_iterator_base
445     : public iterator_adaptor_base<
446           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
447           WrappedIteratorT,
448           std::common_type_t<IterTag,
449                              typename std::iterator_traits<
450                                  WrappedIteratorT>::iterator_category>> {
451   using BaseT = typename filter_iterator_base::iterator_adaptor_base;
452 
453 protected:
454   WrappedIteratorT End;
455   PredicateT Pred;
456 
457   void findNextValid() {
458     while (this->I != End && !Pred(*this->I))
459       BaseT::operator++();
460   }
461 
462   filter_iterator_base() = default;
463 
464   // Construct the iterator. The begin iterator needs to know where the end
465   // is, so that it can properly stop when it gets there. The end iterator only
466   // needs the predicate to support bidirectional iteration.
467   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
468                        PredicateT Pred)
469       : BaseT(Begin), End(End), Pred(Pred) {
470     findNextValid();
471   }
472 
473 public:
474   using BaseT::operator++;
475 
476   filter_iterator_base &operator++() {
477     BaseT::operator++();
478     findNextValid();
479     return *this;
480   }
481 
482   decltype(auto) operator*() const {
483     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
484     return BaseT::operator*();
485   }
486 
487   decltype(auto) operator->() const {
488     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
489     return BaseT::operator->();
490   }
491 };
492 
493 /// Specialization of filter_iterator_base for forward iteration only.
494 template <typename WrappedIteratorT, typename PredicateT,
495           typename IterTag = std::forward_iterator_tag>
496 class filter_iterator_impl
497     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
498 public:
499   filter_iterator_impl() = default;
500 
501   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
502                        PredicateT Pred)
503       : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
504 };
505 
506 /// Specialization of filter_iterator_base for bidirectional iteration.
507 template <typename WrappedIteratorT, typename PredicateT>
508 class filter_iterator_impl<WrappedIteratorT, PredicateT,
509                            std::bidirectional_iterator_tag>
510     : public filter_iterator_base<WrappedIteratorT, PredicateT,
511                                   std::bidirectional_iterator_tag> {
512   using BaseT = typename filter_iterator_impl::filter_iterator_base;
513 
514   void findPrevValid() {
515     while (!this->Pred(*this->I))
516       BaseT::operator--();
517   }
518 
519 public:
520   using BaseT::operator--;
521 
522   filter_iterator_impl() = default;
523 
524   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
525                        PredicateT Pred)
526       : BaseT(Begin, End, Pred) {}
527 
528   filter_iterator_impl &operator--() {
529     BaseT::operator--();
530     findPrevValid();
531     return *this;
532   }
533 };
534 
535 namespace detail {
536 
537 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
538   using type = std::forward_iterator_tag;
539 };
540 
541 template <> struct fwd_or_bidi_tag_impl<true> {
542   using type = std::bidirectional_iterator_tag;
543 };
544 
545 /// Helper which sets its type member to forward_iterator_tag if the category
546 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
547 /// bidirectional_iterator_tag otherwise.
548 template <typename IterT> struct fwd_or_bidi_tag {
549   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
550       std::bidirectional_iterator_tag,
551       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
552 };
553 
554 } // namespace detail
555 
556 /// Defines filter_iterator to a suitable specialization of
557 /// filter_iterator_impl, based on the underlying iterator's category.
558 template <typename WrappedIteratorT, typename PredicateT>
559 using filter_iterator = filter_iterator_impl<
560     WrappedIteratorT, PredicateT,
561     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
562 
563 /// Convenience function that takes a range of elements and a predicate,
564 /// and return a new filter_iterator range.
565 ///
566 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
567 /// lifetime of that temporary is not kept by the returned range object, and the
568 /// temporary is going to be dropped on the floor after the make_iterator_range
569 /// full expression that contains this function call.
570 template <typename RangeT, typename PredicateT>
571 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
572 make_filter_range(RangeT &&Range, PredicateT Pred) {
573   using FilterIteratorT =
574       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
575   return make_range(
576       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
577                       std::end(std::forward<RangeT>(Range)), Pred),
578       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
579                       std::end(std::forward<RangeT>(Range)), Pred));
580 }
581 
582 /// A pseudo-iterator adaptor that is designed to implement "early increment"
583 /// style loops.
584 ///
585 /// This is *not a normal iterator* and should almost never be used directly. It
586 /// is intended primarily to be used with range based for loops and some range
587 /// algorithms.
588 ///
589 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
590 /// somewhere between them. The constraints of these iterators are:
591 ///
592 /// - On construction or after being incremented, it is comparable and
593 ///   dereferencable. It is *not* incrementable.
594 /// - After being dereferenced, it is neither comparable nor dereferencable, it
595 ///   is only incrementable.
596 ///
597 /// This means you can only dereference the iterator once, and you can only
598 /// increment it once between dereferences.
599 template <typename WrappedIteratorT>
600 class early_inc_iterator_impl
601     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
602                                    WrappedIteratorT, std::input_iterator_tag> {
603   using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
604 
605   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
606 
607 protected:
608 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
609   bool IsEarlyIncremented = false;
610 #endif
611 
612 public:
613   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
614 
615   using BaseT::operator*;
616   decltype(*std::declval<WrappedIteratorT>()) operator*() {
617 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
618     assert(!IsEarlyIncremented && "Cannot dereference twice!");
619     IsEarlyIncremented = true;
620 #endif
621     return *(this->I)++;
622   }
623 
624   using BaseT::operator++;
625   early_inc_iterator_impl &operator++() {
626 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
627     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
628     IsEarlyIncremented = false;
629 #endif
630     return *this;
631   }
632 
633   friend bool operator==(const early_inc_iterator_impl &LHS,
634                          const early_inc_iterator_impl &RHS) {
635 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
636     assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
637 #endif
638     return (const BaseT &)LHS == (const BaseT &)RHS;
639   }
640 };
641 
642 /// Make a range that does early increment to allow mutation of the underlying
643 /// range without disrupting iteration.
644 ///
645 /// The underlying iterator will be incremented immediately after it is
646 /// dereferenced, allowing deletion of the current node or insertion of nodes to
647 /// not disrupt iteration provided they do not invalidate the *next* iterator --
648 /// the current iterator can be invalidated.
649 ///
650 /// This requires a very exact pattern of use that is only really suitable to
651 /// range based for loops and other range algorithms that explicitly guarantee
652 /// to dereference exactly once each element, and to increment exactly once each
653 /// element.
654 template <typename RangeT>
655 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
656 make_early_inc_range(RangeT &&Range) {
657   using EarlyIncIteratorT =
658       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
659   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
660                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
661 }
662 
663 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
664 template <typename R, typename UnaryPredicate>
665 bool all_of(R &&range, UnaryPredicate P);
666 
667 template <typename R, typename UnaryPredicate>
668 bool any_of(R &&range, UnaryPredicate P);
669 
670 template <typename T> bool all_equal(std::initializer_list<T> Values);
671 
672 template <typename R> constexpr size_t range_size(R &&Range);
673 
674 namespace detail {
675 
676 using std::declval;
677 
678 // We have to alias this since inlining the actual type at the usage site
679 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
680 template<typename... Iters> struct ZipTupleType {
681   using type = std::tuple<decltype(*declval<Iters>())...>;
682 };
683 
684 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
685 using zip_traits = iterator_facade_base<
686     ZipType,
687     std::common_type_t<
688         std::bidirectional_iterator_tag,
689         typename std::iterator_traits<Iters>::iterator_category...>,
690     // ^ TODO: Implement random access methods.
691     ReferenceTupleType,
692     typename std::iterator_traits<
693         std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
694     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
695     // inner iterators have the same difference_type. It would fail if, for
696     // instance, the second field's difference_type were non-numeric while the
697     // first is.
698     ReferenceTupleType *, ReferenceTupleType>;
699 
700 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
701 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
702   using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
703   using IndexSequence = std::index_sequence_for<Iters...>;
704   using value_type = typename Base::value_type;
705 
706   std::tuple<Iters...> iterators;
707 
708 protected:
709   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
710     return value_type(*std::get<Ns>(iterators)...);
711   }
712 
713   template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
714     (++std::get<Ns>(iterators), ...);
715   }
716 
717   template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
718     (--std::get<Ns>(iterators), ...);
719   }
720 
721   template <size_t... Ns>
722   bool test_all_equals(const zip_common &other,
723                        std::index_sequence<Ns...>) const {
724     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
725             ...);
726   }
727 
728 public:
729   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
730 
731   value_type operator*() const { return deref(IndexSequence{}); }
732 
733   ZipType &operator++() {
734     tup_inc(IndexSequence{});
735     return static_cast<ZipType &>(*this);
736   }
737 
738   ZipType &operator--() {
739     static_assert(Base::IsBidirectional,
740                   "All inner iterators must be at least bidirectional.");
741     tup_dec(IndexSequence{});
742     return static_cast<ZipType &>(*this);
743   }
744 
745   /// Return true if all the iterator are matching `other`'s iterators.
