1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains some templates that are useful if you are working with the 10 // STL at all. 11 // 12 // No library is required when using these functions. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_ADT_STLEXTRAS_H 17 #define LLVM_ADT_STLEXTRAS_H 18 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/iterator.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Config/abi-breaking.h" 23 #include "llvm/Support/ErrorHandling.h" 24 #include <algorithm> 25 #include <cassert> 26 #include <cstddef> 27 #include <cstdint> 28 #include <cstdlib> 29 #include <functional> 30 #include <initializer_list> 31 #include <iterator> 32 #include <limits> 33 #include <memory> 34 #include <tuple> 35 #include <type_traits> 36 #include <utility> 37 38 #ifdef EXPENSIVE_CHECKS 39 #include <random> // for std::mt19937 40 #endif 41 42 namespace llvm { 43 44 // Only used by compiler if both template types are the same. Useful when 45 // using SFINAE to test for the existence of member functions. 46 template <typename T, T> struct SameType; 47 48 namespace detail { 49 50 template <typename RangeT> 51 using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); 52 53 template <typename RangeT> 54 using ValueOfRange = typename std::remove_reference<decltype( 55 *std::begin(std::declval<RangeT &>()))>::type; 56 57 } // end namespace detail 58 59 //===----------------------------------------------------------------------===// 60 // Extra additions to <type_traits> 61 //===----------------------------------------------------------------------===// 62 63 template <typename T> 64 struct negation : std::integral_constant<bool, !bool(T::value)> {}; 65 66 template <typename...> struct conjunction : std::true_type {}; 67 template <typename B1> struct conjunction<B1> : B1 {}; 68 template <typename B1, typename... Bn> 69 struct conjunction<B1, Bn...> 70 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {}; 71 72 template <typename T> struct make_const_ptr { 73 using type = 74 typename std::add_pointer<typename std::add_const<T>::type>::type; 75 }; 76 77 template <typename T> struct make_const_ref { 78 using type = typename std::add_lvalue_reference< 79 typename std::add_const<T>::type>::type; 80 }; 81 82 /// Utilities for detecting if a given trait holds for some set of arguments 83 /// 'Args'. For example, the given trait could be used to detect if a given type 84 /// has a copy assignment operator: 85 /// template<class T> 86 /// using has_copy_assign_t = decltype(std::declval<T&>() 87 /// = std::declval<const T&>()); 88 /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; 89 namespace detail { 90 template <typename...> using void_t = void; 91 template <class, template <class...> class Op, class... Args> struct detector { 92 using value_t = std::false_type; 93 }; 94 template <template <class...> class Op, class... Args> 95 struct detector<void_t<Op<Args...>>, Op, Args...> { 96 using value_t = std::true_type; 97 }; 98 } // end namespace detail 99 100 template <template <class...> class Op, class... Args> 101 using is_detected = typename detail::detector<void, Op, Args...>::value_t; 102 103 /// Check if a Callable type can be invoked with the given set of arg types. 104 namespace detail { 105 template <typename Callable, typename... Args> 106 using is_invocable = 107 decltype(std::declval<Callable &>()(std::declval<Args>()...)); 108 } // namespace detail 109 110 template <typename Callable, typename... Args> 111 using is_invocable = is_detected<detail::is_invocable, Callable, Args...>; 112 113 /// This class provides various trait information about a callable object. 114 /// * To access the number of arguments: Traits::num_args 115 /// * To access the type of an argument: Traits::arg_t<Index> 116 /// * To access the type of the result: Traits::result_t 117 template <typename T, bool isClass = std::is_class<T>::value> 118 struct function_traits : public function_traits<decltype(&T::operator())> {}; 119 120 /// Overload for class function types. 121 template <typename ClassType, typename ReturnType, typename... Args> 122 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { 123 /// The number of arguments to this function. 124 enum { num_args = sizeof...(Args) }; 125 126 /// The result type of this function. 127 using result_t = ReturnType; 128 129 /// The type of an argument to this function. 130 template <size_t Index> 131 using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type; 132 }; 133 /// Overload for class function types. 134 template <typename ClassType, typename ReturnType, typename... Args> 135 struct function_traits<ReturnType (ClassType::*)(Args...), false> 136 : function_traits<ReturnType (ClassType::*)(Args...) const> {}; 137 /// Overload for non-class function types. 138 template <typename ReturnType, typename... Args> 139 struct function_traits<ReturnType (*)(Args...), false> { 140 /// The number of arguments to this function. 141 enum { num_args = sizeof...(Args) }; 142 143 /// The result type of this function. 144 using result_t = ReturnType; 145 146 /// The type of an argument to this function. 147 template <size_t i> 148 using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type; 149 }; 150 /// Overload for non-class function type references. 151 template <typename ReturnType, typename... Args> 152 struct function_traits<ReturnType (&)(Args...), false> 153 : public function_traits<ReturnType (*)(Args...)> {}; 154 155 //===----------------------------------------------------------------------===// 156 // Extra additions to <functional> 157 //===----------------------------------------------------------------------===// 158 159 template <class Ty> struct identity { 160 using argument_type = Ty; 161 162 Ty &operator()(Ty &self) const { 163 return self; 164 } 165 const Ty &operator()(const Ty &self) const { 166 return self; 167 } 168 }; 169 170 /// An efficient, type-erasing, non-owning reference to a callable. This is 171 /// intended for use as the type of a function parameter that is not used 172 /// after the function in question returns. 173 /// 174 /// This class does not own the callable, so it is not in general safe to store 175 /// a function_ref. 176 template<typename Fn> class function_ref; 177 178 template<typename Ret, typename ...Params> 179 class function_ref<Ret(Params...)> { 180 Ret (*callback)(intptr_t callable, Params ...params) = nullptr; 181 intptr_t callable; 182 183 template<typename Callable> 184 static Ret callback_fn(intptr_t callable, Params ...params) { 185 return (*reinterpret_cast<Callable*>(callable))( 186 std::forward<Params>(params)...); 187 } 188 189 public: 190 function_ref() = default; 191 function_ref(std::nullptr_t) {} 192 193 template <typename Callable> 194 function_ref( 195 Callable &&callable, 196 // This is not the copy-constructor. 197 std::enable_if_t< 198 !std::is_same<std::remove_cv_t<std::remove_reference_t<Callable>>, 199 function_ref>::value> * = nullptr, 200 // Functor must be callable and return a suitable type. 201 std::enable_if_t<std::is_void<Ret>::value || 202 std::is_convertible<decltype(std::declval<Callable>()( 203 std::declval<Params>()...)), 204 Ret>::value> * = nullptr) 205 : callback(callback_fn<typename std::remove_reference<Callable>::type>), 206 callable(reinterpret_cast<intptr_t>(&callable)) {} 207 208 Ret operator()(Params ...params) const { 209 return callback(callable, std::forward<Params>(params)...); 210 } 211 212 explicit operator bool() const { return callback; } 213 }; 214 215 //===----------------------------------------------------------------------===// 216 // Extra additions to <iterator> 217 //===----------------------------------------------------------------------===// 218 219 namespace adl_detail { 220 221 using std::begin; 222 223 template <typename ContainerTy> 224 decltype(auto) adl_begin(ContainerTy &&container) { 225 return begin(std::forward<ContainerTy>(container)); 226 } 227 228 using std::end; 229 230 template <typename ContainerTy> 231 decltype(auto) adl_end(ContainerTy &&container) { 232 return end(std::forward<ContainerTy>(container)); 233 } 234 235 using std::swap; 236 237 template <typename T> 238 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), 239 std::declval<T>()))) { 240 swap(std::forward<T>(lhs), std::forward<T>(rhs)); 241 } 242 243 } // end namespace adl_detail 244 245 template <typename ContainerTy> 246 decltype(auto) adl_begin(ContainerTy &&container) { 247 return adl_detail::adl_begin(std::forward<ContainerTy>(container)); 248 } 249 250 template <typename ContainerTy> 251 decltype(auto) adl_end(ContainerTy &&container) { 252 return adl_detail::adl_end(std::forward<ContainerTy>(container)); 253 } 254 255 template <typename T> 256 void adl_swap(T &&lhs, T &&rhs) noexcept( 257 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { 258 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); 259 } 260 261 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty. 262 template <typename T> 263 constexpr bool empty(const T &RangeOrContainer) { 264 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer); 265 } 266 267 /// Returns true if the given container only contains a single element. 