xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some templates that are useful if you are working with the
10 // STL at all.
11 //
12 // No library is required when using these functions.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
18 
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLForwardCompat.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Config/abi-breaking.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <functional>
31 #include <initializer_list>
32 #include <iterator>
33 #include <limits>
34 #include <memory>
35 #include <tuple>
36 #include <type_traits>
37 #include <utility>
38 
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
41 #endif
42 
43 namespace llvm {
44 
45 // Only used by compiler if both template types are the same.  Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T, T> struct SameType;
48 
49 namespace detail {
50 
51 template <typename RangeT>
52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53 
54 template <typename RangeT>
55 using ValueOfRange = typename std::remove_reference<decltype(
56     *std::begin(std::declval<RangeT &>()))>::type;
57 
58 } // end namespace detail
59 
60 //===----------------------------------------------------------------------===//
61 //     Extra additions to <type_traits>
62 //===----------------------------------------------------------------------===//
63 
64 template <typename T> struct make_const_ptr {
65   using type =
66       typename std::add_pointer<typename std::add_const<T>::type>::type;
67 };
68 
69 template <typename T> struct make_const_ref {
70   using type = typename std::add_lvalue_reference<
71       typename std::add_const<T>::type>::type;
72 };
73 
74 namespace detail {
75 template <typename...> using void_t = void;
76 template <class, template <class...> class Op, class... Args> struct detector {
77   using value_t = std::false_type;
78 };
79 template <template <class...> class Op, class... Args>
80 struct detector<void_t<Op<Args...>>, Op, Args...> {
81   using value_t = std::true_type;
82 };
83 } // end namespace detail
84 
85 /// Detects if a given trait holds for some set of arguments 'Args'.
86 /// For example, the given trait could be used to detect if a given type
87 /// has a copy assignment operator:
88 ///   template<class T>
89 ///   using has_copy_assign_t = decltype(std::declval<T&>()
90 ///                                                 = std::declval<const T&>());
91 ///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
92 template <template <class...> class Op, class... Args>
93 using is_detected = typename detail::detector<void, Op, Args...>::value_t;
94 
95 namespace detail {
96 template <typename Callable, typename... Args>
97 using is_invocable =
98     decltype(std::declval<Callable &>()(std::declval<Args>()...));
99 } // namespace detail
100 
101 /// Check if a Callable type can be invoked with the given set of arg types.
102 template <typename Callable, typename... Args>
103 using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
104 
105 /// This class provides various trait information about a callable object.
106 ///   * To access the number of arguments: Traits::num_args
107 ///   * To access the type of an argument: Traits::arg_t<Index>
108 ///   * To access the type of the result:  Traits::result_t
109 template <typename T, bool isClass = std::is_class<T>::value>
110 struct function_traits : public function_traits<decltype(&T::operator())> {};
111 
112 /// Overload for class function types.
113 template <typename ClassType, typename ReturnType, typename... Args>
114 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
115   /// The number of arguments to this function.
116   enum { num_args = sizeof...(Args) };
117 
118   /// The result type of this function.
119   using result_t = ReturnType;
120 
121   /// The type of an argument to this function.
122   template <size_t Index>
123   using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
124 };
125 /// Overload for class function types.
126 template <typename ClassType, typename ReturnType, typename... Args>
127 struct function_traits<ReturnType (ClassType::*)(Args...), false>
128     : function_traits<ReturnType (ClassType::*)(Args...) const> {};
129 /// Overload for non-class function types.
130 template <typename ReturnType, typename... Args>
131 struct function_traits<ReturnType (*)(Args...), false> {
132   /// The number of arguments to this function.
133   enum { num_args = sizeof...(Args) };
134 
135   /// The result type of this function.
136   using result_t = ReturnType;
137 
138   /// The type of an argument to this function.
139   template <size_t i>
140   using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
141 };
142 /// Overload for non-class function type references.
143 template <typename ReturnType, typename... Args>
144 struct function_traits<ReturnType (&)(Args...), false>
145     : public function_traits<ReturnType (*)(Args...)> {};
146 
147 //===----------------------------------------------------------------------===//
148 //     Extra additions to <functional>
149 //===----------------------------------------------------------------------===//
150 
151 template <class Ty> struct identity {
152   using argument_type = Ty;
153 
154   Ty &operator()(Ty &self) const {
155     return self;
156   }
157   const Ty &operator()(const Ty &self) const {
158     return self;
159   }
160 };
161 
162 /// An efficient, type-erasing, non-owning reference to a callable. This is
163 /// intended for use as the type of a function parameter that is not used
164 /// after the function in question returns.
165 ///
166 /// This class does not own the callable, so it is not in general safe to store
167 /// a function_ref.
168 template<typename Fn> class function_ref;
169 
170 template<typename Ret, typename ...Params>
171 class function_ref<Ret(Params...)> {
172   Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
173   intptr_t callable;
174 
175   template<typename Callable>
176   static Ret callback_fn(intptr_t callable, Params ...params) {
177     return (*reinterpret_cast<Callable*>(callable))(
178         std::forward<Params>(params)...);
179   }
180 
181 public:
182   function_ref() = default;
183   function_ref(std::nullptr_t) {}
184 
185   template <typename Callable>
186   function_ref(
187       Callable &&callable,
188       // This is not the copy-constructor.
189       std::enable_if_t<!std::is_same<remove_cvref_t<Callable>,
190                                      function_ref>::value> * = nullptr,
191       // Functor must be callable and return a suitable type.
192       std::enable_if_t<std::is_void<Ret>::value ||
193                        std::is_convertible<decltype(std::declval<Callable>()(
194                                                std::declval<Params>()...)),
195                                            Ret>::value> * = nullptr)
196       : callback(callback_fn<typename std::remove_reference<Callable>::type>),
197         callable(reinterpret_cast<intptr_t>(&callable)) {}
198 
199   Ret operator()(Params ...params) const {
200     return callback(callable, std::forward<Params>(params)...);
201   }
202 
203   explicit operator bool() const { return callback; }
204 };
205 
206 //===----------------------------------------------------------------------===//
207 //     Extra additions to <iterator>
208 //===----------------------------------------------------------------------===//
209 
210 namespace adl_detail {
211 
212 using std::begin;
213 
214 template <typename ContainerTy>
215 decltype(auto) adl_begin(ContainerTy &&container) {
216   return begin(std::forward<ContainerTy>(container));
217 }
218 
219 using std::end;
220 
221 template <typename ContainerTy>
222 decltype(auto) adl_end(ContainerTy &&container) {
223   return end(std::forward<ContainerTy>(container));
224 }
225 
226 using std::swap;
227 
228 template <typename T>
229 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
230                                                        std::declval<T>()))) {
231   swap(std::forward<T>(lhs), std::forward<T>(rhs));
232 }
233 
234 } // end namespace adl_detail
235 
236 template <typename ContainerTy>
237 decltype(auto) adl_begin(ContainerTy &&container) {
238   return adl_detail::adl_begin(std::forward<ContainerTy>(container));
239 }
240 
241 template <typename ContainerTy>
242 decltype(auto) adl_end(ContainerTy &&container) {
243   return adl_detail::adl_end(std::forward<ContainerTy>(container));
244 }
245 
246 template <typename T>
247 void adl_swap(T &&lhs, T &&rhs) noexcept(
248     noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
249   adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
250 }
251 
252 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
253 template <typename T>
254 constexpr bool empty(const T &RangeOrContainer) {
255   return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
256 }
257 
258 /// Returns true if the given container only contains a single element.
259 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
260   auto B = std::begin(C), E = std::end(C);
261   return B != E && std::next(B) == E;
262 }
263 
264 /// Return a range covering \p RangeOrContainer with the first N elements
265 /// excluded.
266 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
267   return make_range(std::next(adl_begin(RangeOrContainer), N),
268                     adl_end(RangeOrContainer));
269 }
270 
271 // mapped_iterator - This is a simple iterator adapter that causes a function to
272 // be applied whenever operator* is invoked on the iterator.
273 
274 template <typename ItTy, typename FuncTy,
275           typename ReferenceTy =
276               decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
277 class mapped_iterator
278     : public iterator_adaptor_base<
279           mapped_iterator<ItTy, FuncTy>, ItTy,
280           typename std::iterator_traits<ItTy>::iterator_category,
281           std::remove_reference_t<ReferenceTy>,
282           typename std::iterator_traits<ItTy>::difference_type,
283           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
284 public:
285   mapped_iterator(ItTy U, FuncTy F)
286     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
287 
288   ItTy getCurrent() { return this->I; }
289 
290   const FuncTy &getFunction() const { return F; }
291 
292   ReferenceTy operator*() const { return F(*this->I); }
293 
294 private:
295   FuncTy F;
296 };
297 
298 // map_iterator - Provide a convenient way to create mapped_iterators, just like
299 // make_pair is useful for creating pairs...
300 template <class ItTy, class FuncTy>
301 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
302   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
303 }
304 
305 template <class ContainerTy, class FuncTy>
306 auto map_range(ContainerTy &&C, FuncTy F) {
307   return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
308 }
309 
310 /// A base type of mapped iterator, that is useful for building derived
311 /// iterators that do not need/want to store the map function (as in
312 /// mapped_iterator). These iterators must simply provide a `mapElement` method
313 /// that defines how to map a value of the iterator to the provided reference
314 /// type.
