xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains some templates that are useful if you are working with
11 /// the STL at all.
12 ///
13 /// No library is required when using these functions.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/ADT/ADL.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/STLForwardCompat.h"
23 #include "llvm/ADT/STLFunctionalExtras.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Config/abi-breaking.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <functional>
34 #include <initializer_list>
35 #include <iterator>
36 #include <limits>
37 #include <memory>
38 #include <optional>
39 #include <tuple>
40 #include <type_traits>
41 #include <utility>
42 
43 #ifdef EXPENSIVE_CHECKS
44 #include <random> // for std::mt19937
45 #endif
46 
47 namespace llvm {
48 
49 //===----------------------------------------------------------------------===//
50 //     Extra additions to <type_traits>
51 //===----------------------------------------------------------------------===//
52 
53 template <typename T> struct make_const_ptr {
54   using type = std::add_pointer_t<std::add_const_t<T>>;
55 };
56 
57 template <typename T> struct make_const_ref {
58   using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
59 };
60 
61 namespace detail {
62 template <class, template <class...> class Op, class... Args> struct detector {
63   using value_t = std::false_type;
64 };
65 template <template <class...> class Op, class... Args>
66 struct detector<std::void_t<Op<Args...>>, Op, Args...> {
67   using value_t = std::true_type;
68 };
69 } // end namespace detail
70 
71 /// Detects if a given trait holds for some set of arguments 'Args'.
72 /// For example, the given trait could be used to detect if a given type
73 /// has a copy assignment operator:
74 ///   template<class T>
75 ///   using has_copy_assign_t = decltype(std::declval<T&>()
76 ///                                                 = std::declval<const T&>());
77 ///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
78 template <template <class...> class Op, class... Args>
79 using is_detected = typename detail::detector<void, Op, Args...>::value_t;
80 
81 /// This class provides various trait information about a callable object.
82 ///   * To access the number of arguments: Traits::num_args
83 ///   * To access the type of an argument: Traits::arg_t<Index>
84 ///   * To access the type of the result:  Traits::result_t
85 template <typename T, bool isClass = std::is_class<T>::value>
86 struct function_traits : public function_traits<decltype(&T::operator())> {};
87 
88 /// Overload for class function types.
89 template <typename ClassType, typename ReturnType, typename... Args>
90 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
91   /// The number of arguments to this function.
92   enum { num_args = sizeof...(Args) };
93 
94   /// The result type of this function.
95   using result_t = ReturnType;
96 
97   /// The type of an argument to this function.
98   template <size_t Index>
99   using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
100 };
101 /// Overload for class function types.
102 template <typename ClassType, typename ReturnType, typename... Args>
103 struct function_traits<ReturnType (ClassType::*)(Args...), false>
104     : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
105 /// Overload for non-class function types.
106 template <typename ReturnType, typename... Args>
107 struct function_traits<ReturnType (*)(Args...), false> {
108   /// The number of arguments to this function.
109   enum { num_args = sizeof...(Args) };
110 
111   /// The result type of this function.
112   using result_t = ReturnType;
113 
114   /// The type of an argument to this function.
115   template <size_t i>
116   using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
117 };
118 template <typename ReturnType, typename... Args>
119 struct function_traits<ReturnType (*const)(Args...), false>
120     : public function_traits<ReturnType (*)(Args...)> {};
121 /// Overload for non-class function type references.
122 template <typename ReturnType, typename... Args>
123 struct function_traits<ReturnType (&)(Args...), false>
124     : public function_traits<ReturnType (*)(Args...)> {};
125 
126 /// traits class for checking whether type T is one of any of the given
127 /// types in the variadic list.
128 template <typename T, typename... Ts>
129 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
130 
131 /// traits class for checking whether type T is a base class for all
132 ///  the given types in the variadic list.
133 template <typename T, typename... Ts>
134 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
135 
136 namespace detail {
137 template <typename T, typename... Us> struct TypesAreDistinct;
138 template <typename T, typename... Us>
139 struct TypesAreDistinct
140     : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
141                                        TypesAreDistinct<Us...>::value> {};
142 template <typename T> struct TypesAreDistinct<T> : std::true_type {};
143 } // namespace detail
144 
145 /// Determine if all types in Ts are distinct.
146 ///
147 /// Useful to statically assert when Ts is intended to describe a non-multi set
148 /// of types.
149 ///
150 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
151 /// asserted once per instantiation of a type which requires it.
152 template <typename... Ts> struct TypesAreDistinct;
153 template <> struct TypesAreDistinct<> : std::true_type {};
154 template <typename... Ts>
155 struct TypesAreDistinct
156     : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
157 
158 /// Find the first index where a type appears in a list of types.
159 ///
160 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
161 ///
162 /// Typically only meaningful when it is otherwise statically known that the
163 /// type pack has no duplicate types. This should be guaranteed explicitly with
164 /// static_assert(TypesAreDistinct<Us...>::value).
165 ///
166 /// It is a compile-time error to instantiate when T is not present in Us, i.e.
167 /// if is_one_of<T, Us...>::value is false.
168 template <typename T, typename... Us> struct FirstIndexOfType;
169 template <typename T, typename U, typename... Us>
170 struct FirstIndexOfType<T, U, Us...>
171     : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
172 template <typename T, typename... Us>
173 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
174 
175 /// Find the type at a given index in a list of types.
176 ///
177 /// TypeAtIndex<I, Ts...> is the type at index I in Ts.
178 template <size_t I, typename... Ts>
179 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
180 
181 /// Helper which adds two underlying types of enumeration type.
182 /// Implicit conversion to a common type is accepted.
183 template <typename EnumTy1, typename EnumTy2,
184           typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
185                                           std::underlying_type_t<EnumTy1>>,
186           typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
187                                           std::underlying_type_t<EnumTy2>>>
188 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
189   return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
190 }
191 
192 //===----------------------------------------------------------------------===//
193 //     Extra additions to <iterator>
194 //===----------------------------------------------------------------------===//
195 
196 namespace callable_detail {
197 
198 /// Templated storage wrapper for a callable.
199 ///
200 /// This class is consistently default constructible, copy / move
201 /// constructible / assignable.
202 ///
203 /// Supported callable types:
204 ///  - Function pointer
205 ///  - Function reference
206 ///  - Lambda
207 ///  - Function object
208 template <typename T,
209           bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
210 class Callable {
211   using value_type = std::remove_reference_t<T>;
212   using reference = value_type &;
213   using const_reference = value_type const &;
214 
215   std::optional<value_type> Obj;
216 
217   static_assert(!std::is_pointer_v<value_type>,
218                 "Pointers to non-functions are not callable.");
219 
220 public:
221   Callable() = default;
222   Callable(T const &O) : Obj(std::in_place, O) {}
223 
224   Callable(Callable const &Other) = default;
225   Callable(Callable &&Other) = default;
226 
227   Callable &operator=(Callable const &Other) {
228     Obj = std::nullopt;
229     if (Other.Obj)
230       Obj.emplace(*Other.Obj);
231     return *this;
232   }
233 
234   Callable &operator=(Callable &&Other) {
235     Obj = std::nullopt;
236     if (Other.Obj)
237       Obj.emplace(std::move(*Other.Obj));
238     return *this;
239   }
240 
241   template <typename... Pn,
242             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
243   decltype(auto) operator()(Pn &&...Params) {
244     return (*Obj)(std::forward<Pn>(Params)...);
245   }
246 
247   template <typename... Pn,
248             std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
249   decltype(auto) operator()(Pn &&...Params) const {
250     return (*Obj)(std::forward<Pn>(Params)...);
251   }
252 
253   bool valid() const { return Obj != std::nullopt; }
254   bool reset() { return Obj = std::nullopt; }
255 
256   operator reference() { return *Obj; }
257   operator const_reference() const { return *Obj; }
258 };
259 
260 // Function specialization.  No need to waste extra space wrapping with a
261 // std::optional.
262 template <typename T> class Callable<T, true> {
263   static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
264 
265   using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
266   using CastT = std::conditional_t<IsPtr, T, T &>;
267 
268 private:
269   StorageT Func = nullptr;
270 
271 private:
272   template <typename In> static constexpr auto convertIn(In &&I) {
273     if constexpr (IsPtr) {
274       // Pointer... just echo it back.
275       return I;
276     } else {
277       // Must be a function reference.  Return its address.
278       return &I;
279     }
280   }
281 
282 public:
283   Callable() = default;
284 
285   // Construct from a function pointer or reference.
286   //
287   // Disable this constructor for references to 'Callable' so we don't violate
288   // the rule of 0.
289   template < // clang-format off
290     typename FnPtrOrRef,
291     std::enable_if_t<
292       !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
293     > = 0
294   > // clang-format on
295   Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
296 
297   template <typename... Pn,
298             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
299   decltype(auto) operator()(Pn &&...Params) const {
300     return Func(std::forward<Pn>(Params)...);
301   }
302 
303   bool valid() const { return Func != nullptr; }
304   void reset() { Func = nullptr; }
305 
306   operator T const &() const {
307     if constexpr (IsPtr) {
308       // T is a pointer... just echo it back.
309       return Func;
310     } else {
311       static_assert(std::is_reference_v<T>,
312                     "Expected a reference to a function.");
313       // T is a function reference... dereference the stored pointer.
314       return *Func;
315     }
316   }
317 };
318 
319 } // namespace callable_detail
320 
321 /// Returns true if the given container only contains a single element.
322 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
323   auto B = std::begin(C), E = std::end(C);
324   return B != E && std::next(B) == E;
325 }
326 
327 /// Return a range covering \p RangeOrContainer with the first N elements
328 /// excluded.
329 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
330   return make_range(std::next(adl_begin(RangeOrContainer), N),
331                     adl_end(RangeOrContainer));
332 }
333 
334 /// Return a range covering \p RangeOrContainer with the last N elements
335 /// excluded.
336 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
337   return make_range(adl_begin(RangeOrContainer),
338                     std::prev(adl_end(RangeOrContainer), N));
339 }
340 
341 // mapped_iterator - This is a simple iterator adapter that causes a function to
342 // be applied whenever operator* is invoked on the iterator.
343 
344 template <typename ItTy, typename FuncTy,
345           typename ReferenceTy =
346               decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
347 class mapped_iterator
348     : public iterator_adaptor_base<
349           mapped_iterator<ItTy, FuncTy>, ItTy,
350           typename std::iterator_traits<ItTy>::iterator_category,
351           std::remove_reference_t<ReferenceTy>,
352           typename std::iterator_traits<ItTy>::difference_type,
353           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
354 public:
355   mapped_iterator() = default;
356   mapped_iterator(ItTy U, FuncTy F)
357     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
358 
359   ItTy getCurrent() { return this->I; }
360 
361   const FuncTy &getFunction() const { return F; }
362 
363   ReferenceTy operator*() const { return F(*this->I); }
364 
365 private:
366   callable_detail::Callable<FuncTy> F{};
367 };
368 
369 // map_iterator - Provide a convenient way to create mapped_iterators, just like
370 // make_pair is useful for creating pairs...
