1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file contains some templates that are useful if you are working with 11 /// the STL at all. 12 /// 13 /// No library is required when using these functions. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_ADT_STLEXTRAS_H 18 #define LLVM_ADT_STLEXTRAS_H 19 20 #include "llvm/ADT/ADL.h" 21 #include "llvm/ADT/Hashing.h" 22 #include "llvm/ADT/STLForwardCompat.h" 23 #include "llvm/ADT/STLFunctionalExtras.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Config/abi-breaking.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstdlib> 33 #include <functional> 34 #include <initializer_list> 35 #include <iterator> 36 #include <limits> 37 #include <memory> 38 #include <optional> 39 #include <tuple> 40 #include <type_traits> 41 #include <utility> 42 43 #ifdef EXPENSIVE_CHECKS 44 #include <random> // for std::mt19937 45 #endif 46 47 namespace llvm { 48 49 //===----------------------------------------------------------------------===// 50 // Extra additions to <type_traits> 51 //===----------------------------------------------------------------------===// 52 53 template <typename T> struct make_const_ptr { 54 using type = std::add_pointer_t<std::add_const_t<T>>; 55 }; 56 57 template <typename T> struct make_const_ref { 58 using type = std::add_lvalue_reference_t<std::add_const_t<T>>; 59 }; 60 61 namespace detail { 62 template <class, template <class...> class Op, class... Args> struct detector { 63 using value_t = std::false_type; 64 }; 65 template <template <class...> class Op, class... Args> 66 struct detector<std::void_t<Op<Args...>>, Op, Args...> { 67 using value_t = std::true_type; 68 }; 69 } // end namespace detail 70 71 /// Detects if a given trait holds for some set of arguments 'Args'. 72 /// For example, the given trait could be used to detect if a given type 73 /// has a copy assignment operator: 74 /// template<class T> 75 /// using has_copy_assign_t = decltype(std::declval<T&>() 76 /// = std::declval<const T&>()); 77 /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; 78 template <template <class...> class Op, class... Args> 79 using is_detected = typename detail::detector<void, Op, Args...>::value_t; 80 81 /// This class provides various trait information about a callable object. 82 /// * To access the number of arguments: Traits::num_args 83 /// * To access the type of an argument: Traits::arg_t<Index> 84 /// * To access the type of the result: Traits::result_t 85 template <typename T, bool isClass = std::is_class<T>::value> 86 struct function_traits : public function_traits<decltype(&T::operator())> {}; 87 88 /// Overload for class function types. 89 template <typename ClassType, typename ReturnType, typename... Args> 90 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { 91 /// The number of arguments to this function. 92 enum { num_args = sizeof...(Args) }; 93 94 /// The result type of this function. 95 using result_t = ReturnType; 96 97 /// The type of an argument to this function. 98 template <size_t Index> 99 using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; 100 }; 101 /// Overload for class function types. 102 template <typename ClassType, typename ReturnType, typename... Args> 103 struct function_traits<ReturnType (ClassType::*)(Args...), false> 104 : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; 105 /// Overload for non-class function types. 106 template <typename ReturnType, typename... Args> 107 struct function_traits<ReturnType (*)(Args...), false> { 108 /// The number of arguments to this function. 109 enum { num_args = sizeof...(Args) }; 110 111 /// The result type of this function. 112 using result_t = ReturnType; 113 114 /// The type of an argument to this function. 115 template <size_t i> 116 using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; 117 }; 118 template <typename ReturnType, typename... Args> 119 struct function_traits<ReturnType (*const)(Args...), false> 120 : public function_traits<ReturnType (*)(Args...)> {}; 121 /// Overload for non-class function type references. 122 template <typename ReturnType, typename... Args> 123 struct function_traits<ReturnType (&)(Args...), false> 124 : public function_traits<ReturnType (*)(Args...)> {}; 125 126 /// traits class for checking whether type T is one of any of the given 127 /// types in the variadic list. 128 template <typename T, typename... Ts> 129 using is_one_of = std::disjunction<std::is_same<T, Ts>...>; 130 131 /// traits class for checking whether type T is a base class for all 132 /// the given types in the variadic list. 133 template <typename T, typename... Ts> 134 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; 135 136 namespace detail { 137 template <typename T, typename... Us> struct TypesAreDistinct; 138 template <typename T, typename... Us> 139 struct TypesAreDistinct 140 : std::integral_constant<bool, !is_one_of<T, Us...>::value && 141 TypesAreDistinct<Us...>::value> {}; 142 template <typename T> struct TypesAreDistinct<T> : std::true_type {}; 143 } // namespace detail 144 145 /// Determine if all types in Ts are distinct. 146 /// 147 /// Useful to statically assert when Ts is intended to describe a non-multi set 148 /// of types. 149 /// 150 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be 151 /// asserted once per instantiation of a type which requires it. 152 template <typename... Ts> struct TypesAreDistinct; 153 template <> struct TypesAreDistinct<> : std::true_type {}; 154 template <typename... Ts> 155 struct TypesAreDistinct 156 : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; 157 158 /// Find the first index where a type appears in a list of types. 159 /// 160 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. 161 /// 162 /// Typically only meaningful when it is otherwise statically known that the 163 /// type pack has no duplicate types. This should be guaranteed explicitly with 164 /// static_assert(TypesAreDistinct<Us...>::value). 165 /// 166 /// It is a compile-time error to instantiate when T is not present in Us, i.e. 167 /// if is_one_of<T, Us...>::value is false. 168 template <typename T, typename... Us> struct FirstIndexOfType; 169 template <typename T, typename U, typename... Us> 170 struct FirstIndexOfType<T, U, Us...> 171 : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; 172 template <typename T, typename... Us> 173 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; 174 175 /// Find the type at a given index in a list of types. 176 /// 177 /// TypeAtIndex<I, Ts...> is the type at index I in Ts. 178 template <size_t I, typename... Ts> 179 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; 180 181 /// Helper which adds two underlying types of enumeration type. 182 /// Implicit conversion to a common type is accepted. 183 template <typename EnumTy1, typename EnumTy2, 184 typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, 185 std::underlying_type_t<EnumTy1>>, 186 typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, 187 std::underlying_type_t<EnumTy2>>> 188 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { 189 return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); 190 } 191 192 //===----------------------------------------------------------------------===// 193 // Extra additions to <iterator> 194 //===----------------------------------------------------------------------===// 195 196 namespace callable_detail { 197 198 /// Templated storage wrapper for a callable. 199 /// 200 /// This class is consistently default constructible, copy / move 201 /// constructible / assignable. 202 /// 203 /// Supported callable types: 204 /// - Function pointer 205 /// - Function reference 206 /// - Lambda 207 /// - Function object 208 template <typename T, 209 bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> 210 class Callable { 211 using value_type = std::remove_reference_t<T>; 212 using reference = value_type &; 213 using const_reference = value_type const &; 214 215 std::optional<value_type> Obj; 216 217 static_assert(!std::is_pointer_v<value_type>, 218 "Pointers to non-functions are not callable."); 219 220 public: 221 Callable() = default; 222 Callable(T const &O) : Obj(std::in_place, O) {} 223 224 Callable(Callable const &Other) = default; 225 Callable(Callable &&Other) = default; 226 227 Callable &operator=(Callable const &Other) { 228 Obj = std::nullopt; 229 if (Other.Obj) 230 Obj.emplace(*Other.Obj); 231 return *this; 232 } 233 234 Callable &operator=(Callable &&Other) { 235 Obj = std::nullopt; 236 if (Other.Obj) 237 Obj.emplace(std::move(*Other.Obj)); 238 return *this; 239 } 240 241 template <typename... Pn, 242 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> 243 decltype(auto) operator()(Pn &&...Params) { 244 return (*Obj)(std::forward<Pn>(Params)...); 245 } 246 247 template <typename... Pn, 248 std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> 249 decltype(auto) operator()(Pn &&...Params) const { 250 return (*Obj)(std::forward<Pn>(Params)...); 251 } 252 253 bool valid() const { return Obj != std::nullopt; } 254 bool reset() { return Obj = std::nullopt; } 255 256 operator reference() { return *Obj; } 257 operator const_reference() const { return *Obj; } 258 }; 259 260 // Function specialization. No need to waste extra space wrapping with a 261 // std::optional. 262 template <typename T> class Callable<T, true> { 263 static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; 264 265 using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; 266 using CastT = std::conditional_t<IsPtr, T, T &>; 267 268 private: 269 StorageT Func = nullptr; 270 271 private: 272 template <typename In> static constexpr auto convertIn(In &&I) { 273 if constexpr (IsPtr) { 274 // Pointer... just echo it back. 275 return I; 276 } else { 277 // Must be a function reference. Return its address. 278 return &I; 279 } 280 } 281 282 public: 283 Callable() = default; 284 285 // Construct from a function pointer or reference. 286 // 287 // Disable this constructor for references to 'Callable' so we don't violate 288 // the rule of 0. 289 template < // clang-format off 290 typename FnPtrOrRef, 291 std::enable_if_t< 292 !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int 293 > = 0 294 > // clang-format on 295 Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} 296 297 template <typename... Pn, 298 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> 299 decltype(auto) operator()(Pn &&...Params) const { 300 return Func(std::forward<Pn>(Params)...); 301 } 302 303 bool valid() const { return Func != nullptr; } 304 void reset() { Func = nullptr; } 305 306 operator T const &() const { 307 if constexpr (IsPtr) { 308 // T is a pointer... just echo it back. 309 return Func; 310 } else { 311 static_assert(std::is_reference_v<T>, 312 "Expected a reference to a function."); 313 // T is a function reference... dereference the stored pointer. 314 return *Func; 315 } 316 } 317 }; 318 319 } // namespace callable_detail 320 321 /// Returns true if the given container only contains a single element. 322 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { 323 auto B = std::begin(C), E = std::end(C); 324 return B != E && std::next(B) == E; 325 } 326 327 /// Return a range covering \p RangeOrContainer with the first N elements 328 /// excluded. 329 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { 330 return make_range(std::next(adl_begin(RangeOrContainer), N), 331 adl_end(RangeOrContainer)); 332 } 333 334 /// Return a range covering \p RangeOrContainer with the last N elements 335 /// excluded. 336 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { 337 return make_range(adl_begin(RangeOrContainer), 338 std::prev(adl_end(RangeOrContainer), N)); 339 } 340 341 // mapped_iterator - This is a simple iterator adapter that causes a function to 342 // be applied whenever operator* is invoked on the iterator. 