746   bool all_equals(zip_common &other) {
747     return test_all_equals(other, IndexSequence{});
748   }
749 };
750 
751 template <typename... Iters>
752 struct zip_first : zip_common<zip_first<Iters...>,
753                               typename ZipTupleType<Iters...>::type, Iters...> {
754   using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
755                    Iters...>::zip_common;
756 
757   bool operator==(const zip_first &other) const {
758     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
759   }
760 };
761 
762 template <typename... Iters>
763 struct zip_shortest
764     : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
765                  Iters...> {
766   using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
767                    Iters...>::zip_common;
768 
769   bool operator==(const zip_shortest &other) const {
770     return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
771   }
772 
773 private:
774   template <size_t... Ns>
775   bool any_iterator_equals(const zip_shortest &other,
776                            std::index_sequence<Ns...>) const {
777     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
778             ...);
779   }
780 };
781 
782 /// Helper to obtain the iterator types for the tuple storage within `zippy`.
783 template <template <typename...> class ItType, typename TupleStorageType,
784           typename IndexSequence>
785 struct ZippyIteratorTuple;
786 
787 /// Partial specialization for non-const tuple storage.
788 template <template <typename...> class ItType, typename... Args,
789           std::size_t... Ns>
790 struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
791                           std::index_sequence<Ns...>> {
792   using type = ItType<decltype(adl_begin(
793       std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
794 };
795 
796 /// Partial specialization for const tuple storage.
797 template <template <typename...> class ItType, typename... Args,
798           std::size_t... Ns>
799 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
800                           std::index_sequence<Ns...>> {
801   using type = ItType<decltype(adl_begin(
802       std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
803 };
804 
805 template <template <typename...> class ItType, typename... Args> class zippy {
806 private:
807   std::tuple<Args...> storage;
808   using IndexSequence = std::index_sequence_for<Args...>;
809 
810 public:
811   using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
812                                                IndexSequence>::type;
813   using const_iterator =
814       typename ZippyIteratorTuple<ItType, const decltype(storage),
815                                   IndexSequence>::type;
816   using iterator_category = typename iterator::iterator_category;
817   using value_type = typename iterator::value_type;
818   using difference_type = typename iterator::difference_type;
819   using pointer = typename iterator::pointer;
820   using reference = typename iterator::reference;
821   using const_reference = typename const_iterator::reference;
822 
823   zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}
824 
825   const_iterator begin() const { return begin_impl(IndexSequence{}); }
826   iterator begin() { return begin_impl(IndexSequence{}); }
827   const_iterator end() const { return end_impl(IndexSequence{}); }
828   iterator end() { return end_impl(IndexSequence{}); }
829 
830 private:
831   template <size_t... Ns>
832   const_iterator begin_impl(std::index_sequence<Ns...>) const {
833     return const_iterator(adl_begin(std::get<Ns>(storage))...);
834   }
835   template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
836     return iterator(adl_begin(std::get<Ns>(storage))...);
837   }
838 
839   template <size_t... Ns>
840   const_iterator end_impl(std::index_sequence<Ns...>) const {
841     return const_iterator(adl_end(std::get<Ns>(storage))...);
842   }
843   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
844     return iterator(adl_end(std::get<Ns>(storage))...);
845   }
846 };
847 
848 } // end namespace detail
849 
850 /// zip iterator for two or more iteratable types. Iteration continues until the
851 /// end of the *shortest* iteratee is reached.
852 template <typename T, typename U, typename... Args>
853 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
854                                                        Args &&...args) {
855   return detail::zippy<detail::zip_shortest, T, U, Args...>(
856       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
857 }
858 
859 /// zip iterator that assumes that all iteratees have the same length.
860 /// In builds with assertions on, this assumption is checked before the
861 /// iteration starts.
862 template <typename T, typename U, typename... Args>
863 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
864                                                           Args &&...args) {
865   assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
866          "Iteratees do not have equal length");
867   return detail::zippy<detail::zip_first, T, U, Args...>(
868       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
869 }
870 
871 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
872 /// be the shortest. Iteration continues until the end of the first iteratee is
873 /// reached. In builds with assertions on, we check that the assumption about
874 /// the first iteratee being the shortest holds.
875 template <typename T, typename U, typename... Args>
876 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
877                                                           Args &&...args) {
878   assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
879          "First iteratee is not the shortest");
880 
881   return detail::zippy<detail::zip_first, T, U, Args...>(
882       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
883 }
884 
885 namespace detail {
886 template <typename Iter>
887 Iter next_or_end(const Iter &I, const Iter &End) {
888   if (I == End)
889     return End;
890   return std::next(I);
891 }
892 
893 template <typename Iter>
894 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
895     std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
896   if (I == End)
897     return std::nullopt;
898   return *I;
899 }
900 
901 template <typename Iter> struct ZipLongestItemType {
902   using type = std::optional<std::remove_const_t<
903       std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
904 };
905 
906 template <typename... Iters> struct ZipLongestTupleType {
907   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
908 };
909 
910 template <typename... Iters>
911 class zip_longest_iterator
912     : public iterator_facade_base<
913           zip_longest_iterator<Iters...>,
914           std::common_type_t<
915               std::forward_iterator_tag,
916               typename std::iterator_traits<Iters>::iterator_category...>,
917           typename ZipLongestTupleType<Iters...>::type,
918           typename std::iterator_traits<
919               std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
920           typename ZipLongestTupleType<Iters...>::type *,
921           typename ZipLongestTupleType<Iters...>::type> {
922 public:
923   using value_type = typename ZipLongestTupleType<Iters...>::type;
924 
925 private:
926   std::tuple<Iters...> iterators;
927   std::tuple<Iters...> end_iterators;
928 
929   template <size_t... Ns>
930   bool test(const zip_longest_iterator<Iters...> &other,
931             std::index_sequence<Ns...>) const {
932     return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
933             ...);
934   }
935 
936   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
937     return value_type(
938         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
939   }
940 
941   template <size_t... Ns>
942   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
943     return std::tuple<Iters...>(
944         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
945   }
946 
947 public:
948   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
949       : iterators(std::forward<Iters>(ts.first)...),
950         end_iterators(std::forward<Iters>(ts.second)...) {}
951 
952   value_type operator*() const {
953     return deref(std::index_sequence_for<Iters...>{});
954   }
955 
956   zip_longest_iterator<Iters...> &operator++() {
957     iterators = tup_inc(std::index_sequence_for<Iters...>{});
958     return *this;
959   }
960 
961   bool operator==(const zip_longest_iterator<Iters...> &other) const {
962     return !test(other, std::index_sequence_for<Iters...>{});
963   }
964 };
965 
966 template <typename... Args> class zip_longest_range {
967 public:
968   using iterator =
969       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
970   using iterator_category = typename iterator::iterator_category;
971   using value_type = typename iterator::value_type;
972   using difference_type = typename iterator::difference_type;
973   using pointer = typename iterator::pointer;
974   using reference = typename iterator::reference;
975 
976 private:
977   std::tuple<Args...> ts;
978 
979   template <size_t... Ns>
980   iterator begin_impl(std::index_sequence<Ns...>) const {
981     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
982                                    adl_end(std::get<Ns>(ts)))...);
983   }
984 
985   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
986     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
987                                    adl_end(std::get<Ns>(ts)))...);
988   }
989 
990 public:
991   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
992 
993   iterator begin() const {
994     return begin_impl(std::index_sequence_for<Args...>{});
995   }
996   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
997 };
998 } // namespace detail
999 
1000 /// Iterate over two or more iterators at the same time. Iteration continues
1001 /// until all iterators reach the end. The std::optional only contains a value
1002 /// if the iterator has not reached the end.
1003 template <typename T, typename U, typename... Args>
1004 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1005                                                      Args &&... args) {
1006   return detail::zip_longest_range<T, U, Args...>(
1007       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1008 }
1009 
1010 /// Iterator wrapper that concatenates sequences together.
1011 ///
1012 /// This can concatenate different iterators, even with different types, into
1013 /// a single iterator provided the value types of all the concatenated
1014 /// iterators expose `reference` and `pointer` types that can be converted to
1015 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
1016 /// interesting/customized pointer or reference types.
1017 ///
1018 /// Currently this only supports forward or higher iterator categories as
1019 /// inputs and always exposes a forward iterator interface.
1020 template <typename ValueT, typename... IterTs>
1021 class concat_iterator
1022     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1023                                   std::forward_iterator_tag, ValueT> {
1024   using BaseT = typename concat_iterator::iterator_facade_base;
1025 
1026   /// We store both the current and end iterators for each concatenated
1027   /// sequence in a tuple of pairs.
1028   ///
1029   /// Note that something like iterator_range seems nice at first here, but the
1030   /// range properties are of little benefit and end up getting in the way
1031   /// because we need to do mutation on the current iterators.
1032   std::tuple<IterTs...> Begins;
1033   std::tuple<IterTs...> Ends;
1034 
1035   /// Attempts to increment a specific iterator.
1036   ///
1037   /// Returns true if it was able to increment the iterator. Returns false if
1038   /// the iterator is already at the end iterator.
1039   template <size_t Index> bool incrementHelper() {
1040     auto &Begin = std::get<Index>(Begins);
1041     auto &End = std::get<Index>(Ends);
1042     if (Begin == End)
1043       return false;
1044 
1045     ++Begin;
1046     return true;
1047   }
1048 
1049   /// Increments the first non-end iterator.
