xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/STLExtras.h (revision 43e29d03f416d7dda52112a29600a7c82ee1a91e)
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains some templates that are useful if you are working with
11 /// the STL at all.
12 ///
13 /// No library is required when using these functions.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/STLForwardCompat.h"
22 #include "llvm/ADT/STLFunctionalExtras.h"
23 #include "llvm/ADT/identity.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Config/abi-breaking.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <functional>
34 #include <initializer_list>
35 #include <iterator>
36 #include <limits>
37 #include <memory>
38 #include <optional>
39 #include <tuple>
40 #include <type_traits>
41 #include <utility>
42 
43 #ifdef EXPENSIVE_CHECKS
44 #include <random> // for std::mt19937
45 #endif
46 
47 namespace llvm {
48 
49 // Only used by compiler if both template types are the same.  Useful when
50 // using SFINAE to test for the existence of member functions.
51 template <typename T, T> struct SameType;
52 
53 namespace detail {
54 
55 template <typename RangeT>
56 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
57 
58 template <typename RangeT>
59 using ValueOfRange =
60     std::remove_reference_t<decltype(*std::begin(std::declval<RangeT &>()))>;
61 
62 } // end namespace detail
63 
64 //===----------------------------------------------------------------------===//
65 //     Extra additions to <type_traits>
66 //===----------------------------------------------------------------------===//
67 
68 template <typename T> struct make_const_ptr {
69   using type = std::add_pointer_t<std::add_const_t<T>>;
70 };
71 
72 template <typename T> struct make_const_ref {
73   using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
74 };
75 
76 namespace detail {
77 template <class, template <class...> class Op, class... Args> struct detector {
78   using value_t = std::false_type;
79 };
80 template <template <class...> class Op, class... Args>
81 struct detector<std::void_t<Op<Args...>>, Op, Args...> {
82   using value_t = std::true_type;
83 };
84 } // end namespace detail
85 
86 /// Detects if a given trait holds for some set of arguments 'Args'.
87 /// For example, the given trait could be used to detect if a given type
88 /// has a copy assignment operator:
89 ///   template<class T>
90 ///   using has_copy_assign_t = decltype(std::declval<T&>()
91 ///                                                 = std::declval<const T&>());
92 ///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
93 template <template <class...> class Op, class... Args>
94 using is_detected = typename detail::detector<void, Op, Args...>::value_t;
95 
96 /// This class provides various trait information about a callable object.
97 ///   * To access the number of arguments: Traits::num_args
98 ///   * To access the type of an argument: Traits::arg_t<Index>
99 ///   * To access the type of the result:  Traits::result_t
100 template <typename T, bool isClass = std::is_class<T>::value>
101 struct function_traits : public function_traits<decltype(&T::operator())> {};
102 
103 /// Overload for class function types.
104 template <typename ClassType, typename ReturnType, typename... Args>
105 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
106   /// The number of arguments to this function.
107   enum { num_args = sizeof...(Args) };
108 
109   /// The result type of this function.
110   using result_t = ReturnType;
111 
112   /// The type of an argument to this function.
113   template <size_t Index>
114   using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
115 };
116 /// Overload for class function types.
117 template <typename ClassType, typename ReturnType, typename... Args>
118 struct function_traits<ReturnType (ClassType::*)(Args...), false>
119     : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
120 /// Overload for non-class function types.
121 template <typename ReturnType, typename... Args>
122 struct function_traits<ReturnType (*)(Args...), false> {
123   /// The number of arguments to this function.
124   enum { num_args = sizeof...(Args) };
125 
126   /// The result type of this function.
127   using result_t = ReturnType;
128 
129   /// The type of an argument to this function.
130   template <size_t i>
131   using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
132 };
133 template <typename ReturnType, typename... Args>
134 struct function_traits<ReturnType (*const)(Args...), false>
135     : public function_traits<ReturnType (*)(Args...)> {};
136 /// Overload for non-class function type references.
137 template <typename ReturnType, typename... Args>
138 struct function_traits<ReturnType (&)(Args...), false>
139     : public function_traits<ReturnType (*)(Args...)> {};
140 
141 /// traits class for checking whether type T is one of any of the given
142 /// types in the variadic list.
143 template <typename T, typename... Ts>
144 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
145 
146 /// traits class for checking whether type T is a base class for all
147 ///  the given types in the variadic list.
148 template <typename T, typename... Ts>
149 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
150 
151 namespace detail {
152 template <typename T, typename... Us> struct TypesAreDistinct;
153 template <typename T, typename... Us>
154 struct TypesAreDistinct
155     : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
156                                        TypesAreDistinct<Us...>::value> {};
157 template <typename T> struct TypesAreDistinct<T> : std::true_type {};
158 } // namespace detail
159 
160 /// Determine if all types in Ts are distinct.
161 ///
162 /// Useful to statically assert when Ts is intended to describe a non-multi set
163 /// of types.
164 ///
165 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
166 /// asserted once per instantiation of a type which requires it.
167 template <typename... Ts> struct TypesAreDistinct;
168 template <> struct TypesAreDistinct<> : std::true_type {};
169 template <typename... Ts>
170 struct TypesAreDistinct
171     : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
172 
173 /// Find the first index where a type appears in a list of types.
174 ///
175 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
176 ///
177 /// Typically only meaningful when it is otherwise statically known that the
178 /// type pack has no duplicate types. This should be guaranteed explicitly with
179 /// static_assert(TypesAreDistinct<Us...>::value).
180 ///
181 /// It is a compile-time error to instantiate when T is not present in Us, i.e.
182 /// if is_one_of<T, Us...>::value is false.
183 template <typename T, typename... Us> struct FirstIndexOfType;
184 template <typename T, typename U, typename... Us>
185 struct FirstIndexOfType<T, U, Us...>
186     : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
187 template <typename T, typename... Us>
188 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
189 
190 /// Find the type at a given index in a list of types.
191 ///
192 /// TypeAtIndex<I, Ts...> is the type at index I in Ts.
193 template <size_t I, typename... Ts>
194 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
195 
196 /// Helper which adds two underlying types of enumeration type.
197 /// Implicit conversion to a common type is accepted.
198 template <typename EnumTy1, typename EnumTy2,
199           typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
200                                           std::underlying_type_t<EnumTy1>>,
201           typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
202                                           std::underlying_type_t<EnumTy2>>>
203 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
204   return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
205 }
206 
207 //===----------------------------------------------------------------------===//
208 //     Extra additions to <iterator>
209 //===----------------------------------------------------------------------===//
210 
211 namespace callable_detail {
212 
213 /// Templated storage wrapper for a callable.
214 ///
215 /// This class is consistently default constructible, copy / move
216 /// constructible / assignable.
217 ///
218 /// Supported callable types:
219 ///  - Function pointer
220 ///  - Function reference
221 ///  - Lambda
222 ///  - Function object
223 template <typename T,
224           bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
225 class Callable {
226   using value_type = std::remove_reference_t<T>;
227   using reference = value_type &;
228   using const_reference = value_type const &;
229 
230   std::optional<value_type> Obj;
231 
232   static_assert(!std::is_pointer_v<value_type>,
233                 "Pointers to non-functions are not callable.");
234 
235 public:
236   Callable() = default;
237   Callable(T const &O) : Obj(std::in_place, O) {}
238 
239   Callable(Callable const &Other) = default;
240   Callable(Callable &&Other) = default;
241 
242   Callable &operator=(Callable const &Other) {
243     Obj = std::nullopt;
244     if (Other.Obj)
245       Obj.emplace(*Other.Obj);
246     return *this;
247   }
248 
249   Callable &operator=(Callable &&Other) {
250     Obj = std::nullopt;
251     if (Other.Obj)
252       Obj.emplace(std::move(*Other.Obj));
253     return *this;
254   }
255 
256   template <typename... Pn,
257             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
258   decltype(auto) operator()(Pn &&...Params) {
259     return (*Obj)(std::forward<Pn>(Params)...);
260   }
261 
262   template <typename... Pn,
263             std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
264   decltype(auto) operator()(Pn &&...Params) const {
265     return (*Obj)(std::forward<Pn>(Params)...);
266   }
267 
268   bool valid() const { return Obj != std::nullopt; }
269   bool reset() { return Obj = std::nullopt; }
270 
271   operator reference() { return *Obj; }
272   operator const_reference() const { return *Obj; }
273 };
274 
275 // Function specialization.  No need to waste extra space wrapping with a
276 // std::optional.
277 template <typename T> class Callable<T, true> {
278   static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
279 
280   using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
281   using CastT = std::conditional_t<IsPtr, T, T &>;
282 
283 private:
284   StorageT Func = nullptr;
285 
286 private:
287   template <typename In> static constexpr auto convertIn(In &&I) {
288     if constexpr (IsPtr) {
289       // Pointer... just echo it back.
290       return I;
291     } else {
292       // Must be a function reference.  Return its address.
293       return &I;
294     }
295   }
296 
297 public:
298   Callable() = default;
299 
300   // Construct from a function pointer or reference.
301   //
302   // Disable this constructor for references to 'Callable' so we don't violate
303   // the rule of 0.
304   template < // clang-format off
305     typename FnPtrOrRef,
306     std::enable_if_t<
307       !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
308     > = 0
309   > // clang-format on
310   Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
311 
312   template <typename... Pn,
313             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
314   decltype(auto) operator()(Pn &&...Params) const {
315     return Func(std::forward<Pn>(Params)...);
316   }
317 
318   bool valid() const { return Func != nullptr; }
319   void reset() { Func = nullptr; }
320 
321   operator T const &() const {
322     if constexpr (IsPtr) {
323       // T is a pointer... just echo it back.
324       return Func;
325     } else {
326       static_assert(std::is_reference_v<T>,
327                     "Expected a reference to a function.");
328       // T is a function reference... dereference the stored pointer.