315 template <typename DerivedT, typename ItTy, typename ReferenceTy>
316 class mapped_iterator_base
317     : public iterator_adaptor_base<
318           DerivedT, ItTy,
319           typename std::iterator_traits<ItTy>::iterator_category,
320           std::remove_reference_t<ReferenceTy>,
321           typename std::iterator_traits<ItTy>::difference_type,
322           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
323 public:
324   using BaseT = mapped_iterator_base;
325 
326   mapped_iterator_base(ItTy U)
327       : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
328 
329   ItTy getCurrent() { return this->I; }
330 
331   ReferenceTy operator*() const {
332     return static_cast<const DerivedT &>(*this).mapElement(*this->I);
333   }
334 };
335 
336 /// Helper to determine if type T has a member called rbegin().
337 template <typename Ty> class has_rbegin_impl {
338   using yes = char[1];
339   using no = char[2];
340 
341   template <typename Inner>
342   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
343 
344   template <typename>
345   static no& test(...);
346 
347 public:
348   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
349 };
350 
351 /// Metafunction to determine if T& or T has a member called rbegin().
352 template <typename Ty>
353 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
354 };
355 
356 // Returns an iterator_range over the given container which iterates in reverse.
357 // Note that the container must have rbegin()/rend() methods for this to work.
358 template <typename ContainerTy>
359 auto reverse(ContainerTy &&C,
360              std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
361   return make_range(C.rbegin(), C.rend());
362 }
363 
364 // Returns a std::reverse_iterator wrapped around the given iterator.
365 template <typename IteratorTy>
366 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
367   return std::reverse_iterator<IteratorTy>(It);
368 }
369 
370 // Returns an iterator_range over the given container which iterates in reverse.
371 // Note that the container must have begin()/end() methods which return
372 // bidirectional iterators for this to work.
373 template <typename ContainerTy>
374 auto reverse(ContainerTy &&C,
375              std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
376   return make_range(llvm::make_reverse_iterator(std::end(C)),
377                     llvm::make_reverse_iterator(std::begin(C)));
378 }
379 
380 /// An iterator adaptor that filters the elements of given inner iterators.
381 ///
382 /// The predicate parameter should be a callable object that accepts the wrapped
383 /// iterator's reference type and returns a bool. When incrementing or
384 /// decrementing the iterator, it will call the predicate on each element and
385 /// skip any where it returns false.
386 ///
387 /// \code
388 ///   int A[] = { 1, 2, 3, 4 };
389 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
390 ///   // R contains { 1, 3 }.
391 /// \endcode
392 ///
393 /// Note: filter_iterator_base implements support for forward iteration.
394 /// filter_iterator_impl exists to provide support for bidirectional iteration,
395 /// conditional on whether the wrapped iterator supports it.
396 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
397 class filter_iterator_base
398     : public iterator_adaptor_base<
399           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
400           WrappedIteratorT,
401           typename std::common_type<
402               IterTag, typename std::iterator_traits<
403                            WrappedIteratorT>::iterator_category>::type> {
404   using BaseT = typename filter_iterator_base::iterator_adaptor_base;
405 
406 protected:
407   WrappedIteratorT End;
408   PredicateT Pred;
409 
410   void findNextValid() {
411     while (this->I != End && !Pred(*this->I))
412       BaseT::operator++();
413   }
414 
415   // Construct the iterator. The begin iterator needs to know where the end
416   // is, so that it can properly stop when it gets there. The end iterator only
417   // needs the predicate to support bidirectional iteration.
418   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
419                        PredicateT Pred)
420       : BaseT(Begin), End(End), Pred(Pred) {
421     findNextValid();
422   }
423 
424 public:
425   using BaseT::operator++;
426 
427   filter_iterator_base &operator++() {
428     BaseT::operator++();
429     findNextValid();
430     return *this;
431   }
432 };
433 
434 /// Specialization of filter_iterator_base for forward iteration only.
435 template <typename WrappedIteratorT, typename PredicateT,
436           typename IterTag = std::forward_iterator_tag>
437 class filter_iterator_impl
438     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
439 public:
440   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
441                        PredicateT Pred)
442       : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
443 };
444 
445 /// Specialization of filter_iterator_base for bidirectional iteration.
446 template <typename WrappedIteratorT, typename PredicateT>
447 class filter_iterator_impl<WrappedIteratorT, PredicateT,
448                            std::bidirectional_iterator_tag>
449     : public filter_iterator_base<WrappedIteratorT, PredicateT,
450                                   std::bidirectional_iterator_tag> {
451   using BaseT = typename filter_iterator_impl::filter_iterator_base;
452 
453   void findPrevValid() {
454     while (!this->Pred(*this->I))
455       BaseT::operator--();
456   }
457 
458 public:
459   using BaseT::operator--;
460 
461   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
462                        PredicateT Pred)
463       : BaseT(Begin, End, Pred) {}
464 
465   filter_iterator_impl &operator--() {
466     BaseT::operator--();
467     findPrevValid();
468     return *this;
469   }
470 };
471 
472 namespace detail {
473 
474 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
475   using type = std::forward_iterator_tag;
476 };
477 
478 template <> struct fwd_or_bidi_tag_impl<true> {
479   using type = std::bidirectional_iterator_tag;
480 };
481 
482 /// Helper which sets its type member to forward_iterator_tag if the category
483 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
484 /// bidirectional_iterator_tag otherwise.
485 template <typename IterT> struct fwd_or_bidi_tag {
486   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
487       std::bidirectional_iterator_tag,
488       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
489 };
490 
491 } // namespace detail
492 
493 /// Defines filter_iterator to a suitable specialization of
494 /// filter_iterator_impl, based on the underlying iterator's category.
495 template <typename WrappedIteratorT, typename PredicateT>
496 using filter_iterator = filter_iterator_impl<
497     WrappedIteratorT, PredicateT,
498     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
499 
500 /// Convenience function that takes a range of elements and a predicate,
501 /// and return a new filter_iterator range.
502 ///
503 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
504 /// lifetime of that temporary is not kept by the returned range object, and the
505 /// temporary is going to be dropped on the floor after the make_iterator_range
506 /// full expression that contains this function call.
507 template <typename RangeT, typename PredicateT>
508 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
509 make_filter_range(RangeT &&Range, PredicateT Pred) {
510   using FilterIteratorT =
511       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
512   return make_range(
513       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
514                       std::end(std::forward<RangeT>(Range)), Pred),
515       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
516                       std::end(std::forward<RangeT>(Range)), Pred));
517 }
518 
519 /// A pseudo-iterator adaptor that is designed to implement "early increment"
520 /// style loops.
521 ///
522 /// This is *not a normal iterator* and should almost never be used directly. It
523 /// is intended primarily to be used with range based for loops and some range
524 /// algorithms.
525 ///
526 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
527 /// somewhere between them. The constraints of these iterators are:
528 ///
529 /// - On construction or after being incremented, it is comparable and
530 ///   dereferencable. It is *not* incrementable.
531 /// - After being dereferenced, it is neither comparable nor dereferencable, it
532 ///   is only incrementable.
533 ///
534 /// This means you can only dereference the iterator once, and you can only
535 /// increment it once between dereferences.
536 template <typename WrappedIteratorT>
537 class early_inc_iterator_impl
538     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
539                                    WrappedIteratorT, std::input_iterator_tag> {
540   using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
541 
542   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
543 
544 protected:
545 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
546   bool IsEarlyIncremented = false;
547 #endif
548 
549 public:
550   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
551 
552   using BaseT::operator*;
553   decltype(*std::declval<WrappedIteratorT>()) operator*() {
554 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
555     assert(!IsEarlyIncremented && "Cannot dereference twice!");
556     IsEarlyIncremented = true;
557 #endif
558     return *(this->I)++;
559   }
560 
561   using BaseT::operator++;
562   early_inc_iterator_impl &operator++() {
563 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
564     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
565     IsEarlyIncremented = false;
566 #endif
567     return *this;
568   }
569 
570   friend bool operator==(const early_inc_iterator_impl &LHS,
571                          const early_inc_iterator_impl &RHS) {
572 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
573     assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
574 #endif
575     return (const BaseT &)LHS == (const BaseT &)RHS;
576   }
577 };
578 
579 /// Make a range that does early increment to allow mutation of the underlying
580 /// range without disrupting iteration.
581 ///
582 /// The underlying iterator will be incremented immediately after it is
583 /// dereferenced, allowing deletion of the current node or insertion of nodes to
584 /// not disrupt iteration provided they do not invalidate the *next* iterator --
585 /// the current iterator can be invalidated.
586 ///
587 /// This requires a very exact pattern of use that is only really suitable to
588 /// range based for loops and other range algorithms that explicitly guarantee
589 /// to dereference exactly once each element, and to increment exactly once each
590 /// element.