268 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { 269 auto B = std::begin(C), E = std::end(C); 270 return B != E && std::next(B) == E; 271 } 272 273 /// Return a range covering \p RangeOrContainer with the first N elements 274 /// excluded. 275 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { 276 return make_range(std::next(adl_begin(RangeOrContainer), N), 277 adl_end(RangeOrContainer)); 278 } 279 280 // mapped_iterator - This is a simple iterator adapter that causes a function to 281 // be applied whenever operator* is invoked on the iterator. 282 283 template <typename ItTy, typename FuncTy, 284 typename FuncReturnTy = 285 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> 286 class mapped_iterator 287 : public iterator_adaptor_base< 288 mapped_iterator<ItTy, FuncTy>, ItTy, 289 typename std::iterator_traits<ItTy>::iterator_category, 290 typename std::remove_reference<FuncReturnTy>::type> { 291 public: 292 mapped_iterator(ItTy U, FuncTy F) 293 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} 294 295 ItTy getCurrent() { return this->I; } 296 297 FuncReturnTy operator*() const { return F(*this->I); } 298 299 private: 300 FuncTy F; 301 }; 302 303 // map_iterator - Provide a convenient way to create mapped_iterators, just like 304 // make_pair is useful for creating pairs... 305 template <class ItTy, class FuncTy> 306 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { 307 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); 308 } 309 310 template <class ContainerTy, class FuncTy> 311 auto map_range(ContainerTy &&C, FuncTy F) { 312 return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); 313 } 314 315 /// Helper to determine if type T has a member called rbegin(). 316 template <typename Ty> class has_rbegin_impl { 317 using yes = char[1]; 318 using no = char[2]; 319 320 template <typename Inner> 321 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); 322 323 template <typename> 324 static no& test(...); 325 326 public: 327 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); 328 }; 329 330 /// Metafunction to determine if T& or T has a member called rbegin(). 331 template <typename Ty> 332 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { 333 }; 334 335 // Returns an iterator_range over the given container which iterates in reverse. 336 // Note that the container must have rbegin()/rend() methods for this to work. 337 template <typename ContainerTy> 338 auto reverse(ContainerTy &&C, 339 std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) { 340 return make_range(C.rbegin(), C.rend()); 341 } 342 343 // Returns a std::reverse_iterator wrapped around the given iterator. 344 template <typename IteratorTy> 345 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { 346 return std::reverse_iterator<IteratorTy>(It); 347 } 348 349 // Returns an iterator_range over the given container which iterates in reverse. 350 // Note that the container must have begin()/end() methods which return 351 // bidirectional iterators for this to work. 352 template <typename ContainerTy> 353 auto reverse(ContainerTy &&C, 354 std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) { 355 return make_range(llvm::make_reverse_iterator(std::end(C)), 356 llvm::make_reverse_iterator(std::begin(C))); 357 } 358 359 /// An iterator adaptor that filters the elements of given inner iterators. 360 /// 361 /// The predicate parameter should be a callable object that accepts the wrapped 362 /// iterator's reference type and returns a bool. When incrementing or 363 /// decrementing the iterator, it will call the predicate on each element and 364 /// skip any where it returns false. 365 /// 366 /// \code 367 /// int A[] = { 1, 2, 3, 4 }; 368 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); 369 /// // R contains { 1, 3 }. 370 /// \endcode 371 /// 372 /// Note: filter_iterator_base implements support for forward iteration. 373 /// filter_iterator_impl exists to provide support for bidirectional iteration, 374 /// conditional on whether the wrapped iterator supports it. 375 template <typename WrappedIteratorT, typename PredicateT, typename IterTag> 376 class filter_iterator_base 377 : public iterator_adaptor_base< 378 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, 379 WrappedIteratorT, 380 typename std::common_type< 381 IterTag, typename std::iterator_traits< 382 WrappedIteratorT>::iterator_category>::type> { 383 using BaseT = iterator_adaptor_base< 384 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, 385 WrappedIteratorT, 386 typename std::common_type< 387 IterTag, typename std::iterator_traits< 388 WrappedIteratorT>::iterator_category>::type>; 389 390 protected: 391 WrappedIteratorT End; 392 PredicateT Pred; 393 394 void findNextValid() { 395 while (this->I != End && !Pred(*this->I)) 396 BaseT::operator++(); 397 } 398 399 // Construct the iterator. The begin iterator needs to know where the end 400 // is, so that it can properly stop when it gets there. The end iterator only 401 // needs the predicate to support bidirectional iteration. 402 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, 403 PredicateT Pred) 404 : BaseT(Begin), End(End), Pred(Pred) { 405 findNextValid(); 406 } 407 408 public: 409 using BaseT::operator++; 410 411 filter_iterator_base &operator++() { 412 BaseT::operator++(); 413 findNextValid(); 414 return *this; 415 } 416 }; 417 418 /// Specialization of filter_iterator_base for forward iteration only. 419 template <typename WrappedIteratorT, typename PredicateT, 420 typename IterTag = std::forward_iterator_tag> 421 class filter_iterator_impl 422 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { 423 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>; 424 425 public: 426 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 427 PredicateT Pred) 428 : BaseT(Begin, End, Pred) {} 429 }; 430 431 /// Specialization of filter_iterator_base for bidirectional iteration. 432 template <typename WrappedIteratorT, typename PredicateT> 433 class filter_iterator_impl<WrappedIteratorT, PredicateT, 434 std::bidirectional_iterator_tag> 435 : public filter_iterator_base<WrappedIteratorT, PredicateT, 436 std::bidirectional_iterator_tag> { 437 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, 438 std::bidirectional_iterator_tag>; 439 void findPrevValid() { 440 while (!this->Pred(*this->I)) 441 BaseT::operator--(); 442 } 443 444 public: 445 using BaseT::operator--; 446 447 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 448 PredicateT Pred) 449 : BaseT(Begin, End, Pred) {} 450 451 filter_iterator_impl &operator--() { 452 BaseT::operator--(); 453 findPrevValid(); 454 return *this; 455 } 456 }; 457 458 namespace detail { 459 460 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { 461 using type = std::forward_iterator_tag; 462 }; 463 464 template <> struct fwd_or_bidi_tag_impl<true> { 465 using type = std::bidirectional_iterator_tag; 466 }; 467 468 /// Helper which sets its type member to forward_iterator_tag if the category 469 /// of \p IterT does not derive from bidirectional_iterator_tag, and to 470 /// bidirectional_iterator_tag otherwise. 471 template <typename IterT> struct fwd_or_bidi_tag { 472 using type = typename fwd_or_bidi_tag_impl<std::is_base_of< 473 std::bidirectional_iterator_tag, 474 typename std::iterator_traits<IterT>::iterator_category>::value>::type; 475 }; 476 477 } // namespace detail 478 479 /// Defines filter_iterator to a suitable specialization of 480 /// filter_iterator_impl, based on the underlying iterator's category. 481 template <typename WrappedIteratorT, typename PredicateT> 482 using filter_iterator = filter_iterator_impl< 483 WrappedIteratorT, PredicateT, 484 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; 485 486 /// Convenience function that takes a range of elements and a predicate, 487 /// and return a new filter_iterator range. 488 /// 489 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the 490 /// lifetime of that temporary is not kept by the returned range object, and the 491 /// temporary is going to be dropped on the floor after the make_iterator_range 492 /// full expression that contains this function call. 493 template <typename RangeT, typename PredicateT> 494 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> 495 make_filter_range(RangeT &&Range, PredicateT Pred) { 496 using FilterIteratorT = 497 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; 498 return make_range( 499 FilterIteratorT(std::begin(std::forward<RangeT>(Range)), 500 std::end(std::forward<RangeT>(Range)), Pred), 501 FilterIteratorT(std::end(std::forward<RangeT>(Range)), 502 std::end(std::forward<RangeT>(Range)), Pred)); 503 } 504 505 /// A pseudo-iterator adaptor that is designed to implement "early increment" 506 /// style loops. 507 /// 508 /// This is *not a normal iterator* and should almost never be used directly. It 509 /// is intended primarily to be used with range based for loops and some range 510 /// algorithms. 511 /// 512 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but 513 /// somewhere between them. The constraints of these iterators are: 514 /// 515 /// - On construction or after being incremented, it is comparable and 516 /// dereferencable. It is *not* incrementable. 517 /// - After being dereferenced, it is neither comparable nor dereferencable, it 518 /// is only incrementable. 