329       return *Func;
330     }
331   }
332 };
333 
334 } // namespace callable_detail
335 
336 namespace adl_detail {
337 
338 using std::begin;
339 
340 template <typename ContainerTy>
341 decltype(auto) adl_begin(ContainerTy &&container) {
342   return begin(std::forward<ContainerTy>(container));
343 }
344 
345 using std::end;
346 
347 template <typename ContainerTy>
348 decltype(auto) adl_end(ContainerTy &&container) {
349   return end(std::forward<ContainerTy>(container));
350 }
351 
352 using std::swap;
353 
354 template <typename T>
355 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
356                                                        std::declval<T>()))) {
357   swap(std::forward<T>(lhs), std::forward<T>(rhs));
358 }
359 
360 } // end namespace adl_detail
361 
362 template <typename ContainerTy>
363 decltype(auto) adl_begin(ContainerTy &&container) {
364   return adl_detail::adl_begin(std::forward<ContainerTy>(container));
365 }
366 
367 template <typename ContainerTy>
368 decltype(auto) adl_end(ContainerTy &&container) {
369   return adl_detail::adl_end(std::forward<ContainerTy>(container));
370 }
371 
372 template <typename T>
373 void adl_swap(T &&lhs, T &&rhs) noexcept(
374     noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
375   adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
376 }
377 
378 /// Returns true if the given container only contains a single element.
379 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
380   auto B = std::begin(C), E = std::end(C);
381   return B != E && std::next(B) == E;
382 }
383 
384 /// Return a range covering \p RangeOrContainer with the first N elements
385 /// excluded.
386 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
387   return make_range(std::next(adl_begin(RangeOrContainer), N),
388                     adl_end(RangeOrContainer));
389 }
390 
391 /// Return a range covering \p RangeOrContainer with the last N elements
392 /// excluded.
393 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
394   return make_range(adl_begin(RangeOrContainer),
395                     std::prev(adl_end(RangeOrContainer), N));
396 }
397 
398 // mapped_iterator - This is a simple iterator adapter that causes a function to
399 // be applied whenever operator* is invoked on the iterator.
400 
401 template <typename ItTy, typename FuncTy,
402           typename ReferenceTy =
403               decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
404 class mapped_iterator
405     : public iterator_adaptor_base<
406           mapped_iterator<ItTy, FuncTy>, ItTy,
407           typename std::iterator_traits<ItTy>::iterator_category,
408           std::remove_reference_t<ReferenceTy>,
409           typename std::iterator_traits<ItTy>::difference_type,
410           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
411 public:
412   mapped_iterator() = default;
413   mapped_iterator(ItTy U, FuncTy F)
414     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
415 
416   ItTy getCurrent() { return this->I; }
417 
418   const FuncTy &getFunction() const { return F; }
419 
420   ReferenceTy operator*() const { return F(*this->I); }
421 
422 private:
423   callable_detail::Callable<FuncTy> F{};
424 };
425 
426 // map_iterator - Provide a convenient way to create mapped_iterators, just like
427 // make_pair is useful for creating pairs...
428 template <class ItTy, class FuncTy>
429 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
430   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
431 }
432 
433 template <class ContainerTy, class FuncTy>
434 auto map_range(ContainerTy &&C, FuncTy F) {
435   return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
436 }
437 
438 /// A base type of mapped iterator, that is useful for building derived
439 /// iterators that do not need/want to store the map function (as in
440 /// mapped_iterator). These iterators must simply provide a `mapElement` method
441 /// that defines how to map a value of the iterator to the provided reference
442 /// type.
443 template <typename DerivedT, typename ItTy, typename ReferenceTy>
444 class mapped_iterator_base
445     : public iterator_adaptor_base<
446           DerivedT, ItTy,
447           typename std::iterator_traits<ItTy>::iterator_category,
448           std::remove_reference_t<ReferenceTy>,
449           typename std::iterator_traits<ItTy>::difference_type,
450           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
451 public:
452   using BaseT = mapped_iterator_base;
453 
454   mapped_iterator_base(ItTy U)
455       : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
456 
457   ItTy getCurrent() { return this->I; }
458 
459   ReferenceTy operator*() const {
460     return static_cast<const DerivedT &>(*this).mapElement(*this->I);
461   }
462 };
463 
464 /// Helper to determine if type T has a member called rbegin().
465 template <typename Ty> class has_rbegin_impl {
466   using yes = char[1];
467   using no = char[2];
468 
469   template <typename Inner>
470   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
471 
472   template <typename>
473   static no& test(...);
474 
475 public:
476   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
477 };
478 
479 /// Metafunction to determine if T& or T has a member called rbegin().
480 template <typename Ty>
481 struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
482 
483 // Returns an iterator_range over the given container which iterates in reverse.
484 template <typename ContainerTy> auto reverse(ContainerTy &&C) {
485   if constexpr (has_rbegin<ContainerTy>::value)
486     return make_range(C.rbegin(), C.rend());
487   else
488     return make_range(std::make_reverse_iterator(std::end(C)),
489                       std::make_reverse_iterator(std::begin(C)));
490 }
491 
492 /// An iterator adaptor that filters the elements of given inner iterators.
493 ///
494 /// The predicate parameter should be a callable object that accepts the wrapped
495 /// iterator's reference type and returns a bool. When incrementing or
496 /// decrementing the iterator, it will call the predicate on each element and
497 /// skip any where it returns false.
498 ///
499 /// \code
500 ///   int A[] = { 1, 2, 3, 4 };
501 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
502 ///   // R contains { 1, 3 }.
503 /// \endcode
504 ///
505 /// Note: filter_iterator_base implements support for forward iteration.
506 /// filter_iterator_impl exists to provide support for bidirectional iteration,
507 /// conditional on whether the wrapped iterator supports it.
508 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
509 class filter_iterator_base
510     : public iterator_adaptor_base<
511           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
512           WrappedIteratorT,
513           std::common_type_t<IterTag,
514                              typename std::iterator_traits<
515                                  WrappedIteratorT>::iterator_category>> {
516   using BaseT = typename filter_iterator_base::iterator_adaptor_base;
517 
518 protected:
519   WrappedIteratorT End;
520   PredicateT Pred;
521 
522   void findNextValid() {
523     while (this->I != End && !Pred(*this->I))
524       BaseT::operator++();
525   }
526 
527   filter_iterator_base() = default;
528 
529   // Construct the iterator. The begin iterator needs to know where the end
530   // is, so that it can properly stop when it gets there. The end iterator only
531   // needs the predicate to support bidirectional iteration.
532   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
533                        PredicateT Pred)
534       : BaseT(Begin), End(End), Pred(Pred) {
535     findNextValid();
536   }
537 
538 public:
539   using BaseT::operator++;
540 
541   filter_iterator_base &operator++() {
542     BaseT::operator++();
543     findNextValid();
544     return *this;
545   }
546 
547   decltype(auto) operator*() const {
548     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
549     return BaseT::operator*();
550   }
551 
552   decltype(auto) operator->() const {
553     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
554     return BaseT::operator->();
555   }
556 };
557 
558 /// Specialization of filter_iterator_base for forward iteration only.
559 template <typename WrappedIteratorT, typename PredicateT,
560           typename IterTag = std::forward_iterator_tag>
561 class filter_iterator_impl
562     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
563 public:
564   filter_iterator_impl() = default;
565 
566   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
567                        PredicateT Pred)
568       : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
569 };
570 
571 /// Specialization of filter_iterator_base for bidirectional iteration.
572 template <typename WrappedIteratorT, typename PredicateT>
573 class filter_iterator_impl<WrappedIteratorT, PredicateT,
574                            std::bidirectional_iterator_tag>
575     : public filter_iterator_base<WrappedIteratorT, PredicateT,
576                                   std::bidirectional_iterator_tag> {
577   using BaseT = typename filter_iterator_impl::filter_iterator_base;
578 
579   void findPrevValid() {
580     while (!this->Pred(*this->I))
581       BaseT::operator--();
582   }
583 
584 public:
585   using BaseT::operator--;
586 
587   filter_iterator_impl() = default;
588 
589   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
590                        PredicateT Pred)
591       : BaseT(Begin, End, Pred) {}
592 
593   filter_iterator_impl &operator--() {
594     BaseT::operator--();
595     findPrevValid();
596     return *this;
597   }
598 };
599 
600 namespace detail {
601 
602 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
603   using type = std::forward_iterator_tag;
604 };
605 
606 template <> struct fwd_or_bidi_tag_impl<true> {
607   using type = std::bidirectional_iterator_tag;
608 };
609 
610 /// Helper which sets its type member to forward_iterator_tag if the category
611 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
612 /// bidirectional_iterator_tag otherwise.
613 template <typename IterT> struct fwd_or_bidi_tag {
614   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
615       std::bidirectional_iterator_tag,
616       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
617 };
618 
619 } // namespace detail
620 
621 /// Defines filter_iterator to a suitable specialization of
622 /// filter_iterator_impl, based on the underlying iterator's category.
623 template <typename WrappedIteratorT, typename PredicateT>
624 using filter_iterator = filter_iterator_impl<
625     WrappedIteratorT, PredicateT,
626     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
627 
628 /// Convenience function that takes a range of elements and a predicate,
629 /// and return a new filter_iterator range.
630 ///
631 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
632 /// lifetime of that temporary is not kept by the returned range object, and the
633 /// temporary is going to be dropped on the floor after the make_iterator_range
634 /// full expression that contains this function call.
635 template <typename RangeT, typename PredicateT>
636 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
637 make_filter_range(RangeT &&Range, PredicateT Pred) {
638   using FilterIteratorT =
639       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
640   return make_range(
641       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
642                       std::end(std::forward<RangeT>(Range)), Pred),
643       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
644                       std::end(std::forward<RangeT>(Range)), Pred));
645 }
646 
647 /// A pseudo-iterator adaptor that is designed to implement "early increment"
648 /// style loops.
649 ///
650 /// This is *not a normal iterator* and should almost never be used directly. It
651 /// is intended primarily to be used with range based for loops and some range
652 /// algorithms.
653 ///
654 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
655 /// somewhere between them. The constraints of these iterators are:
656 ///
657 /// - On construction or after being incremented, it is comparable and
658 ///   dereferencable. It is *not* incrementable.