591 template <typename RangeT>
592 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
593 make_early_inc_range(RangeT &&Range) {
594   using EarlyIncIteratorT =
595       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
596   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
597                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
598 }
599 
600 // forward declarations required by zip_shortest/zip_first/zip_longest
601 template <typename R, typename UnaryPredicate>
602 bool all_of(R &&range, UnaryPredicate P);
603 template <typename R, typename UnaryPredicate>
604 bool any_of(R &&range, UnaryPredicate P);
605 
606 namespace detail {
607 
608 using std::declval;
609 
610 // We have to alias this since inlining the actual type at the usage site
611 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
612 template<typename... Iters> struct ZipTupleType {
613   using type = std::tuple<decltype(*declval<Iters>())...>;
614 };
615 
616 template <typename ZipType, typename... Iters>
617 using zip_traits = iterator_facade_base<
618     ZipType, typename std::common_type<std::bidirectional_iterator_tag,
619                                        typename std::iterator_traits<
620                                            Iters>::iterator_category...>::type,
621     // ^ TODO: Implement random access methods.
622     typename ZipTupleType<Iters...>::type,
623     typename std::iterator_traits<typename std::tuple_element<
624         0, std::tuple<Iters...>>::type>::difference_type,
625     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
626     // inner iterators have the same difference_type. It would fail if, for
627     // instance, the second field's difference_type were non-numeric while the
628     // first is.
629     typename ZipTupleType<Iters...>::type *,
630     typename ZipTupleType<Iters...>::type>;
631 
632 template <typename ZipType, typename... Iters>
633 struct zip_common : public zip_traits<ZipType, Iters...> {
634   using Base = zip_traits<ZipType, Iters...>;
635   using value_type = typename Base::value_type;
636 
637   std::tuple<Iters...> iterators;
638 
639 protected:
640   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
641     return value_type(*std::get<Ns>(iterators)...);
642   }
643 
644   template <size_t... Ns>
645   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
646     return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
647   }
648 
649   template <size_t... Ns>
650   decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
651     return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
652   }
653 
654   template <size_t... Ns>
655   bool test_all_equals(const zip_common &other,
656             std::index_sequence<Ns...>) const {
657     return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) ==
658                                               std::get<Ns>(other.iterators)...},
659                   identity<bool>{});
660   }
661 
662 public:
663   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
664 
665   value_type operator*() const {
666     return deref(std::index_sequence_for<Iters...>{});
667   }
668 
669   ZipType &operator++() {
670     iterators = tup_inc(std::index_sequence_for<Iters...>{});
671     return *reinterpret_cast<ZipType *>(this);
672   }
673 
674   ZipType &operator--() {
675     static_assert(Base::IsBidirectional,
676                   "All inner iterators must be at least bidirectional.");
677     iterators = tup_dec(std::index_sequence_for<Iters...>{});
678     return *reinterpret_cast<ZipType *>(this);
679   }
680 
681   /// Return true if all the iterator are matching `other`'s iterators.
682   bool all_equals(zip_common &other) {
683     return test_all_equals(other, std::index_sequence_for<Iters...>{});
684   }
685 };
686 
687 template <typename... Iters>
688 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
689   using Base = zip_common<zip_first<Iters...>, Iters...>;
690 
691   bool operator==(const zip_first<Iters...> &other) const {
692     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
693   }
694 
695   zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
696 };
697 
698 template <typename... Iters>
699 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
700   template <size_t... Ns>
701   bool test(const zip_shortest<Iters...> &other,
702             std::index_sequence<Ns...>) const {
703     return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
704                                               std::get<Ns>(other.iterators)...},
705                   identity<bool>{});
706   }
707 
708 public:
709   using Base = zip_common<zip_shortest<Iters...>, Iters...>;
710 
711   zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
712 
713   bool operator==(const zip_shortest<Iters...> &other) const {
714     return !test(other, std::index_sequence_for<Iters...>{});
715   }
716 };
717 
718 template <template <typename...> class ItType, typename... Args> class zippy {
719 public:
720   using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
721   using iterator_category = typename iterator::iterator_category;
722   using value_type = typename iterator::value_type;
723   using difference_type = typename iterator::difference_type;
724   using pointer = typename iterator::pointer;
725   using reference = typename iterator::reference;
726 
727 private:
728   std::tuple<Args...> ts;
729 
730   template <size_t... Ns>
731   iterator begin_impl(std::index_sequence<Ns...>) const {
732     return iterator(std::begin(std::get<Ns>(ts))...);
733   }
734   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
735     return iterator(std::end(std::get<Ns>(ts))...);
736   }
737 
738 public:
739   zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
740 
741   iterator begin() const {
742     return begin_impl(std::index_sequence_for<Args...>{});
743   }
744   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
745 };
746 
747 } // end namespace detail
748 
749 /// zip iterator for two or more iteratable types.
750 template <typename T, typename U, typename... Args>
751 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
752                                                        Args &&... args) {
753   return detail::zippy<detail::zip_shortest, T, U, Args...>(
754       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
755 }
756 
757 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
758 /// be the shortest.
759 template <typename T, typename U, typename... Args>
760 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
761                                                           Args &&... args) {
762   return detail::zippy<detail::zip_first, T, U, Args...>(
763       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
764 }
765 
766 namespace detail {
767 template <typename Iter>
768 Iter next_or_end(const Iter &I, const Iter &End) {
769   if (I == End)
770     return End;
771   return std::next(I);
772 }
773 
774 template <typename Iter>
775 auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
776     std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
777   if (I == End)
778     return None;
779   return *I;
780 }
781 
782 template <typename Iter> struct ZipLongestItemType {
783   using type =
784       llvm::Optional<typename std::remove_const<typename std::remove_reference<
785           decltype(*std::declval<Iter>())>::type>::type>;
786 };
787 
788 template <typename... Iters> struct ZipLongestTupleType {
789   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
790 };
791 
792 template <typename... Iters>
793 class zip_longest_iterator
794     : public iterator_facade_base<
795           zip_longest_iterator<Iters...>,
796           typename std::common_type<
797               std::forward_iterator_tag,
798               typename std::iterator_traits<Iters>::iterator_category...>::type,
799           typename ZipLongestTupleType<Iters...>::type,
800           typename std::iterator_traits<typename std::tuple_element<
801               0, std::tuple<Iters...>>::type>::difference_type,
802           typename ZipLongestTupleType<Iters...>::type *,
803           typename ZipLongestTupleType<Iters...>::type> {
804 public:
805   using value_type = typename ZipLongestTupleType<Iters...>::type;
806 
807 private:
808   std::tuple<Iters...> iterators;
809   std::tuple<Iters...> end_iterators;
810 
811   template <size_t... Ns>
812   bool test(const zip_longest_iterator<Iters...> &other,
813             std::index_sequence<Ns...>) const {
814     return llvm::any_of(
815         std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
816                                     std::get<Ns>(other.iterators)...},
817         identity<bool>{});
818   }
819 
820   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
821     return value_type(
822         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
823   }
824 
825   template <size_t... Ns>
826   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
827     return std::tuple<Iters...>(
828         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
829   }
830 
831 public:
832   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
833       : iterators(std::forward<Iters>(ts.first)...),
834         end_iterators(std::forward<Iters>(ts.second)...) {}
835 
836   value_type operator*() const {
837     return deref(std::index_sequence_for<Iters...>{});
838   }
839 
840   zip_longest_iterator<Iters...> &operator++() {
841     iterators = tup_inc(std::index_sequence_for<Iters...>{});
842     return *this;
843   }
844 
845   bool operator==(const zip_longest_iterator<Iters...> &other) const {
846     return !test(other, std::index_sequence_for<Iters...>{});
847   }
848 };
849 
850 template <typename... Args> class zip_longest_range {
851 public:
852   using iterator =
853       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
854   using iterator_category = typename iterator::iterator_category;
855   using value_type = typename iterator::value_type;
856   using difference_type = typename iterator::difference_type;
857   using pointer = typename iterator::pointer;
858   using reference = typename iterator::reference;
859 
860 private:
861   std::tuple<Args...> ts;
862 
863   template <size_t... Ns>
864   iterator begin_impl(std::index_sequence<Ns...>) const {
865     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
866                                    adl_end(std::get<Ns>(ts)))...);
867   }
868 
869   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
870     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
871                                    adl_end(std::get<Ns>(ts)))...);
872   }
873 
874 public:
875   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
876 
877   iterator begin() const {
878     return begin_impl(std::index_sequence_for<Args...>{});
879   }
880   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
881 };
882 } // namespace detail
883 
884 /// Iterate over two or more iterators at the same time. Iteration continues
885 /// until all iterators reach the end. The llvm::Optional only contains a value
886 /// if the iterator has not reached the end.
887 template <typename T, typename U, typename... Args>
888 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
889                                                      Args &&... args) {
890   return detail::zip_longest_range<T, U, Args...>(
891       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
892 }
893 
894 /// Iterator wrapper that concatenates sequences together.
895 ///
896 /// This can concatenate different iterators, even with different types, into
897 /// a single iterator provided the value types of all the concatenated
898 /// iterators expose `reference` and `pointer` types that can be converted to
899 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
900 /// interesting/customized pointer or reference types.