371 template <class ItTy, class FuncTy>
372 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
373   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
374 }
375 
376 template <class ContainerTy, class FuncTy>
377 auto map_range(ContainerTy &&C, FuncTy F) {
378   return make_range(map_iterator(std::begin(C), F),
379                     map_iterator(std::end(C), F));
380 }
381 
382 /// A base type of mapped iterator, that is useful for building derived
383 /// iterators that do not need/want to store the map function (as in
384 /// mapped_iterator). These iterators must simply provide a `mapElement` method
385 /// that defines how to map a value of the iterator to the provided reference
386 /// type.
387 template <typename DerivedT, typename ItTy, typename ReferenceTy>
388 class mapped_iterator_base
389     : public iterator_adaptor_base<
390           DerivedT, ItTy,
391           typename std::iterator_traits<ItTy>::iterator_category,
392           std::remove_reference_t<ReferenceTy>,
393           typename std::iterator_traits<ItTy>::difference_type,
394           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
395 public:
396   using BaseT = mapped_iterator_base;
397 
398   mapped_iterator_base(ItTy U)
399       : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
400 
401   ItTy getCurrent() { return this->I; }
402 
403   ReferenceTy operator*() const {
404     return static_cast<const DerivedT &>(*this).mapElement(*this->I);
405   }
406 };
407 
408 /// Helper to determine if type T has a member called rbegin().
409 template <typename Ty> class has_rbegin_impl {
410   using yes = char[1];
411   using no = char[2];
412 
413   template <typename Inner>
414   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
415 
416   template <typename>
417   static no& test(...);
418 
419 public:
420   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
421 };
422 
423 /// Metafunction to determine if T& or T has a member called rbegin().
424 template <typename Ty>
425 struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
426 
427 // Returns an iterator_range over the given container which iterates in reverse.
428 template <typename ContainerTy> auto reverse(ContainerTy &&C) {
429   if constexpr (has_rbegin<ContainerTy>::value)
430     return make_range(C.rbegin(), C.rend());
431   else
432     return make_range(std::make_reverse_iterator(std::end(C)),
433                       std::make_reverse_iterator(std::begin(C)));
434 }
435 
436 /// An iterator adaptor that filters the elements of given inner iterators.
437 ///
438 /// The predicate parameter should be a callable object that accepts the wrapped
439 /// iterator's reference type and returns a bool. When incrementing or
440 /// decrementing the iterator, it will call the predicate on each element and
441 /// skip any where it returns false.
442 ///
443 /// \code
444 ///   int A[] = { 1, 2, 3, 4 };
445 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
446 ///   // R contains { 1, 3 }.
447 /// \endcode
448 ///
449 /// Note: filter_iterator_base implements support for forward iteration.
450 /// filter_iterator_impl exists to provide support for bidirectional iteration,
451 /// conditional on whether the wrapped iterator supports it.
452 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
453 class filter_iterator_base
454     : public iterator_adaptor_base<
455           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
456           WrappedIteratorT,
457           std::common_type_t<IterTag,
458                              typename std::iterator_traits<
459                                  WrappedIteratorT>::iterator_category>> {
460   using BaseT = typename filter_iterator_base::iterator_adaptor_base;
461 
462 protected:
463   WrappedIteratorT End;
464   PredicateT Pred;
465 
466   void findNextValid() {
467     while (this->I != End && !Pred(*this->I))
468       BaseT::operator++();
469   }
470 
471   filter_iterator_base() = default;
472 
473   // Construct the iterator. The begin iterator needs to know where the end
474   // is, so that it can properly stop when it gets there. The end iterator only
475   // needs the predicate to support bidirectional iteration.
476   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
477                        PredicateT Pred)
478       : BaseT(Begin), End(End), Pred(Pred) {
479     findNextValid();
480   }
481 
482 public:
483   using BaseT::operator++;
484 
485   filter_iterator_base &operator++() {
486     BaseT::operator++();
487     findNextValid();
488     return *this;
489   }
490 
491   decltype(auto) operator*() const {
492     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
493     return BaseT::operator*();
494   }
495 
496   decltype(auto) operator->() const {
497     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
498     return BaseT::operator->();
499   }
500 };
501 
502 /// Specialization of filter_iterator_base for forward iteration only.
503 template <typename WrappedIteratorT, typename PredicateT,
504           typename IterTag = std::forward_iterator_tag>
505 class filter_iterator_impl
506     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
507 public:
508   filter_iterator_impl() = default;
509 
510   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
511                        PredicateT Pred)
512       : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
513 };
514 
515 /// Specialization of filter_iterator_base for bidirectional iteration.
516 template <typename WrappedIteratorT, typename PredicateT>
517 class filter_iterator_impl<WrappedIteratorT, PredicateT,
518                            std::bidirectional_iterator_tag>
519     : public filter_iterator_base<WrappedIteratorT, PredicateT,
520                                   std::bidirectional_iterator_tag> {
521   using BaseT = typename filter_iterator_impl::filter_iterator_base;
522 
523   void findPrevValid() {
524     while (!this->Pred(*this->I))
525       BaseT::operator--();
526   }
527 
528 public:
529   using BaseT::operator--;
530 
531   filter_iterator_impl() = default;
532 
533   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
534                        PredicateT Pred)
535       : BaseT(Begin, End, Pred) {}
536 
537   filter_iterator_impl &operator--() {
538     BaseT::operator--();
539     findPrevValid();
540     return *this;
541   }
542 };
543 
544 namespace detail {
545 
546 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
547   using type = std::forward_iterator_tag;
548 };
549 
550 template <> struct fwd_or_bidi_tag_impl<true> {
551   using type = std::bidirectional_iterator_tag;
552 };
553 
554 /// Helper which sets its type member to forward_iterator_tag if the category
555 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
556 /// bidirectional_iterator_tag otherwise.
557 template <typename IterT> struct fwd_or_bidi_tag {
558   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
559       std::bidirectional_iterator_tag,
560       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
561 };
562 
563 } // namespace detail
564 
565 /// Defines filter_iterator to a suitable specialization of
566 /// filter_iterator_impl, based on the underlying iterator's category.
567 template <typename WrappedIteratorT, typename PredicateT>
568 using filter_iterator = filter_iterator_impl<
569     WrappedIteratorT, PredicateT,
570     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
571 
572 /// Convenience function that takes a range of elements and a predicate,
573 /// and return a new filter_iterator range.
574 ///
575 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
576 /// lifetime of that temporary is not kept by the returned range object, and the
577 /// temporary is going to be dropped on the floor after the make_iterator_range
578 /// full expression that contains this function call.
579 template <typename RangeT, typename PredicateT>
580 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
581 make_filter_range(RangeT &&Range, PredicateT Pred) {
582   using FilterIteratorT =
583       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
584   return make_range(
585       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
586                       std::end(std::forward<RangeT>(Range)), Pred),
587       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
588                       std::end(std::forward<RangeT>(Range)), Pred));
589 }
590 
591 /// A pseudo-iterator adaptor that is designed to implement "early increment"
592 /// style loops.
593 ///
594 /// This is *not a normal iterator* and should almost never be used directly. It
595 /// is intended primarily to be used with range based for loops and some range
596 /// algorithms.
597 ///
598 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
599 /// somewhere between them. The constraints of these iterators are:
600 ///
601 /// - On construction or after being incremented, it is comparable and
602 ///   dereferencable. It is *not* incrementable.
603 /// - After being dereferenced, it is neither comparable nor dereferencable, it
604 ///   is only incrementable.
605 ///
606 /// This means you can only dereference the iterator once, and you can only
607 /// increment it once between dereferences.
608 template <typename WrappedIteratorT>
609 class early_inc_iterator_impl
610     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
611                                    WrappedIteratorT, std::input_iterator_tag> {
612   using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
613 
614   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
615 
616 protected:
617 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
618   bool IsEarlyIncremented = false;
619 #endif
620 
621 public:
622   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
623 
624   using BaseT::operator*;
625   decltype(*std::declval<WrappedIteratorT>()) operator*() {
626 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
627     assert(!IsEarlyIncremented && "Cannot dereference twice!");
628     IsEarlyIncremented = true;
629 #endif
630     return *(this->I)++;
631   }
632 
633   using BaseT::operator++;
634   early_inc_iterator_impl &operator++() {
635 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
636     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
637     IsEarlyIncremented = false;
638 #endif
639     return *this;
640   }
641 
642   friend bool operator==(const early_inc_iterator_impl &LHS,
643                          const early_inc_iterator_impl &RHS) {
644 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
645     assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
646 #endif
647     return (const BaseT &)LHS == (const BaseT &)RHS;
648   }
649 };
650 
651 /// Make a range that does early increment to allow mutation of the underlying
652 /// range without disrupting iteration.
653 ///
654 /// The underlying iterator will be incremented immediately after it is
655 /// dereferenced, allowing deletion of the current node or insertion of nodes to
656 /// not disrupt iteration provided they do not invalidate the *next* iterator --
657 /// the current iterator can be invalidated.
658 ///
659 /// This requires a very exact pattern of use that is only really suitable to
660 /// range based for loops and other range algorithms that explicitly guarantee
661 /// to dereference exactly once each element, and to increment exactly once each
662 /// element.
663 template <typename RangeT>
664 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
665 make_early_inc_range(RangeT &&Range) {
666   using EarlyIncIteratorT =
667       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
668   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
669                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
670 }
671 
672 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
673 template <typename R, typename UnaryPredicate>
674 bool all_of(R &&range, UnaryPredicate P);
675 
676 template <typename R, typename UnaryPredicate>
677 bool any_of(R &&range, UnaryPredicate P);
678 
679 template <typename T> bool all_equal(std::initializer_list<T> Values);
680 
681 template <typename R> constexpr size_t range_size(R &&Range);
682 
683 namespace detail {
684 
685 using std::declval;
686 
687 // We have to alias this since inlining the actual type at the usage site
688 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
689 template<typename... Iters> struct ZipTupleType {
690   using type = std::tuple<decltype(*declval<Iters>())...>;
691 };
692 
693 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
694 using zip_traits = iterator_facade_base<
695     ZipType,
696     std::common_type_t<
697         std::bidirectional_iterator_tag,
698         typename std::iterator_traits<Iters>::iterator_category...>,
699     // ^ TODO: Implement random access methods.
