xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/EquivalenceClasses.h (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Generic implementation of equivalence classes through the use Tarjan's
10 // efficient union-find algorithm.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
15 #define LLVM_ADT_EQUIVALENCECLASSES_H
16 
17 #include <cassert>
18 #include <cstddef>
19 #include <cstdint>
20 #include <iterator>
21 #include <set>
22 
23 namespace llvm {
24 
25 /// EquivalenceClasses - This represents a collection of equivalence classes and
26 /// supports three efficient operations: insert an element into a class of its
27 /// own, union two classes, and find the class for a given element.  In
28 /// addition to these modification methods, it is possible to iterate over all
29 /// of the equivalence classes and all of the elements in a class.
30 ///
31 /// This implementation is an efficient implementation that only stores one copy
32 /// of the element being indexed per entry in the set, and allows any arbitrary
33 /// type to be indexed (as long as it can be ordered with operator<).
34 ///
35 /// Here is a simple example using integers:
36 ///
37 /// \code
38 ///  EquivalenceClasses<int> EC;
39 ///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
40 ///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
41 ///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
42 ///
43 ///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
44 ///       I != E; ++I) {           // Iterate over all of the equivalence sets.
45 ///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
46 ///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
47 ///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
48 ///      cerr << *MI << " ";  // Print member.
49 ///    cerr << "\n";   // Finish set.
50 ///  }
51 /// \endcode
52 ///
53 /// This example prints:
54 ///   4
55 ///   5 1 2
56 ///
57 template <class ElemTy>
58 class EquivalenceClasses {
59   /// ECValue - The EquivalenceClasses data structure is just a set of these.
60   /// Each of these represents a relation for a value.  First it stores the
61   /// value itself, which provides the ordering that the set queries.  Next, it
62   /// provides a "next pointer", which is used to enumerate all of the elements
63   /// in the unioned set.  Finally, it defines either a "end of list pointer" or
64   /// "leader pointer" depending on whether the value itself is a leader.  A
65   /// "leader pointer" points to the node that is the leader for this element,
66   /// if the node is not a leader.  A "end of list pointer" points to the last
67   /// node in the list of members of this list.  Whether or not a node is a
68   /// leader is determined by a bit stolen from one of the pointers.
69   class ECValue {
70     friend class EquivalenceClasses;
71 
72     mutable const ECValue *Leader, *Next;
73     ElemTy Data;
74 
75     // ECValue ctor - Start out with EndOfList pointing to this node, Next is
76     // Null, isLeader = true.
77     ECValue(const ElemTy &Elt)
78       : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
79 
80     const ECValue *getLeader() const {
81       if (isLeader()) return this;
82       if (Leader->isLeader()) return Leader;
83       // Path compression.
84       return Leader = Leader->getLeader();
85     }
86 
87     const ECValue *getEndOfList() const {
88       assert(isLeader() && "Cannot get the end of a list for a non-leader!");
89       return Leader;
90     }
91 
92     void setNext(const ECValue *NewNext) const {
93       assert(getNext() == nullptr && "Already has a next pointer!");
94       Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
95     }
96 
97   public:
98     ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
99                                   Data(RHS.Data) {
100       // Only support copying of singleton nodes.
101       assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
102     }
103 
104     bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
105 
106     bool isLeader() const { return (intptr_t)Next & 1; }
107     const ElemTy &getData() const { return Data; }
108 
109     const ECValue *getNext() const {
110       return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
111     }
112 
113     template<typename T>
114     bool operator<(const T &Val) const { return Data < Val; }
115   };
116 
117   /// TheMapping - This implicitly provides a mapping from ElemTy values to the
118   /// ECValues, it just keeps the key as part of the value.
119   std::set<ECValue> TheMapping;
120 
121 public:
122   EquivalenceClasses() = default;
123   EquivalenceClasses(const EquivalenceClasses &RHS) {
124     operator=(RHS);
125   }
126 
127   const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
128     TheMapping.clear();
129     for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
130       if (I->isLeader()) {
131         member_iterator MI = RHS.member_begin(I);
132         member_iterator LeaderIt = member_begin(insert(*MI));
133         for (++MI; MI != member_end(); ++MI)
134           unionSets(LeaderIt, member_begin(insert(*MI)));
135       }
136     return *this;
137   }
138 
139   //===--------------------------------------------------------------------===//
140   // Inspection methods
141   //
142 
143   /// iterator* - Provides a way to iterate over all values in the set.