1050   ///
1051   /// It is an error to call this with all iterators at the end.
1052   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1053     // Build a sequence of functions to increment each iterator if possible.
1054     bool (concat_iterator::*IncrementHelperFns[])() = {
1055         &concat_iterator::incrementHelper<Ns>...};
1056 
1057     // Loop over them, and stop as soon as we succeed at incrementing one.
1058     for (auto &IncrementHelperFn : IncrementHelperFns)
1059       if ((this->*IncrementHelperFn)())
1060         return;
1061 
1062     llvm_unreachable("Attempted to increment an end concat iterator!");
1063   }
1064 
1065   /// Returns null if the specified iterator is at the end. Otherwise,
1066   /// dereferences the iterator and returns the address of the resulting
1067   /// reference.
1068   template <size_t Index> ValueT *getHelper() const {
1069     auto &Begin = std::get<Index>(Begins);
1070     auto &End = std::get<Index>(Ends);
1071     if (Begin == End)
1072       return nullptr;
1073 
1074     return &*Begin;
1075   }
1076 
1077   /// Finds the first non-end iterator, dereferences, and returns the resulting
1078   /// reference.
1079   ///
1080   /// It is an error to call this with all iterators at the end.
1081   template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1082     // Build a sequence of functions to get from iterator if possible.
1083     ValueT *(concat_iterator::*GetHelperFns[])() const = {
1084         &concat_iterator::getHelper<Ns>...};
1085 
1086     // Loop over them, and return the first result we find.
1087     for (auto &GetHelperFn : GetHelperFns)
1088       if (ValueT *P = (this->*GetHelperFn)())
1089         return *P;
1090 
1091     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1092   }
1093 
1094 public:
1095   /// Constructs an iterator from a sequence of ranges.
1096   ///
1097   /// We need the full range to know how to switch between each of the
1098   /// iterators.
1099   template <typename... RangeTs>
1100   explicit concat_iterator(RangeTs &&... Ranges)
1101       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1102 
1103   using BaseT::operator++;
1104 
1105   concat_iterator &operator++() {
1106     increment(std::index_sequence_for<IterTs...>());
1107     return *this;
1108   }
1109 
1110   ValueT &operator*() const {
1111     return get(std::index_sequence_for<IterTs...>());
1112   }
1113 
1114   bool operator==(const concat_iterator &RHS) const {
1115     return Begins == RHS.Begins && Ends == RHS.Ends;
1116   }
1117 };
1118 
1119 namespace detail {
1120 
1121 /// Helper to store a sequence of ranges being concatenated and access them.
1122 ///
1123 /// This is designed to facilitate providing actual storage when temporaries
1124 /// are passed into the constructor such that we can use it as part of range
1125 /// based for loops.
1126 template <typename ValueT, typename... RangeTs> class concat_range {
1127 public:
1128   using iterator =
1129       concat_iterator<ValueT,
1130                       decltype(std::begin(std::declval<RangeTs &>()))...>;
1131 
1132 private:
1133   std::tuple<RangeTs...> Ranges;
1134 
1135   template <size_t... Ns>
1136   iterator begin_impl(std::index_sequence<Ns...>) {
1137     return iterator(std::get<Ns>(Ranges)...);
1138   }
1139   template <size_t... Ns>
1140   iterator begin_impl(std::index_sequence<Ns...>) const {
1141     return iterator(std::get<Ns>(Ranges)...);
1142   }
1143   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1144     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1145                                std::end(std::get<Ns>(Ranges)))...);
1146   }
1147   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1148     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1149                                std::end(std::get<Ns>(Ranges)))...);
1150   }
1151 
1152 public:
1153   concat_range(RangeTs &&... Ranges)
1154       : Ranges(std::forward<RangeTs>(Ranges)...) {}
1155 
1156   iterator begin() {
1157     return begin_impl(std::index_sequence_for<RangeTs...>{});
1158   }
1159   iterator begin() const {
1160     return begin_impl(std::index_sequence_for<RangeTs...>{});
1161   }
1162   iterator end() {
1163     return end_impl(std::index_sequence_for<RangeTs...>{});
1164   }
1165   iterator end() const {
1166     return end_impl(std::index_sequence_for<RangeTs...>{});
1167   }
1168 };
1169 
1170 } // end namespace detail
1171 
1172 /// Concatenated range across two or more ranges.
1173 ///
1174 /// The desired value type must be explicitly specified.
1175 template <typename ValueT, typename... RangeTs>
1176 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1177   static_assert(sizeof...(RangeTs) > 1,
1178                 "Need more than one range to concatenate!");
1179   return detail::concat_range<ValueT, RangeTs...>(
1180       std::forward<RangeTs>(Ranges)...);
1181 }
1182 
1183 /// A utility class used to implement an iterator that contains some base object
1184 /// and an index. The iterator moves the index but keeps the base constant.
1185 template <typename DerivedT, typename BaseT, typename T,
1186           typename PointerT = T *, typename ReferenceT = T &>
1187 class indexed_accessor_iterator
1188     : public llvm::iterator_facade_base<DerivedT,
1189                                         std::random_access_iterator_tag, T,
1190                                         std::ptrdiff_t, PointerT, ReferenceT> {
1191 public:
1192   ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1193     assert(base == rhs.base && "incompatible iterators");
1194     return index - rhs.index;
1195   }
1196   bool operator==(const indexed_accessor_iterator &rhs) const {
1197     return base == rhs.base && index == rhs.index;
1198   }
1199   bool operator<(const indexed_accessor_iterator &rhs) const {
1200     assert(base == rhs.base && "incompatible iterators");
1201     return index < rhs.index;
1202   }
1203 
1204   DerivedT &operator+=(ptrdiff_t offset) {
1205     this->index += offset;
1206     return static_cast<DerivedT &>(*this);
1207   }
1208   DerivedT &operator-=(ptrdiff_t offset) {
1209     this->index -= offset;
1210     return static_cast<DerivedT &>(*this);
1211   }
1212 
1213   /// Returns the current index of the iterator.
1214   ptrdiff_t getIndex() const { return index; }
1215 
1216   /// Returns the current base of the iterator.
1217   const BaseT &getBase() const { return base; }
1218 
1219 protected:
1220   indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1221       : base(base), index(index) {}
1222   BaseT base;
1223   ptrdiff_t index;
1224 };
1225 
1226 namespace detail {
1227 /// The class represents the base of a range of indexed_accessor_iterators. It
1228 /// provides support for many different range functionalities, e.g.
1229 /// drop_front/slice/etc.. Derived range classes must implement the following
1230 /// static methods:
1231 ///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1232 ///     - Dereference an iterator pointing to the base object at the given
1233 ///       index.
1234 ///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1235 ///     - Return a new base that is offset from the provide base by 'index'
1236 ///       elements.
1237 template <typename DerivedT, typename BaseT, typename T,
1238           typename PointerT = T *, typename ReferenceT = T &>
1239 class indexed_accessor_range_base {
1240 public:
1241   using RangeBaseT = indexed_accessor_range_base;
1242 
1243   /// An iterator element of this range.
1244   class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1245                                                     PointerT, ReferenceT> {
1246   public:
1247     // Index into this iterator, invoking a static method on the derived type.
1248     ReferenceT operator*() const {
1249       return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1250     }
1251 
1252   private:
1253     iterator(BaseT owner, ptrdiff_t curIndex)
1254         : iterator::indexed_accessor_iterator(owner, curIndex) {}
1255 
1256     /// Allow access to the constructor.
1257     friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1258                                        ReferenceT>;
1259   };
1260 
1261   indexed_accessor_range_base(iterator begin, iterator end)
1262       : base(offset_base(begin.getBase(), begin.getIndex())),
1263         count(end.getIndex() - begin.getIndex()) {}
1264   indexed_accessor_range_base(const iterator_range<iterator> &range)
1265       : indexed_accessor_range_base(range.begin(), range.end()) {}
1266   indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1267       : base(base), count(count) {}
1268 
1269   iterator begin() const { return iterator(base, 0); }
1270   iterator end() const { return iterator(base, count); }
1271   ReferenceT operator[](size_t Index) const {
1272     assert(Index < size() && "invalid index for value range");
1273     return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1274   }
1275   ReferenceT front() const {
1276     assert(!empty() && "expected non-empty range");
1277     return (*this)[0];
1278   }
1279   ReferenceT back() const {
1280     assert(!empty() && "expected non-empty range");
1281     return (*this)[size() - 1];
1282   }
1283 
1284   /// Return the size of this range.
1285   size_t size() const { return count; }
1286 
1287   /// Return if the range is empty.
1288   bool empty() const { return size() == 0; }
1289 
1290   /// Drop the first N elements, and keep M elements.
1291   DerivedT slice(size_t n, size_t m) const {
1292     assert(n + m <= size() && "invalid size specifiers");
1293     return DerivedT(offset_base(base, n), m);
1294   }
1295 
1296   /// Drop the first n elements.
1297   DerivedT drop_front(size_t n = 1) const {
1298     assert(size() >= n && "Dropping more elements than exist");
1299     return slice(n, size() - n);
1300   }
1301   /// Drop the last n elements.