700     ReferenceTupleType,
701     typename std::iterator_traits<
702         std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
703     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
704     // inner iterators have the same difference_type. It would fail if, for
705     // instance, the second field's difference_type were non-numeric while the
706     // first is.
707     ReferenceTupleType *, ReferenceTupleType>;
708 
709 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
710 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
711   using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
712   using IndexSequence = std::index_sequence_for<Iters...>;
713   using value_type = typename Base::value_type;
714 
715   std::tuple<Iters...> iterators;
716 
717 protected:
718   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
719     return value_type(*std::get<Ns>(iterators)...);
720   }
721 
722   template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
723     (++std::get<Ns>(iterators), ...);
724   }
725 
726   template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
727     (--std::get<Ns>(iterators), ...);
728   }
729 
730   template <size_t... Ns>
731   bool test_all_equals(const zip_common &other,
732                        std::index_sequence<Ns...>) const {
733     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
734             ...);
735   }
736 
737 public:
738   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
739 
740   value_type operator*() const { return deref(IndexSequence{}); }
741 
742   ZipType &operator++() {
743     tup_inc(IndexSequence{});
744     return static_cast<ZipType &>(*this);
745   }
746 
747   ZipType &operator--() {
748     static_assert(Base::IsBidirectional,
749                   "All inner iterators must be at least bidirectional.");
750     tup_dec(IndexSequence{});
751     return static_cast<ZipType &>(*this);
752   }
753 
754   /// Return true if all the iterator are matching `other`'s iterators.
755   bool all_equals(zip_common &other) {
756     return test_all_equals(other, IndexSequence{});
757   }
758 };
759 
760 template <typename... Iters>
761 struct zip_first : zip_common<zip_first<Iters...>,
762                               typename ZipTupleType<Iters...>::type, Iters...> {
763   using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
764                    Iters...>::zip_common;
765 
766   bool operator==(const zip_first &other) const {
767     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
768   }
769 };
770 
771 template <typename... Iters>
772 struct zip_shortest
773     : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
774                  Iters...> {
775   using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
776                    Iters...>::zip_common;
777 
778   bool operator==(const zip_shortest &other) const {
779     return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
780   }
781 
782 private:
783   template <size_t... Ns>
784   bool any_iterator_equals(const zip_shortest &other,
785                            std::index_sequence<Ns...>) const {
786     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
787             ...);
788   }
789 };
790 
791 /// Helper to obtain the iterator types for the tuple storage within `zippy`.
792 template <template <typename...> class ItType, typename TupleStorageType,
793           typename IndexSequence>
794 struct ZippyIteratorTuple;
795 
796 /// Partial specialization for non-const tuple storage.
797 template <template <typename...> class ItType, typename... Args,
798           std::size_t... Ns>
799 struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
800                           std::index_sequence<Ns...>> {
801   using type = ItType<decltype(adl_begin(
802       std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
803 };
804 
805 /// Partial specialization for const tuple storage.
806 template <template <typename...> class ItType, typename... Args,
807           std::size_t... Ns>
808 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
809                           std::index_sequence<Ns...>> {
810   using type = ItType<decltype(adl_begin(
811       std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
812 };
813 
814 template <template <typename...> class ItType, typename... Args> class zippy {
815 private:
816   std::tuple<Args...> storage;
817   using IndexSequence = std::index_sequence_for<Args...>;
818 
819 public:
820   using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
821                                                IndexSequence>::type;
822   using const_iterator =
823       typename ZippyIteratorTuple<ItType, const decltype(storage),
824                                   IndexSequence>::type;
825   using iterator_category = typename iterator::iterator_category;
826   using value_type = typename iterator::value_type;
827   using difference_type = typename iterator::difference_type;
828   using pointer = typename iterator::pointer;
829   using reference = typename iterator::reference;
830   using const_reference = typename const_iterator::reference;
831 
832   zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}
833 
834   const_iterator begin() const { return begin_impl(IndexSequence{}); }
835   iterator begin() { return begin_impl(IndexSequence{}); }
836   const_iterator end() const { return end_impl(IndexSequence{}); }
837   iterator end() { return end_impl(IndexSequence{}); }
838 
839 private:
840   template <size_t... Ns>
841   const_iterator begin_impl(std::index_sequence<Ns...>) const {
842     return const_iterator(adl_begin(std::get<Ns>(storage))...);
843   }
844   template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
845     return iterator(adl_begin(std::get<Ns>(storage))...);
846   }
847 
848   template <size_t... Ns>
849   const_iterator end_impl(std::index_sequence<Ns...>) const {
850     return const_iterator(adl_end(std::get<Ns>(storage))...);
851   }
852   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
853     return iterator(adl_end(std::get<Ns>(storage))...);
854   }
855 };
856 
857 } // end namespace detail
858 
859 /// zip iterator for two or more iteratable types. Iteration continues until the
860 /// end of the *shortest* iteratee is reached.
861 template <typename T, typename U, typename... Args>
862 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
863                                                        Args &&...args) {
864   return detail::zippy<detail::zip_shortest, T, U, Args...>(
865       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
866 }
867 
868 /// zip iterator that assumes that all iteratees have the same length.
869 /// In builds with assertions on, this assumption is checked before the
870 /// iteration starts.
871 template <typename T, typename U, typename... Args>
872 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
873                                                           Args &&...args) {
874   assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
875          "Iteratees do not have equal length");
876   return detail::zippy<detail::zip_first, T, U, Args...>(
877       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
878 }
879 
880 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
881 /// be the shortest. Iteration continues until the end of the first iteratee is
882 /// reached. In builds with assertions on, we check that the assumption about
883 /// the first iteratee being the shortest holds.
884 template <typename T, typename U, typename... Args>
885 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
886                                                           Args &&...args) {
887   assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
888          "First iteratee is not the shortest");
889 
890   return detail::zippy<detail::zip_first, T, U, Args...>(
891       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
892 }
893 
894 namespace detail {
895 template <typename Iter>
896 Iter next_or_end(const Iter &I, const Iter &End) {
897   if (I == End)
898     return End;
899   return std::next(I);
900 }
901 
902 template <typename Iter>
903 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
904     std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
905   if (I == End)
906     return std::nullopt;
907   return *I;
908 }
909 
910 template <typename Iter> struct ZipLongestItemType {
911   using type = std::optional<std::remove_const_t<
912       std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
913 };
914 
915 template <typename... Iters> struct ZipLongestTupleType {
916   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
917 };
918 
919 template <typename... Iters>
920 class zip_longest_iterator
921     : public iterator_facade_base<
922           zip_longest_iterator<Iters...>,
923           std::common_type_t<
924               std::forward_iterator_tag,
925               typename std::iterator_traits<Iters>::iterator_category...>,
926           typename ZipLongestTupleType<Iters...>::type,
927           typename std::iterator_traits<
928               std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
929           typename ZipLongestTupleType<Iters...>::type *,
930           typename ZipLongestTupleType<Iters...>::type> {
931 public:
932   using value_type = typename ZipLongestTupleType<Iters...>::type;
933 
934 private:
935   std::tuple<Iters...> iterators;
936   std::tuple<Iters...> end_iterators;
937 
938   template <size_t... Ns>
939   bool test(const zip_longest_iterator<Iters...> &other,
940             std::index_sequence<Ns...>) const {
941     return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
942             ...);
943   }
944 
945   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
946     return value_type(
947         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
948   }
949 
950   template <size_t... Ns>
951   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
952     return std::tuple<Iters...>(
953         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
954   }
955 
956 public:
957   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
958       : iterators(std::forward<Iters>(ts.first)...),
959         end_iterators(std::forward<Iters>(ts.second)...) {}
960 
961   value_type operator*() const {
962     return deref(std::index_sequence_for<Iters...>{});
963   }
964 
965   zip_longest_iterator<Iters...> &operator++() {
966     iterators = tup_inc(std::index_sequence_for<Iters...>{});
967     return *this;
968   }
969 
970   bool operator==(const zip_longest_iterator<Iters...> &other) const {
971     return !test(other, std::index_sequence_for<Iters...>{});
972   }
973 };
974 
975 template <typename... Args> class zip_longest_range {
976 public:
977   using iterator =
978       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
979   using iterator_category = typename iterator::iterator_category;
980   using value_type = typename iterator::value_type;
981   using difference_type = typename iterator::difference_type;
982   using pointer = typename iterator::pointer;
983   using reference = typename iterator::reference;
984 
985 private:
986   std::tuple<Args...> ts;
987 
988   template <size_t... Ns>
989   iterator begin_impl(std::index_sequence<Ns...>) const {
990     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
991                                    adl_end(std::get<Ns>(ts)))...);
992   }
993 
994   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
995     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
996                                    adl_end(std::get<Ns>(ts)))...);
997   }
998 
999 public:
1000   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
1001 
1002   iterator begin() const {
1003     return begin_impl(std::index_sequence_for<Args...>{});
1004   }
1005   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
1006 };
1007 } // namespace detail
1008 
1009 /// Iterate over two or more iterators at the same time. Iteration continues
1010 /// until all iterators reach the end. The std::optional only contains a value
1011 /// if the iterator has not reached the end.
1012 template <typename T, typename U, typename... Args>
1013 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1014                                                      Args &&... args) {
1015   return detail::zip_longest_range<T, U, Args...>(
1016       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1017 }
1018 
1019 /// Iterator wrapper that concatenates sequences together.
1020 ///
1021 /// This can concatenate different iterators, even with different types, into
1022 /// a single iterator provided the value types of all the concatenated
1023 /// iterators expose `reference` and `pointer` types that can be converted to
1024 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
1025 /// interesting/customized pointer or reference types.
1026 ///
1027 /// Currently this only supports forward or higher iterator categories as
1028 /// inputs and always exposes a forward iterator interface.
1029 template <typename ValueT, typename... IterTs>
1030 class concat_iterator
1031     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1032                                   std::forward_iterator_tag, ValueT> {
1033   using BaseT = typename concat_iterator::iterator_facade_base;
1034 
1035   /// We store both the current and end iterators for each concatenated
1036   /// sequence in a tuple of pairs.
1037   ///
1038   /// Note that something like iterator_range seems nice at first here, but the
1039   /// range properties are of little benefit and end up getting in the way
1040   /// because we need to do mutation on the current iterators.
1041   std::tuple<IterTs...> Begins;
1042   std::tuple<IterTs...> Ends;
1043 
1044   /// Attempts to increment a specific iterator.
1045   ///
1046   /// Returns true if it was able to increment the iterator. Returns false if
1047   /// the iterator is already at the end iterator.
1048   template <size_t Index> bool incrementHelper() {
1049     auto &Begin = std::get<Index>(Begins);
1050     auto &End = std::get<Index>(Ends);
1051     if (Begin == End)
1052       return false;
1053 
1054     ++Begin;
1055     return true;
1056   }
1057 
1058   /// Increments the first non-end iterator.