519 /// 520 /// This means you can only dereference the iterator once, and you can only 521 /// increment it once between dereferences. 522 template <typename WrappedIteratorT> 523 class early_inc_iterator_impl 524 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, 525 WrappedIteratorT, std::input_iterator_tag> { 526 using BaseT = 527 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, 528 WrappedIteratorT, std::input_iterator_tag>; 529 530 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; 531 532 protected: 533 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 534 bool IsEarlyIncremented = false; 535 #endif 536 537 public: 538 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} 539 540 using BaseT::operator*; 541 decltype(*std::declval<WrappedIteratorT>()) operator*() { 542 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 543 assert(!IsEarlyIncremented && "Cannot dereference twice!"); 544 IsEarlyIncremented = true; 545 #endif 546 return *(this->I)++; 547 } 548 549 using BaseT::operator++; 550 early_inc_iterator_impl &operator++() { 551 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 552 assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); 553 IsEarlyIncremented = false; 554 #endif 555 return *this; 556 } 557 558 friend bool operator==(const early_inc_iterator_impl &LHS, 559 const early_inc_iterator_impl &RHS) { 560 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 561 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); 562 #endif 563 return (const BaseT &)LHS == (const BaseT &)RHS; 564 } 565 }; 566 567 /// Make a range that does early increment to allow mutation of the underlying 568 /// range without disrupting iteration. 569 /// 570 /// The underlying iterator will be incremented immediately after it is 571 /// dereferenced, allowing deletion of the current node or insertion of nodes to 572 /// not disrupt iteration provided they do not invalidate the *next* iterator -- 573 /// the current iterator can be invalidated. 574 /// 575 /// This requires a very exact pattern of use that is only really suitable to 576 /// range based for loops and other range algorithms that explicitly guarantee 577 /// to dereference exactly once each element, and to increment exactly once each 578 /// element. 579 template <typename RangeT> 580 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> 581 make_early_inc_range(RangeT &&Range) { 582 using EarlyIncIteratorT = 583 early_inc_iterator_impl<detail::IterOfRange<RangeT>>; 584 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), 585 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); 586 } 587 588 // forward declarations required by zip_shortest/zip_first/zip_longest 589 template <typename R, typename UnaryPredicate> 590 bool all_of(R &&range, UnaryPredicate P); 591 template <typename R, typename UnaryPredicate> 592 bool any_of(R &&range, UnaryPredicate P); 593 594 namespace detail { 595 596 using std::declval; 597 598 // We have to alias this since inlining the actual type at the usage site 599 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. 600 template<typename... Iters> struct ZipTupleType { 601 using type = std::tuple<decltype(*declval<Iters>())...>; 602 }; 603 604 template <typename ZipType, typename... Iters> 605 using zip_traits = iterator_facade_base< 606 ZipType, typename std::common_type<std::bidirectional_iterator_tag, 607 typename std::iterator_traits< 608 Iters>::iterator_category...>::type, 609 // ^ TODO: Implement random access methods. 610 typename ZipTupleType<Iters...>::type, 611 typename std::iterator_traits<typename std::tuple_element< 612 0, std::tuple<Iters...>>::type>::difference_type, 613 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all 614 // inner iterators have the same difference_type. It would fail if, for 615 // instance, the second field's difference_type were non-numeric while the 616 // first is. 617 typename ZipTupleType<Iters...>::type *, 618 typename ZipTupleType<Iters...>::type>; 619 620 template <typename ZipType, typename... Iters> 621 struct zip_common : public zip_traits<ZipType, Iters...> { 622 using Base = zip_traits<ZipType, Iters...>; 623 using value_type = typename Base::value_type; 624 625 std::tuple<Iters...> iterators; 626 627 protected: 628 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 629 return value_type(*std::get<Ns>(iterators)...); 630 } 631 632 template <size_t... Ns> 633 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 634 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); 635 } 636 637 template <size_t... Ns> 638 decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { 639 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); 640 } 641 642 public: 643 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} 644 645 value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } 646 647 const value_type operator*() const { 648 return deref(std::index_sequence_for<Iters...>{}); 649 } 650 651 ZipType &operator++() { 652 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 653 return *reinterpret_cast<ZipType *>(this); 654 } 655 656 ZipType &operator--() { 657 static_assert(Base::IsBidirectional, 658 "All inner iterators must be at least bidirectional."); 659 iterators = tup_dec(std::index_sequence_for<Iters...>{}); 660 return *reinterpret_cast<ZipType *>(this); 661 } 662 }; 663 664 template <typename... Iters> 665 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { 666 using Base = zip_common<zip_first<Iters...>, Iters...>; 667 668 bool operator==(const zip_first<Iters...> &other) const { 669 return std::get<0>(this->iterators) == std::get<0>(other.iterators); 670 } 671 672 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} 673 }; 674 675 template <typename... Iters> 676 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { 677 template <size_t... Ns> 678 bool test(const zip_shortest<Iters...> &other, 679 std::index_sequence<Ns...>) const { 680 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != 681 std::get<Ns>(other.iterators)...}, 682 identity<bool>{}); 683 } 684 685 public: 686 using Base = zip_common<zip_shortest<Iters...>, Iters...>; 687 688 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} 689 690 bool operator==(const zip_shortest<Iters...> &other) const { 691 return !test(other, std::index_sequence_for<Iters...>{}); 692 } 693 }; 694 695 template <template <typename...> class ItType, typename... Args> class zippy { 696 public: 697 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; 698 using iterator_category = typename iterator::iterator_category; 699 using value_type = typename iterator::value_type; 700 using difference_type = typename iterator::difference_type; 701 using pointer = typename iterator::pointer; 702 using reference = typename iterator::reference; 703 704 private: 705 std::tuple<Args...> ts; 706 707 template <size_t... Ns> 708 iterator begin_impl(std::index_sequence<Ns...>) const { 709 return iterator(std::begin(std::get<Ns>(ts))...); 710 } 711 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 712 return iterator(std::end(std::get<Ns>(ts))...); 713 } 714 715 public: 716 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 717 718 iterator begin() const { 719 return begin_impl(std::index_sequence_for<Args...>{}); 720 } 721 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 722 }; 723 724 } // end namespace detail 725 726 /// zip iterator for two or more iteratable types. 727 template <typename T, typename U, typename... Args> 728 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, 729 Args &&... args) { 730 return detail::zippy<detail::zip_shortest, T, U, Args...>( 731 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 732 } 733 734 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to 735 /// be the shortest. 736 template <typename T, typename U, typename... Args> 737 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, 738 Args &&... args) { 739 return detail::zippy<detail::zip_first, T, U, Args...>( 740 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 741 } 742 743 namespace detail { 744 template <typename Iter> 745 Iter next_or_end(const Iter &I, const Iter &End) { 746 if (I == End) 747 return End; 748 return std::next(I); 749 } 750 751 template <typename Iter> 752 auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional< 753 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { 754 if (I == End) 755 return None; 756 return *I; 757 } 758 759 template <typename Iter> struct ZipLongestItemType { 760 using type = 761 llvm::Optional<typename std::remove_const<typename std::remove_reference< 762 decltype(*std::declval<Iter>())>::type>::type>; 763 }; 764 765 template <typename... Iters> struct ZipLongestTupleType { 766 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; 767 }; 768 769 template <typename... Iters> 770 class zip_longest_iterator 771 : public iterator_facade_base< 772 zip_longest_iterator<Iters...>, 773 typename std::common_type< 774 std::forward_iterator_tag, 775 typename std::iterator_traits<Iters>::iterator_category...>::type, 776 typename ZipLongestTupleType<Iters...>::type, 777 typename std::iterator_traits<typename std::tuple_element< 778 0, std::tuple<Iters...>>::type>::difference_type, 779 typename ZipLongestTupleType<Iters...>::type *, 780 typename ZipLongestTupleType<Iters...