1302   DerivedT drop_back(size_t n = 1) const {
1303     assert(size() >= n && "Dropping more elements than exist");
1304     return DerivedT(base, size() - n);
1305   }
1306 
1307   /// Take the first n elements.
1308   DerivedT take_front(size_t n = 1) const {
1309     return n < size() ? drop_back(size() - n)
1310                       : static_cast<const DerivedT &>(*this);
1311   }
1312 
1313   /// Take the last n elements.
1314   DerivedT take_back(size_t n = 1) const {
1315     return n < size() ? drop_front(size() - n)
1316                       : static_cast<const DerivedT &>(*this);
1317   }
1318 
1319   /// Allow conversion to any type accepting an iterator_range.
1320   template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1321                                  RangeT, iterator_range<iterator>>::value>>
1322   operator RangeT() const {
1323     return RangeT(iterator_range<iterator>(*this));
1324   }
1325 
1326   /// Returns the base of this range.
1327   const BaseT &getBase() const { return base; }
1328 
1329 private:
1330   /// Offset the given base by the given amount.
1331   static BaseT offset_base(const BaseT &base, size_t n) {
1332     return n == 0 ? base : DerivedT::offset_base(base, n);
1333   }
1334 
1335 protected:
1336   indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1337   indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1338   indexed_accessor_range_base &
1339   operator=(const indexed_accessor_range_base &) = default;
1340 
1341   /// The base that owns the provided range of values.
1342   BaseT base;
1343   /// The size from the owning range.
1344   ptrdiff_t count;
1345 };
1346 /// Compare this range with another.
1347 /// FIXME: Make me a member function instead of friend when it works in C++20.
1348 template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1349           typename PointerT, typename ReferenceT>
1350 bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1351                                                   ReferenceT> &lhs,
1352                 const OtherT &rhs) {
1353   return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1354 }
1355 
1356 template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1357           typename PointerT, typename ReferenceT>
1358 bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1359                                                   ReferenceT> &lhs,
1360                 const OtherT &rhs) {
1361   return !(lhs == rhs);
1362 }
1363 } // end namespace detail
1364 
1365 /// This class provides an implementation of a range of
1366 /// indexed_accessor_iterators where the base is not indexable. Ranges with
1367 /// bases that are offsetable should derive from indexed_accessor_range_base
1368 /// instead. Derived range classes are expected to implement the following
1369 /// static method:
1370 ///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1371 ///     - Dereference an iterator pointing to a parent base at the given index.
1372 template <typename DerivedT, typename BaseT, typename T,
1373           typename PointerT = T *, typename ReferenceT = T &>
1374 class indexed_accessor_range
1375     : public detail::indexed_accessor_range_base<
1376           DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1377 public:
1378   indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1379       : detail::indexed_accessor_range_base<
1380             DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1381             std::make_pair(base, startIndex), count) {}
1382   using detail::indexed_accessor_range_base<
1383       DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1384       ReferenceT>::indexed_accessor_range_base;
1385 
1386   /// Returns the current base of the range.
1387   const BaseT &getBase() const { return this->base.first; }
1388 
1389   /// Returns the current start index of the range.
1390   ptrdiff_t getStartIndex() const { return this->base.second; }
1391 
1392   /// See `detail::indexed_accessor_range_base` for details.
1393   static std::pair<BaseT, ptrdiff_t>
1394   offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1395     // We encode the internal base as a pair of the derived base and a start
1396     // index into the derived base.
1397     return std::make_pair(base.first, base.second + index);
1398   }
1399   /// See `detail::indexed_accessor_range_base` for details.
1400   static ReferenceT
1401   dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1402                        ptrdiff_t index) {
1403     return DerivedT::dereference(base.first, base.second + index);
1404   }
1405 };
1406 
1407 namespace detail {
1408 /// Return a reference to the first or second member of a reference. Otherwise,
1409 /// return a copy of the member of a temporary.
1410 ///
1411 /// When passing a range whose iterators return values instead of references,
1412 /// the reference must be dropped from `decltype((elt.first))`, which will
1413 /// always be a reference, to avoid returning a reference to a temporary.
1414 template <typename EltTy, typename FirstTy> class first_or_second_type {
1415 public:
1416   using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1417                                   std::remove_reference_t<FirstTy>>;
1418 };
1419 } // end namespace detail
1420 
1421 /// Given a container of pairs, return a range over the first elements.
1422 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1423   using EltTy = decltype((*std::begin(c)));
1424   return llvm::map_range(std::forward<ContainerTy>(c),
1425                          [](EltTy elt) -> typename detail::first_or_second_type<
1426                                            EltTy, decltype((elt.first))>::type {
1427                            return elt.first;
1428                          });
1429 }
1430 
1431 /// Given a container of pairs, return a range over the second elements.
1432 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1433   using EltTy = decltype((*std::begin(c)));
1434   return llvm::map_range(
1435       std::forward<ContainerTy>(c),
1436       [](EltTy elt) ->
1437       typename detail::first_or_second_type<EltTy,
1438                                             decltype((elt.second))>::type {
1439         return elt.second;
1440       });
1441 }
1442 
1443 //===----------------------------------------------------------------------===//
1444 //     Extra additions to <utility>
1445 //===----------------------------------------------------------------------===//
1446 
1447 /// Function object to check whether the first component of a container
1448 /// supported by std::get (like std::pair and std::tuple) compares less than the
1449 /// first component of another container.
1450 struct less_first {
1451   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1452     return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
1453   }
1454 };
1455 
1456 /// Function object to check whether the second component of a container
1457 /// supported by std::get (like std::pair and std::tuple) compares less than the
1458 /// second component of another container.
1459 struct less_second {
1460   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1461     return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
1462   }
1463 };
1464 
1465 /// \brief Function object to apply a binary function to the first component of
1466 /// a std::pair.
1467 template<typename FuncTy>
1468 struct on_first {
1469   FuncTy func;
1470 
1471   template <typename T>
1472   decltype(auto) operator()(const T &lhs, const T &rhs) const {
1473     return func(lhs.first, rhs.first);
1474   }
1475 };
1476 
1477 /// Utility type to build an inheritance chain that makes it easy to rank
1478 /// overload candidates.
1479 template <int N> struct rank : rank<N - 1> {};
1480 template <> struct rank<0> {};
1481 
1482 namespace detail {
1483 template <typename... Ts> struct Visitor;
1484 
1485 template <typename HeadT, typename... TailTs>
1486 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1487   explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1488       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1489         Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1490   using remove_cvref_t<HeadT>::operator();
1491   using Visitor<TailTs...>::operator();
1492 };
1493 
1494 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1495   explicit constexpr Visitor(HeadT &&Head)
1496       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1497   using remove_cvref_t<HeadT>::operator();
1498 };
1499 } // namespace detail
1500 
1501 /// Returns an opaquely-typed Callable object whose operator() overload set is
1502 /// the sum of the operator() overload sets of each CallableT in CallableTs.
1503 ///
1504 /// The type of the returned object derives from each CallableT in CallableTs.
1505 /// The returned object is constructed by invoking the appropriate copy or move
1506 /// constructor of each CallableT, as selected by overload resolution on the
1507 /// corresponding argument to makeVisitor.
1508 ///
1509 /// Example:
1510 ///
1511 /// \code
1512 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1513 ///                            [](int i) { return "int"; },
1514 ///                            [](std::string s) { return "str"; });
1515 /// auto a = visitor(42);    // `a` is now "int".
1516 /// auto b = visitor("foo"); // `b` is now "str".
1517 /// auto c = visitor(3.14f); // `c` is now "unhandled type".
1518 /// \endcode
1519 ///
1520 /// Example of making a visitor with a lambda which captures a move-only type:
1521 ///
1522 /// \code
1523 /// std::unique_ptr<FooHandler> FH = /* ... */;
1524 /// auto visitor = makeVisitor(
1525 ///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1526 ///     [](int i) { return i; },
1527 ///     [](std::string s) { return atoi(s); });
1528 /// \endcode
1529 template <typename... CallableTs>
1530 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1531   return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1532 }
1533 
1534 //===----------------------------------------------------------------------===//
1535 //     Extra additions to <algorithm>
1536 //===----------------------------------------------------------------------===//
1537 
1538 // We have a copy here so that LLVM behaves the same when using different
1539 // standard libraries.
1540 template <class Iterator, class RNG>
1541 void shuffle(Iterator first, Iterator last, RNG &&g) {
1542   // It would be better to use a std::uniform_int_distribution,
1543   // but that would be stdlib dependent.
1544   typedef
1545       typename std::iterator_traits<Iterator>::difference_type difference_type;
1546   for (auto size = last - first; size > 1; ++first, (void)--size) {
1547     difference_type offset = g() % size;
1548     // Avoid self-assignment due to incorrect assertions in libstdc++
1549     // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1550     if (offset != difference_type(0))
1551       std::iter_swap(first, first + offset);
1552   }
1553 }
1554 
1555 /// Adapt std::less<T> for array_pod_sort.
1556 template<typename T>
1557 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1558   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1559                      *reinterpret_cast<const T*>(P2)))
1560     return -1;
1561   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1562                      *reinterpret_cast<const T*>(P1)))
1563     return 1;
1564   return 0;
1565 }
1566 
1567 /// get_array_pod_sort_comparator - This is an internal helper function used to
1568 /// get type deduction of T right.