659 /// - After being dereferenced, it is neither comparable nor dereferencable, it
660 ///   is only incrementable.
661 ///
662 /// This means you can only dereference the iterator once, and you can only
663 /// increment it once between dereferences.
664 template <typename WrappedIteratorT>
665 class early_inc_iterator_impl
666     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
667                                    WrappedIteratorT, std::input_iterator_tag> {
668   using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
669 
670   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
671 
672 protected:
673 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
674   bool IsEarlyIncremented = false;
675 #endif
676 
677 public:
678   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
679 
680   using BaseT::operator*;
681   decltype(*std::declval<WrappedIteratorT>()) operator*() {
682 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
683     assert(!IsEarlyIncremented && "Cannot dereference twice!");
684     IsEarlyIncremented = true;
685 #endif
686     return *(this->I)++;
687   }
688 
689   using BaseT::operator++;
690   early_inc_iterator_impl &operator++() {
691 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
692     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
693     IsEarlyIncremented = false;
694 #endif
695     return *this;
696   }
697 
698   friend bool operator==(const early_inc_iterator_impl &LHS,
699                          const early_inc_iterator_impl &RHS) {
700 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
701     assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
702 #endif
703     return (const BaseT &)LHS == (const BaseT &)RHS;
704   }
705 };
706 
707 /// Make a range that does early increment to allow mutation of the underlying
708 /// range without disrupting iteration.
709 ///
710 /// The underlying iterator will be incremented immediately after it is
711 /// dereferenced, allowing deletion of the current node or insertion of nodes to
712 /// not disrupt iteration provided they do not invalidate the *next* iterator --
713 /// the current iterator can be invalidated.
714 ///
715 /// This requires a very exact pattern of use that is only really suitable to
716 /// range based for loops and other range algorithms that explicitly guarantee
717 /// to dereference exactly once each element, and to increment exactly once each
718 /// element.
719 template <typename RangeT>
720 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
721 make_early_inc_range(RangeT &&Range) {
722   using EarlyIncIteratorT =
723       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
724   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
725                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
726 }
727 
728 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
729 template <typename R, typename UnaryPredicate>
730 bool all_of(R &&range, UnaryPredicate P);
731 
732 template <typename R, typename UnaryPredicate>
733 bool any_of(R &&range, UnaryPredicate P);
734 
735 template <typename T> bool all_equal(std::initializer_list<T> Values);
736 
737 namespace detail {
738 
739 using std::declval;
740 
741 // We have to alias this since inlining the actual type at the usage site
742 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
743 template<typename... Iters> struct ZipTupleType {
744   using type = std::tuple<decltype(*declval<Iters>())...>;
745 };
746 
747 template <typename ZipType, typename... Iters>
748 using zip_traits = iterator_facade_base<
749     ZipType,
750     std::common_type_t<
751         std::bidirectional_iterator_tag,
752         typename std::iterator_traits<Iters>::iterator_category...>,
753     // ^ TODO: Implement random access methods.
754     typename ZipTupleType<Iters...>::type,
755     typename std::iterator_traits<
756         std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
757     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
758     // inner iterators have the same difference_type. It would fail if, for
759     // instance, the second field's difference_type were non-numeric while the
760     // first is.
761     typename ZipTupleType<Iters...>::type *,
762     typename ZipTupleType<Iters...>::type>;
763 
764 template <typename ZipType, typename... Iters>
765 struct zip_common : public zip_traits<ZipType, Iters...> {
766   using Base = zip_traits<ZipType, Iters...>;
767   using value_type = typename Base::value_type;
768 
769   std::tuple<Iters...> iterators;
770 
771 protected:
772   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
773     return value_type(*std::get<Ns>(iterators)...);
774   }
775 
776   template <size_t... Ns>
777   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
778     return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
779   }
780 
781   template <size_t... Ns>
782   decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
783     return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
784   }
785 
786   template <size_t... Ns>
787   bool test_all_equals(const zip_common &other,
788             std::index_sequence<Ns...>) const {
789     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
790             ...);
791   }
792 
793 public:
794   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
795 
796   value_type operator*() const {
797     return deref(std::index_sequence_for<Iters...>{});
798   }
799 
800   ZipType &operator++() {
801     iterators = tup_inc(std::index_sequence_for<Iters...>{});
802     return *reinterpret_cast<ZipType *>(this);
803   }
804 
805   ZipType &operator--() {
806     static_assert(Base::IsBidirectional,
807                   "All inner iterators must be at least bidirectional.");
808     iterators = tup_dec(std::index_sequence_for<Iters...>{});
809     return *reinterpret_cast<ZipType *>(this);
810   }
811 
812   /// Return true if all the iterator are matching `other`'s iterators.
813   bool all_equals(zip_common &other) {
814     return test_all_equals(other, std::index_sequence_for<Iters...>{});
815   }
816 };
817 
818 template <typename... Iters>
819 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
820   using Base = zip_common<zip_first<Iters...>, Iters...>;
821 
822   bool operator==(const zip_first<Iters...> &other) const {
823     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
824   }
825 
826   zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
827 };
828 
829 template <typename... Iters>
830 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
831   template <size_t... Ns>
832   bool test(const zip_shortest<Iters...> &other,
833             std::index_sequence<Ns...>) const {
834     return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) &&
835             ...);
836   }
837 
838 public:
839   using Base = zip_common<zip_shortest<Iters...>, Iters...>;
840 
841   zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
842 
843   bool operator==(const zip_shortest<Iters...> &other) const {
844     return !test(other, std::index_sequence_for<Iters...>{});
845   }
846 };
847 
848 template <template <typename...> class ItType, typename... Args> class zippy {
849 public:
850   using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
851   using iterator_category = typename iterator::iterator_category;
852   using value_type = typename iterator::value_type;
853   using difference_type = typename iterator::difference_type;
854   using pointer = typename iterator::pointer;
855   using reference = typename iterator::reference;
856 
857 private:
858   std::tuple<Args...> ts;
859 
860   template <size_t... Ns>
861   iterator begin_impl(std::index_sequence<Ns...>) const {
862     return iterator(std::begin(std::get<Ns>(ts))...);
863   }
864   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
865     return iterator(std::end(std::get<Ns>(ts))...);
866   }
867 
868 public:
869   zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
870 
871   iterator begin() const {
872     return begin_impl(std::index_sequence_for<Args...>{});
873   }
874   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
875 };
876 
877 } // end namespace detail
878 
879 /// zip iterator for two or more iteratable types. Iteration continues until the
880 /// end of the *shortest* iteratee is reached.
881 template <typename T, typename U, typename... Args>
882 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
883                                                        Args &&...args) {
884   return detail::zippy<detail::zip_shortest, T, U, Args...>(
885       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
886 }
887 
888 /// zip iterator that assumes that all iteratees have the same length.
889 /// In builds with assertions on, this assumption is checked before the
890 /// iteration starts.
891 template <typename T, typename U, typename... Args>
892 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
893                                                           Args &&...args) {
894   assert(all_equal({std::distance(adl_begin(t), adl_end(t)),
895                     std::distance(adl_begin(u), adl_end(u)),
896                     std::distance(adl_begin(args), adl_end(args))...}) &&
897          "Iteratees do not have equal length");
898   return detail::zippy<detail::zip_first, T, U, Args...>(
899       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
900 }
901 
902 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
903 /// be the shortest. Iteration continues until the end of the first iteratee is
904 /// reached. In builds with assertions on, we check that the assumption about
905 /// the first iteratee being the shortest holds.
906 template <typename T, typename U, typename... Args>
907 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
908                                                           Args &&...args) {
909   assert(std::distance(adl_begin(t), adl_end(t)) <=
910              std::min({std::distance(adl_begin(u), adl_end(u)),
911                        std::distance(adl_begin(args), adl_end(args))...}) &&
912          "First iteratee is not the shortest");
913 
914   return detail::zippy<detail::zip_first, T, U, Args...>(
915       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
916 }
917 
918 namespace detail {
919 template <typename Iter>
920 Iter next_or_end(const Iter &I, const Iter &End) {
921   if (I == End)
922     return End;
923   return std::next(I);
924 }
925 
926 template <typename Iter>
927 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
928     std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
929   if (I == End)
930     return std::nullopt;
931   return *I;
932 }
933 
934 template <typename Iter> struct ZipLongestItemType {
935   using type = std::optional<std::remove_const_t<
936       std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
937 };
938 
939 template <typename... Iters> struct ZipLongestTupleType {
940   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
941 };
942 
943 template <typename... Iters>
944 class zip_longest_iterator
945     : public iterator_facade_base<
946           zip_longest_iterator<Iters...>,
947           std::common_type_t<
948               std::forward_iterator_tag,
949               typename std::iterator_traits<Iters>::iterator_category...>,
950           typename ZipLongestTupleType<Iters...>::type,
951           typename std::iterator_traits<
952               std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
953           typename ZipLongestTupleType<Iters...>::type *,
954           typename ZipLongestTupleType<Iters...>::type> {
955 public:
956   using value_type = typename ZipLongestTupleType<Iters...>::type;
957 
958 private:
959   std::tuple<Iters...> iterators;
960   std::tuple<Iters...> end_iterators;
961 
962   template <size_t... Ns>
963   bool test(const zip_longest_iterator<Iters...> &other,
964             std::index_sequence<Ns...>) const {
965     return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
966             ...);
967   }
968 
969   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
970     return value_type(
971         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
972   }
973 
974   template <size_t... Ns>
975   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
976     return std::tuple<Iters...>(
977         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
978   }
979 
980 public:
981   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
982       : iterators(std::forward<Iters>(ts.first)...),
983         end_iterators(std::forward<Iters>(ts.second)...) {}
984 
985   value_type operator*() const {
986     return deref(std::index_sequence_for<Iters...>{});
987   }
988 
989   zip_longest_iterator<Iters...> &operator++() {
990     iterators = tup_inc(std::index_sequence_for<Iters...>{});
991     return *this;
992   }
993 
994   bool operator==(const zip_longest_iterator<Iters...> &other) const {
995     return !test(other, std::index_sequence_for<Iters...>{});
996   }
997 };
998 
999 template <typename... Args> class zip_longest_range {
1000 public:
1001   using iterator =
1002       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
1003   using iterator_category = typename iterator::iterator_category;
1004   using value_type = typename iterator::value_type;
1005   using difference_type = typename iterator::difference_type;
1006   using pointer = typename iterator::pointer;
1007   using reference = typename iterator::reference;
1008 
1009 private:
1010   std::tuple<Args...> ts;
1011 
1012   template <size_t... Ns>
1013   iterator begin_impl(std::index_sequence<Ns...>) const {
1014     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
1015                                    adl_end(std::get<Ns>(ts)))...);
1016   }
1017 
1018   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1019     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
1020                                    adl_end(std::get<Ns>(ts)))...);
1021   }
1022 
1023 public:
1024   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
1025 
1026   iterator begin() const {
1027     return begin_impl(std::index_sequence_for<Args...>{});
1028   }
1029   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
1030 };
1031 } // namespace detail
1032 
1033 /// Iterate over two or more iterators at the same time. Iteration continues
1034 /// until all iterators reach the end. The std::optional only contains a value
1035 /// if the iterator has not reached the end.