901 ///
902 /// Currently this only supports forward or higher iterator categories as
903 /// inputs and always exposes a forward iterator interface.
904 template <typename ValueT, typename... IterTs>
905 class concat_iterator
906     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
907                                   std::forward_iterator_tag, ValueT> {
908   using BaseT = typename concat_iterator::iterator_facade_base;
909 
910   /// We store both the current and end iterators for each concatenated
911   /// sequence in a tuple of pairs.
912   ///
913   /// Note that something like iterator_range seems nice at first here, but the
914   /// range properties are of little benefit and end up getting in the way
915   /// because we need to do mutation on the current iterators.
916   std::tuple<IterTs...> Begins;
917   std::tuple<IterTs...> Ends;
918 
919   /// Attempts to increment a specific iterator.
920   ///
921   /// Returns true if it was able to increment the iterator. Returns false if
922   /// the iterator is already at the end iterator.
923   template <size_t Index> bool incrementHelper() {
924     auto &Begin = std::get<Index>(Begins);
925     auto &End = std::get<Index>(Ends);
926     if (Begin == End)
927       return false;
928 
929     ++Begin;
930     return true;
931   }
932 
933   /// Increments the first non-end iterator.
934   ///
935   /// It is an error to call this with all iterators at the end.
936   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
937     // Build a sequence of functions to increment each iterator if possible.
938     bool (concat_iterator::*IncrementHelperFns[])() = {
939         &concat_iterator::incrementHelper<Ns>...};
940 
941     // Loop over them, and stop as soon as we succeed at incrementing one.
942     for (auto &IncrementHelperFn : IncrementHelperFns)
943       if ((this->*IncrementHelperFn)())
944         return;
945 
946     llvm_unreachable("Attempted to increment an end concat iterator!");
947   }
948 
949   /// Returns null if the specified iterator is at the end. Otherwise,
950   /// dereferences the iterator and returns the address of the resulting
951   /// reference.
952   template <size_t Index> ValueT *getHelper() const {
953     auto &Begin = std::get<Index>(Begins);
954     auto &End = std::get<Index>(Ends);
955     if (Begin == End)
956       return nullptr;
957 
958     return &*Begin;
959   }
960 
961   /// Finds the first non-end iterator, dereferences, and returns the resulting
962   /// reference.
963   ///
964   /// It is an error to call this with all iterators at the end.
965   template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
966     // Build a sequence of functions to get from iterator if possible.
967     ValueT *(concat_iterator::*GetHelperFns[])() const = {
968         &concat_iterator::getHelper<Ns>...};
969 
970     // Loop over them, and return the first result we find.
971     for (auto &GetHelperFn : GetHelperFns)
972       if (ValueT *P = (this->*GetHelperFn)())
973         return *P;
974 
975     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
976   }
977 
978 public:
979   /// Constructs an iterator from a sequence of ranges.
980   ///
981   /// We need the full range to know how to switch between each of the
982   /// iterators.
983   template <typename... RangeTs>
984   explicit concat_iterator(RangeTs &&... Ranges)
985       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
986 
987   using BaseT::operator++;
988 
989   concat_iterator &operator++() {
990     increment(std::index_sequence_for<IterTs...>());
991     return *this;
992   }
993 
994   ValueT &operator*() const {
995     return get(std::index_sequence_for<IterTs...>());
996   }
997 
998   bool operator==(const concat_iterator &RHS) const {
999     return Begins == RHS.Begins && Ends == RHS.Ends;
1000   }
1001 };
1002 
1003 namespace detail {
1004 
1005 /// Helper to store a sequence of ranges being concatenated and access them.
1006 ///
1007 /// This is designed to facilitate providing actual storage when temporaries
1008 /// are passed into the constructor such that we can use it as part of range
1009 /// based for loops.
1010 template <typename ValueT, typename... RangeTs> class concat_range {
1011 public:
1012   using iterator =
1013       concat_iterator<ValueT,
1014                       decltype(std::begin(std::declval<RangeTs &>()))...>;
1015 
1016 private:
1017   std::tuple<RangeTs...> Ranges;
1018 
1019   template <size_t... Ns>
1020   iterator begin_impl(std::index_sequence<Ns...>) {
1021     return iterator(std::get<Ns>(Ranges)...);
1022   }
1023   template <size_t... Ns>
1024   iterator begin_impl(std::index_sequence<Ns...>) const {
1025     return iterator(std::get<Ns>(Ranges)...);
1026   }
1027   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1028     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1029                                std::end(std::get<Ns>(Ranges)))...);
1030   }
1031   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1032     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1033                                std::end(std::get<Ns>(Ranges)))...);
1034   }
1035 
1036 public:
1037   concat_range(RangeTs &&... Ranges)
1038       : Ranges(std::forward<RangeTs>(Ranges)...) {}
1039 
1040   iterator begin() {
1041     return begin_impl(std::index_sequence_for<RangeTs...>{});
1042   }
1043   iterator begin() const {
1044     return begin_impl(std::index_sequence_for<RangeTs...>{});
1045   }
1046   iterator end() {
1047     return end_impl(std::index_sequence_for<RangeTs...>{});
1048   }
1049   iterator end() const {
1050     return end_impl(std::index_sequence_for<RangeTs...>{});
1051   }
1052 };
1053 
1054 } // end namespace detail
1055 
1056 /// Concatenated range across two or more ranges.
1057 ///
1058 /// The desired value type must be explicitly specified.
1059 template <typename ValueT, typename... RangeTs>
1060 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1061   static_assert(sizeof...(RangeTs) > 1,
1062                 "Need more than one range to concatenate!");
1063   return detail::concat_range<ValueT, RangeTs...>(
1064       std::forward<RangeTs>(Ranges)...);
1065 }
1066 
1067 /// A utility class used to implement an iterator that contains some base object
1068 /// and an index. The iterator moves the index but keeps the base constant.
1069 template <typename DerivedT, typename BaseT, typename T,
1070           typename PointerT = T *, typename ReferenceT = T &>
1071 class indexed_accessor_iterator
1072     : public llvm::iterator_facade_base<DerivedT,
1073                                         std::random_access_iterator_tag, T,
1074                                         std::ptrdiff_t, PointerT, ReferenceT> {
1075 public:
1076   ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1077     assert(base == rhs.base && "incompatible iterators");
1078     return index - rhs.index;
1079   }
1080   bool operator==(const indexed_accessor_iterator &rhs) const {
1081     return base == rhs.base && index == rhs.index;
1082   }
1083   bool operator<(const indexed_accessor_iterator &rhs) const {
1084     assert(base == rhs.base && "incompatible iterators");
1085     return index < rhs.index;
1086   }
1087 
1088   DerivedT &operator+=(ptrdiff_t offset) {
1089     this->index += offset;
1090     return static_cast<DerivedT &>(*this);
1091   }
1092   DerivedT &operator-=(ptrdiff_t offset) {
1093     this->index -= offset;
1094     return static_cast<DerivedT &>(*this);
1095   }
1096 
1097   /// Returns the current index of the iterator.
1098   ptrdiff_t getIndex() const { return index; }
1099 
1100   /// Returns the current base of the iterator.
1101   const BaseT &getBase() const { return base; }
1102 
1103 protected:
1104   indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1105       : base(base), index(index) {}
1106   BaseT base;
1107   ptrdiff_t index;
1108 };
1109 
1110 namespace detail {
1111 /// The class represents the base of a range of indexed_accessor_iterators. It
1112 /// provides support for many different range functionalities, e.g.
1113 /// drop_front/slice/etc.. Derived range classes must implement the following
1114 /// static methods:
1115 ///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1116 ///     - Dereference an iterator pointing to the base object at the given
1117 ///       index.
1118 ///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1119 ///     - Return a new base that is offset from the provide base by 'index'
1120 ///       elements.
1121 template <typename DerivedT, typename BaseT, typename T,
1122           typename PointerT = T *, typename ReferenceT = T &>
1123 class indexed_accessor_range_base {
1124 public:
1125   using RangeBaseT = indexed_accessor_range_base;
1126 
1127   /// An iterator element of this range.
1128   class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1129                                                     PointerT, ReferenceT> {
1130   public:
1131     // Index into this iterator, invoking a static method on the derived type.
1132     ReferenceT operator*() const {
1133       return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1134     }
1135 
1136   private:
1137     iterator(BaseT owner, ptrdiff_t curIndex)
1138         : iterator::indexed_accessor_iterator(owner, curIndex) {}
1139 
1140     /// Allow access to the constructor.
1141     friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1142                                        ReferenceT>;
1143   };
1144 
1145   indexed_accessor_range_base(iterator begin, iterator end)
1146       : base(offset_base(begin.getBase(), begin.getIndex())),
1147         count(end.getIndex() - begin.getIndex()) {}
1148   indexed_accessor_range_base(const iterator_range<iterator> &range)
1149       : indexed_accessor_range_base(range.begin(), range.end()) {}
1150   indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1151       : base(base), count(count) {}
1152 
1153   iterator begin() const { return iterator(base, 0); }
1154   iterator end() const { return iterator(base, count); }
1155   ReferenceT operator[](size_t Index) const {
1156     assert(Index < size() && "invalid index for value range");
1157     return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1158   }
1159   ReferenceT front() const {
1160     assert(!empty() && "expected non-empty range");
1161     return (*this)[0];
1162   }
1163   ReferenceT back() const {
1164     assert(!empty() && "expected non-empty range");
1165     return (*this)[size() - 1];
1166   }
1167 
1168   /// Compare this range with another.