1059   ///
1060   /// It is an error to call this with all iterators at the end.
1061   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1062     // Build a sequence of functions to increment each iterator if possible.
1063     bool (concat_iterator::*IncrementHelperFns[])() = {
1064         &concat_iterator::incrementHelper<Ns>...};
1065 
1066     // Loop over them, and stop as soon as we succeed at incrementing one.
1067     for (auto &IncrementHelperFn : IncrementHelperFns)
1068       if ((this->*IncrementHelperFn)())
1069         return;
1070 
1071     llvm_unreachable("Attempted to increment an end concat iterator!");
1072   }
1073 
1074   /// Returns null if the specified iterator is at the end. Otherwise,
1075   /// dereferences the iterator and returns the address of the resulting
1076   /// reference.
1077   template <size_t Index> ValueT *getHelper() const {
1078     auto &Begin = std::get<Index>(Begins);
1079     auto &End = std::get<Index>(Ends);
1080     if (Begin == End)
1081       return nullptr;
1082 
1083     return &*Begin;
1084   }
1085 
1086   /// Finds the first non-end iterator, dereferences, and returns the resulting
1087   /// reference.
1088   ///
1089   /// It is an error to call this with all iterators at the end.
1090   template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1091     // Build a sequence of functions to get from iterator if possible.
1092     ValueT *(concat_iterator::*GetHelperFns[])() const = {
1093         &concat_iterator::getHelper<Ns>...};
1094 
1095     // Loop over them, and return the first result we find.
1096     for (auto &GetHelperFn : GetHelperFns)
1097       if (ValueT *P = (this->*GetHelperFn)())
1098         return *P;
1099 
1100     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1101   }
1102 
1103 public:
1104   /// Constructs an iterator from a sequence of ranges.
1105   ///
1106   /// We need the full range to know how to switch between each of the
1107   /// iterators.
1108   template <typename... RangeTs>
1109   explicit concat_iterator(RangeTs &&... Ranges)
1110       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1111 
1112   using BaseT::operator++;
1113 
1114   concat_iterator &operator++() {
1115     increment(std::index_sequence_for<IterTs...>());
1116     return *this;
1117   }
1118 
1119   ValueT &operator*() const {
1120     return get(std::index_sequence_for<IterTs...>());
1121   }
1122 
1123   bool operator==(const concat_iterator &RHS) const {
1124     return Begins == RHS.Begins && Ends == RHS.Ends;
1125   }
1126 };
1127 
1128 namespace detail {
1129 
1130 /// Helper to store a sequence of ranges being concatenated and access them.
1131 ///
1132 /// This is designed to facilitate providing actual storage when temporaries
1133 /// are passed into the constructor such that we can use it as part of range
1134 /// based for loops.
1135 template <typename ValueT, typename... RangeTs> class concat_range {
1136 public:
1137   using iterator =
1138       concat_iterator<ValueT,
1139                       decltype(std::begin(std::declval<RangeTs &>()))...>;
1140 
1141 private:
1142   std::tuple<RangeTs...> Ranges;
1143 
1144   template <size_t... Ns>
1145   iterator begin_impl(std::index_sequence<Ns...>) {
1146     return iterator(std::get<Ns>(Ranges)...);
1147   }
1148   template <size_t... Ns>
1149   iterator begin_impl(std::index_sequence<Ns...>) const {
1150     return iterator(std::get<Ns>(Ranges)...);
1151   }
1152   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1153     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1154                                std::end(std::get<Ns>(Ranges)))...);
1155   }
1156   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1157     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1158                                std::end(std::get<Ns>(Ranges)))...);
1159   }
1160 
1161 public:
1162   concat_range(RangeTs &&... Ranges)
1163       : Ranges(std::forward<RangeTs>(Ranges)...) {}
1164 
1165   iterator begin() {
1166     return begin_impl(std::index_sequence_for<RangeTs...>{});
1167   }
1168   iterator begin() const {
1169     return begin_impl(std::index_sequence_for<RangeTs...>{});
1170   }
1171   iterator end() {
1172     return end_impl(std::index_sequence_for<RangeTs...>{});
1173   }
1174   iterator end() const {
1175     return end_impl(std::index_sequence_for<RangeTs...>{});
1176   }
1177 };
1178 
1179 } // end namespace detail
1180 
1181 /// Concatenated range across two or more ranges.
1182 ///
1183 /// The desired value type must be explicitly specified.
1184 template <typename ValueT, typename... RangeTs>
1185 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1186   static_assert(sizeof...(RangeTs) > 1,
1187                 "Need more than one range to concatenate!");
1188   return detail::concat_range<ValueT, RangeTs...>(
1189       std::forward<RangeTs>(Ranges)...);
1190 }
1191 
1192 /// A utility class used to implement an iterator that contains some base object
1193 /// and an index. The iterator moves the index but keeps the base constant.
1194 template <typename DerivedT, typename BaseT, typename T,
1195           typename PointerT = T *, typename ReferenceT = T &>
1196 class indexed_accessor_iterator
1197     : public llvm::iterator_facade_base<DerivedT,
1198                                         std::random_access_iterator_tag, T,
1199                                         std::ptrdiff_t, PointerT, ReferenceT> {
1200 public:
1201   ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1202     assert(base == rhs.base && "incompatible iterators");
1203     return index - rhs.index;
1204   }
1205   bool operator==(const indexed_accessor_iterator &rhs) const {
1206     return base == rhs.base && index == rhs.index;
1207   }
1208   bool operator<(const indexed_accessor_iterator &rhs) const {
1209     assert(base == rhs.base && "incompatible iterators");
1210     return index < rhs.index;
1211   }
1212 
1213   DerivedT &operator+=(ptrdiff_t offset) {
1214     this->index += offset;
1215     return static_cast<DerivedT &>(*this);
1216   }
1217   DerivedT &operator-=(ptrdiff_t offset) {
1218     this->index -= offset;
1219     return static_cast<DerivedT &>(*this);
1220   }
1221 
1222   /// Returns the current index of the iterator.
1223   ptrdiff_t getIndex() const { return index; }
1224 
1225   /// Returns the current base of the iterator.
1226   const BaseT &getBase() const { return base; }
1227 
1228 protected:
1229   indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1230       : base(base), index(index) {}
1231   BaseT base;
1232   ptrdiff_t index;
1233 };
1234 
1235 namespace detail {
1236 /// The class represents the base of a range of indexed_accessor_iterators. It
1237 /// provides support for many different range functionalities, e.g.
1238 /// drop_front/slice/etc.. Derived range classes must implement the following
1239 /// static methods:
1240 ///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1241 ///     - Dereference an iterator pointing to the base object at the given
1242 ///       index.
1243 ///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1244 ///     - Return a new base that is offset from the provide base by 'index'
1245 ///       elements.
1246 template <typename DerivedT, typename BaseT, typename T,
1247           typename PointerT = T *, typename ReferenceT = T &>
1248 class indexed_accessor_range_base {
1249 public:
1250   using RangeBaseT = indexed_accessor_range_base;
1251 
1252   /// An iterator element of this range.
1253   class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1254                                                     PointerT, ReferenceT> {
1255   public:
1256     // Index into this iterator, invoking a static method on the derived type.
1257     ReferenceT operator*() const {
1258       return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1259     }
1260 
1261   private:
1262     iterator(BaseT owner, ptrdiff_t curIndex)
1263         : iterator::indexed_accessor_iterator(owner, curIndex) {}
1264 
1265     /// Allow access to the constructor.
1266     friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1267                                        ReferenceT>;
1268   };
1269 
1270   indexed_accessor_range_base(iterator begin, iterator end)
1271       : base(offset_base(begin.getBase(), begin.getIndex())),
1272         count(end.getIndex() - begin.getIndex()) {}
1273   indexed_accessor_range_base(const iterator_range<iterator> &range)
1274       : indexed_accessor_range_base(range.begin(), range.end()) {}
1275   indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1276       : base(base), count(count) {}
1277 
1278   iterator begin() const { return iterator(base, 0); }
1279   iterator end() const { return iterator(base, count); }
1280   ReferenceT operator[](size_t Index) const {
1281     assert(Index < size() && "invalid index for value range");
1282     return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1283   }
1284   ReferenceT front() const {
1285     assert(!empty() && "expected non-empty range");
1286     return (*this)[0];
1287   }
1288   ReferenceT back() const {
1289     assert(!empty() && "expected non-empty range");
1290     return (*this)[size() - 1];
1291   }
1292 
1293   /// Return the size of this range.
1294   size_t size() const { return count; }
1295 
1296   /// Return if the range is empty.
1297   bool empty() const { return size() == 0; }
1298 
1299   /// Drop the first N elements, and keep M elements.
1300   DerivedT slice(size_t n, size_t m) const {
1301     assert(n + m <= size() && "invalid size specifiers");
1302     return DerivedT(offset_base(base, n), m);
1303   }
1304 
1305   /// Drop the first n elements.
1306   DerivedT drop_front(size_t n = 1) const {
1307     assert(size() >= n && "Dropping more elements than exist");
1308     return slice(n, size() - n);
1309   }
1310   /// Drop the last n elements.
1311   DerivedT drop_back(size_t n = 1) const {
1312     assert(size() >= n && "Dropping more elements than exist");
1313     return DerivedT(base, size() - n);
1314   }
1315 
1316   /// Take the first n elements.
1317   DerivedT take_front(size_t n = 1) const {
1318     return n < size() ? drop_back(size() - n)
1319                       : static_cast<const DerivedT &>(*this);
1320   }
1321 
1322   /// Take the last n elements.
1323   DerivedT take_back(size_t n = 1) const {
1324     return n < size() ? drop_front(size() - n)
1325                       : static_cast<const DerivedT &>(*this);
1326   }
1327 
1328   /// Allow conversion to any type accepting an iterator_range.
1329   template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1330                                  RangeT, iterator_range<iterator>>::value>>
1331   operator RangeT() const {
1332     return RangeT(iterator_range<iterator>(*this));
1333   }
1334 
1335   /// Returns the base of this range.
1336   const BaseT &getBase() const { return base; }
1337 
1338 private:
1339   /// Offset the given base by the given amount.
1340   static BaseT offset_base(const BaseT &base, size_t n) {
1341     return n == 0 ? base : DerivedT::offset_base(base, n);
1342   }
1343 
1344 protected:
1345   indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1346   indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1347   indexed_accessor_range_base &
1348   operator=(const indexed_accessor_range_base &) = default;
1349 
1350   /// The base that owns the provided range of values.
1351   BaseT base;
1352   /// The size from the owning range.
1353   ptrdiff_t count;
1354 };
1355 /// Compare this range with another.