343 344 template <typename ItTy, typename FuncTy, 345 typename ReferenceTy = 346 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> 347 class mapped_iterator 348 : public iterator_adaptor_base< 349 mapped_iterator<ItTy, FuncTy>, ItTy, 350 typename std::iterator_traits<ItTy>::iterator_category, 351 std::remove_reference_t<ReferenceTy>, 352 typename std::iterator_traits<ItTy>::difference_type, 353 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 354 public: 355 mapped_iterator() = default; 356 mapped_iterator(ItTy U, FuncTy F) 357 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} 358 359 ItTy getCurrent() { return this->I; } 360 361 const FuncTy &getFunction() const { return F; } 362 363 ReferenceTy operator*() const { return F(*this->I); } 364 365 private: 366 callable_detail::Callable<FuncTy> F{}; 367 }; 368 369 // map_iterator - Provide a convenient way to create mapped_iterators, just like 370 // make_pair is useful for creating pairs... 371 template <class ItTy, class FuncTy> 372 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { 373 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); 374 } 375 376 template <class ContainerTy, class FuncTy> 377 auto map_range(ContainerTy &&C, FuncTy F) { 378 return make_range(map_iterator(std::begin(C), F), 379 map_iterator(std::end(C), F)); 380 } 381 382 /// A base type of mapped iterator, that is useful for building derived 383 /// iterators that do not need/want to store the map function (as in 384 /// mapped_iterator). These iterators must simply provide a `mapElement` method 385 /// that defines how to map a value of the iterator to the provided reference 386 /// type. 387 template <typename DerivedT, typename ItTy, typename ReferenceTy> 388 class mapped_iterator_base 389 : public iterator_adaptor_base< 390 DerivedT, ItTy, 391 typename std::iterator_traits<ItTy>::iterator_category, 392 std::remove_reference_t<ReferenceTy>, 393 typename std::iterator_traits<ItTy>::difference_type, 394 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 395 public: 396 using BaseT = mapped_iterator_base; 397 398 mapped_iterator_base(ItTy U) 399 : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} 400 401 ItTy getCurrent() { return this->I; } 402 403 ReferenceTy operator*() const { 404 return static_cast<const DerivedT &>(*this).mapElement(*this->I); 405 } 406 }; 407 408 /// Helper to determine if type T has a member called rbegin(). 409 template <typename Ty> class has_rbegin_impl { 410 using yes = char[1]; 411 using no = char[2]; 412 413 template <typename Inner> 414 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); 415 416 template <typename> 417 static no& test(...); 418 419 public: 420 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 421 }; 422 423 /// Metafunction to determine if T& or T has a member called rbegin(). 424 template <typename Ty> 425 struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {}; 426 427 // Returns an iterator_range over the given container which iterates in reverse. 428 template <typename ContainerTy> auto reverse(ContainerTy &&C) { 429 if constexpr (has_rbegin<ContainerTy>::value) 430 return make_range(C.rbegin(), C.rend()); 431 else 432 return make_range(std::make_reverse_iterator(std::end(C)), 433 std::make_reverse_iterator(std::begin(C))); 434 } 435 436 /// An iterator adaptor that filters the elements of given inner iterators. 437 /// 438 /// The predicate parameter should be a callable object that accepts the wrapped 439 /// iterator's reference type and returns a bool. When incrementing or 440 /// decrementing the iterator, it will call the predicate on each element and 441 /// skip any where it returns false. 442 /// 443 /// \code 444 /// int A[] = { 1, 2, 3, 4 }; 445 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); 446 /// // R contains { 1, 3 }. 447 /// \endcode 448 /// 449 /// Note: filter_iterator_base implements support for forward iteration. 450 /// filter_iterator_impl exists to provide support for bidirectional iteration, 451 /// conditional on whether the wrapped iterator supports it. 452 template <typename WrappedIteratorT, typename PredicateT, typename IterTag> 453 class filter_iterator_base 454 : public iterator_adaptor_base< 455 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, 456 WrappedIteratorT, 457 std::common_type_t<IterTag, 458 typename std::iterator_traits< 459 WrappedIteratorT>::iterator_category>> { 460 using BaseT = typename filter_iterator_base::iterator_adaptor_base; 461 462 protected: 463 WrappedIteratorT End; 464 PredicateT Pred; 465 466 void findNextValid() { 467 while (this->I != End && !Pred(*this->I)) 468 BaseT::operator++(); 469 } 470 471 filter_iterator_base() = default; 472 473 // Construct the iterator. The begin iterator needs to know where the end 474 // is, so that it can properly stop when it gets there. The end iterator only 475 // needs the predicate to support bidirectional iteration. 476 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, 477 PredicateT Pred) 478 : BaseT(Begin), End(End), Pred(Pred) { 479 findNextValid(); 480 } 481 482 public: 483 using BaseT::operator++; 484 485 filter_iterator_base &operator++() { 486 BaseT::operator++(); 487 findNextValid(); 488 return *this; 489 } 490 491 decltype(auto) operator*() const { 492 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 493 return BaseT::operator*(); 494 } 495 496 decltype(auto) operator->() const { 497 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 498 return BaseT::operator->(); 499 } 500 }; 501 502 /// Specialization of filter_iterator_base for forward iteration only. 503 template <typename WrappedIteratorT, typename PredicateT, 504 typename IterTag = std::forward_iterator_tag> 505 class filter_iterator_impl 506 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { 507 public: 508 filter_iterator_impl() = default; 509 510 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 511 PredicateT Pred) 512 : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} 513 }; 514 515 /// Specialization of filter_iterator_base for bidirectional iteration. 516 template <typename WrappedIteratorT, typename PredicateT> 517 class filter_iterator_impl<WrappedIteratorT, PredicateT, 518 std::bidirectional_iterator_tag> 519 : public filter_iterator_base<WrappedIteratorT, PredicateT, 520 std::bidirectional_iterator_tag> { 521 using BaseT = typename filter_iterator_impl::filter_iterator_base; 522 523 void findPrevValid() { 524 while (!this->Pred(*this->I)) 525 BaseT::operator--(); 526 } 527 528 public: 529 using BaseT::operator--; 530 531 filter_iterator_impl() = default; 532 533 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 534 PredicateT Pred) 535 : BaseT(Begin, End, Pred) {} 536 537 filter_iterator_impl &operator--() { 538 BaseT::operator--(); 539 findPrevValid(); 540 return *this; 541 } 542 }; 543 544 namespace detail { 545 546 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { 547 using type = std::forward_iterator_tag; 548 }; 549 550 template <> struct fwd_or_bidi_tag_impl<true> { 551 using type = std::bidirectional_iterator_tag; 552 }; 553 554 /// Helper which sets its type member to forward_iterator_tag if the category 555 /// of \p IterT does not derive from bidirectional_iterator_tag, and to 556 /// bidirectional_iterator_tag otherwise. 557 template <typename IterT> struct fwd_or_bidi_tag { 558 using type = typename fwd_or_bidi_tag_impl<std::is_base_of< 559 std::bidirectional_iterator_tag, 560 typename std::iterator_traits<IterT>::iterator_category>::value>::type; 561 }; 562 563 } // namespace detail 564 565 /// Defines filter_iterator to a suitable specialization of 566 /// filter_iterator_impl, based on the underlying iterator's category. 567 template <typename WrappedIteratorT, typename PredicateT> 568 using filter_iterator = filter_iterator_impl< 569 WrappedIteratorT, PredicateT, 570 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; 571 572 /// Convenience function that takes a range of elements and a predicate, 573 /// and return a new filter_iterator range. 574 /// 575 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the 576 /// lifetime of that temporary is not kept by the returned range object, and the 577 /// temporary is going to be dropped on the floor after the make_iterator_range 578 /// full expression that contains this function call. 579 template <typename RangeT, typename PredicateT> 580 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> 581 make_filter_range(RangeT &&Range, PredicateT Pred) { 582 using FilterIteratorT = 583 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; 584 return make_range( 585 FilterIteratorT(std::begin(std::forward<RangeT>(Range)), 586 std::end(std::forward<RangeT>(Range)), Pred), 587 FilterIteratorT(std::end(std::forward<RangeT>(Range)), 588 std::end(std::forward<RangeT>(Range)), Pred)); 589 } 590 591 /// A pseudo-iterator adaptor that is designed to implement "early increment" 592 /// style loops. 593 /// 594 /// This is *not a normal iterator* and should almost never be used directly. It 595 /// is intended primarily to be used with range based for loops and some range 596 /// algorithms. 597 /// 598 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but 599 /// somewhere between them. The constraints of these iterators are: 600 /// 601 /// - On construction or after being incremented, it is comparable and 602 /// dereferencable. It is *not* incrementable. 603 /// - After being dereferenced, it is neither comparable nor dereferencable, it 604 /// is only incrementable. 605 /// 606 /// This means you can only dereference the iterator once, and you can only 607 /// increment it once between dereferences. 608 template <typename WrappedIteratorT> 609 class early_inc_iterator_impl 610 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, 611 WrappedIteratorT, std::input_iterator_tag> { 612 using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; 613 614 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; 615 616 protected: 617 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 618 bool IsEarlyIncremented = false; 619 #endif 620 621 public: 622 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} 623 624 using BaseT::operator*; 625 decltype(*std::declval<WrappedIteratorT>()) operator*() { 626 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 627 assert(!IsEarlyIncremented && "Cannot dereference twice!"); 628 IsEarlyIncremented = true; 629 #endif 630 return *(this->I)++; 631 } 632 633 using BaseT::operator++; 634 early_inc_iterator_impl &operator++() { 635 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 636 assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); 637 IsEarlyIncremented = false; 638 #endif 639 return *this; 640 } 641 642 friend bool operator==(const early_inc_iterator_impl &LHS, 643 const early_inc_iterator_impl &RHS) { 644 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 645 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); 646 #endif 647 return (const BaseT &)LHS == (const BaseT &)RHS; 648 } 649 }; 650 651 /// Make a range that does early increment to allow mutation of the underlying 652 /// range without disrupting iteration. 653 /// 654 /// The underlying iterator will be incremented immediately after it is 655 /// dereferenced, allowing deletion of the current node or insertion of nodes to 656 /// not disrupt iteration provided they do not invalidate the *next* iterator -- 657 /// the current iterator can be invalidated. 658 /// 659 /// This requires a very exact pattern of use that is only really suitable to 660 /// range based for loops and other range algorithms that explicitly guarantee 661 /// to dereference exactly once each element, and to increment exactly once each 662 /// element. 