1169   template <typename OtherT> bool operator==(const OtherT &other) const {
1170     return size() ==
1171                static_cast<size_t>(std::distance(other.begin(), other.end())) &&
1172            std::equal(begin(), end(), other.begin());
1173   }
1174   template <typename OtherT> bool operator!=(const OtherT &other) const {
1175     return !(*this == other);
1176   }
1177 
1178   /// Return the size of this range.
1179   size_t size() const { return count; }
1180 
1181   /// Return if the range is empty.
1182   bool empty() const { return size() == 0; }
1183 
1184   /// Drop the first N elements, and keep M elements.
1185   DerivedT slice(size_t n, size_t m) const {
1186     assert(n + m <= size() && "invalid size specifiers");
1187     return DerivedT(offset_base(base, n), m);
1188   }
1189 
1190   /// Drop the first n elements.
1191   DerivedT drop_front(size_t n = 1) const {
1192     assert(size() >= n && "Dropping more elements than exist");
1193     return slice(n, size() - n);
1194   }
1195   /// Drop the last n elements.
1196   DerivedT drop_back(size_t n = 1) const {
1197     assert(size() >= n && "Dropping more elements than exist");
1198     return DerivedT(base, size() - n);
1199   }
1200 
1201   /// Take the first n elements.
1202   DerivedT take_front(size_t n = 1) const {
1203     return n < size() ? drop_back(size() - n)
1204                       : static_cast<const DerivedT &>(*this);
1205   }
1206 
1207   /// Take the last n elements.
1208   DerivedT take_back(size_t n = 1) const {
1209     return n < size() ? drop_front(size() - n)
1210                       : static_cast<const DerivedT &>(*this);
1211   }
1212 
1213   /// Allow conversion to any type accepting an iterator_range.
1214   template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1215                                  RangeT, iterator_range<iterator>>::value>>
1216   operator RangeT() const {
1217     return RangeT(iterator_range<iterator>(*this));
1218   }
1219 
1220   /// Returns the base of this range.
1221   const BaseT &getBase() const { return base; }
1222 
1223 private:
1224   /// Offset the given base by the given amount.
1225   static BaseT offset_base(const BaseT &base, size_t n) {
1226     return n == 0 ? base : DerivedT::offset_base(base, n);
1227   }
1228 
1229 protected:
1230   indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1231   indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1232   indexed_accessor_range_base &
1233   operator=(const indexed_accessor_range_base &) = default;
1234 
1235   /// The base that owns the provided range of values.
1236   BaseT base;
1237   /// The size from the owning range.
1238   ptrdiff_t count;
1239 };
1240 } // end namespace detail
1241 
1242 /// This class provides an implementation of a range of
1243 /// indexed_accessor_iterators where the base is not indexable. Ranges with
1244 /// bases that are offsetable should derive from indexed_accessor_range_base
1245 /// instead. Derived range classes are expected to implement the following
1246 /// static method:
1247 ///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1248 ///     - Dereference an iterator pointing to a parent base at the given index.
1249 template <typename DerivedT, typename BaseT, typename T,
1250           typename PointerT = T *, typename ReferenceT = T &>
1251 class indexed_accessor_range
1252     : public detail::indexed_accessor_range_base<
1253           DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1254 public:
1255   indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1256       : detail::indexed_accessor_range_base<
1257             DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1258             std::make_pair(base, startIndex), count) {}
1259   using detail::indexed_accessor_range_base<
1260       DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1261       ReferenceT>::indexed_accessor_range_base;
1262 
1263   /// Returns the current base of the range.
1264   const BaseT &getBase() const { return this->base.first; }
1265 
1266   /// Returns the current start index of the range.
1267   ptrdiff_t getStartIndex() const { return this->base.second; }
1268 
1269   /// See `detail::indexed_accessor_range_base` for details.
1270   static std::pair<BaseT, ptrdiff_t>
1271   offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1272     // We encode the internal base as a pair of the derived base and a start
1273     // index into the derived base.
1274     return std::make_pair(base.first, base.second + index);
1275   }
1276   /// See `detail::indexed_accessor_range_base` for details.
1277   static ReferenceT
1278   dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1279                        ptrdiff_t index) {
1280     return DerivedT::dereference(base.first, base.second + index);
1281   }
1282 };
1283 
1284 namespace detail {
1285 /// Return a reference to the first or second member of a reference. Otherwise,
1286 /// return a copy of the member of a temporary.
1287 ///
1288 /// When passing a range whose iterators return values instead of references,
1289 /// the reference must be dropped from `decltype((elt.first))`, which will
1290 /// always be a reference, to avoid returning a reference to a temporary.
1291 template <typename EltTy, typename FirstTy> class first_or_second_type {
1292 public:
1293   using type =
1294       typename std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1295                                   std::remove_reference_t<FirstTy>>;
1296 };
1297 } // end namespace detail
1298 
1299 /// Given a container of pairs, return a range over the first elements.
1300 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1301   using EltTy = decltype((*std::begin(c)));
1302   return llvm::map_range(std::forward<ContainerTy>(c),
1303                          [](EltTy elt) -> typename detail::first_or_second_type<
1304                                            EltTy, decltype((elt.first))>::type {
1305                            return elt.first;
1306                          });
1307 }
1308 
1309 /// Given a container of pairs, return a range over the second elements.
1310 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1311   using EltTy = decltype((*std::begin(c)));
1312   return llvm::map_range(
1313       std::forward<ContainerTy>(c),
1314       [](EltTy elt) ->
1315       typename detail::first_or_second_type<EltTy,
1316                                             decltype((elt.second))>::type {
1317         return elt.second;
1318       });
1319 }
1320 
1321 //===----------------------------------------------------------------------===//
1322 //     Extra additions to <utility>
1323 //===----------------------------------------------------------------------===//
1324 
1325 /// Function object to check whether the first component of a std::pair
1326 /// compares less than the first component of another std::pair.
1327 struct less_first {
1328   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1329     return std::less<>()(lhs.first, rhs.first);
1330   }
1331 };
1332 
1333 /// Function object to check whether the second component of a std::pair
1334 /// compares less than the second component of another std::pair.
1335 struct less_second {
1336   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1337     return std::less<>()(lhs.second, rhs.second);
1338   }
1339 };
1340 
1341 /// \brief Function object to apply a binary function to the first component of
1342 /// a std::pair.
1343 template<typename FuncTy>
1344 struct on_first {
1345   FuncTy func;
1346 
1347   template <typename T>
1348   decltype(auto) operator()(const T &lhs, const T &rhs) const {
1349     return func(lhs.first, rhs.first);
1350   }
1351 };
1352 
1353 /// Utility type to build an inheritance chain that makes it easy to rank
1354 /// overload candidates.
1355 template <int N> struct rank : rank<N - 1> {};
1356 template <> struct rank<0> {};
1357 
1358 /// traits class for checking whether type T is one of any of the given
1359 /// types in the variadic list.
1360 template <typename T, typename... Ts>
1361 using is_one_of = disjunction<std::is_same<T, Ts>...>;
1362 
1363 /// traits class for checking whether type T is a base class for all
1364 ///  the given types in the variadic list.
1365 template <typename T, typename... Ts>
1366 using are_base_of = conjunction<std::is_base_of<T, Ts>...>;
1367 
1368 namespace detail {
1369 template <typename... Ts> struct Visitor;
1370 
1371 template <typename HeadT, typename... TailTs>
1372 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1373   explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1374       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1375         Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1376   using remove_cvref_t<HeadT>::operator();
1377   using Visitor<TailTs...>::operator();
1378 };
1379 
1380 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1381   explicit constexpr Visitor(HeadT &&Head)
1382       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1383   using remove_cvref_t<HeadT>::operator();
1384 };
1385 } // namespace detail
1386 
1387 /// Returns an opaquely-typed Callable object whose operator() overload set is
1388 /// the sum of the operator() overload sets of each CallableT in CallableTs.
1389 ///
1390 /// The type of the returned object derives from each CallableT in CallableTs.
1391 /// The returned object is constructed by invoking the appropriate copy or move
1392 /// constructor of each CallableT, as selected by overload resolution on the
1393 /// corresponding argument to makeVisitor.
1394 ///
1395 /// Example:
1396 ///
1397 /// \code
1398 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1399 ///                            [](int i) { return "int"; },
1400 ///                            [](std::string s) { return "str"; });
1401 /// auto a = visitor(42);    // `a` is now "int".
1402 /// auto b = visitor("foo"); // `b` is now "str".
1403 /// auto c = visitor(3.14f); // `c` is now "unhandled type".