1036 template <typename T, typename U, typename... Args>
1037 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1038                                                      Args &&... args) {
1039   return detail::zip_longest_range<T, U, Args...>(
1040       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1041 }
1042 
1043 /// Iterator wrapper that concatenates sequences together.
1044 ///
1045 /// This can concatenate different iterators, even with different types, into
1046 /// a single iterator provided the value types of all the concatenated
1047 /// iterators expose `reference` and `pointer` types that can be converted to
1048 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
1049 /// interesting/customized pointer or reference types.
1050 ///
1051 /// Currently this only supports forward or higher iterator categories as
1052 /// inputs and always exposes a forward iterator interface.
1053 template <typename ValueT, typename... IterTs>
1054 class concat_iterator
1055     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1056                                   std::forward_iterator_tag, ValueT> {
1057   using BaseT = typename concat_iterator::iterator_facade_base;
1058 
1059   /// We store both the current and end iterators for each concatenated
1060   /// sequence in a tuple of pairs.
1061   ///
1062   /// Note that something like iterator_range seems nice at first here, but the
1063   /// range properties are of little benefit and end up getting in the way
1064   /// because we need to do mutation on the current iterators.
1065   std::tuple<IterTs...> Begins;
1066   std::tuple<IterTs...> Ends;
1067 
1068   /// Attempts to increment a specific iterator.
1069   ///
1070   /// Returns true if it was able to increment the iterator. Returns false if
1071   /// the iterator is already at the end iterator.
1072   template <size_t Index> bool incrementHelper() {
1073     auto &Begin = std::get<Index>(Begins);
1074     auto &End = std::get<Index>(Ends);
1075     if (Begin == End)
1076       return false;
1077 
1078     ++Begin;
1079     return true;
1080   }
1081 
1082   /// Increments the first non-end iterator.
1083   ///
1084   /// It is an error to call this with all iterators at the end.
1085   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1086     // Build a sequence of functions to increment each iterator if possible.
1087     bool (concat_iterator::*IncrementHelperFns[])() = {
1088         &concat_iterator::incrementHelper<Ns>...};
1089 
1090     // Loop over them, and stop as soon as we succeed at incrementing one.
1091     for (auto &IncrementHelperFn : IncrementHelperFns)
1092       if ((this->*IncrementHelperFn)())
1093         return;
1094 
1095     llvm_unreachable("Attempted to increment an end concat iterator!");
1096   }
1097 
1098   /// Returns null if the specified iterator is at the end. Otherwise,
1099   /// dereferences the iterator and returns the address of the resulting
1100   /// reference.
1101   template <size_t Index> ValueT *getHelper() const {
1102     auto &Begin = std::get<Index>(Begins);
1103     auto &End = std::get<Index>(Ends);
1104     if (Begin == End)
1105       return nullptr;
1106 
1107     return &*Begin;
1108   }
1109 
1110   /// Finds the first non-end iterator, dereferences, and returns the resulting
1111   /// reference.
1112   ///
1113   /// It is an error to call this with all iterators at the end.
1114   template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1115     // Build a sequence of functions to get from iterator if possible.
1116     ValueT *(concat_iterator::*GetHelperFns[])() const = {
1117         &concat_iterator::getHelper<Ns>...};
1118 
1119     // Loop over them, and return the first result we find.
1120     for (auto &GetHelperFn : GetHelperFns)
1121       if (ValueT *P = (this->*GetHelperFn)())
1122         return *P;
1123 
1124     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1125   }
1126 
1127 public:
1128   /// Constructs an iterator from a sequence of ranges.
1129   ///
1130   /// We need the full range to know how to switch between each of the
1131   /// iterators.
1132   template <typename... RangeTs>
1133   explicit concat_iterator(RangeTs &&... Ranges)
1134       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1135 
1136   using BaseT::operator++;
1137 
1138   concat_iterator &operator++() {
1139     increment(std::index_sequence_for<IterTs...>());
1140     return *this;
1141   }
1142 
1143   ValueT &operator*() const {
1144     return get(std::index_sequence_for<IterTs...>());
1145   }
1146 
1147   bool operator==(const concat_iterator &RHS) const {
1148     return Begins == RHS.Begins && Ends == RHS.Ends;
1149   }
1150 };
1151 
1152 namespace detail {
1153 
1154 /// Helper to store a sequence of ranges being concatenated and access them.
1155 ///
1156 /// This is designed to facilitate providing actual storage when temporaries
1157 /// are passed into the constructor such that we can use it as part of range
1158 /// based for loops.
1159 template <typename ValueT, typename... RangeTs> class concat_range {
1160 public:
1161   using iterator =
1162       concat_iterator<ValueT,
1163                       decltype(std::begin(std::declval<RangeTs &>()))...>;
1164 
1165 private:
1166   std::tuple<RangeTs...> Ranges;
1167 
1168   template <size_t... Ns>
1169   iterator begin_impl(std::index_sequence<Ns...>) {
1170     return iterator(std::get<Ns>(Ranges)...);
1171   }
1172   template <size_t... Ns>
1173   iterator begin_impl(std::index_sequence<Ns...>) const {
1174     return iterator(std::get<Ns>(Ranges)...);
1175   }
1176   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1177     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1178                                std::end(std::get<Ns>(Ranges)))...);
1179   }
1180   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1181     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1182                                std::end(std::get<Ns>(Ranges)))...);
1183   }
1184 
1185 public:
1186   concat_range(RangeTs &&... Ranges)
1187       : Ranges(std::forward<RangeTs>(Ranges)...) {}
1188 
1189   iterator begin() {
1190     return begin_impl(std::index_sequence_for<RangeTs...>{});
1191   }
1192   iterator begin() const {
1193     return begin_impl(std::index_sequence_for<RangeTs...>{});
1194   }
1195   iterator end() {
1196     return end_impl(std::index_sequence_for<RangeTs...>{});
1197   }
1198   iterator end() const {
1199     return end_impl(std::index_sequence_for<RangeTs...>{});
1200   }
1201 };
1202 
1203 } // end namespace detail
1204 
1205 /// Concatenated range across two or more ranges.
1206 ///
1207 /// The desired value type must be explicitly specified.
1208 template <typename ValueT, typename... RangeTs>
1209 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1210   static_assert(sizeof...(RangeTs) > 1,
1211                 "Need more than one range to concatenate!");
1212   return detail::concat_range<ValueT, RangeTs...>(
1213       std::forward<RangeTs>(Ranges)...);
1214 }
1215 
1216 /// A utility class used to implement an iterator that contains some base object
1217 /// and an index. The iterator moves the index but keeps the base constant.
1218 template <typename DerivedT, typename BaseT, typename T,
1219           typename PointerT = T *, typename ReferenceT = T &>
1220 class indexed_accessor_iterator
1221     : public llvm::iterator_facade_base<DerivedT,
1222                                         std::random_access_iterator_tag, T,
1223                                         std::ptrdiff_t, PointerT, ReferenceT> {
1224 public:
1225   ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1226     assert(base == rhs.base && "incompatible iterators");
1227     return index - rhs.index;
1228   }
1229   bool operator==(const indexed_accessor_iterator &rhs) const {
1230     return base == rhs.base && index == rhs.index;
1231   }
1232   bool operator<(const indexed_accessor_iterator &rhs) const {
1233     assert(base == rhs.base && "incompatible iterators");
1234     return index < rhs.index;
1235   }
1236 
1237   DerivedT &operator+=(ptrdiff_t offset) {
1238     this->index += offset;
1239     return static_cast<DerivedT &>(*this);
1240   }
1241   DerivedT &operator-=(ptrdiff_t offset) {
1242     this->index -= offset;
1243     return static_cast<DerivedT &>(*this);
1244   }
1245 
1246   /// Returns the current index of the iterator.
1247   ptrdiff_t getIndex() const { return index; }
1248 
1249   /// Returns the current base of the iterator.
1250   const BaseT &getBase() const { return base; }
1251 
1252 protected:
1253   indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1254       : base(base), index(index) {}
1255   BaseT base;
1256   ptrdiff_t index;
1257 };
1258 
1259 namespace detail {
1260 /// The class represents the base of a range of indexed_accessor_iterators. It
1261 /// provides support for many different range functionalities, e.g.
1262 /// drop_front/slice/etc.. Derived range classes must implement the following
1263 /// static methods:
1264 ///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1265 ///     - Dereference an iterator pointing to the base object at the given
1266 ///       index.
1267 ///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1268 ///     - Return a new base that is offset from the provide base by 'index'
1269 ///       elements.
1270 template <typename DerivedT, typename BaseT, typename T,
1271           typename PointerT = T *, typename ReferenceT = T &>
1272 class indexed_accessor_range_base {
1273 public:
1274   using RangeBaseT = indexed_accessor_range_base;
1275 
1276   /// An iterator element of this range.