663 template <typename RangeT> 664 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> 665 make_early_inc_range(RangeT &&Range) { 666 using EarlyIncIteratorT = 667 early_inc_iterator_impl<detail::IterOfRange<RangeT>>; 668 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), 669 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); 670 } 671 672 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest 673 template <typename R, typename UnaryPredicate> 674 bool all_of(R &&range, UnaryPredicate P); 675 676 template <typename R, typename UnaryPredicate> 677 bool any_of(R &&range, UnaryPredicate P); 678 679 template <typename T> bool all_equal(std::initializer_list<T> Values); 680 681 template <typename R> constexpr size_t range_size(R &&Range); 682 683 namespace detail { 684 685 using std::declval; 686 687 // We have to alias this since inlining the actual type at the usage site 688 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. 689 template<typename... Iters> struct ZipTupleType { 690 using type = std::tuple<decltype(*declval<Iters>())...>; 691 }; 692 693 template <typename ZipType, typename ReferenceTupleType, typename... Iters> 694 using zip_traits = iterator_facade_base< 695 ZipType, 696 std::common_type_t< 697 std::bidirectional_iterator_tag, 698 typename std::iterator_traits<Iters>::iterator_category...>, 699 // ^ TODO: Implement random access methods. 700 ReferenceTupleType, 701 typename std::iterator_traits< 702 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, 703 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all 704 // inner iterators have the same difference_type. It would fail if, for 705 // instance, the second field's difference_type were non-numeric while the 706 // first is. 707 ReferenceTupleType *, ReferenceTupleType>; 708 709 template <typename ZipType, typename ReferenceTupleType, typename... Iters> 710 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> { 711 using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>; 712 using IndexSequence = std::index_sequence_for<Iters...>; 713 using value_type = typename Base::value_type; 714 715 std::tuple<Iters...> iterators; 716 717 protected: 718 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 719 return value_type(*std::get<Ns>(iterators)...); 720 } 721 722 template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) { 723 (++std::get<Ns>(iterators), ...); 724 } 725 726 template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) { 727 (--std::get<Ns>(iterators), ...); 728 } 729 730 template <size_t... Ns> 731 bool test_all_equals(const zip_common &other, 732 std::index_sequence<Ns...>) const { 733 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && 734 ...); 735 } 736 737 public: 738 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} 739 740 value_type operator*() const { return deref(IndexSequence{}); } 741 742 ZipType &operator++() { 743 tup_inc(IndexSequence{}); 744 return static_cast<ZipType &>(*this); 745 } 746 747 ZipType &operator--() { 748 static_assert(Base::IsBidirectional, 749 "All inner iterators must be at least bidirectional."); 750 tup_dec(IndexSequence{}); 751 return static_cast<ZipType &>(*this); 752 } 753 754 /// Return true if all the iterator are matching `other`'s iterators. 755 bool all_equals(zip_common &other) { 756 return test_all_equals(other, IndexSequence{}); 757 } 758 }; 759 760 template <typename... Iters> 761 struct zip_first : zip_common<zip_first<Iters...>, 762 typename ZipTupleType<Iters...>::type, Iters...> { 763 using zip_common<zip_first, typename ZipTupleType<Iters...>::type, 764 Iters...>::zip_common; 765 766 bool operator==(const zip_first &other) const { 767 return std::get<0>(this->iterators) == std::get<0>(other.iterators); 768 } 769 }; 770 771 template <typename... Iters> 772 struct zip_shortest 773 : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type, 774 Iters...> { 775 using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type, 776 Iters...>::zip_common; 777 778 bool operator==(const zip_shortest &other) const { 779 return any_iterator_equals(other, std::index_sequence_for<Iters...>{}); 780 } 781 782 private: 783 template <size_t... Ns> 784 bool any_iterator_equals(const zip_shortest &other, 785 std::index_sequence<Ns...>) const { 786 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) || 787 ...); 788 } 789 }; 790 791 /// Helper to obtain the iterator types for the tuple storage within `zippy`. 792 template <template <typename...> class ItType, typename TupleStorageType, 793 typename IndexSequence> 794 struct ZippyIteratorTuple; 795 796 /// Partial specialization for non-const tuple storage. 797 template <template <typename...> class ItType, typename... Args, 798 std::size_t... Ns> 799 struct ZippyIteratorTuple<ItType, std::tuple<Args...>, 800 std::index_sequence<Ns...>> { 801 using type = ItType<decltype(adl_begin( 802 std::get<Ns>(declval<std::tuple<Args...> &>())))...>; 803 }; 804 805 /// Partial specialization for const tuple storage. 806 template <template <typename...> class ItType, typename... Args, 807 std::size_t... Ns> 808 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>, 809 std::index_sequence<Ns...>> { 810 using type = ItType<decltype(adl_begin( 811 std::get<Ns>(declval<const std::tuple<Args...> &>())))...>; 812 }; 813 814 template <template <typename...> class ItType, typename... Args> class zippy { 815 private: 816 std::tuple<Args...> storage; 817 using IndexSequence = std::index_sequence_for<Args...>; 818 819 public: 820 using iterator = typename ZippyIteratorTuple<ItType, decltype(storage), 821 IndexSequence>::type; 822 using const_iterator = 823 typename ZippyIteratorTuple<ItType, const decltype(storage), 824 IndexSequence>::type; 825 using iterator_category = typename iterator::iterator_category; 826 using value_type = typename iterator::value_type; 827 using difference_type = typename iterator::difference_type; 828 using pointer = typename iterator::pointer; 829 using reference = typename iterator::reference; 830 using const_reference = typename const_iterator::reference; 831 832 zippy(Args &&...args) : storage(std::forward<Args>(args)...) {} 833 834 const_iterator begin() const { return begin_impl(IndexSequence{}); } 835 iterator begin() { return begin_impl(IndexSequence{}); } 836 const_iterator end() const { return end_impl(IndexSequence{}); } 837 iterator end() { return end_impl(IndexSequence{}); } 838 839 private: 840 template <size_t... Ns> 841 const_iterator begin_impl(std::index_sequence<Ns...>) const { 842 return const_iterator(adl_begin(std::get<Ns>(storage))...); 843 } 844 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { 845 return iterator(adl_begin(std::get<Ns>(storage))...); 846 } 847 848 template <size_t... Ns> 849 const_iterator end_impl(std::index_sequence<Ns...>) const { 850 return const_iterator(adl_end(std::get<Ns>(storage))...); 851 } 852 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 853 return iterator(adl_end(std::get<Ns>(storage))...); 854 } 855 }; 856 857 } // end namespace detail 858 859 /// zip iterator for two or more iteratable types. Iteration continues until the 860 /// end of the *shortest* iteratee is reached. 861 template <typename T, typename U, typename... Args> 862 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, 863 Args &&...args) { 864 return detail::zippy<detail::zip_shortest, T, U, Args...>( 865 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 866 } 867 868 /// zip iterator that assumes that all iteratees have the same length. 869 /// In builds with assertions on, this assumption is checked before the 870 /// iteration starts. 871 template <typename T, typename U, typename... Args> 872 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, 873 Args &&...args) { 874 assert(all_equal({range_size(t), range_size(u), range_size(args)...}) && 875 "Iteratees do not have equal length"); 876 return detail::zippy<detail::zip_first, T, U, Args...>( 877 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 878 } 879 880 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to 881 /// be the shortest. Iteration continues until the end of the first iteratee is 882 /// reached. In builds with assertions on, we check that the assumption about 883 /// the first iteratee being the shortest holds. 884 template <typename T, typename U, typename... Args> 885 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, 886 Args &&...args) { 887 assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) && 888 "First iteratee is not the shortest"); 889 890 return detail::zippy<detail::zip_first, T, U, Args...>( 891 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 892 } 893 894 namespace detail { 895 template <typename Iter> 896 Iter next_or_end(const Iter &I, const Iter &End) { 897 if (I == End) 898 return End; 899 return std::next(I); 900 } 901 902 template <typename Iter> 903 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< 904 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { 905 if (I == End) 906 return std::nullopt; 907 return *I; 908 } 909 910 template <typename Iter> struct ZipLongestItemType { 911 using type = std::optional<std::remove_const_t< 912 std::remove_reference_t<decltype(*std::declval<Iter>())>>>; 913 }; 914 915 template <typename... Iters> struct ZipLongestTupleType { 916 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; 917 }; 918 919 template <typename... Iters> 920 class zip_longest_iterator 921 : public iterator_facade_base< 922 zip_longest_iterator<Iters...>, 923 std::common_type_t< 924 std::forward_iterator_tag, 925 typename std::iterator_traits<Iters>::iterator_category...>, 926 typename ZipLongestTupleType<Iters...>::type, 927 typename std::iterator_traits< 928 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, 929 typename ZipLongestTupleType<Iters...>::type *, 930 typename ZipLongestTupleType<Iters...>::type> { 931 public: 932 using value_type = typename ZipLongestTupleType<Iters...>::type; 933 934 private: 935 std::tuple<Iters...> iterators; 936 std::tuple<Iters...> end_iterators; 937 938 template <size_t... Ns> 939 bool test(const zip_longest_iterator<Iters...> &other, 940 std::index_sequence<Ns...>) const { 941 return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || 942 ...); 943 } 944 945 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 946 return value_type( 947 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 948 } 949 950 template <size_t... Ns> 951 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 952 return std::tuple<Iters...>( 953 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 954 } 955 956 public: 957 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) 958 : iterators(std::forward<Iters>(ts.first)...), 959 end_iterators(std::forward<Iters>(ts.second)...) {} 960 961 value_type operator*() const { 962 return deref(std::index_sequence_for<Iters...>{}); 963 } 964 965 zip_longest_iterator<Iters...> &operator++() { 966 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 967 return *this; 968 } 969 970 bool operator==(const zip_longest_iterator<Iters...> &other) const { 971 return !test(other, std::index_sequence_for<Iters...>{}); 972 } 973 }; 974 975 template <typename... Args> class zip_longest_range { 976 public: 977 using iterator = 978 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; 979 using iterator_category = typename iterator::iterator_category; 980 using value_type = typename iterator::value_type; 981 using difference_type = typename iterator::difference_type; 982 using pointer = typename iterator::pointer; 983 using reference = typename iterator::reference; 984 985 private: 986 std::tuple<Args...> ts; 987 988 template <size_t... Ns> 989 iterator begin_impl(std::index_sequence<Ns...>) const { 990 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), 991 adl_end(std::get<Ns>(ts)))...); 992 } 993 994 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 995 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), 996 adl_end(std::get<Ns>(ts)))...); 997 } 998 999 public: 1000 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 1001 1002 iterator begin() const { 1003 return begin_impl(std::index_sequence_for<Args...