1356 /// FIXME: Make me a member function instead of friend when it works in C++20.
1357 template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1358           typename PointerT, typename ReferenceT>
1359 bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1360                                                   ReferenceT> &lhs,
1361                 const OtherT &rhs) {
1362   return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1363 }
1364 
1365 template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1366           typename PointerT, typename ReferenceT>
1367 bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1368                                                   ReferenceT> &lhs,
1369                 const OtherT &rhs) {
1370   return !(lhs == rhs);
1371 }
1372 } // end namespace detail
1373 
1374 /// This class provides an implementation of a range of
1375 /// indexed_accessor_iterators where the base is not indexable. Ranges with
1376 /// bases that are offsetable should derive from indexed_accessor_range_base
1377 /// instead. Derived range classes are expected to implement the following
1378 /// static method:
1379 ///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1380 ///     - Dereference an iterator pointing to a parent base at the given index.
1381 template <typename DerivedT, typename BaseT, typename T,
1382           typename PointerT = T *, typename ReferenceT = T &>
1383 class indexed_accessor_range
1384     : public detail::indexed_accessor_range_base<
1385           DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1386 public:
1387   indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1388       : detail::indexed_accessor_range_base<
1389             DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1390             std::make_pair(base, startIndex), count) {}
1391   using detail::indexed_accessor_range_base<
1392       DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1393       ReferenceT>::indexed_accessor_range_base;
1394 
1395   /// Returns the current base of the range.
1396   const BaseT &getBase() const { return this->base.first; }
1397 
1398   /// Returns the current start index of the range.
1399   ptrdiff_t getStartIndex() const { return this->base.second; }
1400 
1401   /// See `detail::indexed_accessor_range_base` for details.
1402   static std::pair<BaseT, ptrdiff_t>
1403   offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1404     // We encode the internal base as a pair of the derived base and a start
1405     // index into the derived base.
1406     return std::make_pair(base.first, base.second + index);
1407   }
1408   /// See `detail::indexed_accessor_range_base` for details.
1409   static ReferenceT
1410   dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1411                        ptrdiff_t index) {
1412     return DerivedT::dereference(base.first, base.second + index);
1413   }
1414 };
1415 
1416 namespace detail {
1417 /// Return a reference to the first or second member of a reference. Otherwise,
1418 /// return a copy of the member of a temporary.
1419 ///
1420 /// When passing a range whose iterators return values instead of references,
1421 /// the reference must be dropped from `decltype((elt.first))`, which will
1422 /// always be a reference, to avoid returning a reference to a temporary.
1423 template <typename EltTy, typename FirstTy> class first_or_second_type {
1424 public:
1425   using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1426                                   std::remove_reference_t<FirstTy>>;
1427 };
1428 } // end namespace detail
1429 
1430 /// Given a container of pairs, return a range over the first elements.
1431 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1432   using EltTy = decltype((*std::begin(c)));
1433   return llvm::map_range(std::forward<ContainerTy>(c),
1434                          [](EltTy elt) -> typename detail::first_or_second_type<
1435                                            EltTy, decltype((elt.first))>::type {
1436                            return elt.first;
1437                          });
1438 }
1439 
1440 /// Given a container of pairs, return a range over the second elements.
1441 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1442   using EltTy = decltype((*std::begin(c)));
1443   return llvm::map_range(
1444       std::forward<ContainerTy>(c),
1445       [](EltTy elt) ->
1446       typename detail::first_or_second_type<EltTy,
1447                                             decltype((elt.second))>::type {
1448         return elt.second;
1449       });
1450 }
1451 
1452 //===----------------------------------------------------------------------===//
1453 //     Extra additions to <utility>
1454 //===----------------------------------------------------------------------===//
1455 
1456 /// Function object to check whether the first component of a container
1457 /// supported by std::get (like std::pair and std::tuple) compares less than the
1458 /// first component of another container.
1459 struct less_first {
1460   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1461     return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
1462   }
1463 };
1464 
1465 /// Function object to check whether the second component of a container
1466 /// supported by std::get (like std::pair and std::tuple) compares less than the
1467 /// second component of another container.
1468 struct less_second {
1469   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1470     return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
1471   }
1472 };
1473 
1474 /// \brief Function object to apply a binary function to the first component of
1475 /// a std::pair.
1476 template<typename FuncTy>
1477 struct on_first {
1478   FuncTy func;
1479 
1480   template <typename T>
1481   decltype(auto) operator()(const T &lhs, const T &rhs) const {
1482     return func(lhs.first, rhs.first);
1483   }
1484 };
1485 
1486 /// Utility type to build an inheritance chain that makes it easy to rank
1487 /// overload candidates.
1488 template <int N> struct rank : rank<N - 1> {};
1489 template <> struct rank<0> {};
1490 
1491 namespace detail {
1492 template <typename... Ts> struct Visitor;
1493 
1494 template <typename HeadT, typename... TailTs>
1495 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1496   explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1497       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1498         Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1499   using remove_cvref_t<HeadT>::operator();
1500   using Visitor<TailTs...>::operator();
1501 };
1502 
1503 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1504   explicit constexpr Visitor(HeadT &&Head)
1505       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1506   using remove_cvref_t<HeadT>::operator();
1507 };
1508 } // namespace detail
1509 
1510 /// Returns an opaquely-typed Callable object whose operator() overload set is
1511 /// the sum of the operator() overload sets of each CallableT in CallableTs.
1512 ///
1513 /// The type of the returned object derives from each CallableT in CallableTs.
1514 /// The returned object is constructed by invoking the appropriate copy or move
1515 /// constructor of each CallableT, as selected by overload resolution on the
1516 /// corresponding argument to makeVisitor.
1517 ///
1518 /// Example:
1519 ///
1520 /// \code
1521 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1522 ///                            [](int i) { return "int"; },
1523 ///                            [](std::string s) { return "str"; });
1524 /// auto a = visitor(42);    // `a` is now "int".
1525 /// auto b = visitor("foo"); // `b` is now "str".
1526 /// auto c = visitor(3.14f); // `c` is now "unhandled type".
1527 /// \endcode
1528 ///
1529 /// Example of making a visitor with a lambda which captures a move-only type:
1530 ///
1531 /// \code
1532 /// std::unique_ptr<FooHandler> FH = /* ... */;
1533 /// auto visitor = makeVisitor(
1534 ///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1535 ///     [](int i) { return i; },
1536 ///     [](std::string s) { return atoi(s); });
1537 /// \endcode
1538 template <typename... CallableTs>
1539 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1540   return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1541 }
1542 
1543 //===----------------------------------------------------------------------===//
1544 //     Extra additions to <algorithm>
1545 //===----------------------------------------------------------------------===//
1546 
1547 // We have a copy here so that LLVM behaves the same when using different
1548 // standard libraries.
1549 template <class Iterator, class RNG>
1550 void shuffle(Iterator first, Iterator last, RNG &&g) {
1551   // It would be better to use a std::uniform_int_distribution,
1552   // but that would be stdlib dependent.
1553   typedef
1554       typename std::iterator_traits<Iterator>::difference_type difference_type;
1555   for (auto size = last - first; size > 1; ++first, (void)--size) {
1556     difference_type offset = g() % size;
1557     // Avoid self-assignment due to incorrect assertions in libstdc++
1558     // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1559     if (offset != difference_type(0))
1560       std::iter_swap(first, first + offset);
1561   }
1562 }
1563 
1564 /// Adapt std::less<T> for array_pod_sort.
1565 template<typename T>
1566 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1567   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1568                      *reinterpret_cast<const T*>(P2)))
1569     return -1;
1570   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1571                      *reinterpret_cast<const T*>(P1)))
1572     return 1;
1573   return 0;
1574 }
1575 
1576 /// get_array_pod_sort_comparator - This is an internal helper function used to
1577 /// get type deduction of T right.
1578 template<typename T>
1579 inline int (*get_array_pod_sort_comparator(const T &))
1580              (const void*, const void*) {
1581   return array_pod_sort_comparator<T>;
1582 }
1583 
1584 #ifdef EXPENSIVE_CHECKS
1585 namespace detail {
1586 
1587 inline unsigned presortShuffleEntropy() {
1588   static unsigned Result(std::random_device{}());
1589   return Result;
1590 }
1591 
1592 template <class IteratorTy>
1593 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1594   std::mt19937 Generator(presortShuffleEntropy());
1595   llvm::shuffle(Start, End, Generator);
1596 }
1597 
1598 } // end namespace detail
1599 #endif
1600 
1601 /// array_pod_sort - This sorts an array with the specified start and end
1602 /// extent.  This is just like std::sort, except that it calls qsort instead of
1603 /// using an inlined template.  qsort is slightly slower than std::sort, but
1604 /// most sorts are not performance critical in LLVM and std::sort has to be
1605 /// template instantiated for each type, leading to significant measured code
1606 /// bloat.  This function should generally be used instead of std::sort where
1607 /// possible.
1608 ///
1609 /// This function assumes that you have simple POD-like types that can be
1610 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1611 /// you should use std::sort.
1612 ///
1613 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1614 /// default to std::less.
1615 template<class IteratorTy>
1616 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1617   // Don't inefficiently call qsort with one element or trigger undefined
1618   // behavior with an empty sequence.
1619   auto NElts = End - Start;
1620   if (NElts <= 1) return;
1621 #ifdef EXPENSIVE_CHECKS
1622   detail::presortShuffle<IteratorTy>(Start, End);
1623 #endif
1624   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1625 }
1626 
1627 template <class IteratorTy>
1628 inline void array_pod_sort(
1629     IteratorTy Start, IteratorTy End,
1630     int (*Compare)(
1631         const typename std::iterator_traits<IteratorTy>::value_type *,
1632         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1633   // Don't inefficiently call qsort with one element or trigger undefined
1634   // behavior with an empty sequence.
1635   auto NElts = End - Start;
1636   if (NElts <= 1) return;
1637 #ifdef EXPENSIVE_CHECKS
1638   detail::presortShuffle<IteratorTy>(Start, End);
1639 #endif
1640   qsort(&*Start, NElts, sizeof(*Start),
1641         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1642 }
1643 
1644 namespace detail {
1645 template <typename T>
1646 // We can use qsort if the iterator type is a pointer and the underlying value
1647 // is trivially copyable.
1648 using sort_trivially_copyable = std::conjunction<
1649     std::is_pointer<T>,
1650     std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1651 } // namespace detail
1652 
1653 // Provide wrappers to std::sort which shuffle the elements before sorting
1654 // to help uncover non-deterministic behavior (PR35135).
1655 template <typename IteratorTy>
1656 inline void sort(IteratorTy Start, IteratorTy End) {
1657   if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1658     // Forward trivially copyable types to array_pod_sort. This avoids a large
1659     // amount of code bloat for a minor performance hit.