1277   class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1278                                                     PointerT, ReferenceT> {
1279   public:
1280     // Index into this iterator, invoking a static method on the derived type.
1281     ReferenceT operator*() const {
1282       return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1283     }
1284 
1285   private:
1286     iterator(BaseT owner, ptrdiff_t curIndex)
1287         : iterator::indexed_accessor_iterator(owner, curIndex) {}
1288 
1289     /// Allow access to the constructor.
1290     friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1291                                        ReferenceT>;
1292   };
1293 
1294   indexed_accessor_range_base(iterator begin, iterator end)
1295       : base(offset_base(begin.getBase(), begin.getIndex())),
1296         count(end.getIndex() - begin.getIndex()) {}
1297   indexed_accessor_range_base(const iterator_range<iterator> &range)
1298       : indexed_accessor_range_base(range.begin(), range.end()) {}
1299   indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1300       : base(base), count(count) {}
1301 
1302   iterator begin() const { return iterator(base, 0); }
1303   iterator end() const { return iterator(base, count); }
1304   ReferenceT operator[](size_t Index) const {
1305     assert(Index < size() && "invalid index for value range");
1306     return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1307   }
1308   ReferenceT front() const {
1309     assert(!empty() && "expected non-empty range");
1310     return (*this)[0];
1311   }
1312   ReferenceT back() const {
1313     assert(!empty() && "expected non-empty range");
1314     return (*this)[size() - 1];
1315   }
1316 
1317   /// Compare this range with another.
1318   template <typename OtherT>
1319   friend bool operator==(const indexed_accessor_range_base &lhs,
1320                          const OtherT &rhs) {
1321     return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1322   }
1323   template <typename OtherT>
1324   friend bool operator!=(const indexed_accessor_range_base &lhs,
1325                          const OtherT &rhs) {
1326     return !(lhs == rhs);
1327   }
1328 
1329   /// Return the size of this range.
1330   size_t size() const { return count; }
1331 
1332   /// Return if the range is empty.
1333   bool empty() const { return size() == 0; }
1334 
1335   /// Drop the first N elements, and keep M elements.
1336   DerivedT slice(size_t n, size_t m) const {
1337     assert(n + m <= size() && "invalid size specifiers");
1338     return DerivedT(offset_base(base, n), m);
1339   }
1340 
1341   /// Drop the first n elements.
1342   DerivedT drop_front(size_t n = 1) const {
1343     assert(size() >= n && "Dropping more elements than exist");
1344     return slice(n, size() - n);
1345   }
1346   /// Drop the last n elements.
1347   DerivedT drop_back(size_t n = 1) const {
1348     assert(size() >= n && "Dropping more elements than exist");
1349     return DerivedT(base, size() - n);
1350   }
1351 
1352   /// Take the first n elements.
1353   DerivedT take_front(size_t n = 1) const {
1354     return n < size() ? drop_back(size() - n)
1355                       : static_cast<const DerivedT &>(*this);
1356   }
1357 
1358   /// Take the last n elements.
1359   DerivedT take_back(size_t n = 1) const {
1360     return n < size() ? drop_front(size() - n)
1361                       : static_cast<const DerivedT &>(*this);
1362   }
1363 
1364   /// Allow conversion to any type accepting an iterator_range.
1365   template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1366                                  RangeT, iterator_range<iterator>>::value>>
1367   operator RangeT() const {
1368     return RangeT(iterator_range<iterator>(*this));
1369   }
1370 
1371   /// Returns the base of this range.
1372   const BaseT &getBase() const { return base; }
1373 
1374 private:
1375   /// Offset the given base by the given amount.
1376   static BaseT offset_base(const BaseT &base, size_t n) {
1377     return n == 0 ? base : DerivedT::offset_base(base, n);
1378   }
1379 
1380 protected:
1381   indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1382   indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1383   indexed_accessor_range_base &
1384   operator=(const indexed_accessor_range_base &) = default;
1385 
1386   /// The base that owns the provided range of values.
1387   BaseT base;
1388   /// The size from the owning range.
1389   ptrdiff_t count;
1390 };
1391 } // end namespace detail
1392 
1393 /// This class provides an implementation of a range of
1394 /// indexed_accessor_iterators where the base is not indexable. Ranges with
1395 /// bases that are offsetable should derive from indexed_accessor_range_base
1396 /// instead. Derived range classes are expected to implement the following
1397 /// static method:
1398 ///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1399 ///     - Dereference an iterator pointing to a parent base at the given index.
1400 template <typename DerivedT, typename BaseT, typename T,
1401           typename PointerT = T *, typename ReferenceT = T &>
1402 class indexed_accessor_range
1403     : public detail::indexed_accessor_range_base<
1404           DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1405 public:
1406   indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1407       : detail::indexed_accessor_range_base<
1408             DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1409             std::make_pair(base, startIndex), count) {}
1410   using detail::indexed_accessor_range_base<
1411       DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1412       ReferenceT>::indexed_accessor_range_base;
1413 
1414   /// Returns the current base of the range.
1415   const BaseT &getBase() const { return this->base.first; }
1416 
1417   /// Returns the current start index of the range.
1418   ptrdiff_t getStartIndex() const { return this->base.second; }
1419 
1420   /// See `detail::indexed_accessor_range_base` for details.
1421   static std::pair<BaseT, ptrdiff_t>
1422   offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1423     // We encode the internal base as a pair of the derived base and a start
1424     // index into the derived base.
1425     return std::make_pair(base.first, base.second + index);
1426   }
1427   /// See `detail::indexed_accessor_range_base` for details.
1428   static ReferenceT
1429   dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1430                        ptrdiff_t index) {
1431     return DerivedT::dereference(base.first, base.second + index);
1432   }
1433 };
1434 
1435 namespace detail {
1436 /// Return a reference to the first or second member of a reference. Otherwise,
1437 /// return a copy of the member of a temporary.
1438 ///
1439 /// When passing a range whose iterators return values instead of references,
1440 /// the reference must be dropped from `decltype((elt.first))`, which will
1441 /// always be a reference, to avoid returning a reference to a temporary.
1442 template <typename EltTy, typename FirstTy> class first_or_second_type {
1443 public:
1444   using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1445                                   std::remove_reference_t<FirstTy>>;
1446 };
1447 } // end namespace detail
1448 
1449 /// Given a container of pairs, return a range over the first elements.
1450 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1451   using EltTy = decltype((*std::begin(c)));
1452   return llvm::map_range(std::forward<ContainerTy>(c),
1453                          [](EltTy elt) -> typename detail::first_or_second_type<
1454                                            EltTy, decltype((elt.first))>::type {
1455                            return elt.first;
1456                          });
1457 }
1458 
1459 /// Given a container of pairs, return a range over the second elements.
1460 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1461   using EltTy = decltype((*std::begin(c)));
1462   return llvm::map_range(
1463       std::forward<ContainerTy>(c),
1464       [](EltTy elt) ->
1465       typename detail::first_or_second_type<EltTy,
1466                                             decltype((elt.second))>::type {
1467         return elt.second;
1468       });
1469 }
1470 
1471 //===----------------------------------------------------------------------===//
1472 //     Extra additions to <utility>
1473 //===----------------------------------------------------------------------===//
1474 
1475 /// Function object to check whether the first component of a std::pair
1476 /// compares less than the first component of another std::pair.
1477 struct less_first {
1478   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1479     return std::less<>()(lhs.first, rhs.first);
1480   }
1481 };
1482 
1483 /// Function object to check whether the second component of a std::pair
1484 /// compares less than the second component of another std::pair.
1485 struct less_second {
1486   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1487     return std::less<>()(lhs.second, rhs.second);
1488   }
1489 };
1490 
1491 /// \brief Function object to apply a binary function to the first component of
1492 /// a std::pair.
1493 template<typename FuncTy>
1494 struct on_first {
1495   FuncTy func;
1496 
1497   template <typename T>
1498   decltype(auto) operator()(const T &lhs, const T &rhs) const {
1499     return func(lhs.first, rhs.first);
1500   }
1501 };
1502 
1503 /// Utility type to build an inheritance chain that makes it easy to rank
1504 /// overload candidates.
1505 template <int N> struct rank : rank<N - 1> {};
1506 template <> struct rank<0> {};
1507 
1508 /// traits class for checking whether type T is one of any of the given
1509 /// types in the variadic list.
1510 template <typename T, typename... Ts>
1511 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
1512 
1513 /// traits class for checking whether type T is a base class for all
1514 ///  the given types in the variadic list.
1515 template <typename T, typename... Ts>
1516 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
1517 
1518 namespace detail {
1519 template <typename... Ts> struct Visitor;
1520 
1521 template <typename HeadT, typename... TailTs>
1522 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1523   explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1524       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1525         Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1526   using remove_cvref_t<HeadT>::operator();
1527   using Visitor<TailTs...>::operator();
1528 };
1529 
1530 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1531   explicit constexpr Visitor(HeadT &&Head)
1532       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1533   using remove_cvref_t<HeadT>::operator();
1534 };
1535 } // namespace detail
1536 
1537 /// Returns an opaquely-typed Callable object whose operator() overload set is
1538 /// the sum of the operator() overload sets of each CallableT in CallableTs.
1539 ///
1540 /// The type of the returned object derives from each CallableT in CallableTs.
1541 /// The returned object is constructed by invoking the appropriate copy or move
1542 /// constructor of each CallableT, as selected by overload resolution on the
1543 /// corresponding argument to makeVisitor.
1544 ///
1545 /// Example:
1546 ///
1547 /// \code
1548 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1549 ///                            [](int i) { return "int"; },
1550 ///                            [](std::string s) { return "str"; });
1551 /// auto a = visitor(42);    // `a` is now "int".
1552 /// auto b = visitor("foo"); // `b` is now "str".
1553 /// auto c = visitor(3.14f); // `c` is now "unhandled type".