1569 template<typename T>
1570 inline int (*get_array_pod_sort_comparator(const T &))
1571              (const void*, const void*) {
1572   return array_pod_sort_comparator<T>;
1573 }
1574 
1575 #ifdef EXPENSIVE_CHECKS
1576 namespace detail {
1577 
1578 inline unsigned presortShuffleEntropy() {
1579   static unsigned Result(std::random_device{}());
1580   return Result;
1581 }
1582 
1583 template <class IteratorTy>
1584 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1585   std::mt19937 Generator(presortShuffleEntropy());
1586   llvm::shuffle(Start, End, Generator);
1587 }
1588 
1589 } // end namespace detail
1590 #endif
1591 
1592 /// array_pod_sort - This sorts an array with the specified start and end
1593 /// extent.  This is just like std::sort, except that it calls qsort instead of
1594 /// using an inlined template.  qsort is slightly slower than std::sort, but
1595 /// most sorts are not performance critical in LLVM and std::sort has to be
1596 /// template instantiated for each type, leading to significant measured code
1597 /// bloat.  This function should generally be used instead of std::sort where
1598 /// possible.
1599 ///
1600 /// This function assumes that you have simple POD-like types that can be
1601 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1602 /// you should use std::sort.
1603 ///
1604 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1605 /// default to std::less.
1606 template<class IteratorTy>
1607 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1608   // Don't inefficiently call qsort with one element or trigger undefined
1609   // behavior with an empty sequence.
1610   auto NElts = End - Start;
1611   if (NElts <= 1) return;
1612 #ifdef EXPENSIVE_CHECKS
1613   detail::presortShuffle<IteratorTy>(Start, End);
1614 #endif
1615   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1616 }
1617 
1618 template <class IteratorTy>
1619 inline void array_pod_sort(
1620     IteratorTy Start, IteratorTy End,
1621     int (*Compare)(
1622         const typename std::iterator_traits<IteratorTy>::value_type *,
1623         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1624   // Don't inefficiently call qsort with one element or trigger undefined
1625   // behavior with an empty sequence.
1626   auto NElts = End - Start;
1627   if (NElts <= 1) return;
1628 #ifdef EXPENSIVE_CHECKS
1629   detail::presortShuffle<IteratorTy>(Start, End);
1630 #endif
1631   qsort(&*Start, NElts, sizeof(*Start),
1632         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1633 }
1634 
1635 namespace detail {
1636 template <typename T>
1637 // We can use qsort if the iterator type is a pointer and the underlying value
1638 // is trivially copyable.
1639 using sort_trivially_copyable = std::conjunction<
1640     std::is_pointer<T>,
1641     std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1642 } // namespace detail
1643 
1644 // Provide wrappers to std::sort which shuffle the elements before sorting
1645 // to help uncover non-deterministic behavior (PR35135).
1646 template <typename IteratorTy>
1647 inline void sort(IteratorTy Start, IteratorTy End) {
1648   if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1649     // Forward trivially copyable types to array_pod_sort. This avoids a large
1650     // amount of code bloat for a minor performance hit.
1651     array_pod_sort(Start, End);
1652   } else {
1653 #ifdef EXPENSIVE_CHECKS
1654     detail::presortShuffle<IteratorTy>(Start, End);
1655 #endif
1656     std::sort(Start, End);
1657   }
1658 }
1659 
1660 template <typename Container> inline void sort(Container &&C) {
1661   llvm::sort(adl_begin(C), adl_end(C));
1662 }
1663 
1664 template <typename IteratorTy, typename Compare>
1665 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1666 #ifdef EXPENSIVE_CHECKS
1667   detail::presortShuffle<IteratorTy>(Start, End);
1668 #endif
1669   std::sort(Start, End, Comp);
1670 }
1671 
1672 template <typename Container, typename Compare>
1673 inline void sort(Container &&C, Compare Comp) {
1674   llvm::sort(adl_begin(C), adl_end(C), Comp);
1675 }
1676 
1677 /// Get the size of a range. This is a wrapper function around std::distance
1678 /// which is only enabled when the operation is O(1).
1679 template <typename R>
1680 auto size(R &&Range,
1681           std::enable_if_t<
1682               std::is_base_of<std::random_access_iterator_tag,
1683                               typename std::iterator_traits<decltype(
1684                                   Range.begin())>::iterator_category>::value,
1685               void> * = nullptr) {
1686   return std::distance(Range.begin(), Range.end());
1687 }
1688 
1689 namespace detail {
1690 template <typename Range>
1691 using check_has_free_function_size =
1692     decltype(adl_size(std::declval<Range &>()));
1693 
1694 template <typename Range>
1695 static constexpr bool HasFreeFunctionSize =
1696     is_detected<check_has_free_function_size, Range>::value;
1697 } // namespace detail
1698 
1699 /// Returns the size of the \p Range, i.e., the number of elements. This
1700 /// implementation takes inspiration from `std::ranges::size` from C++20 and
1701 /// delegates the size check to `adl_size` or `std::distance`, in this order of
1702 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
1703 /// running time, and is intended to be used in generic code that does not know
1704 /// the exact range type.
1705 template <typename R> constexpr size_t range_size(R &&Range) {
1706   if constexpr (detail::HasFreeFunctionSize<R>)
1707     return adl_size(Range);
1708   else
1709     return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
1710 }
1711 
1712 /// Provide wrappers to std::for_each which take ranges instead of having to
1713 /// pass begin/end explicitly.
1714 template <typename R, typename UnaryFunction>
1715 UnaryFunction for_each(R &&Range, UnaryFunction F) {
1716   return std::for_each(adl_begin(Range), adl_end(Range), F);
1717 }
1718 
1719 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1720 /// begin/end explicitly.
1721 template <typename R, typename UnaryPredicate>
1722 bool all_of(R &&Range, UnaryPredicate P) {
1723   return std::all_of(adl_begin(Range), adl_end(Range), P);
1724 }
1725 
1726 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1727 /// begin/end explicitly.
1728 template <typename R, typename UnaryPredicate>
1729 bool any_of(R &&Range, UnaryPredicate P) {
1730   return std::any_of(adl_begin(Range), adl_end(Range), P);
1731 }
1732 
1733 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1734 /// begin/end explicitly.
1735 template <typename R, typename UnaryPredicate>
1736 bool none_of(R &&Range, UnaryPredicate P) {
1737   return std::none_of(adl_begin(Range), adl_end(Range), P);
1738 }
1739 
1740 /// Provide wrappers to std::find which take ranges instead of having to pass
1741 /// begin/end explicitly.
1742 template <typename R, typename T> auto find(R &&Range, const T &Val) {
1743   return std::find(adl_begin(Range), adl_end(Range), Val);
1744 }
1745 
1746 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1747 /// begin/end explicitly.
1748 template <typename R, typename UnaryPredicate>
1749 auto find_if(R &&Range, UnaryPredicate P) {
1750   return std::find_if(adl_begin(Range), adl_end(Range), P);
1751 }
1752 
1753 template <typename R, typename UnaryPredicate>
1754 auto find_if_not(R &&Range, UnaryPredicate P) {
1755   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1756 }
1757 
1758 /// Provide wrappers to std::remove_if which take ranges instead of having to
1759 /// pass begin/end explicitly.
1760 template <typename R, typename UnaryPredicate>
1761 auto remove_if(R &&Range, UnaryPredicate P) {
1762   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1763 }
1764 
1765 /// Provide wrappers to std::copy_if which take ranges instead of having to
1766 /// pass begin/end explicitly.
1767 template <typename R, typename OutputIt, typename UnaryPredicate>
1768 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1769   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1770 }
1771 
1772 /// Return the single value in \p Range that satisfies
1773 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1774 /// when no values or multiple values were found.
1775 /// When \p AllowRepeats is true, multiple values that compare equal
1776 /// are allowed.
1777 template <typename T, typename R, typename Predicate>
1778 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1779   T *RC = nullptr;
1780   for (auto &&A : Range) {
1781     if (T *PRC = P(A, AllowRepeats)) {
1782       if (RC) {
1783         if (!AllowRepeats || PRC != RC)
1784           return nullptr;
1785       } else
1786         RC = PRC;
1787     }
1788   }
1789   return RC;
1790 }
1791 
1792 /// Return a pair consisting of the single value in \p Range that satisfies
1793 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1794 /// nullptr when no values or multiple values were found, and a bool indicating
1795 /// whether multiple values were found to cause the nullptr.
1796 /// When \p AllowRepeats is true, multiple values that compare equal are
1797 /// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1798 /// singleton while the bool indicates whether multiples have already been
1799 /// found.  It is expected that first will be nullptr when second is true.
1800 /// This allows using find_singleton_nested within the predicate \P.