>::type> { 781 public: 782 using value_type = typename ZipLongestTupleType<Iters...>::type; 783 784 private: 785 std::tuple<Iters...> iterators; 786 std::tuple<Iters...> end_iterators; 787 788 template <size_t... Ns> 789 bool test(const zip_longest_iterator<Iters...> &other, 790 std::index_sequence<Ns...>) const { 791 return llvm::any_of( 792 std::initializer_list<bool>{std::get<Ns>(this->iterators) != 793 std::get<Ns>(other.iterators)...}, 794 identity<bool>{}); 795 } 796 797 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 798 return value_type( 799 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 800 } 801 802 template <size_t... Ns> 803 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 804 return std::tuple<Iters...>( 805 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 806 } 807 808 public: 809 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) 810 : iterators(std::forward<Iters>(ts.first)...), 811 end_iterators(std::forward<Iters>(ts.second)...) {} 812 813 value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } 814 815 value_type operator*() const { 816 return deref(std::index_sequence_for<Iters...>{}); 817 } 818 819 zip_longest_iterator<Iters...> &operator++() { 820 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 821 return *this; 822 } 823 824 bool operator==(const zip_longest_iterator<Iters...> &other) const { 825 return !test(other, std::index_sequence_for<Iters...>{}); 826 } 827 }; 828 829 template <typename... Args> class zip_longest_range { 830 public: 831 using iterator = 832 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; 833 using iterator_category = typename iterator::iterator_category; 834 using value_type = typename iterator::value_type; 835 using difference_type = typename iterator::difference_type; 836 using pointer = typename iterator::pointer; 837 using reference = typename iterator::reference; 838 839 private: 840 std::tuple<Args...> ts; 841 842 template <size_t... Ns> 843 iterator begin_impl(std::index_sequence<Ns...>) const { 844 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), 845 adl_end(std::get<Ns>(ts)))...); 846 } 847 848 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 849 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), 850 adl_end(std::get<Ns>(ts)))...); 851 } 852 853 public: 854 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 855 856 iterator begin() const { 857 return begin_impl(std::index_sequence_for<Args...>{}); 858 } 859 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 860 }; 861 } // namespace detail 862 863 /// Iterate over two or more iterators at the same time. Iteration continues 864 /// until all iterators reach the end. The llvm::Optional only contains a value 865 /// if the iterator has not reached the end. 866 template <typename T, typename U, typename... Args> 867 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, 868 Args &&... args) { 869 return detail::zip_longest_range<T, U, Args...>( 870 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 871 } 872 873 /// Iterator wrapper that concatenates sequences together. 874 /// 875 /// This can concatenate different iterators, even with different types, into 876 /// a single iterator provided the value types of all the concatenated 877 /// iterators expose `reference` and `pointer` types that can be converted to 878 /// `ValueT &` and `ValueT *` respectively. It doesn't support more 879 /// interesting/customized pointer or reference types. 880 /// 881 /// Currently this only supports forward or higher iterator categories as 882 /// inputs and always exposes a forward iterator interface. 883 template <typename ValueT, typename... IterTs> 884 class concat_iterator 885 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, 886 std::forward_iterator_tag, ValueT> { 887 using BaseT = typename concat_iterator::iterator_facade_base; 888 889 /// We store both the current and end iterators for each concatenated 890 /// sequence in a tuple of pairs. 891 /// 892 /// Note that something like iterator_range seems nice at first here, but the 893 /// range properties are of little benefit and end up getting in the way 894 /// because we need to do mutation on the current iterators. 895 std::tuple<IterTs...> Begins; 896 std::tuple<IterTs...> Ends; 897 898 /// Attempts to increment a specific iterator. 899 /// 900 /// Returns true if it was able to increment the iterator. Returns false if 901 /// the iterator is already at the end iterator. 902 template <size_t Index> bool incrementHelper() { 903 auto &Begin = std::get<Index>(Begins); 904 auto &End = std::get<Index>(Ends); 905 if (Begin == End) 906 return false; 907 908 ++Begin; 909 return true; 910 } 911 912 /// Increments the first non-end iterator. 913 /// 914 /// It is an error to call this with all iterators at the end. 915 template <size_t... Ns> void increment(std::index_sequence<Ns...>) { 916 // Build a sequence of functions to increment each iterator if possible. 917 bool (concat_iterator::*IncrementHelperFns[])() = { 918 &concat_iterator::incrementHelper<Ns>...}; 919 920 // Loop over them, and stop as soon as we succeed at incrementing one. 921 for (auto &IncrementHelperFn : IncrementHelperFns) 922 if ((this->*IncrementHelperFn)()) 923 return; 924 925 llvm_unreachable("Attempted to increment an end concat iterator!"); 926 } 927 928 /// Returns null if the specified iterator is at the end. Otherwise, 929 /// dereferences the iterator and returns the address of the resulting 930 /// reference. 931 template <size_t Index> ValueT *getHelper() const { 932 auto &Begin = std::get<Index>(Begins); 933 auto &End = std::get<Index>(Ends); 934 if (Begin == End) 935 return nullptr; 936 937 return &*Begin; 938 } 939 940 /// Finds the first non-end iterator, dereferences, and returns the resulting 941 /// reference. 942 /// 943 /// It is an error to call this with all iterators at the end. 944 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { 945 // Build a sequence of functions to get from iterator if possible. 946 ValueT *(concat_iterator::*GetHelperFns[])() const = { 947 &concat_iterator::getHelper<Ns>...}; 948 949 // Loop over them, and return the first result we find. 950 for (auto &GetHelperFn : GetHelperFns) 951 if (ValueT *P = (this->*GetHelperFn)()) 952 return *P; 953 954 llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); 955 } 956 957 public: 958 /// Constructs an iterator from a sequence of ranges. 959 /// 960 /// We need the full range to know how to switch between each of the 961 /// iterators. 962 template <typename... RangeTs> 963 explicit concat_iterator(RangeTs &&... Ranges) 964 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} 965 966 using BaseT::operator++; 967 968 concat_iterator &operator++() { 969 increment(std::index_sequence_for<IterTs...>()); 970 return *this; 971 } 972 973 ValueT &operator*() const { 974 return get(std::index_sequence_for<IterTs...>()); 975 } 976 977 bool operator==(const concat_iterator &RHS) const { 978 return Begins == RHS.Begins && Ends == RHS.Ends; 979 } 980 }; 981 982 namespace detail { 983 984 /// Helper to store a sequence of ranges being concatenated and access them. 985 /// 986 /// This is designed to facilitate providing actual storage when temporaries 987 /// are passed into the constructor such that we can use it as part of range 988 /// based for loops. 989 template <typename ValueT, typename... RangeTs> class concat_range { 990 public: 991 using iterator = 992 concat_iterator<ValueT, 993 decltype(std::begin(std::declval<RangeTs &>()))...>; 994 995 private: 996 std::tuple<RangeTs...> Ranges; 997 998 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { 999 return iterator(std::get<Ns>(Ranges)...); 1000 } 1001 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 1002 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1003 std::end(std::get<Ns>(Ranges)))...); 1004 } 1005 1006 public: 1007 concat_range(RangeTs &&... Ranges) 1008 : Ranges(std::forward<RangeTs>(Ranges)...) {} 1009 1010 iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); } 1011 iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); } 1012 }; 1013 1014 } // end namespace detail 1015 1016 /// Concatenated range across two or more ranges. 1017 /// 1018 /// The desired value type must be explicitly specified. 1019 template <typename ValueT, typename... RangeTs> 1020 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { 1021 static_assert(sizeof...(RangeTs) > 1, 1022 "Need more than one range to concatenate!"); 1023 return detail::concat_range<ValueT, RangeTs...>( 1024 std::forward<RangeTs>(Ranges)...); 1025 } 1026 1027 /// A utility class used to implement an iterator that contains some base object 1028 /// and an index. The iterator moves the index but keeps the base constant. 1029 template <typename DerivedT, typename BaseT, typename T, 1030 typename PointerT = T *, typename ReferenceT = T &> 1031 class indexed_accessor_iterator 1032 : public llvm::iterator_facade_base<DerivedT, 1033 std::random_access_iterator_tag, T, 1034 std::ptrdiff_t, PointerT, ReferenceT> { 1035 public: 1036 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { 1037 assert(base == rhs.base && "incompatible iterators"); 1038 return index - rhs.index; 1039 } 1040 bool operator==(const indexed_accessor_iterator &rhs) const { 1041 return base == rhs.base && index == rhs.index; 1042 } 1043 bool operator<(const indexed_accessor_iterator &rhs) const { 1044 assert(base == rhs.base && "incompatible iterators"); 1045 return index < rhs.index; 1046 } 1047 1048 DerivedT &operator+=(ptrdiff_t offset) { 1049 this->index += offset; 1050 return static_cast<DerivedT &>(*this); 1051 } 1052 DerivedT &operator-=(ptrdiff_t offset) { 1053 this->index -= offset; 1054 return static_cast<DerivedT &>(*this); 1055 } 1056 1057 /// Returns the current index of the iterator. 