1660     array_pod_sort(Start, End);
1661   } else {
1662 #ifdef EXPENSIVE_CHECKS
1663     detail::presortShuffle<IteratorTy>(Start, End);
1664 #endif
1665     std::sort(Start, End);
1666   }
1667 }
1668 
1669 template <typename Container> inline void sort(Container &&C) {
1670   llvm::sort(adl_begin(C), adl_end(C));
1671 }
1672 
1673 template <typename IteratorTy, typename Compare>
1674 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1675 #ifdef EXPENSIVE_CHECKS
1676   detail::presortShuffle<IteratorTy>(Start, End);
1677 #endif
1678   std::sort(Start, End, Comp);
1679 }
1680 
1681 template <typename Container, typename Compare>
1682 inline void sort(Container &&C, Compare Comp) {
1683   llvm::sort(adl_begin(C), adl_end(C), Comp);
1684 }
1685 
1686 /// Get the size of a range. This is a wrapper function around std::distance
1687 /// which is only enabled when the operation is O(1).
1688 template <typename R>
1689 auto size(R &&Range,
1690           std::enable_if_t<
1691               std::is_base_of<std::random_access_iterator_tag,
1692                               typename std::iterator_traits<decltype(
1693                                   Range.begin())>::iterator_category>::value,
1694               void> * = nullptr) {
1695   return std::distance(Range.begin(), Range.end());
1696 }
1697 
1698 namespace detail {
1699 template <typename Range>
1700 using check_has_free_function_size =
1701     decltype(adl_size(std::declval<Range &>()));
1702 
1703 template <typename Range>
1704 static constexpr bool HasFreeFunctionSize =
1705     is_detected<check_has_free_function_size, Range>::value;
1706 } // namespace detail
1707 
1708 /// Returns the size of the \p Range, i.e., the number of elements. This
1709 /// implementation takes inspiration from `std::ranges::size` from C++20 and
1710 /// delegates the size check to `adl_size` or `std::distance`, in this order of
1711 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
1712 /// running time, and is intended to be used in generic code that does not know
1713 /// the exact range type.
1714 template <typename R> constexpr size_t range_size(R &&Range) {
1715   if constexpr (detail::HasFreeFunctionSize<R>)
1716     return adl_size(Range);
1717   else
1718     return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
1719 }
1720 
1721 /// Provide wrappers to std::for_each which take ranges instead of having to
1722 /// pass begin/end explicitly.
1723 template <typename R, typename UnaryFunction>
1724 UnaryFunction for_each(R &&Range, UnaryFunction F) {
1725   return std::for_each(adl_begin(Range), adl_end(Range), F);
1726 }
1727 
1728 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1729 /// begin/end explicitly.
1730 template <typename R, typename UnaryPredicate>
1731 bool all_of(R &&Range, UnaryPredicate P) {
1732   return std::all_of(adl_begin(Range), adl_end(Range), P);
1733 }
1734 
1735 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1736 /// begin/end explicitly.
1737 template <typename R, typename UnaryPredicate>
1738 bool any_of(R &&Range, UnaryPredicate P) {
1739   return std::any_of(adl_begin(Range), adl_end(Range), P);
1740 }
1741 
1742 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1743 /// begin/end explicitly.
1744 template <typename R, typename UnaryPredicate>
1745 bool none_of(R &&Range, UnaryPredicate P) {
1746   return std::none_of(adl_begin(Range), adl_end(Range), P);
1747 }
1748 
1749 /// Provide wrappers to std::find which take ranges instead of having to pass
1750 /// begin/end explicitly.
1751 template <typename R, typename T> auto find(R &&Range, const T &Val) {
1752   return std::find(adl_begin(Range), adl_end(Range), Val);
1753 }
1754 
1755 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1756 /// begin/end explicitly.
1757 template <typename R, typename UnaryPredicate>
1758 auto find_if(R &&Range, UnaryPredicate P) {
1759   return std::find_if(adl_begin(Range), adl_end(Range), P);
1760 }
1761 
1762 template <typename R, typename UnaryPredicate>
1763 auto find_if_not(R &&Range, UnaryPredicate P) {
1764   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1765 }
1766 
1767 /// Provide wrappers to std::remove_if which take ranges instead of having to
1768 /// pass begin/end explicitly.
1769 template <typename R, typename UnaryPredicate>
1770 auto remove_if(R &&Range, UnaryPredicate P) {
1771   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1772 }
1773 
1774 /// Provide wrappers to std::copy_if which take ranges instead of having to
1775 /// pass begin/end explicitly.
1776 template <typename R, typename OutputIt, typename UnaryPredicate>
1777 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1778   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1779 }
1780 
1781 /// Return the single value in \p Range that satisfies
1782 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1783 /// when no values or multiple values were found.
1784 /// When \p AllowRepeats is true, multiple values that compare equal
1785 /// are allowed.
1786 template <typename T, typename R, typename Predicate>
1787 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1788   T *RC = nullptr;
1789   for (auto &&A : Range) {
1790     if (T *PRC = P(A, AllowRepeats)) {
1791       if (RC) {
1792         if (!AllowRepeats || PRC != RC)
1793           return nullptr;
1794       } else
1795         RC = PRC;
1796     }
1797   }
1798   return RC;
1799 }
1800 
1801 /// Return a pair consisting of the single value in \p Range that satisfies
1802 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1803 /// nullptr when no values or multiple values were found, and a bool indicating
1804 /// whether multiple values were found to cause the nullptr.
1805 /// When \p AllowRepeats is true, multiple values that compare equal are
1806 /// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1807 /// singleton while the bool indicates whether multiples have already been
1808 /// found.  It is expected that first will be nullptr when second is true.
1809 /// This allows using find_singleton_nested within the predicate \P.
1810 template <typename T, typename R, typename Predicate>
1811 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1812                                            bool AllowRepeats = false) {
1813   T *RC = nullptr;
1814   for (auto *A : Range) {
1815     std::pair<T *, bool> PRC = P(A, AllowRepeats);
1816     if (PRC.second) {
1817       assert(PRC.first == nullptr &&
1818              "Inconsistent return values in find_singleton_nested.");
1819       return PRC;
1820     }
1821     if (PRC.first) {
1822       if (RC) {
1823         if (!AllowRepeats || PRC.first != RC)
1824           return {nullptr, true};
1825       } else
1826         RC = PRC.first;
1827     }
1828   }
1829   return {RC, false};
1830 }
1831 
1832 template <typename R, typename OutputIt>
1833 OutputIt copy(R &&Range, OutputIt Out) {
1834   return std::copy(adl_begin(Range), adl_end(Range), Out);
1835 }
1836 
1837 /// Provide wrappers to std::replace_copy_if which take ranges instead of having
1838 /// to pass begin/end explicitly.
1839 template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1840 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1841                          const T &NewValue) {
1842   return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1843                               NewValue);
1844 }
1845 
1846 /// Provide wrappers to std::replace_copy which take ranges instead of having to
1847 /// pass begin/end explicitly.
1848 template <typename R, typename OutputIt, typename T>
1849 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1850                       const T &NewValue) {
1851   return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1852                            NewValue);
1853 }
1854 
1855 /// Provide wrappers to std::move which take ranges instead of having to
1856 /// pass begin/end explicitly.
1857 template <typename R, typename OutputIt>
1858 OutputIt move(R &&Range, OutputIt Out) {
1859   return std::move(adl_begin(Range), adl_end(Range), Out);
1860 }
1861 
1862 namespace detail {
1863 template <typename Range, typename Element>
1864 using check_has_member_contains_t =
1865     decltype(std::declval<Range &>().contains(std::declval<const Element &>()));
1866 
1867 template <typename Range, typename Element>
1868 static constexpr bool HasMemberContains =
1869     is_detected<check_has_member_contains_t, Range, Element>::value;
1870 
1871 template <typename Range, typename Element>
1872 using check_has_member_find_t =
1873     decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
1874              std::declval<Range &>().end());
1875 
1876 template <typename Range, typename Element>
1877 static constexpr bool HasMemberFind =
1878     is_detected<check_has_member_find_t, Range, Element>::value;
1879 
1880 } // namespace detail
1881 
1882 /// Returns true if \p Element is found in \p Range. Delegates the check to
1883 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
1884 /// order of preference. This is intended as the canonical way to check if an
1885 /// element exists in a range in generic code or range type that does not
1886 /// expose a `.contains(Element)` member.
1887 template <typename R, typename E>
1888 bool is_contained(R &&Range, const E &Element) {
1889   if constexpr (detail::HasMemberContains<R, E>)
1890     return Range.contains(Element);
1891   else if constexpr (detail::HasMemberFind<R, E>)
1892     return Range.find(Element) != Range.end();
1893   else
1894     return std::find(adl_begin(Range), adl_end(Range), Element) !=
1895            adl_end(Range);
1896 }
1897 
1898 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
1899 /// an initializer list and is `constexpr`-friendly.
1900 template <typename T, typename E>
1901 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
1902   // TODO: Use std::find when we switch to C++20.
1903   for (const T &V : Set)
1904     if (V == Element)
1905       return true;
1906   return false;
1907 }
1908 
1909 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1910 /// are sorted with respect to a comparator \p C.
1911 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1912   return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1913 }
1914 
1915 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1916 /// are sorted in non-descending order.
1917 template <typename R> bool is_sorted(R &&Range) {
1918   return std::is_sorted(adl_begin(Range), adl_end(Range));
1919 }
1920 
1921 /// Wrapper function around std::count to count the number of times an element
1922 /// \p Element occurs in the given range \p Range.
1923 template <typename R, typename E> auto count(R &&Range, const E &Element) {
1924   return std::count(adl_begin(Range), adl_end(Range), Element);
1925 }
1926 
1927 /// Wrapper function around std::count_if to count the number of times an
1928 /// element satisfying a given predicate occurs in a range.
1929 template <typename R, typename UnaryPredicate>
1930 auto count_if(R &&Range, UnaryPredicate P) {
1931   return std::count_if(adl_begin(Range), adl_end(Range), P);
1932 }
1933 
1934 /// Wrapper function around std::transform to apply a function to a range and
1935 /// store the result elsewhere.
1936 template <typename R, typename OutputIt, typename UnaryFunction>
1937 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1938   return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1939 }
1940 
1941 /// Provide wrappers to std::partition which take ranges instead of having to
1942 /// pass begin/end explicitly.
1943 template <typename R, typename UnaryPredicate>
1944 auto partition(R &&Range, UnaryPredicate P) {
1945   return std::partition(adl_begin(Range), adl_end(Range), P);
1946 }
1947 
1948 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1949 /// pass begin/end explicitly.