>{}); 1004 } 1005 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 1006 }; 1007 } // namespace detail 1008 1009 /// Iterate over two or more iterators at the same time. Iteration continues 1010 /// until all iterators reach the end. The std::optional only contains a value 1011 /// if the iterator has not reached the end. 1012 template <typename T, typename U, typename... Args> 1013 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, 1014 Args &&... args) { 1015 return detail::zip_longest_range<T, U, Args...>( 1016 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 1017 } 1018 1019 /// Iterator wrapper that concatenates sequences together. 1020 /// 1021 /// This can concatenate different iterators, even with different types, into 1022 /// a single iterator provided the value types of all the concatenated 1023 /// iterators expose `reference` and `pointer` types that can be converted to 1024 /// `ValueT &` and `ValueT *` respectively. It doesn't support more 1025 /// interesting/customized pointer or reference types. 1026 /// 1027 /// Currently this only supports forward or higher iterator categories as 1028 /// inputs and always exposes a forward iterator interface. 1029 template <typename ValueT, typename... IterTs> 1030 class concat_iterator 1031 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, 1032 std::forward_iterator_tag, ValueT> { 1033 using BaseT = typename concat_iterator::iterator_facade_base; 1034 1035 /// We store both the current and end iterators for each concatenated 1036 /// sequence in a tuple of pairs. 1037 /// 1038 /// Note that something like iterator_range seems nice at first here, but the 1039 /// range properties are of little benefit and end up getting in the way 1040 /// because we need to do mutation on the current iterators. 1041 std::tuple<IterTs...> Begins; 1042 std::tuple<IterTs...> Ends; 1043 1044 /// Attempts to increment a specific iterator. 1045 /// 1046 /// Returns true if it was able to increment the iterator. Returns false if 1047 /// the iterator is already at the end iterator. 1048 template <size_t Index> bool incrementHelper() { 1049 auto &Begin = std::get<Index>(Begins); 1050 auto &End = std::get<Index>(Ends); 1051 if (Begin == End) 1052 return false; 1053 1054 ++Begin; 1055 return true; 1056 } 1057 1058 /// Increments the first non-end iterator. 1059 /// 1060 /// It is an error to call this with all iterators at the end. 1061 template <size_t... Ns> void increment(std::index_sequence<Ns...>) { 1062 // Build a sequence of functions to increment each iterator if possible. 1063 bool (concat_iterator::*IncrementHelperFns[])() = { 1064 &concat_iterator::incrementHelper<Ns>...}; 1065 1066 // Loop over them, and stop as soon as we succeed at incrementing one. 1067 for (auto &IncrementHelperFn : IncrementHelperFns) 1068 if ((this->*IncrementHelperFn)()) 1069 return; 1070 1071 llvm_unreachable("Attempted to increment an end concat iterator!"); 1072 } 1073 1074 /// Returns null if the specified iterator is at the end. Otherwise, 1075 /// dereferences the iterator and returns the address of the resulting 1076 /// reference. 1077 template <size_t Index> ValueT *getHelper() const { 1078 auto &Begin = std::get<Index>(Begins); 1079 auto &End = std::get<Index>(Ends); 1080 if (Begin == End) 1081 return nullptr; 1082 1083 return &*Begin; 1084 } 1085 1086 /// Finds the first non-end iterator, dereferences, and returns the resulting 1087 /// reference. 1088 /// 1089 /// It is an error to call this with all iterators at the end. 1090 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { 1091 // Build a sequence of functions to get from iterator if possible. 1092 ValueT *(concat_iterator::*GetHelperFns[])() const = { 1093 &concat_iterator::getHelper<Ns>...}; 1094 1095 // Loop over them, and return the first result we find. 1096 for (auto &GetHelperFn : GetHelperFns) 1097 if (ValueT *P = (this->*GetHelperFn)()) 1098 return *P; 1099 1100 llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); 1101 } 1102 1103 public: 1104 /// Constructs an iterator from a sequence of ranges. 1105 /// 1106 /// We need the full range to know how to switch between each of the 1107 /// iterators. 1108 template <typename... RangeTs> 1109 explicit concat_iterator(RangeTs &&... Ranges) 1110 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} 1111 1112 using BaseT::operator++; 1113 1114 concat_iterator &operator++() { 1115 increment(std::index_sequence_for<IterTs...>()); 1116 return *this; 1117 } 1118 1119 ValueT &operator*() const { 1120 return get(std::index_sequence_for<IterTs...>()); 1121 } 1122 1123 bool operator==(const concat_iterator &RHS) const { 1124 return Begins == RHS.Begins && Ends == RHS.Ends; 1125 } 1126 }; 1127 1128 namespace detail { 1129 1130 /// Helper to store a sequence of ranges being concatenated and access them. 1131 /// 1132 /// This is designed to facilitate providing actual storage when temporaries 1133 /// are passed into the constructor such that we can use it as part of range 1134 /// based for loops. 1135 template <typename ValueT, typename... RangeTs> class concat_range { 1136 public: 1137 using iterator = 1138 concat_iterator<ValueT, 1139 decltype(std::begin(std::declval<RangeTs &>()))...>; 1140 1141 private: 1142 std::tuple<RangeTs...> Ranges; 1143 1144 template <size_t... Ns> 1145 iterator begin_impl(std::index_sequence<Ns...>) { 1146 return iterator(std::get<Ns>(Ranges)...); 1147 } 1148 template <size_t... Ns> 1149 iterator begin_impl(std::index_sequence<Ns...>) const { 1150 return iterator(std::get<Ns>(Ranges)...); 1151 } 1152 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 1153 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1154 std::end(std::get<Ns>(Ranges)))...); 1155 } 1156 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 1157 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1158 std::end(std::get<Ns>(Ranges)))...); 1159 } 1160 1161 public: 1162 concat_range(RangeTs &&... Ranges) 1163 : Ranges(std::forward<RangeTs>(Ranges)...) {} 1164 1165 iterator begin() { 1166 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1167 } 1168 iterator begin() const { 1169 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1170 } 1171 iterator end() { 1172 return end_impl(std::index_sequence_for<RangeTs...>{}); 1173 } 1174 iterator end() const { 1175 return end_impl(std::index_sequence_for<RangeTs...>{}); 1176 } 1177 }; 1178 1179 } // end namespace detail 1180 1181 /// Concatenated range across two or more ranges. 1182 /// 1183 /// The desired value type must be explicitly specified. 1184 template <typename ValueT, typename... RangeTs> 1185 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { 1186 static_assert(sizeof...(RangeTs) > 1, 1187 "Need more than one range to concatenate!"); 1188 return detail::concat_range<ValueT, RangeTs...>( 1189 std::forward<RangeTs>(Ranges)...); 1190 } 1191 1192 /// A utility class used to implement an iterator that contains some base object 1193 /// and an index. The iterator moves the index but keeps the base constant. 1194 template <typename DerivedT, typename BaseT, typename T, 1195 typename PointerT = T *, typename ReferenceT = T &> 1196 class indexed_accessor_iterator 1197 : public llvm::iterator_facade_base<DerivedT, 1198 std::random_access_iterator_tag, T, 1199 std::ptrdiff_t, PointerT, ReferenceT> { 1200 public: 1201 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { 1202 assert(base == rhs.base && "incompatible iterators"); 1203 return index - rhs.index; 1204 } 1205 bool operator==(const indexed_accessor_iterator &rhs) const { 1206 return base == rhs.base && index == rhs.index; 1207 } 1208 bool operator<(const indexed_accessor_iterator &rhs) const { 1209 assert(base == rhs.base && "incompatible iterators"); 1210 return index < rhs.index; 1211 } 1212 1213 DerivedT &operator+=(ptrdiff_t offset) { 1214 this->index += offset; 1215 return static_cast<DerivedT &>(*this); 1216 } 1217 DerivedT &operator-=(ptrdiff_t offset) { 1218 this->index -= offset; 1219 return static_cast<DerivedT &>(*this); 1220 } 1221 1222 /// Returns the current index of the iterator. 1223 ptrdiff_t getIndex() const { return index; } 1224 1225 /// Returns the current base of the iterator. 1226 const BaseT &getBase() const { return base; } 1227 1228 protected: 1229 indexed_accessor_iterator(BaseT base, ptrdiff_t index) 1230 : base(base), index(index) {} 1231 BaseT base; 1232 ptrdiff_t index; 1233 }; 1234 1235 namespace detail { 1236 /// The class represents the base of a range of indexed_accessor_iterators. It 1237 /// provides support for many different range functionalities, e.g. 1238 /// drop_front/slice/etc.. Derived range classes must implement the following 1239 /// static methods: 1240 /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) 1241 /// - Dereference an iterator pointing to the base object at the given 1242 /// index. 1243 /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) 1244 /// - Return a new base that is offset from the provide base by 'index' 1245 /// elements. 1246 template <typename DerivedT, typename BaseT, typename T, 1247 typename PointerT = T *, typename ReferenceT = T &> 1248 class indexed_accessor_range_base { 1249 public: 1250 using RangeBaseT = indexed_accessor_range_base; 1251 1252 /// An iterator element of this range. 1253 class iterator : public indexed_accessor_iterator<iterator, BaseT, T, 1254 PointerT, ReferenceT> { 1255 public: 1256 // Index into this iterator, invoking a static method on the derived type. 1257 ReferenceT operator*() const { 1258 return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); 1259 } 1260 1261 private: 1262 iterator(BaseT owner, ptrdiff_t curIndex) 1263 : iterator::indexed_accessor_iterator(owner, curIndex) {} 1264 1265 /// Allow access to the constructor. 1266 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1267 ReferenceT>; 1268 }; 1269 1270 indexed_accessor_range_base(iterator begin, iterator end) 1271 : base(offset_base(begin.getBase(), begin.getIndex())), 1272 count(end.getIndex() - begin.getIndex()) {} 1273 indexed_accessor_range_base(const iterator_range<iterator> &range) 1274 : indexed_accessor_range_base(range.begin(), range.end()) {} 1275 indexed_accessor_range_base(BaseT base, ptrdiff_t count) 1276 : base(base), count(count) {} 1277 1278 iterator begin() const { return iterator(base, 0); } 1279 iterator end() const { return iterator(base, count); } 1280 ReferenceT operator[](size_t Index) const { 1281 assert(Index < size() && "invalid index for value range"); 1282 return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); 1283 } 1284 ReferenceT front() const { 1285 assert(!empty() && "expected non-empty range"); 1286 return (*this)[0]; 1287 } 1288 ReferenceT back() const { 1289 assert(!empty() && "expected non-empty range"); 1290 return (*this)[size() - 1]; 1291 } 1292 1293 /// Return the size of this range. 1294 size_t size() const { return count; } 1295 1296 /// Return if the range is empty. 1297 bool empty() const { return size() == 0; } 1298 1299 /// Drop the first N elements, and keep M elements. 1300 DerivedT slice(size_t n, size_t m) const { 1301 assert(n + m <= size() && "invalid size specifiers"); 1302 return DerivedT(offset_base(base, n), m); 1303 } 1304 1305 /// Drop the first n elements. 1306 DerivedT drop_front(size_t n = 1) const { 1307 assert(size() >= n && "Dropping more elements than exist"); 1308 return slice(n, size() - n); 1309 } 1310 /// Drop the last n elements. 1311 DerivedT drop_back(size_t n = 1) const { 1312 assert(size() >= n && "Dropping more elements than exist"); 1313 return DerivedT(base, size() - n); 1314 } 1315 1316 /// Take the first n elements. 1317 DerivedT take_front(size_t n = 1) const { 1318 return n < size() ? drop_back(size() - n) 1319 : static_cast<const DerivedT &>(*this); 1320 } 1321 1322 /// Take the last n elements. 1323 DerivedT take_back(size_t n = 1) const { 1324 return n < size() ? drop_front(size() - n) 1325 : static_cast<const DerivedT &>(*this); 1326 } 1327 1328 /// Allow conversion to any type accepting an iterator_range. 