1058 ptrdiff_t getIndex() const { return index; } 1059 1060 /// Returns the current base of the iterator. 1061 const BaseT &getBase() const { return base; } 1062 1063 protected: 1064 indexed_accessor_iterator(BaseT base, ptrdiff_t index) 1065 : base(base), index(index) {} 1066 BaseT base; 1067 ptrdiff_t index; 1068 }; 1069 1070 namespace detail { 1071 /// The class represents the base of a range of indexed_accessor_iterators. It 1072 /// provides support for many different range functionalities, e.g. 1073 /// drop_front/slice/etc.. Derived range classes must implement the following 1074 /// static methods: 1075 /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) 1076 /// - Dereference an iterator pointing to the base object at the given 1077 /// index. 1078 /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) 1079 /// - Return a new base that is offset from the provide base by 'index' 1080 /// elements. 1081 template <typename DerivedT, typename BaseT, typename T, 1082 typename PointerT = T *, typename ReferenceT = T &> 1083 class indexed_accessor_range_base { 1084 public: 1085 using RangeBaseT = 1086 indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>; 1087 1088 /// An iterator element of this range. 1089 class iterator : public indexed_accessor_iterator<iterator, BaseT, T, 1090 PointerT, ReferenceT> { 1091 public: 1092 // Index into this iterator, invoking a static method on the derived type. 1093 ReferenceT operator*() const { 1094 return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); 1095 } 1096 1097 private: 1098 iterator(BaseT owner, ptrdiff_t curIndex) 1099 : indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>( 1100 owner, curIndex) {} 1101 1102 /// Allow access to the constructor. 1103 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1104 ReferenceT>; 1105 }; 1106 1107 indexed_accessor_range_base(iterator begin, iterator end) 1108 : base(offset_base(begin.getBase(), begin.getIndex())), 1109 count(end.getIndex() - begin.getIndex()) {} 1110 indexed_accessor_range_base(const iterator_range<iterator> &range) 1111 : indexed_accessor_range_base(range.begin(), range.end()) {} 1112 indexed_accessor_range_base(BaseT base, ptrdiff_t count) 1113 : base(base), count(count) {} 1114 1115 iterator begin() const { return iterator(base, 0); } 1116 iterator end() const { return iterator(base, count); } 1117 ReferenceT operator[](unsigned index) const { 1118 assert(index < size() && "invalid index for value range"); 1119 return DerivedT::dereference_iterator(base, index); 1120 } 1121 ReferenceT front() const { 1122 assert(!empty() && "expected non-empty range"); 1123 return (*this)[0]; 1124 } 1125 ReferenceT back() const { 1126 assert(!empty() && "expected non-empty range"); 1127 return (*this)[size() - 1]; 1128 } 1129 1130 /// Compare this range with another. 1131 template <typename OtherT> bool operator==(const OtherT &other) const { 1132 return size() == 1133 static_cast<size_t>(std::distance(other.begin(), other.end())) && 1134 std::equal(begin(), end(), other.begin()); 1135 } 1136 template <typename OtherT> bool operator!=(const OtherT &other) const { 1137 return !(*this == other); 1138 } 1139 1140 /// Return the size of this range. 1141 size_t size() const { return count; } 1142 1143 /// Return if the range is empty. 1144 bool empty() const { return size() == 0; } 1145 1146 /// Drop the first N elements, and keep M elements. 1147 DerivedT slice(size_t n, size_t m) const { 1148 assert(n + m <= size() && "invalid size specifiers"); 1149 return DerivedT(offset_base(base, n), m); 1150 } 1151 1152 /// Drop the first n elements. 1153 DerivedT drop_front(size_t n = 1) const { 1154 assert(size() >= n && "Dropping more elements than exist"); 1155 return slice(n, size() - n); 1156 } 1157 /// Drop the last n elements. 1158 DerivedT drop_back(size_t n = 1) const { 1159 assert(size() >= n && "Dropping more elements than exist"); 1160 return DerivedT(base, size() - n); 1161 } 1162 1163 /// Take the first n elements. 1164 DerivedT take_front(size_t n = 1) const { 1165 return n < size() ? drop_back(size() - n) 1166 : static_cast<const DerivedT &>(*this); 1167 } 1168 1169 /// Take the last n elements. 1170 DerivedT take_back(size_t n = 1) const { 1171 return n < size() ? drop_front(size() - n) 1172 : static_cast<const DerivedT &>(*this); 1173 } 1174 1175 /// Allow conversion to any type accepting an iterator_range. 1176 template <typename RangeT, typename = std::enable_if_t<std::is_constructible< 1177 RangeT, iterator_range<iterator>>::value>> 1178 operator RangeT() const { 1179 return RangeT(iterator_range<iterator>(*this)); 1180 } 1181 1182 /// Returns the base of this range. 1183 const BaseT &getBase() const { return base; } 1184 1185 private: 1186 /// Offset the given base by the given amount. 1187 static BaseT offset_base(const BaseT &base, size_t n) { 1188 return n == 0 ? base : DerivedT::offset_base(base, n); 1189 } 1190 1191 protected: 1192 indexed_accessor_range_base(const indexed_accessor_range_base &) = default; 1193 indexed_accessor_range_base(indexed_accessor_range_base &&) = default; 1194 indexed_accessor_range_base & 1195 operator=(const indexed_accessor_range_base &) = default; 1196 1197 /// The base that owns the provided range of values. 1198 BaseT base; 1199 /// The size from the owning range. 1200 ptrdiff_t count; 1201 }; 1202 } // end namespace detail 1203 1204 /// This class provides an implementation of a range of 1205 /// indexed_accessor_iterators where the base is not indexable. Ranges with 1206 /// bases that are offsetable should derive from indexed_accessor_range_base 1207 /// instead. Derived range classes are expected to implement the following 1208 /// static method: 1209 /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) 1210 /// - Dereference an iterator pointing to a parent base at the given index. 1211 template <typename DerivedT, typename BaseT, typename T, 1212 typename PointerT = T *, typename ReferenceT = T &> 1213 class indexed_accessor_range 1214 : public detail::indexed_accessor_range_base< 1215 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { 1216 public: 1217 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) 1218 : detail::indexed_accessor_range_base< 1219 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( 1220 std::make_pair(base, startIndex), count) {} 1221 using detail::indexed_accessor_range_base< 1222 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, 1223 ReferenceT>::indexed_accessor_range_base; 1224 1225 /// Returns the current base of the range. 1226 const BaseT &getBase() const { return this->base.first; } 1227 1228 /// Returns the current start index of the range. 1229 ptrdiff_t getStartIndex() const { return this->base.second; } 1230 1231 /// See `detail::indexed_accessor_range_base` for details. 1232 static std::pair<BaseT, ptrdiff_t> 1233 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { 1234 // We encode the internal base as a pair of the derived base and a start 1235 // index into the derived base. 1236 return std::make_pair(base.first, base.second + index); 1237 } 1238 /// See `detail::indexed_accessor_range_base` for details. 1239 static ReferenceT 1240 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, 1241 ptrdiff_t index) { 1242 return DerivedT::dereference(base.first, base.second + index); 1243 } 1244 }; 1245 1246 /// Given a container of pairs, return a range over the first elements. 1247 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { 1248 return llvm::map_range( 1249 std::forward<ContainerTy>(c), 1250 [](decltype((*std::begin(c))) elt) -> decltype((elt.first)) { 1251 return elt.first; 1252 }); 1253 } 1254 1255 /// Given a container of pairs, return a range over the second elements. 1256 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { 1257 return llvm::map_range( 1258 std::forward<ContainerTy>(c), 1259 [](decltype((*std::begin(c))) elt) -> decltype((elt.second)) { 1260 return elt.second; 1261 }); 1262 } 1263 1264 //===----------------------------------------------------------------------===// 1265 // Extra additions to <utility> 1266 //===----------------------------------------------------------------------===// 1267 1268 /// Function object to check whether the first component of a std::pair 1269 /// compares less than the first component of another std::pair. 1270 struct less_first { 1271 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1272 return lhs.first < rhs.first; 1273 } 1274 }; 1275 1276 /// Function object to check whether the second component of a std::pair 1277 /// compares less than the second component of another std::pair. 1278 struct less_second { 1279 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1280 return lhs.second < rhs.second; 1281 } 1282 }; 1283 1284 /// \brief Function object to apply a binary function to the first component of 1285 /// a std::pair. 1286 template<typename FuncTy> 1287 struct on_first { 1288 FuncTy func; 1289 1290 template <typename T> 1291 decltype(auto) operator()(const T &lhs, const T &rhs) const { 1292 return func(lhs.first, rhs.first); 1293 } 1294 }; 1295 1296 /// Utility type to build an inheritance chain that makes it easy to rank 1297 /// overload candidates. 