1554 /// \endcode
1555 ///
1556 /// Example of making a visitor with a lambda which captures a move-only type:
1557 ///
1558 /// \code
1559 /// std::unique_ptr<FooHandler> FH = /* ... */;
1560 /// auto visitor = makeVisitor(
1561 ///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1562 ///     [](int i) { return i; },
1563 ///     [](std::string s) { return atoi(s); });
1564 /// \endcode
1565 template <typename... CallableTs>
1566 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1567   return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1568 }
1569 
1570 //===----------------------------------------------------------------------===//
1571 //     Extra additions to <algorithm>
1572 //===----------------------------------------------------------------------===//
1573 
1574 // We have a copy here so that LLVM behaves the same when using different
1575 // standard libraries.
1576 template <class Iterator, class RNG>
1577 void shuffle(Iterator first, Iterator last, RNG &&g) {
1578   // It would be better to use a std::uniform_int_distribution,
1579   // but that would be stdlib dependent.
1580   typedef
1581       typename std::iterator_traits<Iterator>::difference_type difference_type;
1582   for (auto size = last - first; size > 1; ++first, (void)--size) {
1583     difference_type offset = g() % size;
1584     // Avoid self-assignment due to incorrect assertions in libstdc++
1585     // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1586     if (offset != difference_type(0))
1587       std::iter_swap(first, first + offset);
1588   }
1589 }
1590 
1591 /// Adapt std::less<T> for array_pod_sort.
1592 template<typename T>
1593 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1594   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1595                      *reinterpret_cast<const T*>(P2)))
1596     return -1;
1597   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1598                      *reinterpret_cast<const T*>(P1)))
1599     return 1;
1600   return 0;
1601 }
1602 
1603 /// get_array_pod_sort_comparator - This is an internal helper function used to
1604 /// get type deduction of T right.
1605 template<typename T>
1606 inline int (*get_array_pod_sort_comparator(const T &))
1607              (const void*, const void*) {
1608   return array_pod_sort_comparator<T>;
1609 }
1610 
1611 #ifdef EXPENSIVE_CHECKS
1612 namespace detail {
1613 
1614 inline unsigned presortShuffleEntropy() {
1615   static unsigned Result(std::random_device{}());
1616   return Result;
1617 }
1618 
1619 template <class IteratorTy>
1620 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1621   std::mt19937 Generator(presortShuffleEntropy());
1622   llvm::shuffle(Start, End, Generator);
1623 }
1624 
1625 } // end namespace detail
1626 #endif
1627 
1628 /// array_pod_sort - This sorts an array with the specified start and end
1629 /// extent.  This is just like std::sort, except that it calls qsort instead of
1630 /// using an inlined template.  qsort is slightly slower than std::sort, but
1631 /// most sorts are not performance critical in LLVM and std::sort has to be
1632 /// template instantiated for each type, leading to significant measured code
1633 /// bloat.  This function should generally be used instead of std::sort where
1634 /// possible.
1635 ///
1636 /// This function assumes that you have simple POD-like types that can be
1637 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1638 /// you should use std::sort.
1639 ///
1640 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1641 /// default to std::less.
1642 template<class IteratorTy>
1643 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1644   // Don't inefficiently call qsort with one element or trigger undefined
1645   // behavior with an empty sequence.
1646   auto NElts = End - Start;
1647   if (NElts <= 1) return;
1648 #ifdef EXPENSIVE_CHECKS
1649   detail::presortShuffle<IteratorTy>(Start, End);
1650 #endif
1651   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1652 }
1653 
1654 template <class IteratorTy>
1655 inline void array_pod_sort(
1656     IteratorTy Start, IteratorTy End,
1657     int (*Compare)(
1658         const typename std::iterator_traits<IteratorTy>::value_type *,
1659         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1660   // Don't inefficiently call qsort with one element or trigger undefined
1661   // behavior with an empty sequence.
1662   auto NElts = End - Start;
1663   if (NElts <= 1) return;
1664 #ifdef EXPENSIVE_CHECKS
1665   detail::presortShuffle<IteratorTy>(Start, End);
1666 #endif
1667   qsort(&*Start, NElts, sizeof(*Start),
1668         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1669 }
1670 
1671 namespace detail {
1672 template <typename T>
1673 // We can use qsort if the iterator type is a pointer and the underlying value
1674 // is trivially copyable.
1675 using sort_trivially_copyable = std::conjunction<
1676     std::is_pointer<T>,
1677     std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1678 } // namespace detail
1679 
1680 // Provide wrappers to std::sort which shuffle the elements before sorting
1681 // to help uncover non-deterministic behavior (PR35135).
1682 template <typename IteratorTy>
1683 inline void sort(IteratorTy Start, IteratorTy End) {
1684   if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1685     // Forward trivially copyable types to array_pod_sort. This avoids a large
1686     // amount of code bloat for a minor performance hit.
1687     array_pod_sort(Start, End);
1688   } else {
1689 #ifdef EXPENSIVE_CHECKS
1690     detail::presortShuffle<IteratorTy>(Start, End);
1691 #endif
1692     std::sort(Start, End);
1693   }
1694 }
1695 
1696 template <typename Container> inline void sort(Container &&C) {
1697   llvm::sort(adl_begin(C), adl_end(C));
1698 }
1699 
1700 template <typename IteratorTy, typename Compare>
1701 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1702 #ifdef EXPENSIVE_CHECKS
1703   detail::presortShuffle<IteratorTy>(Start, End);
1704 #endif
1705   std::sort(Start, End, Comp);
1706 }
1707 
1708 template <typename Container, typename Compare>
1709 inline void sort(Container &&C, Compare Comp) {
1710   llvm::sort(adl_begin(C), adl_end(C), Comp);
1711 }
1712 
1713 /// Get the size of a range. This is a wrapper function around std::distance
1714 /// which is only enabled when the operation is O(1).
1715 template <typename R>
1716 auto size(R &&Range,
1717           std::enable_if_t<
1718               std::is_base_of<std::random_access_iterator_tag,
1719                               typename std::iterator_traits<decltype(
1720                                   Range.begin())>::iterator_category>::value,
1721               void> * = nullptr) {
1722   return std::distance(Range.begin(), Range.end());
1723 }
1724 
1725 /// Provide wrappers to std::for_each which take ranges instead of having to
1726 /// pass begin/end explicitly.
1727 template <typename R, typename UnaryFunction>
1728 UnaryFunction for_each(R &&Range, UnaryFunction F) {
1729   return std::for_each(adl_begin(Range), adl_end(Range), F);
1730 }
1731 
1732 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1733 /// begin/end explicitly.
1734 template <typename R, typename UnaryPredicate>
1735 bool all_of(R &&Range, UnaryPredicate P) {
1736   return std::all_of(adl_begin(Range), adl_end(Range), P);
1737 }
1738 
1739 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1740 /// begin/end explicitly.
1741 template <typename R, typename UnaryPredicate>
1742 bool any_of(R &&Range, UnaryPredicate P) {
1743   return std::any_of(adl_begin(Range), adl_end(Range), P);
1744 }
1745 
1746 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1747 /// begin/end explicitly.
1748 template <typename R, typename UnaryPredicate>
1749 bool none_of(R &&Range, UnaryPredicate P) {
1750   return std::none_of(adl_begin(Range), adl_end(Range), P);
1751 }
1752 
1753 /// Provide wrappers to std::find which take ranges instead of having to pass
1754 /// begin/end explicitly.
1755 template <typename R, typename T> auto find(R &&Range, const T &Val) {
1756   return std::find(adl_begin(Range), adl_end(Range), Val);
1757 }
1758 
1759 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1760 /// begin/end explicitly.
1761 template <typename R, typename UnaryPredicate>
1762 auto find_if(R &&Range, UnaryPredicate P) {
1763   return std::find_if(adl_begin(Range), adl_end(Range), P);
1764 }
1765 
1766 template <typename R, typename UnaryPredicate>
1767 auto find_if_not(R &&Range, UnaryPredicate P) {
1768   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1769 }
1770 
1771 /// Provide wrappers to std::remove_if which take ranges instead of having to
1772 /// pass begin/end explicitly.
1773 template <typename R, typename UnaryPredicate>
1774 auto remove_if(R &&Range, UnaryPredicate P) {
1775   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1776 }
1777 
1778 /// Provide wrappers to std::copy_if which take ranges instead of having to
1779 /// pass begin/end explicitly.
1780 template <typename R, typename OutputIt, typename UnaryPredicate>
1781 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1782   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1783 }
1784 
1785 /// Return the single value in \p Range that satisfies
1786 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1787 /// when no values or multiple values were found.
1788 /// When \p AllowRepeats is true, multiple values that compare equal
1789 /// are allowed.
1790 template <typename T, typename R, typename Predicate>
1791 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1792   T *RC = nullptr;
1793   for (auto *A : Range) {
1794     if (T *PRC = P(A, AllowRepeats)) {
1795       if (RC) {
1796         if (!AllowRepeats || PRC != RC)
1797           return nullptr;
1798       } else
1799         RC = PRC;
1800     }
1801   }
1802   return RC;
1803 }
1804 
1805 /// Return a pair consisting of the single value in \p Range that satisfies
1806 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1807 /// nullptr when no values or multiple values were found, and a bool indicating
1808 /// whether multiple values were found to cause the nullptr.
1809 /// When \p AllowRepeats is true, multiple values that compare equal are
1810 /// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1811 /// singleton while the bool indicates whether multiples have already been
1812 /// found.  It is expected that first will be nullptr when second is true.
1813 /// This allows using find_singleton_nested within the predicate \P.
1814 template <typename T, typename R, typename Predicate>
1815 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1816                                            bool AllowRepeats = false) {
1817   T *RC = nullptr;
1818   for (auto *A : Range) {
1819     std::pair<T *, bool> PRC = P(A, AllowRepeats);
1820     if (PRC.second) {
1821       assert(PRC.first == nullptr &&
1822              "Inconsistent return values in find_singleton_nested.");
1823       return PRC;
1824     }
1825     if (PRC.first) {
1826       if (RC) {
1827         if (!AllowRepeats || PRC.first != RC)
1828           return {nullptr, true};
1829       } else
1830         RC = PRC.first;
1831     }
1832   }
1833   return {RC, false};
1834 }
1835 
1836 template <typename R, typename OutputIt>
1837 OutputIt copy(R &&Range, OutputIt Out) {
1838   return std::copy(adl_begin(Range), adl_end(Range), Out);
1839 }
1840 
1841 /// Provide wrappers to std::replace_copy_if which take ranges instead of having
1842 /// to pass begin/end explicitly.