1801 template <typename T, typename R, typename Predicate>
1802 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1803                                            bool AllowRepeats = false) {
1804   T *RC = nullptr;
1805   for (auto *A : Range) {
1806     std::pair<T *, bool> PRC = P(A, AllowRepeats);
1807     if (PRC.second) {
1808       assert(PRC.first == nullptr &&
1809              "Inconsistent return values in find_singleton_nested.");
1810       return PRC;
1811     }
1812     if (PRC.first) {
1813       if (RC) {
1814         if (!AllowRepeats || PRC.first != RC)
1815           return {nullptr, true};
1816       } else
1817         RC = PRC.first;
1818     }
1819   }
1820   return {RC, false};
1821 }
1822 
1823 template <typename R, typename OutputIt>
1824 OutputIt copy(R &&Range, OutputIt Out) {
1825   return std::copy(adl_begin(Range), adl_end(Range), Out);
1826 }
1827 
1828 /// Provide wrappers to std::replace_copy_if which take ranges instead of having
1829 /// to pass begin/end explicitly.
1830 template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1831 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1832                          const T &NewValue) {
1833   return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1834                               NewValue);
1835 }
1836 
1837 /// Provide wrappers to std::replace_copy which take ranges instead of having to
1838 /// pass begin/end explicitly.
1839 template <typename R, typename OutputIt, typename T>
1840 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1841                       const T &NewValue) {
1842   return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1843                            NewValue);
1844 }
1845 
1846 /// Provide wrappers to std::move which take ranges instead of having to
1847 /// pass begin/end explicitly.
1848 template <typename R, typename OutputIt>
1849 OutputIt move(R &&Range, OutputIt Out) {
1850   return std::move(adl_begin(Range), adl_end(Range), Out);
1851 }
1852 
1853 namespace detail {
1854 template <typename Range, typename Element>
1855 using check_has_member_contains_t =
1856     decltype(std::declval<Range &>().contains(std::declval<const Element &>()));
1857 
1858 template <typename Range, typename Element>
1859 static constexpr bool HasMemberContains =
1860     is_detected<check_has_member_contains_t, Range, Element>::value;
1861 
1862 template <typename Range, typename Element>
1863 using check_has_member_find_t =
1864     decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
1865              std::declval<Range &>().end());
1866 
1867 template <typename Range, typename Element>
1868 static constexpr bool HasMemberFind =
1869     is_detected<check_has_member_find_t, Range, Element>::value;
1870 
1871 } // namespace detail
1872 
1873 /// Returns true if \p Element is found in \p Range. Delegates the check to
1874 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
1875 /// order of preference. This is intended as the canonical way to check if an
1876 /// element exists in a range in generic code or range type that does not
1877 /// expose a `.contains(Element)` member.
1878 template <typename R, typename E>
1879 bool is_contained(R &&Range, const E &Element) {
1880   if constexpr (detail::HasMemberContains<R, E>)
1881     return Range.contains(Element);
1882   else if constexpr (detail::HasMemberFind<R, E>)
1883     return Range.find(Element) != Range.end();
1884   else
1885     return std::find(adl_begin(Range), adl_end(Range), Element) !=
1886            adl_end(Range);
1887 }
1888 
1889 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
1890 /// an initializer list and is `constexpr`-friendly.
1891 template <typename T, typename E>
1892 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
1893   // TODO: Use std::find when we switch to C++20.
1894   for (const T &V : Set)
1895     if (V == Element)
1896       return true;
1897   return false;
1898 }
1899 
1900 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1901 /// are sorted with respect to a comparator \p C.
1902 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1903   return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1904 }
1905 
1906 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1907 /// are sorted in non-descending order.
1908 template <typename R> bool is_sorted(R &&Range) {
1909   return std::is_sorted(adl_begin(Range), adl_end(Range));
1910 }
1911 
1912 /// Wrapper function around std::count to count the number of times an element
1913 /// \p Element occurs in the given range \p Range.
1914 template <typename R, typename E> auto count(R &&Range, const E &Element) {
1915   return std::count(adl_begin(Range), adl_end(Range), Element);
1916 }
1917 
1918 /// Wrapper function around std::count_if to count the number of times an
1919 /// element satisfying a given predicate occurs in a range.
1920 template <typename R, typename UnaryPredicate>
1921 auto count_if(R &&Range, UnaryPredicate P) {
1922   return std::count_if(adl_begin(Range), adl_end(Range), P);
1923 }
1924 
1925 /// Wrapper function around std::transform to apply a function to a range and
1926 /// store the result elsewhere.
1927 template <typename R, typename OutputIt, typename UnaryFunction>
1928 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1929   return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1930 }
1931 
1932 /// Provide wrappers to std::partition which take ranges instead of having to
1933 /// pass begin/end explicitly.
1934 template <typename R, typename UnaryPredicate>
1935 auto partition(R &&Range, UnaryPredicate P) {
1936   return std::partition(adl_begin(Range), adl_end(Range), P);
1937 }
1938 
1939 /// Provide wrappers to std::binary_search which take ranges instead of having
1940 /// to pass begin/end explicitly.
1941 template <typename R, typename T> auto binary_search(R &&Range, T &&Value) {
1942   return std::binary_search(adl_begin(Range), adl_end(Range),
1943                             std::forward<T>(Value));
1944 }
1945 
1946 template <typename R, typename T, typename Compare>
1947 auto binary_search(R &&Range, T &&Value, Compare C) {
1948   return std::binary_search(adl_begin(Range), adl_end(Range),
1949                             std::forward<T>(Value), C);
1950 }
1951 
1952 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1953 /// pass begin/end explicitly.
1954 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1955   return std::lower_bound(adl_begin(Range), adl_end(Range),
1956                           std::forward<T>(Value));
1957 }
1958 
1959 template <typename R, typename T, typename Compare>
1960 auto lower_bound(R &&Range, T &&Value, Compare C) {
1961   return std::lower_bound(adl_begin(Range), adl_end(Range),
1962                           std::forward<T>(Value), C);
1963 }
1964 
1965 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1966 /// pass begin/end explicitly.
1967 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1968   return std::upper_bound(adl_begin(Range), adl_end(Range),
1969                           std::forward<T>(Value));
1970 }
1971 
1972 template <typename R, typename T, typename Compare>
1973 auto upper_bound(R &&Range, T &&Value, Compare C) {
1974   return std::upper_bound(adl_begin(Range), adl_end(Range),
1975                           std::forward<T>(Value), C);
1976 }
1977 
1978 template <typename R> auto min_element(R &&Range) {
1979   return std::min_element(adl_begin(Range), adl_end(Range));
1980 }
1981 
1982 template <typename R, typename Compare> auto min_element(R &&Range, Compare C) {
1983   return std::min_element(adl_begin(Range), adl_end(Range), C);
1984 }
1985 
1986 template <typename R> auto max_element(R &&Range) {
1987   return std::max_element(adl_begin(Range), adl_end(Range));
1988 }
1989 
1990 template <typename R, typename Compare> auto max_element(R &&Range, Compare C) {
1991   return std::max_element(adl_begin(Range), adl_end(Range), C);
1992 }
1993 
1994 template <typename R>
1995 void stable_sort(R &&Range) {
1996   std::stable_sort(adl_begin(Range), adl_end(Range));
1997 }
1998 
1999 template <typename R, typename Compare>
2000 void stable_sort(R &&Range, Compare C) {
2001   std::stable_sort(adl_begin(Range), adl_end(Range), C);
2002 }
2003 
2004 /// Binary search for the first iterator in a range where a predicate is false.
2005 /// Requires that C is always true below some limit, and always false above it.
2006 template <typename R, typename Predicate,
2007           typename Val = decltype(*adl_begin(std::declval<R>()))>
2008 auto partition_point(R &&Range, Predicate P) {
2009   return std::partition_point(adl_begin(Range), adl_end(Range), P);
2010 }
2011 
2012 template<typename Range, typename Predicate>
2013 auto unique(Range &&R, Predicate P) {
2014   return std::unique(adl_begin(R), adl_end(R), P);
2015 }
2016 
2017 /// Wrapper function around std::unique to allow calling unique on a
2018 /// container without having to specify the begin/end iterators.
2019 template <typename Range> auto unique(Range &&R) {
2020   return std::unique(adl_begin(R), adl_end(R));
2021 }
2022 
2023 /// Wrapper function around std::equal to detect if pair-wise elements between
2024 /// two ranges are the same.
2025 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
2026   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2027                     adl_end(RRange));
2028 }
2029 
2030 template <typename L, typename R, typename BinaryPredicate>
2031 bool equal(L &&LRange, R &&RRange, BinaryPredicate P) {
2032   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2033                     adl_end(RRange), P);
2034 }
2035 
2036 /// Returns true if all elements in Range are equal or when the Range is empty.
2037 template <typename R> bool all_equal(R &&Range) {
2038   auto Begin = adl_begin(Range);
2039   auto End = adl_end(Range);
2040   return Begin == End || std::equal(Begin + 1, End, Begin);
2041 }
2042 
2043 /// Returns true if all Values in the initializer lists are equal or the list
2044 // is empty.
2045 template <typename T> bool all_equal(std::initializer_list<T> Values) {
2046   return all_equal<std::initializer_list<T>>(std::move(Values));
2047 }
2048 
2049 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
2050 /// `erase_if` which is equivalent to:
2051 ///
2052 ///   C.erase(remove_if(C, pred), C.end());
2053 ///
2054 /// This version works for any container with an erase method call accepting
2055 /// two iterators.