1298 template <int N> struct rank : rank<N - 1> {}; 1299 template <> struct rank<0> {}; 1300 1301 /// traits class for checking whether type T is one of any of the given 1302 /// types in the variadic list. 1303 template <typename T, typename... Ts> struct is_one_of { 1304 static const bool value = false; 1305 }; 1306 1307 template <typename T, typename U, typename... Ts> 1308 struct is_one_of<T, U, Ts...> { 1309 static const bool value = 1310 std::is_same<T, U>::value || is_one_of<T, Ts...>::value; 1311 }; 1312 1313 /// traits class for checking whether type T is a base class for all 1314 /// the given types in the variadic list. 1315 template <typename T, typename... Ts> struct are_base_of { 1316 static const bool value = true; 1317 }; 1318 1319 template <typename T, typename U, typename... Ts> 1320 struct are_base_of<T, U, Ts...> { 1321 static const bool value = 1322 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value; 1323 }; 1324 1325 //===----------------------------------------------------------------------===// 1326 // Extra additions for arrays 1327 //===----------------------------------------------------------------------===// 1328 1329 // We have a copy here so that LLVM behaves the same when using different 1330 // standard libraries. 1331 template <class Iterator, class RNG> 1332 void shuffle(Iterator first, Iterator last, RNG &&g) { 1333 // It would be better to use a std::uniform_int_distribution, 1334 // but that would be stdlib dependent. 1335 for (auto size = last - first; size > 1; ++first, (void)--size) 1336 std::iter_swap(first, first + g() % size); 1337 } 1338 1339 /// Find the length of an array. 1340 template <class T, std::size_t N> 1341 constexpr inline size_t array_lengthof(T (&)[N]) { 1342 return N; 1343 } 1344 1345 /// Adapt std::less<T> for array_pod_sort. 1346 template<typename T> 1347 inline int array_pod_sort_comparator(const void *P1, const void *P2) { 1348 if (std::less<T>()(*reinterpret_cast<const T*>(P1), 1349 *reinterpret_cast<const T*>(P2))) 1350 return -1; 1351 if (std::less<T>()(*reinterpret_cast<const T*>(P2), 1352 *reinterpret_cast<const T*>(P1))) 1353 return 1; 1354 return 0; 1355 } 1356 1357 /// get_array_pod_sort_comparator - This is an internal helper function used to 1358 /// get type deduction of T right. 1359 template<typename T> 1360 inline int (*get_array_pod_sort_comparator(const T &)) 1361 (const void*, const void*) { 1362 return array_pod_sort_comparator<T>; 1363 } 1364 1365 #ifdef EXPENSIVE_CHECKS 1366 namespace detail { 1367 1368 inline unsigned presortShuffleEntropy() { 1369 static unsigned Result(std::random_device{}()); 1370 return Result; 1371 } 1372 1373 template <class IteratorTy> 1374 inline void presortShuffle(IteratorTy Start, IteratorTy End) { 1375 std::mt19937 Generator(presortShuffleEntropy()); 1376 std::shuffle(Start, End, Generator); 1377 } 1378 1379 } // end namespace detail 1380 #endif 1381 1382 /// array_pod_sort - This sorts an array with the specified start and end 1383 /// extent. This is just like std::sort, except that it calls qsort instead of 1384 /// using an inlined template. qsort is slightly slower than std::sort, but 1385 /// most sorts are not performance critical in LLVM and std::sort has to be 1386 /// template instantiated for each type, leading to significant measured code 1387 /// bloat. This function should generally be used instead of std::sort where 1388 /// possible. 1389 /// 1390 /// This function assumes that you have simple POD-like types that can be 1391 /// compared with std::less and can be moved with memcpy. If this isn't true, 1392 /// you should use std::sort. 1393 /// 1394 /// NOTE: If qsort_r were portable, we could allow a custom comparator and 1395 /// default to std::less. 1396 template<class IteratorTy> 1397 inline void array_pod_sort(IteratorTy Start, IteratorTy End) { 1398 // Don't inefficiently call qsort with one element or trigger undefined 1399 // behavior with an empty sequence. 1400 auto NElts = End - Start; 1401 if (NElts <= 1) return; 1402 #ifdef EXPENSIVE_CHECKS 1403 detail::presortShuffle<IteratorTy>(Start, End); 1404 #endif 1405 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); 1406 } 1407 1408 template <class IteratorTy> 1409 inline void array_pod_sort( 1410 IteratorTy Start, IteratorTy End, 1411 int (*Compare)( 1412 const typename std::iterator_traits<IteratorTy>::value_type *, 1413 const typename std::iterator_traits<IteratorTy>::value_type *)) { 1414 // Don't inefficiently call qsort with one element or trigger undefined 1415 // behavior with an empty sequence. 1416 auto NElts = End - Start; 1417 if (NElts <= 1) return; 1418 #ifdef EXPENSIVE_CHECKS 1419 detail::presortShuffle<IteratorTy>(Start, End); 1420 #endif 1421 qsort(&*Start, NElts, sizeof(*Start), 1422 reinterpret_cast<int (*)(const void *, const void *)>(Compare)); 1423 } 1424 1425 namespace detail { 1426 template <typename T> 1427 // We can use qsort if the iterator type is a pointer and the underlying value 1428 // is trivially copyable. 1429 using sort_trivially_copyable = conjunction< 1430 std::is_pointer<T>, 1431 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; 1432 } // namespace detail 1433 1434 // Provide wrappers to std::sort which shuffle the elements before sorting 1435 // to help uncover non-deterministic behavior (PR35135). 1436 template <typename IteratorTy, 1437 std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value, 1438 int> = 0> 1439 inline void sort(IteratorTy Start, IteratorTy End) { 1440 #ifdef EXPENSIVE_CHECKS 1441 detail::presortShuffle<IteratorTy>(Start, End); 1442 #endif 1443 std::sort(Start, End); 1444 } 1445 1446 // Forward trivially copyable types to array_pod_sort. This avoids a large 1447 // amount of code bloat for a minor performance hit. 1448 template <typename IteratorTy, 1449 std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value, 1450 int> = 0> 1451 inline void sort(IteratorTy Start, IteratorTy End) { 1452 array_pod_sort(Start, End); 1453 } 1454 1455 template <typename Container> inline void sort(Container &&C) { 1456 llvm::sort(adl_begin(C), adl_end(C)); 1457 } 1458 1459 template <typename IteratorTy, typename Compare> 1460 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { 1461 #ifdef EXPENSIVE_CHECKS 1462 detail::presortShuffle<IteratorTy>(Start, End); 1463 #endif 1464 std::sort(Start, End, Comp); 1465 } 1466 1467 template <typename Container, typename Compare> 1468 inline void sort(Container &&C, Compare Comp) { 1469 llvm::sort(adl_begin(C), adl_end(C), Comp); 1470 } 1471 1472 //===----------------------------------------------------------------------===// 1473 // Extra additions to <algorithm> 1474 //===----------------------------------------------------------------------===// 1475 1476 /// Get the size of a range. This is a wrapper function around std::distance 1477 /// which is only enabled when the operation is O(1). 1478 template <typename R> 1479 auto size(R &&Range, 1480 std::enable_if_t< 1481 std::is_base_of<std::random_access_iterator_tag, 1482 typename std::iterator_traits<decltype( 1483 Range.begin())>::iterator_category>::value, 1484 void> * = nullptr) { 1485 return std::distance(Range.begin(), Range.end()); 1486 } 1487 1488 /// Provide wrappers to std::for_each which take ranges instead of having to 1489 /// pass begin/end explicitly. 1490 template <typename R, typename UnaryFunction> 1491 UnaryFunction for_each(R &&Range, UnaryFunction F) { 1492 return std::for_each(adl_begin(Range), adl_end(Range), F); 1493 } 1494 1495 /// Provide wrappers to std::all_of which take ranges instead of having to pass 1496 /// begin/end explicitly. 1497 template <typename R, typename UnaryPredicate> 1498 bool all_of(R &&Range, UnaryPredicate P) { 1499 return std::all_of(adl_begin(Range), adl_end(Range), P); 1500 } 1501 1502 /// Provide wrappers to std::any_of which take ranges instead of having to pass 1503 /// begin/end explicitly. 1504 template <typename R, typename UnaryPredicate> 1505 bool any_of(R &&Range, UnaryPredicate P) { 1506 return std::any_of(adl_begin(Range), adl_end(Range), P); 1507 } 1508 1509 /// Provide wrappers to std::none_of which take ranges instead of having to pass 1510 /// begin/end explicitly. 1511 template <typename R, typename UnaryPredicate> 1512 bool none_of(R &&Range, UnaryPredicate P) { 1513 return std::none_of(adl_begin(Range), adl_end(Range), P); 1514 } 1515 1516 /// Provide wrappers to std::find which take ranges instead of having to pass 1517 /// begin/end explicitly. 1518 template <typename R, typename T> auto find(R &&Range, const T &Val) { 1519 return std::find(adl_begin(Range), adl_end(Range), Val); 1520 } 1521 1522 /// Provide wrappers to std::find_if which take ranges instead of having to pass 1523 /// begin/end explicitly. 