1950 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1951   return std::lower_bound(adl_begin(Range), adl_end(Range),
1952                           std::forward<T>(Value));
1953 }
1954 
1955 template <typename R, typename T, typename Compare>
1956 auto lower_bound(R &&Range, T &&Value, Compare C) {
1957   return std::lower_bound(adl_begin(Range), adl_end(Range),
1958                           std::forward<T>(Value), C);
1959 }
1960 
1961 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1962 /// pass begin/end explicitly.
1963 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1964   return std::upper_bound(adl_begin(Range), adl_end(Range),
1965                           std::forward<T>(Value));
1966 }
1967 
1968 template <typename R, typename T, typename Compare>
1969 auto upper_bound(R &&Range, T &&Value, Compare C) {
1970   return std::upper_bound(adl_begin(Range), adl_end(Range),
1971                           std::forward<T>(Value), C);
1972 }
1973 
1974 template <typename R>
1975 void stable_sort(R &&Range) {
1976   std::stable_sort(adl_begin(Range), adl_end(Range));
1977 }
1978 
1979 template <typename R, typename Compare>
1980 void stable_sort(R &&Range, Compare C) {
1981   std::stable_sort(adl_begin(Range), adl_end(Range), C);
1982 }
1983 
1984 /// Binary search for the first iterator in a range where a predicate is false.
1985 /// Requires that C is always true below some limit, and always false above it.
1986 template <typename R, typename Predicate,
1987           typename Val = decltype(*adl_begin(std::declval<R>()))>
1988 auto partition_point(R &&Range, Predicate P) {
1989   return std::partition_point(adl_begin(Range), adl_end(Range), P);
1990 }
1991 
1992 template<typename Range, typename Predicate>
1993 auto unique(Range &&R, Predicate P) {
1994   return std::unique(adl_begin(R), adl_end(R), P);
1995 }
1996 
1997 /// Wrapper function around std::equal to detect if pair-wise elements between
1998 /// two ranges are the same.
1999 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
2000   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2001                     adl_end(RRange));
2002 }
2003 
2004 /// Returns true if all elements in Range are equal or when the Range is empty.
2005 template <typename R> bool all_equal(R &&Range) {
2006   auto Begin = adl_begin(Range);
2007   auto End = adl_end(Range);
2008   return Begin == End || std::equal(Begin + 1, End, Begin);
2009 }
2010 
2011 /// Returns true if all Values in the initializer lists are equal or the list
2012 // is empty.
2013 template <typename T> bool all_equal(std::initializer_list<T> Values) {
2014   return all_equal<std::initializer_list<T>>(std::move(Values));
2015 }
2016 
2017 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
2018 /// `erase_if` which is equivalent to:
2019 ///
2020 ///   C.erase(remove_if(C, pred), C.end());
2021 ///
2022 /// This version works for any container with an erase method call accepting
2023 /// two iterators.
2024 template <typename Container, typename UnaryPredicate>
2025 void erase_if(Container &C, UnaryPredicate P) {
2026   C.erase(remove_if(C, P), C.end());
2027 }
2028 
2029 /// Wrapper function to remove a value from a container:
2030 ///
2031 /// C.erase(remove(C.begin(), C.end(), V), C.end());
2032 template <typename Container, typename ValueType>
2033 void erase(Container &C, ValueType V) {
2034   C.erase(std::remove(C.begin(), C.end(), V), C.end());
2035 }
2036 
2037 template <typename Container, typename ValueType>
2038 LLVM_DEPRECATED("Use erase instead", "erase")
2039 void erase_value(Container &C, ValueType V) {
2040   erase(C, V);
2041 }
2042 
2043 /// Wrapper function to append range `R` to container `C`.
2044 ///
2045 /// C.insert(C.end(), R.begin(), R.end());
2046 template <typename Container, typename Range>
2047 void append_range(Container &C, Range &&R) {
2048   C.insert(C.end(), adl_begin(R), adl_end(R));
2049 }
2050 
2051 /// Appends all `Values` to container `C`.
2052 template <typename Container, typename... Args>
2053 void append_values(Container &C, Args &&...Values) {
2054   C.reserve(range_size(C) + sizeof...(Args));
2055   // Append all values one by one.
2056   ((void)C.insert(C.end(), std::forward<Args>(Values)), ...);
2057 }
2058 
2059 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2060 /// the range [ValIt, ValEnd) (which is not from the same container).
2061 template<typename Container, typename RandomAccessIterator>
2062 void replace(Container &Cont, typename Container::iterator ContIt,
2063              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2064              RandomAccessIterator ValEnd) {
2065   while (true) {
2066     if (ValIt == ValEnd) {
2067       Cont.erase(ContIt, ContEnd);
2068       return;
2069     } else if (ContIt == ContEnd) {
2070       Cont.insert(ContIt, ValIt, ValEnd);
2071       return;
2072     }
2073     *ContIt++ = *ValIt++;
2074   }
2075 }
2076 
2077 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2078 /// the range R.
2079 template<typename Container, typename Range = std::initializer_list<
2080                                  typename Container::value_type>>
2081 void replace(Container &Cont, typename Container::iterator ContIt,
2082              typename Container::iterator ContEnd, Range R) {
2083   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2084 }
2085 
2086 /// An STL-style algorithm similar to std::for_each that applies a second
2087 /// functor between every pair of elements.
2088 ///
2089 /// This provides the control flow logic to, for example, print a
2090 /// comma-separated list:
2091 /// \code
2092 ///   interleave(names.begin(), names.end(),
2093 ///              [&](StringRef name) { os << name; },
2094 ///              [&] { os << ", "; });
2095 /// \endcode
2096 template <typename ForwardIterator, typename UnaryFunctor,
2097           typename NullaryFunctor,
2098           typename = std::enable_if_t<
2099               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2100               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2101 inline void interleave(ForwardIterator begin, ForwardIterator end,
2102                        UnaryFunctor each_fn, NullaryFunctor between_fn) {
2103   if (begin == end)
2104     return;
2105   each_fn(*begin);
2106   ++begin;
2107   for (; begin != end; ++begin) {
2108     between_fn();
2109     each_fn(*begin);
2110   }
2111 }
2112 
2113 template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2114           typename = std::enable_if_t<
2115               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2116               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2117 inline void interleave(const Container &c, UnaryFunctor each_fn,
2118                        NullaryFunctor between_fn) {
2119   interleave(c.begin(), c.end(), each_fn, between_fn);
2120 }
2121 
2122 /// Overload of interleave for the common case of string separator.
2123 template <typename Container, typename UnaryFunctor, typename StreamT,
2124           typename T = detail::ValueOfRange<Container>>
2125 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2126                        const StringRef &separator) {
2127   interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
2128 }
2129 template <typename Container, typename StreamT,
2130           typename T = detail::ValueOfRange<Container>>
2131 inline void interleave(const Container &c, StreamT &os,
2132                        const StringRef &separator) {
2133   interleave(
2134       c, os, [&](const T &a) { os << a; }, separator);
2135 }
2136 
2137 template <typename Container, typename UnaryFunctor, typename StreamT,
2138           typename T = detail::ValueOfRange<Container>>
2139 inline void interleaveComma(const Container &c, StreamT &os,
2140                             UnaryFunctor each_fn) {
2141   interleave(c, os, each_fn, ", ");
2142 }
2143 template <typename Container, typename StreamT,
2144           typename T = detail::ValueOfRange<Container>>
2145 inline void interleaveComma(const Container &c, StreamT &os) {
2146   interleaveComma(c, os, [&](const T &a) { os << a; });
2147 }
2148 
2149 //===----------------------------------------------------------------------===//
2150 //     Extra additions to <memory>
2151 //===----------------------------------------------------------------------===//
2152 
2153 struct FreeDeleter {
2154   void operator()(void* v) {
2155     ::free(v);
2156   }
2157 };
2158 
2159 template<typename First, typename Second>
2160 struct pair_hash {
2161   size_t operator()(const std::pair<First, Second> &P) const {
2162     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2163   }
2164 };
2165 
2166 /// Binary functor that adapts to any other binary functor after dereferencing
2167 /// operands.
2168 template <typename T> struct deref {
2169   T func;
2170 
2171   // Could be further improved to cope with non-derivable functors and
2172   // non-binary functors (should be a variadic template member function
2173   // operator()).
2174   template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2175     assert(lhs);
2176     assert(rhs);
2177     return func(*lhs, *rhs);
2178   }
2179 };
2180 
2181 namespace detail {
2182 
2183 /// Tuple-like type for `zip_enumerator` dereference.
2184 template <typename... Refs> struct enumerator_result;
2185 
2186 template <typename... Iters>
2187 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;
2188 
2189 /// Zippy iterator that uses the second iterator for comparisons. For the
2190 /// increment to be safe, the second range has to be the shortest.
2191 /// Returns `enumerator_result` on dereference to provide `.index()` and
2192 /// `.value()` member functions.
2193 /// Note: Because the dereference operator returns `enumerator_result` as a
2194 /// value instead of a reference and does not strictly conform to the C++17's
2195 /// definition of forward iterator. However, it satisfies all the
2196 /// forward_iterator requirements that the `zip_common` and `zippy` depend on
2197 /// and fully conforms to the C++20 definition of forward iterator.
2198 /// This is similar to `std::vector<bool>::iterator` that returns bit reference
2199 /// wrappers on dereference.
2200 template <typename... Iters>
2201 struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
2202                                    EnumeratorTupleType<Iters...>, Iters...> {
2203   static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
2204   using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
2205                    Iters...>::zip_common;
2206 
2207   bool operator==(const zip_enumerator &Other) const {
2208     return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
2209   }
2210 };
2211 
2212 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
2213   static constexpr std::size_t NumRefs = sizeof...(Refs);
2214   static_assert(NumRefs != 0);
2215   // `NumValues` includes the index.
2216   static constexpr std::size_t NumValues = NumRefs + 1;
2217 
2218   // Tuple type whose element types are references for each `Ref`.
2219   using range_reference_tuple = std::tuple<Refs...>;
2220   // Tuple type who elements are references to all values, including both
2221   // the index and `Refs` reference types.
2222   using value_reference_tuple = std::tuple<std::size_t, Refs...>;
2223 
2224   enumerator_result(std::size_t Index, Refs &&...Rs)
2225       : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}
2226 
2227   /// Returns the 0-based index of the current position within the original
2228   /// input range(s).
2229   std::size_t index() const { return Idx; }
2230 
2231   /// Returns the value(s) for the current iterator. This does not include the
2232   /// index.
2233   decltype(auto) value() const {
2234     if constexpr (NumRefs == 1)
2235       return std::get<0>(Storage);
2236     else
2237       return Storage;
2238   }
2239 
2240   /// Returns the value at index `I`. This case covers the index.