1329 template <typename RangeT, typename = std::enable_if_t<std::is_constructible< 1330 RangeT, iterator_range<iterator>>::value>> 1331 operator RangeT() const { 1332 return RangeT(iterator_range<iterator>(*this)); 1333 } 1334 1335 /// Returns the base of this range. 1336 const BaseT &getBase() const { return base; } 1337 1338 private: 1339 /// Offset the given base by the given amount. 1340 static BaseT offset_base(const BaseT &base, size_t n) { 1341 return n == 0 ? base : DerivedT::offset_base(base, n); 1342 } 1343 1344 protected: 1345 indexed_accessor_range_base(const indexed_accessor_range_base &) = default; 1346 indexed_accessor_range_base(indexed_accessor_range_base &&) = default; 1347 indexed_accessor_range_base & 1348 operator=(const indexed_accessor_range_base &) = default; 1349 1350 /// The base that owns the provided range of values. 1351 BaseT base; 1352 /// The size from the owning range. 1353 ptrdiff_t count; 1354 }; 1355 /// Compare this range with another. 1356 /// FIXME: Make me a member function instead of friend when it works in C++20. 1357 template <typename OtherT, typename DerivedT, typename BaseT, typename T, 1358 typename PointerT, typename ReferenceT> 1359 bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1360 ReferenceT> &lhs, 1361 const OtherT &rhs) { 1362 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); 1363 } 1364 1365 template <typename OtherT, typename DerivedT, typename BaseT, typename T, 1366 typename PointerT, typename ReferenceT> 1367 bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1368 ReferenceT> &lhs, 1369 const OtherT &rhs) { 1370 return !(lhs == rhs); 1371 } 1372 } // end namespace detail 1373 1374 /// This class provides an implementation of a range of 1375 /// indexed_accessor_iterators where the base is not indexable. Ranges with 1376 /// bases that are offsetable should derive from indexed_accessor_range_base 1377 /// instead. Derived range classes are expected to implement the following 1378 /// static method: 1379 /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) 1380 /// - Dereference an iterator pointing to a parent base at the given index. 1381 template <typename DerivedT, typename BaseT, typename T, 1382 typename PointerT = T *, typename ReferenceT = T &> 1383 class indexed_accessor_range 1384 : public detail::indexed_accessor_range_base< 1385 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { 1386 public: 1387 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) 1388 : detail::indexed_accessor_range_base< 1389 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( 1390 std::make_pair(base, startIndex), count) {} 1391 using detail::indexed_accessor_range_base< 1392 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, 1393 ReferenceT>::indexed_accessor_range_base; 1394 1395 /// Returns the current base of the range. 1396 const BaseT &getBase() const { return this->base.first; } 1397 1398 /// Returns the current start index of the range. 1399 ptrdiff_t getStartIndex() const { return this->base.second; } 1400 1401 /// See `detail::indexed_accessor_range_base` for details. 1402 static std::pair<BaseT, ptrdiff_t> 1403 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { 1404 // We encode the internal base as a pair of the derived base and a start 1405 // index into the derived base. 1406 return std::make_pair(base.first, base.second + index); 1407 } 1408 /// See `detail::indexed_accessor_range_base` for details. 1409 static ReferenceT 1410 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, 1411 ptrdiff_t index) { 1412 return DerivedT::dereference(base.first, base.second + index); 1413 } 1414 }; 1415 1416 namespace detail { 1417 /// Return a reference to the first or second member of a reference. Otherwise, 1418 /// return a copy of the member of a temporary. 1419 /// 1420 /// When passing a range whose iterators return values instead of references, 1421 /// the reference must be dropped from `decltype((elt.first))`, which will 1422 /// always be a reference, to avoid returning a reference to a temporary. 1423 template <typename EltTy, typename FirstTy> class first_or_second_type { 1424 public: 1425 using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, 1426 std::remove_reference_t<FirstTy>>; 1427 }; 1428 } // end namespace detail 1429 1430 /// Given a container of pairs, return a range over the first elements. 1431 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { 1432 using EltTy = decltype((*std::begin(c))); 1433 return llvm::map_range(std::forward<ContainerTy>(c), 1434 [](EltTy elt) -> typename detail::first_or_second_type< 1435 EltTy, decltype((elt.first))>::type { 1436 return elt.first; 1437 }); 1438 } 1439 1440 /// Given a container of pairs, return a range over the second elements. 1441 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { 1442 using EltTy = decltype((*std::begin(c))); 1443 return llvm::map_range( 1444 std::forward<ContainerTy>(c), 1445 [](EltTy elt) -> 1446 typename detail::first_or_second_type<EltTy, 1447 decltype((elt.second))>::type { 1448 return elt.second; 1449 }); 1450 } 1451 1452 //===----------------------------------------------------------------------===// 1453 // Extra additions to <utility> 1454 //===----------------------------------------------------------------------===// 1455 1456 /// Function object to check whether the first component of a container 1457 /// supported by std::get (like std::pair and std::tuple) compares less than the 1458 /// first component of another container. 1459 struct less_first { 1460 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1461 return std::less<>()(std::get<0>(lhs), std::get<0>(rhs)); 1462 } 1463 }; 1464 1465 /// Function object to check whether the second component of a container 1466 /// supported by std::get (like std::pair and std::tuple) compares less than the 1467 /// second component of another container. 1468 struct less_second { 1469 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1470 return std::less<>()(std::get<1>(lhs), std::get<1>(rhs)); 1471 } 1472 }; 1473 1474 /// \brief Function object to apply a binary function to the first component of 1475 /// a std::pair. 1476 template<typename FuncTy> 1477 struct on_first { 1478 FuncTy func; 1479 1480 template <typename T> 1481 decltype(auto) operator()(const T &lhs, const T &rhs) const { 1482 return func(lhs.first, rhs.first); 1483 } 1484 }; 1485 1486 /// Utility type to build an inheritance chain that makes it easy to rank 1487 /// overload candidates. 1488 template <int N> struct rank : rank<N - 1> {}; 1489 template <> struct rank<0> {}; 1490 1491 namespace detail { 1492 template <typename... Ts> struct Visitor; 1493 1494 template <typename HeadT, typename... TailTs> 1495 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { 1496 explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) 1497 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), 1498 Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} 1499 using remove_cvref_t<HeadT>::operator(); 1500 using Visitor<TailTs...>::operator(); 1501 }; 1502 1503 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { 1504 explicit constexpr Visitor(HeadT &&Head) 1505 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} 1506 using remove_cvref_t<HeadT>::operator(); 1507 }; 1508 } // namespace detail 1509 1510 /// Returns an opaquely-typed Callable object whose operator() overload set is 1511 /// the sum of the operator() overload sets of each CallableT in CallableTs. 1512 /// 1513 /// The type of the returned object derives from each CallableT in CallableTs. 1514 /// The returned object is constructed by invoking the appropriate copy or move 1515 /// constructor of each CallableT, as selected by overload resolution on the 1516 /// corresponding argument to makeVisitor. 1517 /// 1518 /// Example: 1519 /// 1520 /// \code 1521 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, 1522 /// [](int i) { return "int"; }, 1523 /// [](std::string s) { return "str"; }); 1524 /// auto a = visitor(42); // `a` is now "int". 1525 /// auto b = visitor("foo"); // `b` is now "str". 1526 /// auto c = visitor(3.14f); // `c` is now "unhandled type". 1527 /// \endcode 1528 /// 1529 /// Example of making a visitor with a lambda which captures a move-only type: 1530 /// 1531 /// \code 1532 /// std::unique_ptr<FooHandler> FH = /* ... */; 1533 /// auto visitor = makeVisitor( 1534 /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, 1535 /// [](int i) { return i; }, 1536 /// [](std::string s) { return atoi(s); }); 1537 /// \endcode 1538 template <typename... CallableTs> 1539 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { 1540 return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); 1541 } 1542 1543 //===----------------------------------------------------------------------===// 1544 // Extra additions to <algorithm> 1545 //===----------------------------------------------------------------------===// 1546 1547 // We have a copy here so that LLVM behaves the same when using different 1548 // standard libraries. 1549 template <class Iterator, class RNG> 1550 void shuffle(Iterator first, Iterator last, RNG &&g) { 1551 // It would be better to use a std::uniform_int_distribution, 1552 // but that would be stdlib dependent. 1553 typedef 1554 typename std::iterator_traits<Iterator>::difference_type difference_type; 1555 for (auto size = last - first; size > 1; ++first, (void)--size) { 1556 difference_type offset = g() % size; 1557 // Avoid self-assignment due to incorrect assertions in libstdc++ 1558 // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). 1559 if (offset != difference_type(0)) 1560 std::iter_swap(first, first + offset); 1561 } 1562 } 1563 1564 /// Adapt std::less<T> for array_pod_sort. 1565 template<typename T> 1566 inline int array_pod_sort_comparator(const void *P1, const void *P2) { 1567 if (std::less<T>()(*reinterpret_cast<const T*>(P1), 1568 *reinterpret_cast<const T*>(P2))) 1569 return -1; 1570 if (std::less<T>()(*reinterpret_cast<const T*>(P2), 1571 *reinterpret_cast<const T*>(P1))) 1572 return 1; 1573 return 0; 1574 } 1575 1576 /// get_array_pod_sort_comparator - This is an internal helper function used to 1577 /// get type deduction of T right. 1578 template<typename T> 1579 inline int (*get_array_pod_sort_comparator(const T &)) 1580 (const void*, const void*) { 1581 return array_pod_sort_comparator<T>; 1582 } 1583 1584 #ifdef EXPENSIVE_CHECKS 1585 namespace detail { 1586 1587 inline unsigned presortShuffleEntropy() { 1588 static unsigned Result(std::random_device{}()); 1589 return Result; 1590 } 1591 1592 template <class IteratorTy> 1593 inline void presortShuffle(IteratorTy Start, IteratorTy End) { 1594 std::mt19937 Generator(presortShuffleEntropy()); 1595 llvm::shuffle(Start, End, Generator); 1596 } 1597 1598 } // end namespace detail 1599 #endif 1600 1601 /// array_pod_sort - This sorts an array with the specified start and end 1602 /// extent. This is just like std::sort, except that it calls qsort instead of 1603 /// using an inlined template. qsort is slightly slower than std::sort, but 1604 /// most sorts are not performance critical in LLVM and std::sort has to be 1605 /// template instantiated for each type, leading to significant measured code 1606 /// bloat. This function should generally be used instead of std::sort where 1607 /// possible. 1608 /// 1609 /// This function assumes that you have simple POD-like types that can be 1610 /// compared with std::less and can be moved with memcpy. If this isn't true, 1611 /// you should use std::sort. 1612 /// 1613 /// NOTE: If qsort_r were portable, we could allow a custom comparator and 1614 /// default to std::less. 1615 template<class IteratorTy> 1616 inline void array_pod_sort(IteratorTy Start, IteratorTy End) { 1617 // Don't inefficiently call qsort with one element or trigger undefined 1618 // behavior with an empty sequence. 