1404 /// \endcode
1405 ///
1406 /// Example of making a visitor with a lambda which captures a move-only type:
1407 ///
1408 /// \code
1409 /// std::unique_ptr<FooHandler> FH = /* ... */;
1410 /// auto visitor = makeVisitor(
1411 ///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1412 ///     [](int i) { return i; },
1413 ///     [](std::string s) { return atoi(s); });
1414 /// \endcode
1415 template <typename... CallableTs>
1416 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1417   return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1418 }
1419 
1420 //===----------------------------------------------------------------------===//
1421 //     Extra additions for arrays
1422 //===----------------------------------------------------------------------===//
1423 
1424 // We have a copy here so that LLVM behaves the same when using different
1425 // standard libraries.
1426 template <class Iterator, class RNG>
1427 void shuffle(Iterator first, Iterator last, RNG &&g) {
1428   // It would be better to use a std::uniform_int_distribution,
1429   // but that would be stdlib dependent.
1430   typedef
1431       typename std::iterator_traits<Iterator>::difference_type difference_type;
1432   for (auto size = last - first; size > 1; ++first, (void)--size) {
1433     difference_type offset = g() % size;
1434     // Avoid self-assignment due to incorrect assertions in libstdc++
1435     // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1436     if (offset != difference_type(0))
1437       std::iter_swap(first, first + offset);
1438   }
1439 }
1440 
1441 /// Find the length of an array.
1442 template <class T, std::size_t N>
1443 constexpr inline size_t array_lengthof(T (&)[N]) {
1444   return N;
1445 }
1446 
1447 /// Adapt std::less<T> for array_pod_sort.
1448 template<typename T>
1449 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1450   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1451                      *reinterpret_cast<const T*>(P2)))
1452     return -1;
1453   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1454                      *reinterpret_cast<const T*>(P1)))
1455     return 1;
1456   return 0;
1457 }
1458 
1459 /// get_array_pod_sort_comparator - This is an internal helper function used to
1460 /// get type deduction of T right.
1461 template<typename T>
1462 inline int (*get_array_pod_sort_comparator(const T &))
1463              (const void*, const void*) {
1464   return array_pod_sort_comparator<T>;
1465 }
1466 
1467 #ifdef EXPENSIVE_CHECKS
1468 namespace detail {
1469 
1470 inline unsigned presortShuffleEntropy() {
1471   static unsigned Result(std::random_device{}());
1472   return Result;
1473 }
1474 
1475 template <class IteratorTy>
1476 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1477   std::mt19937 Generator(presortShuffleEntropy());
1478   llvm::shuffle(Start, End, Generator);
1479 }
1480 
1481 } // end namespace detail
1482 #endif
1483 
1484 /// array_pod_sort - This sorts an array with the specified start and end
1485 /// extent.  This is just like std::sort, except that it calls qsort instead of
1486 /// using an inlined template.  qsort is slightly slower than std::sort, but
1487 /// most sorts are not performance critical in LLVM and std::sort has to be
1488 /// template instantiated for each type, leading to significant measured code
1489 /// bloat.  This function should generally be used instead of std::sort where
1490 /// possible.
1491 ///
1492 /// This function assumes that you have simple POD-like types that can be
1493 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1494 /// you should use std::sort.
1495 ///
1496 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1497 /// default to std::less.
1498 template<class IteratorTy>
1499 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1500   // Don't inefficiently call qsort with one element or trigger undefined
1501   // behavior with an empty sequence.
1502   auto NElts = End - Start;
1503   if (NElts <= 1) return;
1504 #ifdef EXPENSIVE_CHECKS
1505   detail::presortShuffle<IteratorTy>(Start, End);
1506 #endif
1507   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1508 }
1509 
1510 template <class IteratorTy>
1511 inline void array_pod_sort(
1512     IteratorTy Start, IteratorTy End,
1513     int (*Compare)(
1514         const typename std::iterator_traits<IteratorTy>::value_type *,
1515         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1516   // Don't inefficiently call qsort with one element or trigger undefined
1517   // behavior with an empty sequence.
1518   auto NElts = End - Start;
1519   if (NElts <= 1) return;
1520 #ifdef EXPENSIVE_CHECKS
1521   detail::presortShuffle<IteratorTy>(Start, End);
1522 #endif
1523   qsort(&*Start, NElts, sizeof(*Start),
1524         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1525 }
1526 
1527 namespace detail {
1528 template <typename T>
1529 // We can use qsort if the iterator type is a pointer and the underlying value
1530 // is trivially copyable.
1531 using sort_trivially_copyable = conjunction<
1532     std::is_pointer<T>,
1533     std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1534 } // namespace detail
1535 
1536 // Provide wrappers to std::sort which shuffle the elements before sorting
1537 // to help uncover non-deterministic behavior (PR35135).
1538 template <typename IteratorTy,
1539           std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
1540                            int> = 0>
1541 inline void sort(IteratorTy Start, IteratorTy End) {
1542 #ifdef EXPENSIVE_CHECKS
1543   detail::presortShuffle<IteratorTy>(Start, End);
1544 #endif
1545   std::sort(Start, End);
1546 }
1547 
1548 // Forward trivially copyable types to array_pod_sort. This avoids a large
1549 // amount of code bloat for a minor performance hit.
1550 template <typename IteratorTy,
1551           std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
1552                            int> = 0>
1553 inline void sort(IteratorTy Start, IteratorTy End) {
1554   array_pod_sort(Start, End);
1555 }
1556 
1557 template <typename Container> inline void sort(Container &&C) {
1558   llvm::sort(adl_begin(C), adl_end(C));
1559 }
1560 
1561 template <typename IteratorTy, typename Compare>
1562 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1563 #ifdef EXPENSIVE_CHECKS
1564   detail::presortShuffle<IteratorTy>(Start, End);
1565 #endif
1566   std::sort(Start, End, Comp);
1567 }
1568 
1569 template <typename Container, typename Compare>
1570 inline void sort(Container &&C, Compare Comp) {
1571   llvm::sort(adl_begin(C), adl_end(C), Comp);
1572 }
1573 
1574 //===----------------------------------------------------------------------===//
1575 //     Extra additions to <algorithm>
1576 //===----------------------------------------------------------------------===//
1577 
1578 /// Get the size of a range. This is a wrapper function around std::distance
1579 /// which is only enabled when the operation is O(1).
1580 template <typename R>
1581 auto size(R &&Range,
1582           std::enable_if_t<
1583               std::is_base_of<std::random_access_iterator_tag,
1584                               typename std::iterator_traits<decltype(
1585                                   Range.begin())>::iterator_category>::value,
1586               void> * = nullptr) {
1587   return std::distance(Range.begin(), Range.end());
1588 }
1589 
1590 /// Provide wrappers to std::for_each which take ranges instead of having to
1591 /// pass begin/end explicitly.
1592 template <typename R, typename UnaryFunction>
1593 UnaryFunction for_each(R &&Range, UnaryFunction F) {
1594   return std::for_each(adl_begin(Range), adl_end(Range), F);
1595 }
1596 
1597 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1598 /// begin/end explicitly.
1599 template <typename R, typename UnaryPredicate>
1600 bool all_of(R &&Range, UnaryPredicate P) {
1601   return std::all_of(adl_begin(Range), adl_end(Range), P);
1602 }
1603 
1604 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1605 /// begin/end explicitly.
1606 template <typename R, typename UnaryPredicate>
1607 bool any_of(R &&Range, UnaryPredicate P) {
1608   return std::any_of(adl_begin(Range), adl_end(Range), P);
1609 }
1610 
1611 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1612 /// begin/end explicitly.
1613 template <typename R, typename UnaryPredicate>
1614 bool none_of(R &&Range, UnaryPredicate P) {
1615   return std::none_of(adl_begin(Range), adl_end(Range), P);
1616 }
1617 
1618 /// Provide wrappers to std::find which take ranges instead of having to pass
1619 /// begin/end explicitly.
1620 template <typename R, typename T> auto find(R &&Range, const T &Val) {
1621   return std::find(adl_begin(Range), adl_end(Range), Val);
1622 }
1623 
1624 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1625 /// begin/end explicitly.
1626 template <typename R, typename UnaryPredicate>
1627 auto find_if(R &&Range, UnaryPredicate P) {
1628   return std::find_if(adl_begin(Range), adl_end(Range), P);
1629 }
1630 
1631 template <typename R, typename UnaryPredicate>
1632 auto find_if_not(R &&Range, UnaryPredicate P) {
1633   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1634 }
1635 
1636 /// Provide wrappers to std::remove_if which take ranges instead of having to
1637 /// pass begin/end explicitly.
1638 template <typename R, typename UnaryPredicate>
1639 auto remove_if(R &&Range, UnaryPredicate P) {
1640   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1641 }
1642 
1643 /// Provide wrappers to std::copy_if which take ranges instead of having to
1644 /// pass begin/end explicitly.
1645 template <typename R, typename OutputIt, typename UnaryPredicate>
1646 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1647   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1648 }
1649 
1650 template <typename R, typename OutputIt>
1651 OutputIt copy(R &&Range, OutputIt Out) {
1652   return std::copy(adl_begin(Range), adl_end(Range), Out);
1653 }
1654 
1655 /// Provide wrappers to std::move which take ranges instead of having to
1656 /// pass begin/end explicitly.