2241   template <std::size_t I, typename = std::enable_if_t<I == 0>>
2242   friend std::size_t get(const enumerator_result &Result) {
2243     return Result.Idx;
2244   }
2245 
2246   /// Returns the value at index `I`. This case covers references to the
2247   /// iteratees.
2248   template <std::size_t I, typename = std::enable_if_t<I != 0>>
2249   friend decltype(auto) get(const enumerator_result &Result) {
2250     // Note: This is a separate function from the other `get`, instead of an
2251     // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
2252     // (Visual Studio 2022 17.1) return type deduction bug.
2253     return std::get<I - 1>(Result.Storage);
2254   }
2255 
2256   template <typename... Ts>
2257   friend bool operator==(const enumerator_result &Result,
2258                          const std::tuple<std::size_t, Ts...> &Other) {
2259     static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
2260     if (Result.Idx != std::get<0>(Other))
2261       return false;
2262     return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
2263   }
2264 
2265 private:
2266   template <typename Tuple, std::size_t... Idx>
2267   bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
2268     return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
2269   }
2270 
2271   std::size_t Idx;
2272   // Make this tuple mutable to avoid casts that obfuscate const-correctness
2273   // issues. Const-correctness of references is taken care of by `zippy` that
2274   // defines const-non and const iterator types that will propagate down to
2275   // `enumerator_result`'s `Refs`.
2276   //  Note that unlike the results of `zip*` functions, `enumerate`'s result are
2277   //  supposed to be modifiable even when defined as
2278   // `const`.
2279   mutable range_reference_tuple Storage;
2280 };
2281 
2282 struct index_iterator
2283     : llvm::iterator_facade_base<index_iterator,
2284                                  std::random_access_iterator_tag, std::size_t> {
2285   index_iterator(std::size_t Index) : Index(Index) {}
2286 
2287   index_iterator &operator+=(std::ptrdiff_t N) {
2288     Index += N;
2289     return *this;
2290   }
2291 
2292   index_iterator &operator-=(std::ptrdiff_t N) {
2293     Index -= N;
2294     return *this;
2295   }
2296 
2297   std::ptrdiff_t operator-(const index_iterator &R) const {
2298     return Index - R.Index;
2299   }
2300 
2301   // Note: This dereference operator returns a value instead of a reference
2302   // and does not strictly conform to the C++17's definition of forward
2303   // iterator. However, it satisfies all the forward_iterator requirements
2304   // that the `zip_common` depends on and fully conforms to the C++20
2305   // definition of forward iterator.
2306   std::size_t operator*() const { return Index; }
2307 
2308   friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) {
2309     return Lhs.Index == Rhs.Index;
2310   }
2311 
2312   friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) {
2313     return Lhs.Index < Rhs.Index;
2314   }
2315 
2316 private:
2317   std::size_t Index;
2318 };
2319 
2320 /// Infinite stream of increasing 0-based `size_t` indices.
2321 struct index_stream {
2322   index_iterator begin() const { return {0}; }
2323   index_iterator end() const {
2324     // We approximate 'infinity' with the max size_t value, which should be good
2325     // enough to index over any container.
2326     return index_iterator{std::numeric_limits<std::size_t>::max()};
2327   }
2328 };
2329 
2330 } // end namespace detail
2331 
2332 /// Increasing range of `size_t` indices.
2333 class index_range {
2334   std::size_t Begin;
2335   std::size_t End;
2336 
2337 public:
2338   index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {}
2339   detail::index_iterator begin() const { return {Begin}; }
2340   detail::index_iterator end() const { return {End}; }
2341 };
2342 
2343 /// Given two or more input ranges, returns a new range whose values are are
2344 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
2345 /// sequence, and B, C, ..., are the values from the original input ranges. All
2346 /// input ranges are required to have equal lengths. Note that the returned
2347 /// iterator allows for the values (B, C, ...) to be modified.  Example:
2348 ///
2349 /// ```c++
2350 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
2351 /// std::vector<int> Vals = {10, 11, 12, 13};
2352 ///
2353 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
2354 ///   printf("Item %zu - %c: %d\n", Index, Letter, Value);
2355 ///   Value -= 10;
2356 /// }
2357 /// ```
2358 ///
2359 /// Output:
2360 ///   Item 0 - A: 10
2361 ///   Item 1 - B: 11
2362 ///   Item 2 - C: 12
2363 ///   Item 3 - D: 13
2364 ///
2365 /// or using an iterator:
2366 /// ```c++
2367 /// for (auto it : enumerate(Vals)) {
2368 ///   it.value() += 10;
2369 ///   printf("Item %zu: %d\n", it.index(), it.value());
2370 /// }
2371 /// ```
2372 ///
2373 /// Output:
2374 ///   Item 0: 20
2375 ///   Item 1: 21
2376 ///   Item 2: 22
2377 ///   Item 3: 23
2378 ///
2379 template <typename FirstRange, typename... RestRanges>
2380 auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
2381   if constexpr (sizeof...(Rest) != 0) {
2382 #ifndef NDEBUG
2383     // Note: Create an array instead of an initializer list to work around an
2384     // Apple clang 14 compiler bug.
2385     size_t sizes[] = {range_size(First), range_size(Rest)...};
2386     assert(all_equal(sizes) && "Ranges have different length");
2387 #endif
2388   }
2389   using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
2390                                    FirstRange, RestRanges...>;
2391   return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
2392                     std::forward<RestRanges>(Rest)...);
2393 }
2394 
2395 namespace detail {
2396 
2397 template <typename Predicate, typename... Args>
2398 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2399   auto z = zip(args...);
2400   auto it = z.begin();
2401   auto end = z.end();
2402   while (it != end) {
2403     if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2404       return false;
2405     ++it;
2406   }
2407   return it.all_equals(end);
2408 }
2409 
2410 // Just an adaptor to switch the order of argument and have the predicate before
2411 // the zipped inputs.
2412 template <typename... ArgsThenPredicate, size_t... InputIndexes>
2413 bool all_of_zip_predicate_last(
2414     std::tuple<ArgsThenPredicate...> argsThenPredicate,
2415     std::index_sequence<InputIndexes...>) {
2416   auto constexpr OutputIndex =
2417       std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2418   return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2419                              std::get<InputIndexes>(argsThenPredicate)...);
2420 }
2421 
2422 } // end namespace detail
2423 
2424 /// Compare two zipped ranges using the provided predicate (as last argument).
2425 /// Return true if all elements satisfy the predicate and false otherwise.
2426 //  Return false if the zipped iterator aren't all at end (size mismatch).
2427 template <typename... ArgsAndPredicate>
2428 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2429   return detail::all_of_zip_predicate_last(
2430       std::forward_as_tuple(argsAndPredicate...),
2431       std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2432 }
2433 
2434 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2435 /// time. Not meant for use with random-access iterators.
2436 /// Can optionally take a predicate to filter lazily some items.
2437 template <typename IterTy,
2438           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2439 bool hasNItems(
2440     IterTy &&Begin, IterTy &&End, unsigned N,
2441     Pred &&ShouldBeCounted =
2442         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2443     std::enable_if_t<
2444         !std::is_base_of<std::random_access_iterator_tag,
2445                          typename std::iterator_traits<std::remove_reference_t<
2446                              decltype(Begin)>>::iterator_category>::value,
2447         void> * = nullptr) {
2448   for (; N; ++Begin) {
2449     if (Begin == End)
2450       return false; // Too few.
2451     N -= ShouldBeCounted(*Begin);
2452   }
2453   for (; Begin != End; ++Begin)
2454     if (ShouldBeCounted(*Begin))
2455       return false; // Too many.
2456   return true;
2457 }
2458 
2459 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2460 /// time. Not meant for use with random-access iterators.
2461 /// Can optionally take a predicate to lazily filter some items.
2462 template <typename IterTy,
2463           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2464 bool hasNItemsOrMore(
2465     IterTy &&Begin, IterTy &&End, unsigned N,
2466     Pred &&ShouldBeCounted =
2467         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2468     std::enable_if_t<
2469         !std::is_base_of<std::random_access_iterator_tag,
2470                          typename std::iterator_traits<std::remove_reference_t<
2471                              decltype(Begin)>>::iterator_category>::value,
2472         void> * = nullptr) {
2473   for (; N; ++Begin) {
2474     if (Begin == End)
2475       return false; // Too few.
2476     N -= ShouldBeCounted(*Begin);
2477   }
2478   return true;
2479 }
2480 
2481 /// Returns true if the sequence [Begin, End) has N or less items. Can
2482 /// optionally take a predicate to lazily filter some items.
2483 template <typename IterTy,
2484           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2485 bool hasNItemsOrLess(
2486     IterTy &&Begin, IterTy &&End, unsigned N,
2487     Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2488       return true;
2489     }) {
2490   assert(N != std::numeric_limits<unsigned>::max());
2491   return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2492 }
2493 
2494 /// Returns true if the given container has exactly N items
2495 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2496   return hasNItems(std::begin(C), std::end(C), N);
2497 }
2498 
2499 /// Returns true if the given container has N or more items
2500 template <typename ContainerTy>
2501 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2502   return hasNItemsOrMore(std::begin(C), std::end(C), N);
2503 }
2504 
2505 /// Returns true if the given container has N or less items
2506 template <typename ContainerTy>
2507 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2508   return hasNItemsOrLess(std::begin(C), std::end(C), N);
2509 }
2510 
2511 /// Returns a raw pointer that represents the same address as the argument.
2512 ///
2513 /// This implementation can be removed once we move to C++20 where it's defined
2514 /// as std::to_address().
2515 ///
2516 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
2517 /// not been implemented.
2518 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2519 template <class T> constexpr T *to_address(T *P) { return P; }
2520 
2521 // Detect incomplete types, relying on the fact that their size is unknown.
2522 namespace detail {
2523 template <typename T> using has_sizeof = decltype(sizeof(T));
2524 } // namespace detail
2525 
2526 /// Detects when type `T` is incomplete. This is true for forward declarations
2527 /// and false for types with a full definition.
2528 template <typename T>
2529 constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value;
2530 
2531 } // end namespace llvm
2532 
2533 namespace std {
2534 template <typename... Refs>
2535 struct tuple_size<llvm::detail::enumerator_result<Refs...>>
2536     : std::integral_constant<std::size_t, sizeof...(Refs)> {};
2537 
2538 template <std::size_t I, typename... Refs>
2539 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
2540     : std::tuple_element<I, std::tuple<Refs...>> {};
2541 
2542 template <std::size_t I, typename... Refs>
2543 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
2544     : std::tuple_element<I, std::tuple<Refs...>> {};
2545 
2546 } // namespace std
2547 
2548 #endif // LLVM_ADT_STLEXTRAS_H
2549