1619 auto NElts = End - Start; 1620 if (NElts <= 1) return; 1621 #ifdef EXPENSIVE_CHECKS 1622 detail::presortShuffle<IteratorTy>(Start, End); 1623 #endif 1624 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); 1625 } 1626 1627 template <class IteratorTy> 1628 inline void array_pod_sort( 1629 IteratorTy Start, IteratorTy End, 1630 int (*Compare)( 1631 const typename std::iterator_traits<IteratorTy>::value_type *, 1632 const typename std::iterator_traits<IteratorTy>::value_type *)) { 1633 // Don't inefficiently call qsort with one element or trigger undefined 1634 // behavior with an empty sequence. 1635 auto NElts = End - Start; 1636 if (NElts <= 1) return; 1637 #ifdef EXPENSIVE_CHECKS 1638 detail::presortShuffle<IteratorTy>(Start, End); 1639 #endif 1640 qsort(&*Start, NElts, sizeof(*Start), 1641 reinterpret_cast<int (*)(const void *, const void *)>(Compare)); 1642 } 1643 1644 namespace detail { 1645 template <typename T> 1646 // We can use qsort if the iterator type is a pointer and the underlying value 1647 // is trivially copyable. 1648 using sort_trivially_copyable = std::conjunction< 1649 std::is_pointer<T>, 1650 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; 1651 } // namespace detail 1652 1653 // Provide wrappers to std::sort which shuffle the elements before sorting 1654 // to help uncover non-deterministic behavior (PR35135). 1655 template <typename IteratorTy> 1656 inline void sort(IteratorTy Start, IteratorTy End) { 1657 if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { 1658 // Forward trivially copyable types to array_pod_sort. This avoids a large 1659 // amount of code bloat for a minor performance hit. 1660 array_pod_sort(Start, End); 1661 } else { 1662 #ifdef EXPENSIVE_CHECKS 1663 detail::presortShuffle<IteratorTy>(Start, End); 1664 #endif 1665 std::sort(Start, End); 1666 } 1667 } 1668 1669 template <typename Container> inline void sort(Container &&C) { 1670 llvm::sort(adl_begin(C), adl_end(C)); 1671 } 1672 1673 template <typename IteratorTy, typename Compare> 1674 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { 1675 #ifdef EXPENSIVE_CHECKS 1676 detail::presortShuffle<IteratorTy>(Start, End); 1677 #endif 1678 std::sort(Start, End, Comp); 1679 } 1680 1681 template <typename Container, typename Compare> 1682 inline void sort(Container &&C, Compare Comp) { 1683 llvm::sort(adl_begin(C), adl_end(C), Comp); 1684 } 1685 1686 /// Get the size of a range. This is a wrapper function around std::distance 1687 /// which is only enabled when the operation is O(1). 1688 template <typename R> 1689 auto size(R &&Range, 1690 std::enable_if_t< 1691 std::is_base_of<std::random_access_iterator_tag, 1692 typename std::iterator_traits<decltype( 1693 Range.begin())>::iterator_category>::value, 1694 void> * = nullptr) { 1695 return std::distance(Range.begin(), Range.end()); 1696 } 1697 1698 namespace detail { 1699 template <typename Range> 1700 using check_has_free_function_size = 1701 decltype(adl_size(std::declval<Range &>())); 1702 1703 template <typename Range> 1704 static constexpr bool HasFreeFunctionSize = 1705 is_detected<check_has_free_function_size, Range>::value; 1706 } // namespace detail 1707 1708 /// Returns the size of the \p Range, i.e., the number of elements. This 1709 /// implementation takes inspiration from `std::ranges::size` from C++20 and 1710 /// delegates the size check to `adl_size` or `std::distance`, in this order of 1711 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1) 1712 /// running time, and is intended to be used in generic code that does not know 1713 /// the exact range type. 1714 template <typename R> constexpr size_t range_size(R &&Range) { 1715 if constexpr (detail::HasFreeFunctionSize<R>) 1716 return adl_size(Range); 1717 else 1718 return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range))); 1719 } 1720 1721 /// Provide wrappers to std::for_each which take ranges instead of having to 1722 /// pass begin/end explicitly. 1723 template <typename R, typename UnaryFunction> 1724 UnaryFunction for_each(R &&Range, UnaryFunction F) { 1725 return std::for_each(adl_begin(Range), adl_end(Range), F); 1726 } 1727 1728 /// Provide wrappers to std::all_of which take ranges instead of having to pass 1729 /// begin/end explicitly. 1730 template <typename R, typename UnaryPredicate> 1731 bool all_of(R &&Range, UnaryPredicate P) { 1732 return std::all_of(adl_begin(Range), adl_end(Range), P); 1733 } 1734 1735 /// Provide wrappers to std::any_of which take ranges instead of having to pass 1736 /// begin/end explicitly. 1737 template <typename R, typename UnaryPredicate> 1738 bool any_of(R &&Range, UnaryPredicate P) { 1739 return std::any_of(adl_begin(Range), adl_end(Range), P); 1740 } 1741 1742 /// Provide wrappers to std::none_of which take ranges instead of having to pass 1743 /// begin/end explicitly. 1744 template <typename R, typename UnaryPredicate> 1745 bool none_of(R &&Range, UnaryPredicate P) { 1746 return std::none_of(adl_begin(Range), adl_end(Range), P); 1747 } 1748 1749 /// Provide wrappers to std::find which take ranges instead of having to pass 1750 /// begin/end explicitly. 1751 template <typename R, typename T> auto find(R &&Range, const T &Val) { 1752 return std::find(adl_begin(Range), adl_end(Range), Val); 1753 } 1754 1755 /// Provide wrappers to std::find_if which take ranges instead of having to pass 1756 /// begin/end explicitly. 1757 template <typename R, typename UnaryPredicate> 1758 auto find_if(R &&Range, UnaryPredicate P) { 1759 return std::find_if(adl_begin(Range), adl_end(Range), P); 1760 } 1761 1762 template <typename R, typename UnaryPredicate> 1763 auto find_if_not(R &&Range, UnaryPredicate P) { 1764 return std::find_if_not(adl_begin(Range), adl_end(Range), P); 1765 } 1766 1767 /// Provide wrappers to std::remove_if which take ranges instead of having to 1768 /// pass begin/end explicitly. 1769 template <typename R, typename UnaryPredicate> 1770 auto remove_if(R &&Range, UnaryPredicate P) { 1771 return std::remove_if(adl_begin(Range), adl_end(Range), P); 1772 } 1773 1774 /// Provide wrappers to std::copy_if which take ranges instead of having to 1775 /// pass begin/end explicitly. 1776 template <typename R, typename OutputIt, typename UnaryPredicate> 1777 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { 1778 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); 1779 } 1780 1781 /// Return the single value in \p Range that satisfies 1782 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr 1783 /// when no values or multiple values were found. 1784 /// When \p AllowRepeats is true, multiple values that compare equal 1785 /// are allowed. 1786 template <typename T, typename R, typename Predicate> 1787 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { 1788 T *RC = nullptr; 1789 for (auto &&A : Range) { 1790 if (T *PRC = P(A, AllowRepeats)) { 1791 if (RC) { 1792 if (!AllowRepeats || PRC != RC) 1793 return nullptr; 1794 } else 1795 RC = PRC; 1796 } 1797 } 1798 return RC; 1799 } 1800 1801 /// Return a pair consisting of the single value in \p Range that satisfies 1802 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning 1803 /// nullptr when no values or multiple values were found, and a bool indicating 1804 /// whether multiple values were found to cause the nullptr. 1805 /// When \p AllowRepeats is true, multiple values that compare equal are 1806 /// allowed. The predicate \p P returns a pair<T *, bool> where T is the 1807 /// singleton while the bool indicates whether multiples have already been 1808 /// found. It is expected that first will be nullptr when second is true. 1809 /// This allows using find_singleton_nested within the predicate \P. 1810 template <typename T, typename R, typename Predicate> 1811 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, 1812 bool AllowRepeats = false) { 1813 T *RC = nullptr; 1814 for (auto *A : Range) { 1815 std::pair<T *, bool> PRC = P(A, AllowRepeats); 1816 if (PRC.second) { 1817 assert(PRC.first == nullptr && 1818 "Inconsistent return values in find_singleton_nested."); 1819 return PRC; 1820 } 1821 if (PRC.first) { 1822 if (RC) { 1823 if (!AllowRepeats || PRC.first != RC) 1824 return {nullptr, true}; 1825 } else 1826 RC = PRC.first; 1827 } 1828 } 1829 return {RC, false}; 1830 } 1831 1832 template <typename R, typename OutputIt> 1833 OutputIt copy(R &&Range, OutputIt Out) { 1834 return std::copy(adl_begin(Range), adl_end(Range), Out); 1835 } 1836 1837 /// Provide wrappers to std::replace_copy_if which take ranges instead of having 1838 /// to pass begin/end explicitly. 1839 template <typename R, typename OutputIt, typename UnaryPredicate, typename T> 1840 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, 1841 const T &NewValue) { 1842 return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, 1843 NewValue); 1844 } 1845 1846 /// Provide wrappers to std::replace_copy which take ranges instead of having to 1847 /// pass begin/end explicitly. 1848 template <typename R, typename OutputIt, typename T> 1849 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, 1850 const T &NewValue) { 1851 return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, 1852 NewValue); 1853 } 1854 1855 /// Provide wrappers to std::move which take ranges instead of having to 1856 /// pass begin/end explicitly. 1857 template <typename R, typename OutputIt> 1858 OutputIt move(R &&Range, OutputIt Out) { 1859 return std::move(adl_begin(Range), adl_end(Range), Out); 1860 } 1861 1862 namespace detail { 1863 template <typename Range, typename Element> 1864 using check_has_member_contains_t = 1865 decltype(std::declval<Range &>().contains(std::declval<const Element &>())); 1866 1867 template <typename Range, typename Element> 1868 static constexpr bool HasMemberContains = 1869 is_detected<check_has_member_contains_t, Range, Element>::value; 1870 1871 template <typename Range, typename Element> 1872 using check_has_member_find_t = 1873 decltype(std::declval<Range &>().find(std::declval<const Element &>()) != 1874 std::declval<Range &>().end()); 1875 1876 template <typename Range, typename Element> 1877 static constexpr bool HasMemberFind = 1878 is_detected<check_has_member_find_t, Range, Element>::value; 1879 1880 } // namespace detail 1881 1882 /// Returns true if \p Element is found in \p Range. Delegates the check to 1883 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this 1884 /// order of preference. This is intended as the canonical way to check if an 1885 /// element exists in a range in generic code or range type that does not 1886 /// expose a `.contains(Element)` member. 1887 template <typename R, typename E> 1888 bool is_contained(R &&Range, const E &Element) { 1889 if constexpr (detail::HasMemberContains<R, E>) 1890 return Range.contains(Element); 1891 else if constexpr (detail::HasMemberFind<R, E>) 1892 return Range.find(Element) != Range.end(); 1893 else 1894 return std::find(adl_begin(Range), adl_end(Range), Element) != 1895 adl_end(Range); 1896 } 1897 1898 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as 1899 /// an initializer list and is `constexpr`-friendly. 1900 template <typename T, typename E> 1901 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) { 1902 // TODO: Use std::find when we switch to C++20. 1903 for (const T &V : Set) 1904 if (V == Element) 1905 return true; 1906 return false; 1907 } 1908 1909 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1910 /// are sorted with respect to a comparator \p C. 1911 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { 1912 return std::is_sorted(adl_begin(Range), adl_end(Range), C); 1913 } 1914 1915 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1916 /// are sorted in non-descending order. 1917 template <typename R> bool is_sorted(R &&Range) { 1918 return std::is_sorted(adl_begin(Range), adl_end(Range)); 1919 } 1920 1921 /// Wrapper function around std::count to count the number of times an element 1922 /// \p Element occurs in the given range \p Range. 