1843 template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1844 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1845                          const T &NewValue) {
1846   return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1847                               NewValue);
1848 }
1849 
1850 /// Provide wrappers to std::replace_copy which take ranges instead of having to
1851 /// pass begin/end explicitly.
1852 template <typename R, typename OutputIt, typename T>
1853 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1854                       const T &NewValue) {
1855   return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1856                            NewValue);
1857 }
1858 
1859 /// Provide wrappers to std::move which take ranges instead of having to
1860 /// pass begin/end explicitly.
1861 template <typename R, typename OutputIt>
1862 OutputIt move(R &&Range, OutputIt Out) {
1863   return std::move(adl_begin(Range), adl_end(Range), Out);
1864 }
1865 
1866 /// Wrapper function around std::find to detect if an element exists
1867 /// in a container.
1868 template <typename R, typename E>
1869 bool is_contained(R &&Range, const E &Element) {
1870   return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1871 }
1872 
1873 template <typename T>
1874 constexpr bool is_contained(std::initializer_list<T> Set, T Value) {
1875   // TODO: Use std::find when we switch to C++20.
1876   for (T V : Set)
1877     if (V == Value)
1878       return true;
1879   return false;
1880 }
1881 
1882 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1883 /// are sorted with respect to a comparator \p C.
1884 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1885   return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1886 }
1887 
1888 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1889 /// are sorted in non-descending order.
1890 template <typename R> bool is_sorted(R &&Range) {
1891   return std::is_sorted(adl_begin(Range), adl_end(Range));
1892 }
1893 
1894 /// Wrapper function around std::count to count the number of times an element
1895 /// \p Element occurs in the given range \p Range.
1896 template <typename R, typename E> auto count(R &&Range, const E &Element) {
1897   return std::count(adl_begin(Range), adl_end(Range), Element);
1898 }
1899 
1900 /// Wrapper function around std::count_if to count the number of times an
1901 /// element satisfying a given predicate occurs in a range.
1902 template <typename R, typename UnaryPredicate>
1903 auto count_if(R &&Range, UnaryPredicate P) {
1904   return std::count_if(adl_begin(Range), adl_end(Range), P);
1905 }
1906 
1907 /// Wrapper function around std::transform to apply a function to a range and
1908 /// store the result elsewhere.
1909 template <typename R, typename OutputIt, typename UnaryFunction>
1910 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1911   return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1912 }
1913 
1914 /// Provide wrappers to std::partition which take ranges instead of having to
1915 /// pass begin/end explicitly.
1916 template <typename R, typename UnaryPredicate>
1917 auto partition(R &&Range, UnaryPredicate P) {
1918   return std::partition(adl_begin(Range), adl_end(Range), P);
1919 }
1920 
1921 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1922 /// pass begin/end explicitly.
1923 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1924   return std::lower_bound(adl_begin(Range), adl_end(Range),
1925                           std::forward<T>(Value));
1926 }
1927 
1928 template <typename R, typename T, typename Compare>
1929 auto lower_bound(R &&Range, T &&Value, Compare C) {
1930   return std::lower_bound(adl_begin(Range), adl_end(Range),
1931                           std::forward<T>(Value), C);
1932 }
1933 
1934 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1935 /// pass begin/end explicitly.
1936 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1937   return std::upper_bound(adl_begin(Range), adl_end(Range),
1938                           std::forward<T>(Value));
1939 }
1940 
1941 template <typename R, typename T, typename Compare>
1942 auto upper_bound(R &&Range, T &&Value, Compare C) {
1943   return std::upper_bound(adl_begin(Range), adl_end(Range),
1944                           std::forward<T>(Value), C);
1945 }
1946 
1947 template <typename R>
1948 void stable_sort(R &&Range) {
1949   std::stable_sort(adl_begin(Range), adl_end(Range));
1950 }
1951 
1952 template <typename R, typename Compare>
1953 void stable_sort(R &&Range, Compare C) {
1954   std::stable_sort(adl_begin(Range), adl_end(Range), C);
1955 }
1956 
1957 /// Binary search for the first iterator in a range where a predicate is false.
1958 /// Requires that C is always true below some limit, and always false above it.
1959 template <typename R, typename Predicate,
1960           typename Val = decltype(*adl_begin(std::declval<R>()))>
1961 auto partition_point(R &&Range, Predicate P) {
1962   return std::partition_point(adl_begin(Range), adl_end(Range), P);
1963 }
1964 
1965 template<typename Range, typename Predicate>
1966 auto unique(Range &&R, Predicate P) {
1967   return std::unique(adl_begin(R), adl_end(R), P);
1968 }
1969 
1970 /// Wrapper function around std::equal to detect if pair-wise elements between
1971 /// two ranges are the same.
1972 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
1973   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
1974                     adl_end(RRange));
1975 }
1976 
1977 /// Returns true if all elements in Range are equal or when the Range is empty.
1978 template <typename R> bool all_equal(R &&Range) {
1979   auto Begin = adl_begin(Range);
1980   auto End = adl_end(Range);
1981   return Begin == End || std::equal(Begin + 1, End, Begin);
1982 }
1983 
1984 /// Returns true if all Values in the initializer lists are equal or the list
1985 // is empty.
1986 template <typename T> bool all_equal(std::initializer_list<T> Values) {
1987   return all_equal<std::initializer_list<T>>(std::move(Values));
1988 }
1989 
1990 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1991 /// `erase_if` which is equivalent to:
1992 ///
1993 ///   C.erase(remove_if(C, pred), C.end());
1994 ///
1995 /// This version works for any container with an erase method call accepting
1996 /// two iterators.
1997 template <typename Container, typename UnaryPredicate>
1998 void erase_if(Container &C, UnaryPredicate P) {
1999   C.erase(remove_if(C, P), C.end());
2000 }
2001 
2002 /// Wrapper function to remove a value from a container:
2003 ///
2004 /// C.erase(remove(C.begin(), C.end(), V), C.end());
2005 template <typename Container, typename ValueType>
2006 void erase_value(Container &C, ValueType V) {
2007   C.erase(std::remove(C.begin(), C.end(), V), C.end());
2008 }
2009 
2010 /// Wrapper function to append a range to a container.
2011 ///
2012 /// C.insert(C.end(), R.begin(), R.end());
2013 template <typename Container, typename Range>
2014 inline void append_range(Container &C, Range &&R) {
2015   C.insert(C.end(), R.begin(), R.end());
2016 }
2017 
2018 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2019 /// the range [ValIt, ValEnd) (which is not from the same container).
2020 template<typename Container, typename RandomAccessIterator>
2021 void replace(Container &Cont, typename Container::iterator ContIt,
2022              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2023              RandomAccessIterator ValEnd) {
2024   while (true) {
2025     if (ValIt == ValEnd) {
2026       Cont.erase(ContIt, ContEnd);
2027       return;
2028     } else if (ContIt == ContEnd) {
2029       Cont.insert(ContIt, ValIt, ValEnd);
2030       return;
2031     }
2032     *ContIt++ = *ValIt++;
2033   }
2034 }
2035 
2036 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2037 /// the range R.
2038 template<typename Container, typename Range = std::initializer_list<
2039                                  typename Container::value_type>>
2040 void replace(Container &Cont, typename Container::iterator ContIt,
2041              typename Container::iterator ContEnd, Range R) {
2042   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2043 }
2044 
2045 /// An STL-style algorithm similar to std::for_each that applies a second
2046 /// functor between every pair of elements.
2047 ///
2048 /// This provides the control flow logic to, for example, print a
2049 /// comma-separated list:
2050 /// \code
2051 ///   interleave(names.begin(), names.end(),
2052 ///              [&](StringRef name) { os << name; },
2053 ///              [&] { os << ", "; });
2054 /// \endcode
2055 template <typename ForwardIterator, typename UnaryFunctor,
2056           typename NullaryFunctor,
2057           typename = std::enable_if_t<
2058               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2059               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2060 inline void interleave(ForwardIterator begin, ForwardIterator end,
2061                        UnaryFunctor each_fn, NullaryFunctor between_fn) {
2062   if (begin == end)
2063     return;
2064   each_fn(*begin);
2065   ++begin;
2066   for (; begin != end; ++begin) {
2067     between_fn();
2068     each_fn(*begin);
2069   }
2070 }
2071 
2072 template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2073           typename = std::enable_if_t<
2074               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2075               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2076 inline void interleave(const Container &c, UnaryFunctor each_fn,
2077                        NullaryFunctor between_fn) {
2078   interleave(c.begin(), c.end(), each_fn, between_fn);
2079 }
2080 
2081 /// Overload of interleave for the common case of string separator.
2082 template <typename Container, typename UnaryFunctor, typename StreamT,
2083           typename T = detail::ValueOfRange<Container>>
2084 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2085                        const StringRef &separator) {
2086   interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
2087 }
2088 template <typename Container, typename StreamT,
2089           typename T = detail::ValueOfRange<Container>>
2090 inline void interleave(const Container &c, StreamT &os,
2091                        const StringRef &separator) {
2092   interleave(
2093       c, os, [&](const T &a) { os << a; }, separator);
2094 }
2095 
2096 template <typename Container, typename UnaryFunctor, typename StreamT,
2097           typename T = detail::ValueOfRange<Container>>
2098 inline void interleaveComma(const Container &c, StreamT &os,
2099                             UnaryFunctor each_fn) {
2100   interleave(c, os, each_fn, ", ");
2101 }
2102 template <typename Container, typename StreamT,
2103           typename T = detail::ValueOfRange<Container>>
2104 inline void interleaveComma(const Container &c, StreamT &os) {
2105   interleaveComma(c, os, [&](const T &a) { os << a; });
2106 }
2107 
2108 //===----------------------------------------------------------------------===//
2109 //     Extra additions to <memory>
2110 //===----------------------------------------------------------------------===//
2111 
2112 struct FreeDeleter {
2113   void operator()(void* v) {
2114     ::free(v);
2115   }
2116 };
2117 
2118 template<typename First, typename Second>
2119 struct pair_hash {
2120   size_t operator()(const std::pair<First, Second> &P) const {
2121     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2122   }
2123 };
2124 
2125 /// Binary functor that adapts to any other binary functor after dereferencing
2126 /// operands.