2056 template <typename Container, typename UnaryPredicate>
2057 void erase_if(Container &C, UnaryPredicate P) {
2058   C.erase(remove_if(C, P), C.end());
2059 }
2060 
2061 /// Wrapper function to remove a value from a container:
2062 ///
2063 /// C.erase(remove(C.begin(), C.end(), V), C.end());
2064 template <typename Container, typename ValueType>
2065 void erase(Container &C, ValueType V) {
2066   C.erase(std::remove(C.begin(), C.end(), V), C.end());
2067 }
2068 
2069 /// Wrapper function to append range `R` to container `C`.
2070 ///
2071 /// C.insert(C.end(), R.begin(), R.end());
2072 template <typename Container, typename Range>
2073 void append_range(Container &C, Range &&R) {
2074   C.insert(C.end(), adl_begin(R), adl_end(R));
2075 }
2076 
2077 /// Appends all `Values` to container `C`.
2078 template <typename Container, typename... Args>
2079 void append_values(Container &C, Args &&...Values) {
2080   C.reserve(range_size(C) + sizeof...(Args));
2081   // Append all values one by one.
2082   ((void)C.insert(C.end(), std::forward<Args>(Values)), ...);
2083 }
2084 
2085 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2086 /// the range [ValIt, ValEnd) (which is not from the same container).
2087 template<typename Container, typename RandomAccessIterator>
2088 void replace(Container &Cont, typename Container::iterator ContIt,
2089              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2090              RandomAccessIterator ValEnd) {
2091   while (true) {
2092     if (ValIt == ValEnd) {
2093       Cont.erase(ContIt, ContEnd);
2094       return;
2095     } else if (ContIt == ContEnd) {
2096       Cont.insert(ContIt, ValIt, ValEnd);
2097       return;
2098     }
2099     *ContIt++ = *ValIt++;
2100   }
2101 }
2102 
2103 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2104 /// the range R.
2105 template<typename Container, typename Range = std::initializer_list<
2106                                  typename Container::value_type>>
2107 void replace(Container &Cont, typename Container::iterator ContIt,
2108              typename Container::iterator ContEnd, Range R) {
2109   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2110 }
2111 
2112 /// An STL-style algorithm similar to std::for_each that applies a second
2113 /// functor between every pair of elements.
2114 ///
2115 /// This provides the control flow logic to, for example, print a
2116 /// comma-separated list:
2117 /// \code
2118 ///   interleave(names.begin(), names.end(),
2119 ///              [&](StringRef name) { os << name; },
2120 ///              [&] { os << ", "; });
2121 /// \endcode
2122 template <typename ForwardIterator, typename UnaryFunctor,
2123           typename NullaryFunctor,
2124           typename = std::enable_if_t<
2125               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2126               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2127 inline void interleave(ForwardIterator begin, ForwardIterator end,
2128                        UnaryFunctor each_fn, NullaryFunctor between_fn) {
2129   if (begin == end)
2130     return;
2131   each_fn(*begin);
2132   ++begin;
2133   for (; begin != end; ++begin) {
2134     between_fn();
2135     each_fn(*begin);
2136   }
2137 }
2138 
2139 template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2140           typename = std::enable_if_t<
2141               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2142               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2143 inline void interleave(const Container &c, UnaryFunctor each_fn,
2144                        NullaryFunctor between_fn) {
2145   interleave(adl_begin(c), adl_end(c), each_fn, between_fn);
2146 }
2147 
2148 /// Overload of interleave for the common case of string separator.
2149 template <typename Container, typename UnaryFunctor, typename StreamT,
2150           typename T = detail::ValueOfRange<Container>>
2151 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2152                        const StringRef &separator) {
2153   interleave(adl_begin(c), adl_end(c), each_fn, [&] { os << separator; });
2154 }
2155 template <typename Container, typename StreamT,
2156           typename T = detail::ValueOfRange<Container>>
2157 inline void interleave(const Container &c, StreamT &os,
2158                        const StringRef &separator) {
2159   interleave(
2160       c, os, [&](const T &a) { os << a; }, separator);
2161 }
2162 
2163 template <typename Container, typename UnaryFunctor, typename StreamT,
2164           typename T = detail::ValueOfRange<Container>>
2165 inline void interleaveComma(const Container &c, StreamT &os,
2166                             UnaryFunctor each_fn) {
2167   interleave(c, os, each_fn, ", ");
2168 }
2169 template <typename Container, typename StreamT,
2170           typename T = detail::ValueOfRange<Container>>
2171 inline void interleaveComma(const Container &c, StreamT &os) {
2172   interleaveComma(c, os, [&](const T &a) { os << a; });
2173 }
2174 
2175 //===----------------------------------------------------------------------===//
2176 //     Extra additions to <memory>
2177 //===----------------------------------------------------------------------===//
2178 
2179 struct FreeDeleter {
2180   void operator()(void* v) {
2181     ::free(v);
2182   }
2183 };
2184 
2185 template<typename First, typename Second>
2186 struct pair_hash {
2187   size_t operator()(const std::pair<First, Second> &P) const {
2188     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2189   }
2190 };
2191 
2192 /// Binary functor that adapts to any other binary functor after dereferencing
2193 /// operands.
2194 template <typename T> struct deref {
2195   T func;
2196 
2197   // Could be further improved to cope with non-derivable functors and
2198   // non-binary functors (should be a variadic template member function
2199   // operator()).
2200   template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2201     assert(lhs);
2202     assert(rhs);
2203     return func(*lhs, *rhs);
2204   }
2205 };
2206 
2207 namespace detail {
2208 
2209 /// Tuple-like type for `zip_enumerator` dereference.
2210 template <typename... Refs> struct enumerator_result;
2211 
2212 template <typename... Iters>
2213 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;
2214 
2215 /// Zippy iterator that uses the second iterator for comparisons. For the
2216 /// increment to be safe, the second range has to be the shortest.
2217 /// Returns `enumerator_result` on dereference to provide `.index()` and
2218 /// `.value()` member functions.
2219 /// Note: Because the dereference operator returns `enumerator_result` as a
2220 /// value instead of a reference and does not strictly conform to the C++17's
2221 /// definition of forward iterator. However, it satisfies all the
2222 /// forward_iterator requirements that the `zip_common` and `zippy` depend on
2223 /// and fully conforms to the C++20 definition of forward iterator.
2224 /// This is similar to `std::vector<bool>::iterator` that returns bit reference
2225 /// wrappers on dereference.
2226 template <typename... Iters>
2227 struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
2228                                    EnumeratorTupleType<Iters...>, Iters...> {
2229   static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
2230   using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
2231                    Iters...>::zip_common;
2232 
2233   bool operator==(const zip_enumerator &Other) const {
2234     return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
2235   }
2236 };
2237 
2238 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
2239   static constexpr std::size_t NumRefs = sizeof...(Refs);
2240   static_assert(NumRefs != 0);
2241   // `NumValues` includes the index.
2242   static constexpr std::size_t NumValues = NumRefs + 1;
2243 
2244   // Tuple type whose element types are references for each `Ref`.
2245   using range_reference_tuple = std::tuple<Refs...>;
2246   // Tuple type who elements are references to all values, including both
2247   // the index and `Refs` reference types.
2248   using value_reference_tuple = std::tuple<std::size_t, Refs...>;
2249 
2250   enumerator_result(std::size_t Index, Refs &&...Rs)
2251       : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}
2252 
2253   /// Returns the 0-based index of the current position within the original
2254   /// input range(s).
2255   std::size_t index() const { return Idx; }
2256 
2257   /// Returns the value(s) for the current iterator. This does not include the
2258   /// index.
2259   decltype(auto) value() const {
2260     if constexpr (NumRefs == 1)
2261       return std::get<0>(Storage);
2262     else
2263       return Storage;
2264   }
2265 
2266   /// Returns the value at index `I`. This case covers the index.
2267   template <std::size_t I, typename = std::enable_if_t<I == 0>>
2268   friend std::size_t get(const enumerator_result &Result) {
2269     return Result.Idx;
2270   }
2271 
2272   /// Returns the value at index `I`. This case covers references to the
2273   /// iteratees.
2274   template <std::size_t I, typename = std::enable_if_t<I != 0>>
2275   friend decltype(auto) get(const enumerator_result &Result) {
2276     // Note: This is a separate function from the other `get`, instead of an
2277     // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
2278     // (Visual Studio 2022 17.1) return type deduction bug.
2279     return std::get<I - 1>(Result.Storage);
2280   }
2281 
2282   template <typename... Ts>
2283   friend bool operator==(const enumerator_result &Result,
2284                          const std::tuple<std::size_t, Ts...> &Other) {
2285     static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
2286     if (Result.Idx != std::get<0>(Other))
2287       return false;
2288     return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
2289   }
2290 
2291 private:
2292   template <typename Tuple, std::size_t... Idx>
2293   bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
2294     return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
2295   }
2296 
2297   std::size_t Idx;
2298   // Make this tuple mutable to avoid casts that obfuscate const-correctness
2299   // issues. Const-correctness of references is taken care of by `zippy` that
2300   // defines const-non and const iterator types that will propagate down to
2301   // `enumerator_result`'s `Refs`.
2302   //  Note that unlike the results of `zip*` functions, `enumerate`'s result are
2303   //  supposed to be modifiable even when defined as
2304   // `const`.