1524 template <typename R, typename UnaryPredicate> 1525 auto find_if(R &&Range, UnaryPredicate P) { 1526 return std::find_if(adl_begin(Range), adl_end(Range), P); 1527 } 1528 1529 template <typename R, typename UnaryPredicate> 1530 auto find_if_not(R &&Range, UnaryPredicate P) { 1531 return std::find_if_not(adl_begin(Range), adl_end(Range), P); 1532 } 1533 1534 /// Provide wrappers to std::remove_if which take ranges instead of having to 1535 /// pass begin/end explicitly. 1536 template <typename R, typename UnaryPredicate> 1537 auto remove_if(R &&Range, UnaryPredicate P) { 1538 return std::remove_if(adl_begin(Range), adl_end(Range), P); 1539 } 1540 1541 /// Provide wrappers to std::copy_if which take ranges instead of having to 1542 /// pass begin/end explicitly. 1543 template <typename R, typename OutputIt, typename UnaryPredicate> 1544 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { 1545 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); 1546 } 1547 1548 template <typename R, typename OutputIt> 1549 OutputIt copy(R &&Range, OutputIt Out) { 1550 return std::copy(adl_begin(Range), adl_end(Range), Out); 1551 } 1552 1553 /// Provide wrappers to std::move which take ranges instead of having to 1554 /// pass begin/end explicitly. 1555 template <typename R, typename OutputIt> 1556 OutputIt move(R &&Range, OutputIt Out) { 1557 return std::move(adl_begin(Range), adl_end(Range), Out); 1558 } 1559 1560 /// Wrapper function around std::find to detect if an element exists 1561 /// in a container. 1562 template <typename R, typename E> 1563 bool is_contained(R &&Range, const E &Element) { 1564 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); 1565 } 1566 1567 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1568 /// are sorted with respect to a comparator \p C. 1569 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { 1570 return std::is_sorted(adl_begin(Range), adl_end(Range), C); 1571 } 1572 1573 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1574 /// are sorted in non-descending order. 1575 template <typename R> bool is_sorted(R &&Range) { 1576 return std::is_sorted(adl_begin(Range), adl_end(Range)); 1577 } 1578 1579 /// Wrapper function around std::count to count the number of times an element 1580 /// \p Element occurs in the given range \p Range. 1581 template <typename R, typename E> auto count(R &&Range, const E &Element) { 1582 return std::count(adl_begin(Range), adl_end(Range), Element); 1583 } 1584 1585 /// Wrapper function around std::count_if to count the number of times an 1586 /// element satisfying a given predicate occurs in a range. 1587 template <typename R, typename UnaryPredicate> 1588 auto count_if(R &&Range, UnaryPredicate P) { 1589 return std::count_if(adl_begin(Range), adl_end(Range), P); 1590 } 1591 1592 /// Wrapper function around std::transform to apply a function to a range and 1593 /// store the result elsewhere. 1594 template <typename R, typename OutputIt, typename UnaryFunction> 1595 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { 1596 return std::transform(adl_begin(Range), adl_end(Range), d_first, F); 1597 } 1598 1599 /// Provide wrappers to std::partition which take ranges instead of having to 1600 /// pass begin/end explicitly. 1601 template <typename R, typename UnaryPredicate> 1602 auto partition(R &&Range, UnaryPredicate P) { 1603 return std::partition(adl_begin(Range), adl_end(Range), P); 1604 } 1605 1606 /// Provide wrappers to std::lower_bound which take ranges instead of having to 1607 /// pass begin/end explicitly. 1608 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { 1609 return std::lower_bound(adl_begin(Range), adl_end(Range), 1610 std::forward<T>(Value)); 1611 } 1612 1613 template <typename R, typename T, typename Compare> 1614 auto lower_bound(R &&Range, T &&Value, Compare C) { 1615 return std::lower_bound(adl_begin(Range), adl_end(Range), 1616 std::forward<T>(Value), C); 1617 } 1618 1619 /// Provide wrappers to std::upper_bound which take ranges instead of having to 1620 /// pass begin/end explicitly. 1621 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { 1622 return std::upper_bound(adl_begin(Range), adl_end(Range), 1623 std::forward<T>(Value)); 1624 } 1625 1626 template <typename R, typename T, typename Compare> 1627 auto upper_bound(R &&Range, T &&Value, Compare C) { 1628 return std::upper_bound(adl_begin(Range), adl_end(Range), 1629 std::forward<T>(Value), C); 1630 } 1631 1632 template <typename R> 1633 void stable_sort(R &&Range) { 1634 std::stable_sort(adl_begin(Range), adl_end(Range)); 1635 } 1636 1637 template <typename R, typename Compare> 1638 void stable_sort(R &&Range, Compare C) { 1639 std::stable_sort(adl_begin(Range), adl_end(Range), C); 1640 } 1641 1642 /// Binary search for the first iterator in a range where a predicate is false. 1643 /// Requires that C is always true below some limit, and always false above it. 1644 template <typename R, typename Predicate, 1645 typename Val = decltype(*adl_begin(std::declval<R>()))> 1646 auto partition_point(R &&Range, Predicate P) { 1647 return std::partition_point(adl_begin(Range), adl_end(Range), P); 1648 } 1649 1650 /// Wrapper function around std::equal to detect if all elements 1651 /// in a container are same. 1652 template <typename R> 1653 bool is_splat(R &&Range) { 1654 size_t range_size = size(Range); 1655 return range_size != 0 && (range_size == 1 || 1656 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range))); 1657 } 1658 1659 /// Provide a container algorithm similar to C++ Library Fundamentals v2's 1660 /// `erase_if` which is equivalent to: 1661 /// 1662 /// C.erase(remove_if(C, pred), C.end()); 1663 /// 1664 /// This version works for any container with an erase method call accepting 1665 /// two iterators. 1666 template <typename Container, typename UnaryPredicate> 1667 void erase_if(Container &C, UnaryPredicate P) { 1668 C.erase(remove_if(C, P), C.end()); 1669 } 1670 1671 /// Wrapper function to remove a value from a container: 1672 /// 1673 /// C.erase(remove(C.begin(), C.end(), V), C.end()); 1674 template <typename Container, typename ValueType> 1675 void erase_value(Container &C, ValueType V) { 1676 C.erase(std::remove(C.begin(), C.end(), V), C.end()); 1677 } 1678 1679 /// Wrapper function to append a range to a container. 1680 /// 1681 /// C.insert(C.end(), R.begin(), R.end()); 1682 template <typename Container, typename Range> 1683 inline void append_range(Container &C, Range &&R) { 1684 C.insert(C.end(), R.begin(), R.end()); 1685 } 1686 1687 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 1688 /// the range [ValIt, ValEnd) (which is not from the same container). 1689 template<typename Container, typename RandomAccessIterator> 1690 void replace(Container &Cont, typename Container::iterator ContIt, 1691 typename Container::iterator ContEnd, RandomAccessIterator ValIt, 1692 RandomAccessIterator ValEnd) { 1693 while (true) { 1694 if (ValIt == ValEnd) { 1695 Cont.erase(ContIt, ContEnd); 1696 return; 1697 } else if (ContIt == ContEnd) { 1698 Cont.insert(ContIt, ValIt, ValEnd); 1699 return; 1700 } 1701 *ContIt++ = *ValIt++; 1702 } 1703 } 1704 1705 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 1706 /// the range R. 1707 template<typename Container, typename Range = std::initializer_list< 1708 typename Container::value_type>> 1709 void replace(Container &Cont, typename Container::iterator ContIt, 1710 typename Container::iterator ContEnd, Range R) { 1711 replace(Cont, ContIt, ContEnd, R.begin(), R.end()); 1712 } 1713 1714 /// An STL-style algorithm similar to std::for_each that applies a second 1715 /// functor between every pair of elements. 1716 /// 1717 /// This provides the control flow logic to, for example, print a 1718 /// comma-separated list: 1719 /// \code 1720 /// interleave(names.begin(), names.end(), 1721 /// [&](StringRef name) { os << name; }, 1722 /// [&] { os << ", "; }); 1723 /// \endcode 1724 template <typename ForwardIterator, typename UnaryFunctor, 1725 typename NullaryFunctor, 1726 typename = typename std::enable_if< 1727 !std::is_constructible<StringRef, UnaryFunctor>::value && 1728 !std::is_constructible<StringRef, NullaryFunctor>::value>::type> 1729 inline void interleave(ForwardIterator begin, ForwardIterator end, 1730 UnaryFunctor each_fn, NullaryFunctor between_fn) { 1731 if (begin == end) 1732 return; 1733 each_fn(*begin); 1734 ++begin; 1735 for (; begin != end; ++begin) { 1736 between_fn(); 1737 each_fn(*begin); 1738 } 1739 } 1740 1741 template <typename Container, typename UnaryFunctor, typename NullaryFunctor, 1742 typename = typename std::enable_if< 1743 !std::is_constructible<StringRef, UnaryFunctor>::value && 1744 !std::is_constructible<StringRef, NullaryFunctor>::value>::type> 1745 inline void interleave(const Container &c, UnaryFunctor each_fn, 1746 NullaryFunctor between_fn) { 1747 interleave(c.begin(), c.end(), each_fn, between_fn); 1748 } 1749 1750 /// Overload of interleave for the common case of string separator. 