1657 template <typename R, typename OutputIt>
1658 OutputIt move(R &&Range, OutputIt Out) {
1659   return std::move(adl_begin(Range), adl_end(Range), Out);
1660 }
1661 
1662 /// Wrapper function around std::find to detect if an element exists
1663 /// in a container.
1664 template <typename R, typename E>
1665 bool is_contained(R &&Range, const E &Element) {
1666   return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1667 }
1668 
1669 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1670 /// are sorted with respect to a comparator \p C.
1671 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1672   return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1673 }
1674 
1675 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1676 /// are sorted in non-descending order.
1677 template <typename R> bool is_sorted(R &&Range) {
1678   return std::is_sorted(adl_begin(Range), adl_end(Range));
1679 }
1680 
1681 /// Wrapper function around std::count to count the number of times an element
1682 /// \p Element occurs in the given range \p Range.
1683 template <typename R, typename E> auto count(R &&Range, const E &Element) {
1684   return std::count(adl_begin(Range), adl_end(Range), Element);
1685 }
1686 
1687 /// Wrapper function around std::count_if to count the number of times an
1688 /// element satisfying a given predicate occurs in a range.
1689 template <typename R, typename UnaryPredicate>
1690 auto count_if(R &&Range, UnaryPredicate P) {
1691   return std::count_if(adl_begin(Range), adl_end(Range), P);
1692 }
1693 
1694 /// Wrapper function around std::transform to apply a function to a range and
1695 /// store the result elsewhere.
1696 template <typename R, typename OutputIt, typename UnaryFunction>
1697 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1698   return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1699 }
1700 
1701 /// Provide wrappers to std::partition which take ranges instead of having to
1702 /// pass begin/end explicitly.
1703 template <typename R, typename UnaryPredicate>
1704 auto partition(R &&Range, UnaryPredicate P) {
1705   return std::partition(adl_begin(Range), adl_end(Range), P);
1706 }
1707 
1708 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1709 /// pass begin/end explicitly.
1710 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1711   return std::lower_bound(adl_begin(Range), adl_end(Range),
1712                           std::forward<T>(Value));
1713 }
1714 
1715 template <typename R, typename T, typename Compare>
1716 auto lower_bound(R &&Range, T &&Value, Compare C) {
1717   return std::lower_bound(adl_begin(Range), adl_end(Range),
1718                           std::forward<T>(Value), C);
1719 }
1720 
1721 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1722 /// pass begin/end explicitly.
1723 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1724   return std::upper_bound(adl_begin(Range), adl_end(Range),
1725                           std::forward<T>(Value));
1726 }
1727 
1728 template <typename R, typename T, typename Compare>
1729 auto upper_bound(R &&Range, T &&Value, Compare C) {
1730   return std::upper_bound(adl_begin(Range), adl_end(Range),
1731                           std::forward<T>(Value), C);
1732 }
1733 
1734 template <typename R>
1735 void stable_sort(R &&Range) {
1736   std::stable_sort(adl_begin(Range), adl_end(Range));
1737 }
1738 
1739 template <typename R, typename Compare>
1740 void stable_sort(R &&Range, Compare C) {
1741   std::stable_sort(adl_begin(Range), adl_end(Range), C);
1742 }
1743 
1744 /// Binary search for the first iterator in a range where a predicate is false.
1745 /// Requires that C is always true below some limit, and always false above it.
1746 template <typename R, typename Predicate,
1747           typename Val = decltype(*adl_begin(std::declval<R>()))>
1748 auto partition_point(R &&Range, Predicate P) {
1749   return std::partition_point(adl_begin(Range), adl_end(Range), P);
1750 }
1751 
1752 template<typename Range, typename Predicate>
1753 auto unique(Range &&R, Predicate P) {
1754   return std::unique(adl_begin(R), adl_end(R), P);
1755 }
1756 
1757 /// Wrapper function around std::equal to detect if pair-wise elements between
1758 /// two ranges are the same.
1759 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
1760   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
1761                     adl_end(RRange));
1762 }
1763 
1764 /// Wrapper function around std::equal to detect if all elements
1765 /// in a container are same.
1766 template <typename R>
1767 bool is_splat(R &&Range) {
1768   size_t range_size = size(Range);
1769   return range_size != 0 && (range_size == 1 ||
1770          std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1771 }
1772 
1773 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1774 /// `erase_if` which is equivalent to:
1775 ///
1776 ///   C.erase(remove_if(C, pred), C.end());
1777 ///
1778 /// This version works for any container with an erase method call accepting
1779 /// two iterators.
1780 template <typename Container, typename UnaryPredicate>
1781 void erase_if(Container &C, UnaryPredicate P) {
1782   C.erase(remove_if(C, P), C.end());
1783 }
1784 
1785 /// Wrapper function to remove a value from a container:
1786 ///
1787 /// C.erase(remove(C.begin(), C.end(), V), C.end());
1788 template <typename Container, typename ValueType>
1789 void erase_value(Container &C, ValueType V) {
1790   C.erase(std::remove(C.begin(), C.end(), V), C.end());
1791 }
1792 
1793 /// Wrapper function to append a range to a container.
1794 ///
1795 /// C.insert(C.end(), R.begin(), R.end());
1796 template <typename Container, typename Range>
1797 inline void append_range(Container &C, Range &&R) {
1798   C.insert(C.end(), R.begin(), R.end());
1799 }
1800 
1801 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1802 /// the range [ValIt, ValEnd) (which is not from the same container).
1803 template<typename Container, typename RandomAccessIterator>
1804 void replace(Container &Cont, typename Container::iterator ContIt,
1805              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
1806              RandomAccessIterator ValEnd) {
1807   while (true) {
1808     if (ValIt == ValEnd) {
1809       Cont.erase(ContIt, ContEnd);
1810       return;
1811     } else if (ContIt == ContEnd) {
1812       Cont.insert(ContIt, ValIt, ValEnd);
1813       return;
1814     }
1815     *ContIt++ = *ValIt++;
1816   }
1817 }
1818 
1819 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1820 /// the range R.
1821 template<typename Container, typename Range = std::initializer_list<
1822                                  typename Container::value_type>>
1823 void replace(Container &Cont, typename Container::iterator ContIt,
1824              typename Container::iterator ContEnd, Range R) {
1825   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
1826 }
1827 
1828 /// An STL-style algorithm similar to std::for_each that applies a second
1829 /// functor between every pair of elements.
1830 ///
1831 /// This provides the control flow logic to, for example, print a
1832 /// comma-separated list:
1833 /// \code
1834 ///   interleave(names.begin(), names.end(),
1835 ///              [&](StringRef name) { os << name; },
1836 ///              [&] { os << ", "; });
1837 /// \endcode
1838 template <typename ForwardIterator, typename UnaryFunctor,
1839           typename NullaryFunctor,
1840           typename = typename std::enable_if<
1841               !std::is_constructible<StringRef, UnaryFunctor>::value &&
1842               !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
1843 inline void interleave(ForwardIterator begin, ForwardIterator end,
1844                        UnaryFunctor each_fn, NullaryFunctor between_fn) {
1845   if (begin == end)
1846     return;
1847   each_fn(*begin);
1848   ++begin;
1849   for (; begin != end; ++begin) {
1850     between_fn();
1851     each_fn(*begin);
1852   }
1853 }
1854 
1855 template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
1856           typename = typename std::enable_if<
1857               !std::is_constructible<StringRef, UnaryFunctor>::value &&
1858               !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
1859 inline void interleave(const Container &c, UnaryFunctor each_fn,
1860                        NullaryFunctor between_fn) {
1861   interleave(c.begin(), c.end(), each_fn, between_fn);
1862 }
1863 
1864 /// Overload of interleave for the common case of string separator.
1865 template <typename Container, typename UnaryFunctor, typename StreamT,
1866           typename T = detail::ValueOfRange<Container>>
1867 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
1868                        const StringRef &separator) {
1869   interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
1870 }
1871 template <typename Container, typename StreamT,
1872           typename T = detail::ValueOfRange<Container>>
1873 inline void interleave(const Container &c, StreamT &os,
1874                        const StringRef &separator) {
1875   interleave(
1876       c, os, [&](const T &a) { os << a; }, separator);
1877 }
1878 
1879 template <typename Container, typename UnaryFunctor, typename StreamT,
1880           typename T = detail::ValueOfRange<Container>>
1881 inline void interleaveComma(const Container &c, StreamT &os,
1882                             UnaryFunctor each_fn) {
1883   interleave(c, os, each_fn, ", ");
1884 }
1885 template <typename Container, typename StreamT,
1886           typename T = detail::ValueOfRange<Container>>
1887 inline void interleaveComma(const Container &c, StreamT &os) {
1888   interleaveComma(c, os, [&](const T &a) { os << a; });
1889 }
1890 
1891 //===----------------------------------------------------------------------===//
1892 //     Extra additions to <memory>
1893 //===----------------------------------------------------------------------===//
1894 
1895 struct FreeDeleter {
1896   void operator()(void* v) {
1897     ::free(v);
1898   }
1899 };
1900 
1901 template<typename First, typename Second>
1902 struct pair_hash {
1903   size_t operator()(const std::pair<First, Second> &P) const {
1904     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1905   }
1906 };
1907 
1908 /// Binary functor that adapts to any other binary functor after dereferencing
1909 /// operands.