2305   mutable range_reference_tuple Storage;
2306 };
2307 
2308 struct index_iterator
2309     : llvm::iterator_facade_base<index_iterator,
2310                                  std::random_access_iterator_tag, std::size_t> {
2311   index_iterator(std::size_t Index) : Index(Index) {}
2312 
2313   index_iterator &operator+=(std::ptrdiff_t N) {
2314     Index += N;
2315     return *this;
2316   }
2317 
2318   index_iterator &operator-=(std::ptrdiff_t N) {
2319     Index -= N;
2320     return *this;
2321   }
2322 
2323   std::ptrdiff_t operator-(const index_iterator &R) const {
2324     return Index - R.Index;
2325   }
2326 
2327   // Note: This dereference operator returns a value instead of a reference
2328   // and does not strictly conform to the C++17's definition of forward
2329   // iterator. However, it satisfies all the forward_iterator requirements
2330   // that the `zip_common` depends on and fully conforms to the C++20
2331   // definition of forward iterator.
2332   std::size_t operator*() const { return Index; }
2333 
2334   friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) {
2335     return Lhs.Index == Rhs.Index;
2336   }
2337 
2338   friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) {
2339     return Lhs.Index < Rhs.Index;
2340   }
2341 
2342 private:
2343   std::size_t Index;
2344 };
2345 
2346 /// Infinite stream of increasing 0-based `size_t` indices.
2347 struct index_stream {
2348   index_iterator begin() const { return {0}; }
2349   index_iterator end() const {
2350     // We approximate 'infinity' with the max size_t value, which should be good
2351     // enough to index over any container.
2352     return index_iterator{std::numeric_limits<std::size_t>::max()};
2353   }
2354 };
2355 
2356 } // end namespace detail
2357 
2358 /// Increasing range of `size_t` indices.
2359 class index_range {
2360   std::size_t Begin;
2361   std::size_t End;
2362 
2363 public:
2364   index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {}
2365   detail::index_iterator begin() const { return {Begin}; }
2366   detail::index_iterator end() const { return {End}; }
2367 };
2368 
2369 /// Given two or more input ranges, returns a new range whose values are are
2370 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
2371 /// sequence, and B, C, ..., are the values from the original input ranges. All
2372 /// input ranges are required to have equal lengths. Note that the returned
2373 /// iterator allows for the values (B, C, ...) to be modified.  Example:
2374 ///
2375 /// ```c++
2376 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
2377 /// std::vector<int> Vals = {10, 11, 12, 13};
2378 ///
2379 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
2380 ///   printf("Item %zu - %c: %d\n", Index, Letter, Value);
2381 ///   Value -= 10;
2382 /// }
2383 /// ```
2384 ///
2385 /// Output:
2386 ///   Item 0 - A: 10
2387 ///   Item 1 - B: 11
2388 ///   Item 2 - C: 12
2389 ///   Item 3 - D: 13
2390 ///
2391 /// or using an iterator:
2392 /// ```c++
2393 /// for (auto it : enumerate(Vals)) {
2394 ///   it.value() += 10;
2395 ///   printf("Item %zu: %d\n", it.index(), it.value());
2396 /// }
2397 /// ```
2398 ///
2399 /// Output:
2400 ///   Item 0: 20
2401 ///   Item 1: 21
2402 ///   Item 2: 22
2403 ///   Item 3: 23
2404 ///
2405 template <typename FirstRange, typename... RestRanges>
2406 auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
2407   if constexpr (sizeof...(Rest) != 0) {
2408 #ifndef NDEBUG
2409     // Note: Create an array instead of an initializer list to work around an
2410     // Apple clang 14 compiler bug.
2411     size_t sizes[] = {range_size(First), range_size(Rest)...};
2412     assert(all_equal(sizes) && "Ranges have different length");
2413 #endif
2414   }
2415   using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
2416                                    FirstRange, RestRanges...>;
2417   return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
2418                     std::forward<RestRanges>(Rest)...);
2419 }
2420 
2421 namespace detail {
2422 
2423 template <typename Predicate, typename... Args>
2424 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2425   auto z = zip(args...);
2426   auto it = z.begin();
2427   auto end = z.end();
2428   while (it != end) {
2429     if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2430       return false;
2431     ++it;
2432   }
2433   return it.all_equals(end);
2434 }
2435 
2436 // Just an adaptor to switch the order of argument and have the predicate before
2437 // the zipped inputs.
2438 template <typename... ArgsThenPredicate, size_t... InputIndexes>
2439 bool all_of_zip_predicate_last(
2440     std::tuple<ArgsThenPredicate...> argsThenPredicate,
2441     std::index_sequence<InputIndexes...>) {
2442   auto constexpr OutputIndex =
2443       std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2444   return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2445                              std::get<InputIndexes>(argsThenPredicate)...);
2446 }
2447 
2448 } // end namespace detail
2449 
2450 /// Compare two zipped ranges using the provided predicate (as last argument).
2451 /// Return true if all elements satisfy the predicate and false otherwise.
2452 //  Return false if the zipped iterator aren't all at end (size mismatch).
2453 template <typename... ArgsAndPredicate>
2454 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2455   return detail::all_of_zip_predicate_last(
2456       std::forward_as_tuple(argsAndPredicate...),
2457       std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2458 }
2459 
2460 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2461 /// time. Not meant for use with random-access iterators.
2462 /// Can optionally take a predicate to filter lazily some items.
2463 template <typename IterTy,
2464           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2465 bool hasNItems(
2466     IterTy &&Begin, IterTy &&End, unsigned N,
2467     Pred &&ShouldBeCounted =
2468         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2469     std::enable_if_t<
2470         !std::is_base_of<std::random_access_iterator_tag,
2471                          typename std::iterator_traits<std::remove_reference_t<
2472                              decltype(Begin)>>::iterator_category>::value,
2473         void> * = nullptr) {
2474   for (; N; ++Begin) {
2475     if (Begin == End)
2476       return false; // Too few.
2477     N -= ShouldBeCounted(*Begin);
2478   }
2479   for (; Begin != End; ++Begin)
2480     if (ShouldBeCounted(*Begin))
2481       return false; // Too many.
2482   return true;
2483 }
2484 
2485 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2486 /// time. Not meant for use with random-access iterators.
2487 /// Can optionally take a predicate to lazily filter some items.
2488 template <typename IterTy,
2489           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2490 bool hasNItemsOrMore(
2491     IterTy &&Begin, IterTy &&End, unsigned N,
2492     Pred &&ShouldBeCounted =
2493         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2494     std::enable_if_t<
2495         !std::is_base_of<std::random_access_iterator_tag,
2496                          typename std::iterator_traits<std::remove_reference_t<
2497                              decltype(Begin)>>::iterator_category>::value,
2498         void> * = nullptr) {
2499   for (; N; ++Begin) {
2500     if (Begin == End)
2501       return false; // Too few.
2502     N -= ShouldBeCounted(*Begin);
2503   }
2504   return true;
2505 }
2506 
2507 /// Returns true if the sequence [Begin, End) has N or less items. Can
2508 /// optionally take a predicate to lazily filter some items.
2509 template <typename IterTy,
2510           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2511 bool hasNItemsOrLess(
2512     IterTy &&Begin, IterTy &&End, unsigned N,
2513     Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2514       return true;
2515     }) {
2516   assert(N != std::numeric_limits<unsigned>::max());
2517   return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2518 }
2519 
2520 /// Returns true if the given container has exactly N items
2521 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2522   return hasNItems(std::begin(C), std::end(C), N);
2523 }
2524 
2525 /// Returns true if the given container has N or more items
2526 template <typename ContainerTy>
2527 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2528   return hasNItemsOrMore(std::begin(C), std::end(C), N);
2529 }
2530 
2531 /// Returns true if the given container has N or less items
2532 template <typename ContainerTy>
2533 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2534   return hasNItemsOrLess(std::begin(C), std::end(C), N);
2535 }
2536 
2537 /// Returns a raw pointer that represents the same address as the argument.
2538 ///
2539 /// This implementation can be removed once we move to C++20 where it's defined
2540 /// as std::to_address().
2541 ///
2542 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
2543 /// not been implemented.
2544 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2545 template <class T> constexpr T *to_address(T *P) { return P; }
2546 
2547 // Detect incomplete types, relying on the fact that their size is unknown.
2548 namespace detail {
2549 template <typename T> using has_sizeof = decltype(sizeof(T));
2550 } // namespace detail
2551 
2552 /// Detects when type `T` is incomplete. This is true for forward declarations
2553 /// and false for types with a full definition.
2554 template <typename T>
2555 constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value;
2556 
2557 } // end namespace llvm
2558 
2559 namespace std {
2560 template <typename... Refs>
2561 struct tuple_size<llvm::detail::enumerator_result<Refs...>>
2562     : std::integral_constant<std::size_t, sizeof...(Refs)> {};
2563 
2564 template <std::size_t I, typename... Refs>
2565 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
2566     : std::tuple_element<I, std::tuple<Refs...>> {};
2567 
2568 template <std::size_t I, typename... Refs>
2569 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
2570     : std::tuple_element<I, std::tuple<Refs...>> {};
2571 
2572 } // namespace std
2573 
2574 #endif // LLVM_ADT_STLEXTRAS_H
2575