1751 template <typename Container, typename UnaryFunctor, typename StreamT, 1752 typename T = detail::ValueOfRange<Container>> 1753 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, 1754 const StringRef &separator) { 1755 interleave(c.begin(), c.end(), each_fn, [&] { os << separator; }); 1756 } 1757 template <typename Container, typename StreamT, 1758 typename T = detail::ValueOfRange<Container>> 1759 inline void interleave(const Container &c, StreamT &os, 1760 const StringRef &separator) { 1761 interleave( 1762 c, os, [&](const T &a) { os << a; }, separator); 1763 } 1764 1765 template <typename Container, typename UnaryFunctor, typename StreamT, 1766 typename T = detail::ValueOfRange<Container>> 1767 inline void interleaveComma(const Container &c, StreamT &os, 1768 UnaryFunctor each_fn) { 1769 interleave(c, os, each_fn, ", "); 1770 } 1771 template <typename Container, typename StreamT, 1772 typename T = detail::ValueOfRange<Container>> 1773 inline void interleaveComma(const Container &c, StreamT &os) { 1774 interleaveComma(c, os, [&](const T &a) { os << a; }); 1775 } 1776 1777 //===----------------------------------------------------------------------===// 1778 // Extra additions to <memory> 1779 //===----------------------------------------------------------------------===// 1780 1781 struct FreeDeleter { 1782 void operator()(void* v) { 1783 ::free(v); 1784 } 1785 }; 1786 1787 template<typename First, typename Second> 1788 struct pair_hash { 1789 size_t operator()(const std::pair<First, Second> &P) const { 1790 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); 1791 } 1792 }; 1793 1794 /// Binary functor that adapts to any other binary functor after dereferencing 1795 /// operands. 1796 template <typename T> struct deref { 1797 T func; 1798 1799 // Could be further improved to cope with non-derivable functors and 1800 // non-binary functors (should be a variadic template member function 1801 // operator()). 1802 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { 1803 assert(lhs); 1804 assert(rhs); 1805 return func(*lhs, *rhs); 1806 } 1807 }; 1808 1809 namespace detail { 1810 1811 template <typename R> class enumerator_iter; 1812 1813 template <typename R> struct result_pair { 1814 using value_reference = 1815 typename std::iterator_traits<IterOfRange<R>>::reference; 1816 1817 friend class enumerator_iter<R>; 1818 1819 result_pair() = default; 1820 result_pair(std::size_t Index, IterOfRange<R> Iter) 1821 : Index(Index), Iter(Iter) {} 1822 1823 result_pair<R>(const result_pair<R> &Other) 1824 : Index(Other.Index), Iter(Other.Iter) {} 1825 result_pair<R> &operator=(const result_pair<R> &Other) { 1826 Index = Other.Index; 1827 Iter = Other.Iter; 1828 return *this; 1829 } 1830 1831 std::size_t index() const { return Index; } 1832 const value_reference value() const { return *Iter; } 1833 value_reference value() { return *Iter; } 1834 1835 private: 1836 std::size_t Index = std::numeric_limits<std::size_t>::max(); 1837 IterOfRange<R> Iter; 1838 }; 1839 1840 template <typename R> 1841 class enumerator_iter 1842 : public iterator_facade_base< 1843 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, 1844 typename std::iterator_traits<IterOfRange<R>>::difference_type, 1845 typename std::iterator_traits<IterOfRange<R>>::pointer, 1846 typename std::iterator_traits<IterOfRange<R>>::reference> { 1847 using result_type = result_pair<R>; 1848 1849 public: 1850 explicit enumerator_iter(IterOfRange<R> EndIter) 1851 : Result(std::numeric_limits<size_t>::max(), EndIter) {} 1852 1853 enumerator_iter(std::size_t Index, IterOfRange<R> Iter) 1854 : Result(Index, Iter) {} 1855 1856 result_type &operator*() { return Result; } 1857 const result_type &operator*() const { return Result; } 1858 1859 enumerator_iter<R> &operator++() { 1860 assert(Result.Index != std::numeric_limits<size_t>::max()); 1861 ++Result.Iter; 1862 ++Result.Index; 1863 return *this; 1864 } 1865 1866 bool operator==(const enumerator_iter<R> &RHS) const { 1867 // Don't compare indices here, only iterators. It's possible for an end 1868 // iterator to have different indices depending on whether it was created 1869 // by calling std::end() versus incrementing a valid iterator. 1870 return Result.Iter == RHS.Result.Iter; 1871 } 1872 1873 enumerator_iter<R>(const enumerator_iter<R> &Other) : Result(Other.Result) {} 1874 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) { 1875 Result = Other.Result; 1876 return *this; 1877 } 1878 1879 private: 1880 result_type Result; 1881 }; 1882 1883 template <typename R> class enumerator { 1884 public: 1885 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} 1886 1887 enumerator_iter<R> begin() { 1888 return enumerator_iter<R>(0, std::begin(TheRange)); 1889 } 1890 1891 enumerator_iter<R> end() { 1892 return enumerator_iter<R>(std::end(TheRange)); 1893 } 1894 1895 private: 1896 R TheRange; 1897 }; 1898 1899 } // end namespace detail 1900 1901 /// Given an input range, returns a new range whose values are are pair (A,B) 1902 /// such that A is the 0-based index of the item in the sequence, and B is 1903 /// the value from the original sequence. Example: 1904 /// 1905 /// std::vector<char> Items = {'A', 'B', 'C', 'D'}; 1906 /// for (auto X : enumerate(Items)) { 1907 /// printf("Item %d - %c\n", X.index(), X.value()); 1908 /// } 1909 /// 1910 /// Output: 1911 /// Item 0 - A 1912 /// Item 1 - B 1913 /// Item 2 - C 1914 /// Item 3 - D 1915 /// 1916 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { 1917 return detail::enumerator<R>(std::forward<R>(TheRange)); 1918 } 1919 1920 namespace detail { 1921 1922 template <typename F, typename Tuple, std::size_t... I> 1923 decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) { 1924 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); 1925 } 1926 1927 } // end namespace detail 1928 1929 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the 1930 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and 1931 /// return the result. 1932 template <typename F, typename Tuple> 1933 decltype(auto) apply_tuple(F &&f, Tuple &&t) { 1934 using Indices = std::make_index_sequence< 1935 std::tuple_size<typename std::decay<Tuple>::type>::value>; 1936 1937 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), 1938 Indices{}); 1939 } 1940 1941 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) 1942 /// time. Not meant for use with random-access iterators. 1943 /// Can optionally take a predicate to filter lazily some items. 1944 template <typename IterTy, 1945 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 1946 bool hasNItems( 1947 IterTy &&Begin, IterTy &&End, unsigned N, 1948 Pred &&ShouldBeCounted = 1949 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 1950 std::enable_if_t< 1951 !std::is_base_of<std::random_access_iterator_tag, 1952 typename std::iterator_traits<std::remove_reference_t< 1953 decltype(Begin)>>::iterator_category>::value, 1954 void> * = nullptr) { 1955 for (; N; ++Begin) { 1956 if (Begin == End) 1957 return false; // Too few. 1958 N -= ShouldBeCounted(*Begin); 1959 } 1960 for (; Begin != End; ++Begin) 1961 if (ShouldBeCounted(*Begin)) 1962 return false; // Too many. 1963 return true; 1964 } 1965 1966 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) 1967 /// time. Not meant for use with random-access iterators. 1968 /// Can optionally take a predicate to lazily filter some items. 1969 template <typename IterTy, 1970 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 1971 bool hasNItemsOrMore( 1972 IterTy &&Begin, IterTy &&End, unsigned N, 1973 Pred &&ShouldBeCounted = 1974 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 1975 std::enable_if_t< 1976 !std::is_base_of<std::random_access_iterator_tag, 1977 typename std::iterator_traits<std::remove_reference_t< 1978 decltype(Begin)>>::iterator_category>::value, 1979 void> * = nullptr) { 1980 for (; N; ++Begin) { 1981 if (Begin == End) 1982 return false; // Too few. 1983 N -= ShouldBeCounted(*Begin); 1984 } 1985 return true; 1986 } 1987 1988 /// Returns true if the sequence [Begin, End) has N or less items. Can 1989 /// optionally take a predicate to lazily filter some items. 1990 template <typename IterTy, 1991 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 1992 bool hasNItemsOrLess( 1993 IterTy &&Begin, IterTy &&End, unsigned N, 1994 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { 1995 return true; 1996 }) { 1997 assert(N != std::numeric_limits<unsigned>::max()); 1998 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); 1999 } 2000 2001 /// Returns true if the given container has exactly N items 2002 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { 2003 return hasNItems(std::begin(C), std::end(C), N); 2004 } 2005 2006 /// Returns true if the given container has N or more items 2007 template <typename ContainerTy> 2008 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { 2009 return hasNItemsOrMore(std::begin(C), std::end(C), N); 2010 } 2011 2012 /// Returns true if the given container has N or less items 2013 template <typename ContainerTy> 2014 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { 2015 return hasNItemsOrLess(std::begin(C), std::end(C), N); 2016 } 2017 2018 /// Returns a raw pointer that represents the same address as the argument. 2019 /// 2020 /// This implementation can be removed once we move to C++20 where it's defined 2021 /// as std::to_address(). 2022 /// 2023 /// The std::pointer_traits<>::to_address(p) variations of these overloads has 2024 /// not been implemented. 2025 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } 2026 template <class T> constexpr T *to_address(T *P) { return P; } 2027 2028 } // end namespace llvm 2029 2030 #endif // LLVM_ADT_STLEXTRAS_H 2031