1923 template <typename R, typename E> auto count(R &&Range, const E &Element) { 1924 return std::count(adl_begin(Range), adl_end(Range), Element); 1925 } 1926 1927 /// Wrapper function around std::count_if to count the number of times an 1928 /// element satisfying a given predicate occurs in a range. 1929 template <typename R, typename UnaryPredicate> 1930 auto count_if(R &&Range, UnaryPredicate P) { 1931 return std::count_if(adl_begin(Range), adl_end(Range), P); 1932 } 1933 1934 /// Wrapper function around std::transform to apply a function to a range and 1935 /// store the result elsewhere. 1936 template <typename R, typename OutputIt, typename UnaryFunction> 1937 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { 1938 return std::transform(adl_begin(Range), adl_end(Range), d_first, F); 1939 } 1940 1941 /// Provide wrappers to std::partition which take ranges instead of having to 1942 /// pass begin/end explicitly. 1943 template <typename R, typename UnaryPredicate> 1944 auto partition(R &&Range, UnaryPredicate P) { 1945 return std::partition(adl_begin(Range), adl_end(Range), P); 1946 } 1947 1948 /// Provide wrappers to std::lower_bound which take ranges instead of having to 1949 /// pass begin/end explicitly. 1950 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { 1951 return std::lower_bound(adl_begin(Range), adl_end(Range), 1952 std::forward<T>(Value)); 1953 } 1954 1955 template <typename R, typename T, typename Compare> 1956 auto lower_bound(R &&Range, T &&Value, Compare C) { 1957 return std::lower_bound(adl_begin(Range), adl_end(Range), 1958 std::forward<T>(Value), C); 1959 } 1960 1961 /// Provide wrappers to std::upper_bound which take ranges instead of having to 1962 /// pass begin/end explicitly. 1963 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { 1964 return std::upper_bound(adl_begin(Range), adl_end(Range), 1965 std::forward<T>(Value)); 1966 } 1967 1968 template <typename R, typename T, typename Compare> 1969 auto upper_bound(R &&Range, T &&Value, Compare C) { 1970 return std::upper_bound(adl_begin(Range), adl_end(Range), 1971 std::forward<T>(Value), C); 1972 } 1973 1974 template <typename R> 1975 void stable_sort(R &&Range) { 1976 std::stable_sort(adl_begin(Range), adl_end(Range)); 1977 } 1978 1979 template <typename R, typename Compare> 1980 void stable_sort(R &&Range, Compare C) { 1981 std::stable_sort(adl_begin(Range), adl_end(Range), C); 1982 } 1983 1984 /// Binary search for the first iterator in a range where a predicate is false. 1985 /// Requires that C is always true below some limit, and always false above it. 1986 template <typename R, typename Predicate, 1987 typename Val = decltype(*adl_begin(std::declval<R>()))> 1988 auto partition_point(R &&Range, Predicate P) { 1989 return std::partition_point(adl_begin(Range), adl_end(Range), P); 1990 } 1991 1992 template<typename Range, typename Predicate> 1993 auto unique(Range &&R, Predicate P) { 1994 return std::unique(adl_begin(R), adl_end(R), P); 1995 } 1996 1997 /// Wrapper function around std::equal to detect if pair-wise elements between 1998 /// two ranges are the same. 1999 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { 2000 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), 2001 adl_end(RRange)); 2002 } 2003 2004 /// Returns true if all elements in Range are equal or when the Range is empty. 2005 template <typename R> bool all_equal(R &&Range) { 2006 auto Begin = adl_begin(Range); 2007 auto End = adl_end(Range); 2008 return Begin == End || std::equal(Begin + 1, End, Begin); 2009 } 2010 2011 /// Returns true if all Values in the initializer lists are equal or the list 2012 // is empty. 2013 template <typename T> bool all_equal(std::initializer_list<T> Values) { 2014 return all_equal<std::initializer_list<T>>(std::move(Values)); 2015 } 2016 2017 /// Provide a container algorithm similar to C++ Library Fundamentals v2's 2018 /// `erase_if` which is equivalent to: 2019 /// 2020 /// C.erase(remove_if(C, pred), C.end()); 2021 /// 2022 /// This version works for any container with an erase method call accepting 2023 /// two iterators. 2024 template <typename Container, typename UnaryPredicate> 2025 void erase_if(Container &C, UnaryPredicate P) { 2026 C.erase(remove_if(C, P), C.end()); 2027 } 2028 2029 /// Wrapper function to remove a value from a container: 2030 /// 2031 /// C.erase(remove(C.begin(), C.end(), V), C.end()); 2032 template <typename Container, typename ValueType> 2033 void erase(Container &C, ValueType V) { 2034 C.erase(std::remove(C.begin(), C.end(), V), C.end()); 2035 } 2036 2037 template <typename Container, typename ValueType> 2038 LLVM_DEPRECATED("Use erase instead", "erase") 2039 void erase_value(Container &C, ValueType V) { 2040 erase(C, V); 2041 } 2042 2043 /// Wrapper function to append range `R` to container `C`. 2044 /// 2045 /// C.insert(C.end(), R.begin(), R.end()); 2046 template <typename Container, typename Range> 2047 void append_range(Container &C, Range &&R) { 2048 C.insert(C.end(), adl_begin(R), adl_end(R)); 2049 } 2050 2051 /// Appends all `Values` to container `C`. 2052 template <typename Container, typename... Args> 2053 void append_values(Container &C, Args &&...Values) { 2054 C.reserve(range_size(C) + sizeof...(Args)); 2055 // Append all values one by one. 2056 ((void)C.insert(C.end(), std::forward<Args>(Values)), ...); 2057 } 2058 2059 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 2060 /// the range [ValIt, ValEnd) (which is not from the same container). 2061 template<typename Container, typename RandomAccessIterator> 2062 void replace(Container &Cont, typename Container::iterator ContIt, 2063 typename Container::iterator ContEnd, RandomAccessIterator ValIt, 2064 RandomAccessIterator ValEnd) { 2065 while (true) { 2066 if (ValIt == ValEnd) { 2067 Cont.erase(ContIt, ContEnd); 2068 return; 2069 } else if (ContIt == ContEnd) { 2070 Cont.insert(ContIt, ValIt, ValEnd); 2071 return; 2072 } 2073 *ContIt++ = *ValIt++; 2074 } 2075 } 2076 2077 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 2078 /// the range R. 2079 template<typename Container, typename Range = std::initializer_list< 2080 typename Container::value_type>> 2081 void replace(Container &Cont, typename Container::iterator ContIt, 2082 typename Container::iterator ContEnd, Range R) { 2083 replace(Cont, ContIt, ContEnd, R.begin(), R.end()); 2084 } 2085 2086 /// An STL-style algorithm similar to std::for_each that applies a second 2087 /// functor between every pair of elements. 2088 /// 2089 /// This provides the control flow logic to, for example, print a 2090 /// comma-separated list: 2091 /// \code 2092 /// interleave(names.begin(), names.end(), 2093 /// [&](StringRef name) { os << name; }, 2094 /// [&] { os << ", "; }); 2095 /// \endcode 2096 template <typename ForwardIterator, typename UnaryFunctor, 2097 typename NullaryFunctor, 2098 typename = std::enable_if_t< 2099 !std::is_constructible<StringRef, UnaryFunctor>::value && 2100 !std::is_constructible<StringRef, NullaryFunctor>::value>> 2101 inline void interleave(ForwardIterator begin, ForwardIterator end, 2102 UnaryFunctor each_fn, NullaryFunctor between_fn) { 2103 if (begin == end) 2104 return; 2105 each_fn(*begin); 2106 ++begin; 2107 for (; begin != end; ++begin) { 2108 between_fn(); 2109 each_fn(*begin); 2110 } 2111 } 2112 2113 template <typename Container, typename UnaryFunctor, typename NullaryFunctor, 2114 typename = std::enable_if_t< 2115 !std::is_constructible<StringRef, UnaryFunctor>::value && 2116 !std::is_constructible<StringRef, NullaryFunctor>::value>> 2117 inline void interleave(const Container &c, UnaryFunctor each_fn, 2118 NullaryFunctor between_fn) { 2119 interleave(c.begin(), c.end(), each_fn, between_fn); 2120 } 2121 2122 /// Overload of interleave for the common case of string separator. 2123 template <typename Container, typename UnaryFunctor, typename StreamT, 2124 typename T = detail::ValueOfRange<Container>> 2125 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, 2126 const StringRef &separator) { 2127 interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); 2128 } 2129 template <typename Container, typename StreamT, 2130 typename T = detail::ValueOfRange<Container>> 2131 inline void interleave(const Container &c, StreamT &os, 2132 const StringRef &separator) { 2133 interleave( 2134 c, os, [&](const T &a) { os << a; }, separator); 2135 } 2136 2137 template <typename Container, typename UnaryFunctor, typename StreamT, 2138 typename T = detail::ValueOfRange<Container>> 2139 inline void interleaveComma(const Container &c, StreamT &os, 2140 UnaryFunctor each_fn) { 2141 interleave(c, os, each_fn, ", "); 2142 } 2143 template <typename Container, typename StreamT, 2144 typename T = detail::ValueOfRange<Container>> 2145 inline void interleaveComma(const Container &c, StreamT &os) { 2146 interleaveComma(c, os, [&](const T &a) { os << a; }); 2147 } 2148 2149 //===----------------------------------------------------------------------===// 2150 // Extra additions to <memory> 2151 //===----------------------------------------------------------------------===// 2152 2153 struct FreeDeleter { 2154 void operator()(void* v) { 2155 ::free(v); 2156 } 2157 }; 2158 2159 template<typename First, typename Second> 2160 struct pair_hash { 2161 size_t operator()(const std::pair<First, Second> &P) const { 2162 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); 2163 } 2164 }; 2165 2166 /// Binary functor that adapts to any other binary functor after dereferencing 2167 /// operands. 2168 template <typename T> struct deref { 2169 T func; 2170 2171 // Could be further improved to cope with non-derivable functors and 2172 // non-binary functors (should be a variadic template member function 2173 // operator()). 2174 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { 2175 assert(lhs); 2176 assert(rhs); 2177 return func(*lhs, *rhs); 2178 } 2179 }; 2180 2181 namespace detail { 2182 2183 /// Tuple-like type for `zip_enumerator` dereference. 2184 template <typename... Refs> struct enumerator_result; 2185 2186 template <typename... Iters> 2187 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>; 2188 2189 /// Zippy iterator that uses the second iterator for comparisons. For the 2190 /// increment to be safe, the second range has to be the shortest. 2191 /// Returns `enumerator_result` on dereference to provide `.index()` and 2192 /// `.value()` member functions. 2193 /// Note: Because the dereference operator returns `enumerator_result` as a 2194 /// value instead of a reference and does not strictly conform to the C++17's 2195 /// definition of forward iterator. However, it satisfies all the 2196 /// forward_iterator requirements that the `zip_common` and `zippy` depend on 2197 /// and fully conforms to the C++20 definition of forward iterator. 2198 /// This is similar to `std::vector<bool>::iterator` that returns bit reference 2199 /// wrappers on dereference. 2200 template <typename... Iters> 2201 struct zip_enumerator : zip_common<zip_enumerator<Iters...>, 2202 EnumeratorTupleType<Iters...>, Iters...> { 2203 static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees"); 2204 using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>, 2205 Iters...>::zip_common; 2206 2207 bool operator==(const zip_enumerator &Other) const { 2208 return std::get<1>(this->iterators) == std::get<1>(Other.iterators); 2209 } 2210 }; 2211 2212 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> { 2213 static constexpr std::size_t NumRefs = sizeof...(Refs); 2214 static_assert(NumRefs != 0); 2215 // `NumValues` includes the index. 2216 static constexpr std::size_t NumValues = NumRefs + 1; 2217 2218 // Tuple type whose element types are references for each `Ref`. 2219 using range_reference_tuple = std::tuple<Refs...>; 2220 // Tuple type who elements are references to all values, including both 2221 // the index and `Refs` reference types. 2222 using value_reference_tuple = std::tuple<std::size_t, Refs...