1910 template <typename T> struct deref {
1911   T func;
1912 
1913   // Could be further improved to cope with non-derivable functors and
1914   // non-binary functors (should be a variadic template member function
1915   // operator()).
1916   template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
1917     assert(lhs);
1918     assert(rhs);
1919     return func(*lhs, *rhs);
1920   }
1921 };
1922 
1923 namespace detail {
1924 
1925 template <typename R> class enumerator_iter;
1926 
1927 template <typename R> struct result_pair {
1928   using value_reference =
1929       typename std::iterator_traits<IterOfRange<R>>::reference;
1930 
1931   friend class enumerator_iter<R>;
1932 
1933   result_pair() = default;
1934   result_pair(std::size_t Index, IterOfRange<R> Iter)
1935       : Index(Index), Iter(Iter) {}
1936 
1937   result_pair(const result_pair<R> &Other)
1938       : Index(Other.Index), Iter(Other.Iter) {}
1939   result_pair &operator=(const result_pair &Other) {
1940     Index = Other.Index;
1941     Iter = Other.Iter;
1942     return *this;
1943   }
1944 
1945   std::size_t index() const { return Index; }
1946   value_reference value() const { return *Iter; }
1947 
1948 private:
1949   std::size_t Index = std::numeric_limits<std::size_t>::max();
1950   IterOfRange<R> Iter;
1951 };
1952 
1953 template <typename R>
1954 class enumerator_iter
1955     : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag,
1956                                   const result_pair<R>> {
1957   using result_type = result_pair<R>;
1958 
1959 public:
1960   explicit enumerator_iter(IterOfRange<R> EndIter)
1961       : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1962 
1963   enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1964       : Result(Index, Iter) {}
1965 
1966   const result_type &operator*() const { return Result; }
1967 
1968   enumerator_iter &operator++() {
1969     assert(Result.Index != std::numeric_limits<size_t>::max());
1970     ++Result.Iter;
1971     ++Result.Index;
1972     return *this;
1973   }
1974 
1975   bool operator==(const enumerator_iter &RHS) const {
1976     // Don't compare indices here, only iterators.  It's possible for an end
1977     // iterator to have different indices depending on whether it was created
1978     // by calling std::end() versus incrementing a valid iterator.
1979     return Result.Iter == RHS.Result.Iter;
1980   }
1981 
1982   enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
1983   enumerator_iter &operator=(const enumerator_iter &Other) {
1984     Result = Other.Result;
1985     return *this;
1986   }
1987 
1988 private:
1989   result_type Result;
1990 };
1991 
1992 template <typename R> class enumerator {
1993 public:
1994   explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1995 
1996   enumerator_iter<R> begin() {
1997     return enumerator_iter<R>(0, std::begin(TheRange));
1998   }
1999   enumerator_iter<R> begin() const {
2000     return enumerator_iter<R>(0, std::begin(TheRange));
2001   }
2002 
2003   enumerator_iter<R> end() {
2004     return enumerator_iter<R>(std::end(TheRange));
2005   }
2006   enumerator_iter<R> end() const {
2007     return enumerator_iter<R>(std::end(TheRange));
2008   }
2009 
2010 private:
2011   R TheRange;
2012 };
2013 
2014 } // end namespace detail
2015 
2016 /// Given an input range, returns a new range whose values are are pair (A,B)
2017 /// such that A is the 0-based index of the item in the sequence, and B is
2018 /// the value from the original sequence.  Example:
2019 ///
2020 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
2021 /// for (auto X : enumerate(Items)) {
2022 ///   printf("Item %d - %c\n", X.index(), X.value());
2023 /// }
2024 ///
2025 /// Output:
2026 ///   Item 0 - A
2027 ///   Item 1 - B
2028 ///   Item 2 - C
2029 ///   Item 3 - D
2030 ///
2031 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
2032   return detail::enumerator<R>(std::forward<R>(TheRange));
2033 }
2034 
2035 namespace detail {
2036 
2037 template <typename F, typename Tuple, std::size_t... I>
2038 decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
2039   return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
2040 }
2041 
2042 } // end namespace detail
2043 
2044 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
2045 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
2046 /// return the result.
2047 template <typename F, typename Tuple>
2048 decltype(auto) apply_tuple(F &&f, Tuple &&t) {
2049   using Indices = std::make_index_sequence<
2050       std::tuple_size<typename std::decay<Tuple>::type>::value>;
2051 
2052   return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
2053                                   Indices{});
2054 }
2055 
2056 namespace detail {
2057 
2058 template <typename Predicate, typename... Args>
2059 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2060   auto z = zip(args...);
2061   auto it = z.begin();
2062   auto end = z.end();
2063   while (it != end) {
2064     if (!apply_tuple([&](auto &&...args) { return P(args...); }, *it))
2065       return false;
2066     ++it;
2067   }
2068   return it.all_equals(end);
2069 }
2070 
2071 // Just an adaptor to switch the order of argument and have the predicate before
2072 // the zipped inputs.
2073 template <typename... ArgsThenPredicate, size_t... InputIndexes>
2074 bool all_of_zip_predicate_last(
2075     std::tuple<ArgsThenPredicate...> argsThenPredicate,
2076     std::index_sequence<InputIndexes...>) {
2077   auto constexpr OutputIndex =
2078       std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2079   return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2080                              std::get<InputIndexes>(argsThenPredicate)...);
2081 }
2082 
2083 } // end namespace detail
2084 
2085 /// Compare two zipped ranges using the provided predicate (as last argument).
2086 /// Return true if all elements satisfy the predicate and false otherwise.
2087 //  Return false if the zipped iterator aren't all at end (size mismatch).
2088 template <typename... ArgsAndPredicate>
2089 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2090   return detail::all_of_zip_predicate_last(
2091       std::forward_as_tuple(argsAndPredicate...),
2092       std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2093 }
2094 
2095 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2096 /// time. Not meant for use with random-access iterators.
2097 /// Can optionally take a predicate to filter lazily some items.
2098 template <typename IterTy,
2099           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2100 bool hasNItems(
2101     IterTy &&Begin, IterTy &&End, unsigned N,
2102     Pred &&ShouldBeCounted =
2103         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2104     std::enable_if_t<
2105         !std::is_base_of<std::random_access_iterator_tag,
2106                          typename std::iterator_traits<std::remove_reference_t<
2107                              decltype(Begin)>>::iterator_category>::value,
2108         void> * = nullptr) {
2109   for (; N; ++Begin) {
2110     if (Begin == End)
2111       return false; // Too few.
2112     N -= ShouldBeCounted(*Begin);
2113   }
2114   for (; Begin != End; ++Begin)
2115     if (ShouldBeCounted(*Begin))
2116       return false; // Too many.
2117   return true;
2118 }
2119 
2120 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2121 /// time. Not meant for use with random-access iterators.
2122 /// Can optionally take a predicate to lazily filter some items.
2123 template <typename IterTy,
2124           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2125 bool hasNItemsOrMore(
2126     IterTy &&Begin, IterTy &&End, unsigned N,
2127     Pred &&ShouldBeCounted =
2128         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2129     std::enable_if_t<
2130         !std::is_base_of<std::random_access_iterator_tag,
2131                          typename std::iterator_traits<std::remove_reference_t<
2132                              decltype(Begin)>>::iterator_category>::value,
2133         void> * = nullptr) {
2134   for (; N; ++Begin) {
2135     if (Begin == End)
2136       return false; // Too few.
2137     N -= ShouldBeCounted(*Begin);
2138   }
2139   return true;
2140 }
2141 
2142 /// Returns true if the sequence [Begin, End) has N or less items. Can
2143 /// optionally take a predicate to lazily filter some items.
2144 template <typename IterTy,
2145           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2146 bool hasNItemsOrLess(
2147     IterTy &&Begin, IterTy &&End, unsigned N,
2148     Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2149       return true;
2150     }) {
2151   assert(N != std::numeric_limits<unsigned>::max());
2152   return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2153 }
2154 
2155 /// Returns true if the given container has exactly N items
2156 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2157   return hasNItems(std::begin(C), std::end(C), N);
2158 }
2159 
2160 /// Returns true if the given container has N or more items
2161 template <typename ContainerTy>
2162 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2163   return hasNItemsOrMore(std::begin(C), std::end(C), N);
2164 }
2165 
2166 /// Returns true if the given container has N or less items
2167 template <typename ContainerTy>
2168 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2169   return hasNItemsOrLess(std::begin(C), std::end(C), N);
2170 }
2171 
2172 /// Returns a raw pointer that represents the same address as the argument.
2173 ///
2174 /// This implementation can be removed once we move to C++20 where it's defined
2175 /// as std::to_address().
2176 ///
2177 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
2178 /// not been implemented.
2179 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2180 template <class T> constexpr T *to_address(T *P) { return P; }
2181 
2182 } // end namespace llvm
2183 
2184 #endif // LLVM_ADT_STLEXTRAS_H
2185