2127 template <typename T> struct deref {
2128   T func;
2129 
2130   // Could be further improved to cope with non-derivable functors and
2131   // non-binary functors (should be a variadic template member function
2132   // operator()).
2133   template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2134     assert(lhs);
2135     assert(rhs);
2136     return func(*lhs, *rhs);
2137   }
2138 };
2139 
2140 namespace detail {
2141 
2142 template <typename R> class enumerator_iter;
2143 
2144 template <typename R> struct result_pair {
2145   using value_reference =
2146       typename std::iterator_traits<IterOfRange<R>>::reference;
2147 
2148   friend class enumerator_iter<R>;
2149 
2150   result_pair() = default;
2151   result_pair(std::size_t Index, IterOfRange<R> Iter)
2152       : Index(Index), Iter(Iter) {}
2153 
2154   result_pair(const result_pair<R> &Other)
2155       : Index(Other.Index), Iter(Other.Iter) {}
2156   result_pair &operator=(const result_pair &Other) {
2157     Index = Other.Index;
2158     Iter = Other.Iter;
2159     return *this;
2160   }
2161 
2162   std::size_t index() const { return Index; }
2163   value_reference value() const { return *Iter; }
2164 
2165 private:
2166   std::size_t Index = std::numeric_limits<std::size_t>::max();
2167   IterOfRange<R> Iter;
2168 };
2169 
2170 template <std::size_t i, typename R>
2171 decltype(auto) get(const result_pair<R> &Pair) {
2172   static_assert(i < 2);
2173   if constexpr (i == 0) {
2174     return Pair.index();
2175   } else {
2176     return Pair.value();
2177   }
2178 }
2179 
2180 template <typename R>
2181 class enumerator_iter
2182     : public iterator_facade_base<enumerator_iter<R>, std::forward_iterator_tag,
2183                                   const result_pair<R>> {
2184   using result_type = result_pair<R>;
2185 
2186 public:
2187   explicit enumerator_iter(IterOfRange<R> EndIter)
2188       : Result(std::numeric_limits<size_t>::max(), EndIter) {}
2189 
2190   enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
2191       : Result(Index, Iter) {}
2192 
2193   const result_type &operator*() const { return Result; }
2194 
2195   enumerator_iter &operator++() {
2196     assert(Result.Index != std::numeric_limits<size_t>::max());
2197     ++Result.Iter;
2198     ++Result.Index;
2199     return *this;
2200   }
2201 
2202   bool operator==(const enumerator_iter &RHS) const {
2203     // Don't compare indices here, only iterators.  It's possible for an end
2204     // iterator to have different indices depending on whether it was created
2205     // by calling std::end() versus incrementing a valid iterator.
2206     return Result.Iter == RHS.Result.Iter;
2207   }
2208 
2209   enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
2210   enumerator_iter &operator=(const enumerator_iter &Other) {
2211     Result = Other.Result;
2212     return *this;
2213   }
2214 
2215 private:
2216   result_type Result;
2217 };
2218 
2219 template <typename R> class enumerator {
2220 public:
2221   explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
2222 
2223   enumerator_iter<R> begin() {
2224     return enumerator_iter<R>(0, std::begin(TheRange));
2225   }
2226   enumerator_iter<R> begin() const {
2227     return enumerator_iter<R>(0, std::begin(TheRange));
2228   }
2229 
2230   enumerator_iter<R> end() {
2231     return enumerator_iter<R>(std::end(TheRange));
2232   }
2233   enumerator_iter<R> end() const {
2234     return enumerator_iter<R>(std::end(TheRange));
2235   }
2236 
2237 private:
2238   R TheRange;
2239 };
2240 
2241 } // end namespace detail
2242 
2243 /// Given an input range, returns a new range whose values are are pair (A,B)
2244 /// such that A is the 0-based index of the item in the sequence, and B is
2245 /// the value from the original sequence.  Example:
2246 ///
2247 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
2248 /// for (auto X : enumerate(Items)) {
2249 ///   printf("Item %d - %c\n", X.index(), X.value());
2250 /// }
2251 ///
2252 /// or using structured bindings:
2253 ///
2254 /// for (auto [Index, Value] : enumerate(Items)) {
2255 ///   printf("Item %d - %c\n", Index, Value);
2256 /// }
2257 ///
2258 /// Output:
2259 ///   Item 0 - A
2260 ///   Item 1 - B
2261 ///   Item 2 - C
2262 ///   Item 3 - D
2263 ///
2264 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
2265   return detail::enumerator<R>(std::forward<R>(TheRange));
2266 }
2267 
2268 namespace detail {
2269 
2270 template <typename Predicate, typename... Args>
2271 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2272   auto z = zip(args...);
2273   auto it = z.begin();
2274   auto end = z.end();
2275   while (it != end) {
2276     if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2277       return false;
2278     ++it;
2279   }
2280   return it.all_equals(end);
2281 }
2282 
2283 // Just an adaptor to switch the order of argument and have the predicate before
2284 // the zipped inputs.
2285 template <typename... ArgsThenPredicate, size_t... InputIndexes>
2286 bool all_of_zip_predicate_last(
2287     std::tuple<ArgsThenPredicate...> argsThenPredicate,
2288     std::index_sequence<InputIndexes...>) {
2289   auto constexpr OutputIndex =
2290       std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2291   return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2292                              std::get<InputIndexes>(argsThenPredicate)...);
2293 }
2294 
2295 } // end namespace detail
2296 
2297 /// Compare two zipped ranges using the provided predicate (as last argument).
2298 /// Return true if all elements satisfy the predicate and false otherwise.
2299 //  Return false if the zipped iterator aren't all at end (size mismatch).
2300 template <typename... ArgsAndPredicate>
2301 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2302   return detail::all_of_zip_predicate_last(
2303       std::forward_as_tuple(argsAndPredicate...),
2304       std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2305 }
2306 
2307 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2308 /// time. Not meant for use with random-access iterators.
2309 /// Can optionally take a predicate to filter lazily some items.
2310 template <typename IterTy,
2311           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2312 bool hasNItems(
2313     IterTy &&Begin, IterTy &&End, unsigned N,
2314     Pred &&ShouldBeCounted =
2315         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2316     std::enable_if_t<
2317         !std::is_base_of<std::random_access_iterator_tag,
2318                          typename std::iterator_traits<std::remove_reference_t<
2319                              decltype(Begin)>>::iterator_category>::value,
2320         void> * = nullptr) {
2321   for (; N; ++Begin) {
2322     if (Begin == End)
2323       return false; // Too few.
2324     N -= ShouldBeCounted(*Begin);
2325   }
2326   for (; Begin != End; ++Begin)
2327     if (ShouldBeCounted(*Begin))
2328       return false; // Too many.
2329   return true;
2330 }
2331 
2332 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2333 /// time. Not meant for use with random-access iterators.
2334 /// Can optionally take a predicate to lazily filter some items.
2335 template <typename IterTy,
2336           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2337 bool hasNItemsOrMore(
2338     IterTy &&Begin, IterTy &&End, unsigned N,
2339     Pred &&ShouldBeCounted =
2340         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2341     std::enable_if_t<
2342         !std::is_base_of<std::random_access_iterator_tag,
2343                          typename std::iterator_traits<std::remove_reference_t<
2344                              decltype(Begin)>>::iterator_category>::value,
2345         void> * = nullptr) {
2346   for (; N; ++Begin) {
2347     if (Begin == End)
2348       return false; // Too few.
2349     N -= ShouldBeCounted(*Begin);
2350   }
2351   return true;
2352 }
2353 
2354 /// Returns true if the sequence [Begin, End) has N or less items. Can
2355 /// optionally take a predicate to lazily filter some items.
2356 template <typename IterTy,
2357           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2358 bool hasNItemsOrLess(
2359     IterTy &&Begin, IterTy &&End, unsigned N,
2360     Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2361       return true;
2362     }) {
2363   assert(N != std::numeric_limits<unsigned>::max());
2364   return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2365 }
2366 
2367 /// Returns true if the given container has exactly N items
2368 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2369   return hasNItems(std::begin(C), std::end(C), N);
2370 }
2371 
2372 /// Returns true if the given container has N or more items
2373 template <typename ContainerTy>
2374 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2375   return hasNItemsOrMore(std::begin(C), std::end(C), N);
2376 }
2377 
2378 /// Returns true if the given container has N or less items
2379 template <typename ContainerTy>
2380 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2381   return hasNItemsOrLess(std::begin(C), std::end(C), N);
2382 }
2383 
2384 /// Returns a raw pointer that represents the same address as the argument.
2385 ///
2386 /// This implementation can be removed once we move to C++20 where it's defined
2387 /// as std::to_address().
2388 ///
2389 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
2390 /// not been implemented.
2391 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2392 template <class T> constexpr T *to_address(T *P) { return P; }
2393 
2394 } // end namespace llvm
2395 
2396 namespace std {
2397 template <typename R>
2398 struct tuple_size<llvm::detail::result_pair<R>>
2399     : std::integral_constant<std::size_t, 2> {};
2400 
2401 template <std::size_t i, typename R>
2402 struct tuple_element<i, llvm::detail::result_pair<R>>
2403     : std::conditional<i == 0, std::size_t,
2404                        typename llvm::detail::result_pair<R>::value_reference> {
2405 };
2406 
2407 } // namespace std
2408 
2409 #endif // LLVM_ADT_STLEXTRAS_H
2410