>; 2223 2224 enumerator_result(std::size_t Index, Refs &&...Rs) 2225 : Idx(Index), Storage(std::forward<Refs>(Rs)...) {} 2226 2227 /// Returns the 0-based index of the current position within the original 2228 /// input range(s). 2229 std::size_t index() const { return Idx; } 2230 2231 /// Returns the value(s) for the current iterator. This does not include the 2232 /// index. 2233 decltype(auto) value() const { 2234 if constexpr (NumRefs == 1) 2235 return std::get<0>(Storage); 2236 else 2237 return Storage; 2238 } 2239 2240 /// Returns the value at index `I`. This case covers the index. 2241 template <std::size_t I, typename = std::enable_if_t<I == 0>> 2242 friend std::size_t get(const enumerator_result &Result) { 2243 return Result.Idx; 2244 } 2245 2246 /// Returns the value at index `I`. This case covers references to the 2247 /// iteratees. 2248 template <std::size_t I, typename = std::enable_if_t<I != 0>> 2249 friend decltype(auto) get(const enumerator_result &Result) { 2250 // Note: This is a separate function from the other `get`, instead of an 2251 // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler 2252 // (Visual Studio 2022 17.1) return type deduction bug. 2253 return std::get<I - 1>(Result.Storage); 2254 } 2255 2256 template <typename... Ts> 2257 friend bool operator==(const enumerator_result &Result, 2258 const std::tuple<std::size_t, Ts...> &Other) { 2259 static_assert(NumRefs == sizeof...(Ts), "Size mismatch"); 2260 if (Result.Idx != std::get<0>(Other)) 2261 return false; 2262 return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{}); 2263 } 2264 2265 private: 2266 template <typename Tuple, std::size_t... Idx> 2267 bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const { 2268 return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...); 2269 } 2270 2271 std::size_t Idx; 2272 // Make this tuple mutable to avoid casts that obfuscate const-correctness 2273 // issues. Const-correctness of references is taken care of by `zippy` that 2274 // defines const-non and const iterator types that will propagate down to 2275 // `enumerator_result`'s `Refs`. 2276 // Note that unlike the results of `zip*` functions, `enumerate`'s result are 2277 // supposed to be modifiable even when defined as 2278 // `const`. 2279 mutable range_reference_tuple Storage; 2280 }; 2281 2282 struct index_iterator 2283 : llvm::iterator_facade_base<index_iterator, 2284 std::random_access_iterator_tag, std::size_t> { 2285 index_iterator(std::size_t Index) : Index(Index) {} 2286 2287 index_iterator &operator+=(std::ptrdiff_t N) { 2288 Index += N; 2289 return *this; 2290 } 2291 2292 index_iterator &operator-=(std::ptrdiff_t N) { 2293 Index -= N; 2294 return *this; 2295 } 2296 2297 std::ptrdiff_t operator-(const index_iterator &R) const { 2298 return Index - R.Index; 2299 } 2300 2301 // Note: This dereference operator returns a value instead of a reference 2302 // and does not strictly conform to the C++17's definition of forward 2303 // iterator. However, it satisfies all the forward_iterator requirements 2304 // that the `zip_common` depends on and fully conforms to the C++20 2305 // definition of forward iterator. 2306 std::size_t operator*() const { return Index; } 2307 2308 friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) { 2309 return Lhs.Index == Rhs.Index; 2310 } 2311 2312 friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) { 2313 return Lhs.Index < Rhs.Index; 2314 } 2315 2316 private: 2317 std::size_t Index; 2318 }; 2319 2320 /// Infinite stream of increasing 0-based `size_t` indices. 2321 struct index_stream { 2322 index_iterator begin() const { return {0}; } 2323 index_iterator end() const { 2324 // We approximate 'infinity' with the max size_t value, which should be good 2325 // enough to index over any container. 2326 return index_iterator{std::numeric_limits<std::size_t>::max()}; 2327 } 2328 }; 2329 2330 } // end namespace detail 2331 2332 /// Increasing range of `size_t` indices. 2333 class index_range { 2334 std::size_t Begin; 2335 std::size_t End; 2336 2337 public: 2338 index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {} 2339 detail::index_iterator begin() const { return {Begin}; } 2340 detail::index_iterator end() const { return {End}; } 2341 }; 2342 2343 /// Given two or more input ranges, returns a new range whose values are are 2344 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the 2345 /// sequence, and B, C, ..., are the values from the original input ranges. All 2346 /// input ranges are required to have equal lengths. Note that the returned 2347 /// iterator allows for the values (B, C, ...) to be modified. Example: 2348 /// 2349 /// ```c++ 2350 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'}; 2351 /// std::vector<int> Vals = {10, 11, 12, 13}; 2352 /// 2353 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) { 2354 /// printf("Item %zu - %c: %d\n", Index, Letter, Value); 2355 /// Value -= 10; 2356 /// } 2357 /// ``` 2358 /// 2359 /// Output: 2360 /// Item 0 - A: 10 2361 /// Item 1 - B: 11 2362 /// Item 2 - C: 12 2363 /// Item 3 - D: 13 2364 /// 2365 /// or using an iterator: 2366 /// ```c++ 2367 /// for (auto it : enumerate(Vals)) { 2368 /// it.value() += 10; 2369 /// printf("Item %zu: %d\n", it.index(), it.value()); 2370 /// } 2371 /// ``` 2372 /// 2373 /// Output: 2374 /// Item 0: 20 2375 /// Item 1: 21 2376 /// Item 2: 22 2377 /// Item 3: 23 2378 /// 2379 template <typename FirstRange, typename... RestRanges> 2380 auto enumerate(FirstRange &&First, RestRanges &&...Rest) { 2381 if constexpr (sizeof...(Rest) != 0) { 2382 #ifndef NDEBUG 2383 // Note: Create an array instead of an initializer list to work around an 2384 // Apple clang 14 compiler bug. 2385 size_t sizes[] = {range_size(First), range_size(Rest)...}; 2386 assert(all_equal(sizes) && "Ranges have different length"); 2387 #endif 2388 } 2389 using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream, 2390 FirstRange, RestRanges...>; 2391 return enumerator(detail::index_stream{}, std::forward<FirstRange>(First), 2392 std::forward<RestRanges>(Rest)...); 2393 } 2394 2395 namespace detail { 2396 2397 template <typename Predicate, typename... Args> 2398 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { 2399 auto z = zip(args...); 2400 auto it = z.begin(); 2401 auto end = z.end(); 2402 while (it != end) { 2403 if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) 2404 return false; 2405 ++it; 2406 } 2407 return it.all_equals(end); 2408 } 2409 2410 // Just an adaptor to switch the order of argument and have the predicate before 2411 // the zipped inputs. 2412 template <typename... ArgsThenPredicate, size_t... InputIndexes> 2413 bool all_of_zip_predicate_last( 2414 std::tuple<ArgsThenPredicate...> argsThenPredicate, 2415 std::index_sequence<InputIndexes...>) { 2416 auto constexpr OutputIndex = 2417 std::tuple_size<decltype(argsThenPredicate)>::value - 1; 2418 return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), 2419 std::get<InputIndexes>(argsThenPredicate)...); 2420 } 2421 2422 } // end namespace detail 2423 2424 /// Compare two zipped ranges using the provided predicate (as last argument). 2425 /// Return true if all elements satisfy the predicate and false otherwise. 2426 // Return false if the zipped iterator aren't all at end (size mismatch). 2427 template <typename... ArgsAndPredicate> 2428 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { 2429 return detail::all_of_zip_predicate_last( 2430 std::forward_as_tuple(argsAndPredicate...), 2431 std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); 2432 } 2433 2434 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) 2435 /// time. Not meant for use with random-access iterators. 2436 /// Can optionally take a predicate to filter lazily some items. 2437 template <typename IterTy, 2438 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2439 bool hasNItems( 2440 IterTy &&Begin, IterTy &&End, unsigned N, 2441 Pred &&ShouldBeCounted = 2442 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2443 std::enable_if_t< 2444 !std::is_base_of<std::random_access_iterator_tag, 2445 typename std::iterator_traits<std::remove_reference_t< 2446 decltype(Begin)>>::iterator_category>::value, 2447 void> * = nullptr) { 2448 for (; N; ++Begin) { 2449 if (Begin == End) 2450 return false; // Too few. 2451 N -= ShouldBeCounted(*Begin); 2452 } 2453 for (; Begin != End; ++Begin) 2454 if (ShouldBeCounted(*Begin)) 2455 return false; // Too many. 2456 return true; 2457 } 2458 2459 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) 2460 /// time. Not meant for use with random-access iterators. 2461 /// Can optionally take a predicate to lazily filter some items. 2462 template <typename IterTy, 2463 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2464 bool hasNItemsOrMore( 2465 IterTy &&Begin, IterTy &&End, unsigned N, 2466 Pred &&ShouldBeCounted = 2467 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2468 std::enable_if_t< 2469 !std::is_base_of<std::random_access_iterator_tag, 2470 typename std::iterator_traits<std::remove_reference_t< 2471 decltype(Begin)>>::iterator_category>::value, 2472 void> * = nullptr) { 2473 for (; N; ++Begin) { 2474 if (Begin == End) 2475 return false; // Too few. 2476 N -= ShouldBeCounted(*Begin); 2477 } 2478 return true; 2479 } 2480 2481 /// Returns true if the sequence [Begin, End) has N or less items. Can 2482 /// optionally take a predicate to lazily filter some items. 2483 template <typename IterTy, 2484 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2485 bool hasNItemsOrLess( 2486 IterTy &&Begin, IterTy &&End, unsigned N, 2487 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { 2488 return true; 2489 }) { 2490 assert(N != std::numeric_limits<unsigned>::max()); 2491 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); 2492 } 2493 2494 /// Returns true if the given container has exactly N items 2495 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { 2496 return hasNItems(std::begin(C), std::end(C), N); 2497 } 2498 2499 /// Returns true if the given container has N or more items 2500 template <typename ContainerTy> 2501 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { 2502 return hasNItemsOrMore(std::begin(C), std::end(C), N); 2503 } 2504 2505 /// Returns true if the given container has N or less items 2506 template <typename ContainerTy> 2507 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { 2508 return hasNItemsOrLess(std::begin(C), std::end(C), N); 2509 } 2510 2511 /// Returns a raw pointer that represents the same address as the argument. 2512 /// 2513 /// This implementation can be removed once we move to C++20 where it's defined 2514 /// as std::to_address(). 2515 /// 2516 /// The std::pointer_traits<>::to_address(p) variations of these overloads has 2517 /// not been implemented. 2518 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } 2519 template <class T> constexpr T *to_address(T *P) { return P; } 2520 2521 // Detect incomplete types, relying on the fact that their size is unknown. 2522 namespace detail { 2523 template <typename T> using has_sizeof = decltype(sizeof(T)); 2524 } // namespace detail 2525 2526 /// Detects when type `T` is incomplete. This is true for forward declarations 2527 /// and false for types with a full definition. 2528 template <typename T> 2529 constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value; 2530 2531 } // end namespace llvm 2532 2533 namespace std { 2534 template <typename... Refs> 2535 struct tuple_size<llvm::detail::enumerator_result<Refs...>> 2536 : std::integral_constant<std::size_t, sizeof...(Refs)> {}; 2537 2538 template <std::size_t I, typename... Refs> 2539 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>> 2540 : std::tuple_element<I, std::tuple<Refs...>> {}; 2541 2542 template <std::size_t I, typename... Refs> 2543 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>> 2544 : std::tuple_element<I, std::tuple<Refs...>> {}; 2545 2546 } // namespace std 2547 2548 #endif // LLVM_ADT_STLEXTRAS_H 2549