144   using iterator = typename std::set<ECValue>::const_iterator;
145 
146   iterator begin() const { return TheMapping.begin(); }
147   iterator end() const { return TheMapping.end(); }
148 
149   bool empty() const { return TheMapping.empty(); }
150 
151   /// member_* Iterate over the members of an equivalence class.
152   class member_iterator;
153   member_iterator member_begin(iterator I) const {
154     // Only leaders provide anything to iterate over.
155     return member_iterator(I->isLeader() ? &*I : nullptr);
156   }
157   member_iterator member_end() const {
158     return member_iterator(nullptr);
159   }
160 
161   /// findValue - Return an iterator to the specified value.  If it does not
162   /// exist, end() is returned.
163   iterator findValue(const ElemTy &V) const {
164     return TheMapping.find(V);
165   }
166 
167   /// getLeaderValue - Return the leader for the specified value that is in the
168   /// set.  It is an error to call this method for a value that is not yet in
169   /// the set.  For that, call getOrInsertLeaderValue(V).
170   const ElemTy &getLeaderValue(const ElemTy &V) const {
171     member_iterator MI = findLeader(V);
172     assert(MI != member_end() && "Value is not in the set!");
173     return *MI;
174   }
175 
176   /// getOrInsertLeaderValue - Return the leader for the specified value that is
177   /// in the set.  If the member is not in the set, it is inserted, then
178   /// returned.
179   const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
180     member_iterator MI = findLeader(insert(V));
181     assert(MI != member_end() && "Value is not in the set!");
182     return *MI;
183   }
184 
185   /// getNumClasses - Return the number of equivalence classes in this set.
186   /// Note that this is a linear time operation.
187   unsigned getNumClasses() const {
188     unsigned NC = 0;
189     for (iterator I = begin(), E = end(); I != E; ++I)
190       if (I->isLeader()) ++NC;
191     return NC;
192   }
193 
194   //===--------------------------------------------------------------------===//
195   // Mutation methods
196 
197   /// insert - Insert a new value into the union/find set, ignoring the request
198   /// if the value already exists.
199   iterator insert(const ElemTy &Data) {
200     return TheMapping.insert(ECValue(Data)).first;
201   }
202 
203   /// findLeader - Given a value in the set, return a member iterator for the
204   /// equivalence class it is in.  This does the path-compression part that
205   /// makes union-find "union findy".  This returns an end iterator if the value
206   /// is not in the equivalence class.
207   member_iterator findLeader(iterator I) const {
208     if (I == TheMapping.end()) return member_end();
209     return member_iterator(I->getLeader());
210   }
211   member_iterator findLeader(const ElemTy &V) const {
212     return findLeader(TheMapping.find(V));
213   }
214 
215   /// union - Merge the two equivalence sets for the specified values, inserting
216   /// them if they do not already exist in the equivalence set.
217   member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
218     iterator V1I = insert(V1), V2I = insert(V2);
219     return unionSets(findLeader(V1I), findLeader(V2I));
220   }
221   member_iterator unionSets(member_iterator L1, member_iterator L2) {
222     assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
223     if (L1 == L2) return L1;   // Unifying the same two sets, noop.
224 
225     // Otherwise, this is a real union operation.  Set the end of the L1 list to
226     // point to the L2 leader node.
227     const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
228     L1LV.getEndOfList()->setNext(&L2LV);
229 
230     // Update L1LV's end of list pointer.
231     L1LV.Leader = L2LV.getEndOfList();
232 
233     // Clear L2's leader flag:
234     L2LV.Next = L2LV.getNext();
235 
236     // L2's leader is now L1.
237     L2LV.Leader = &L1LV;
238     return L1;
239   }
240 
241   // isEquivalent - Return true if V1 is equivalent to V2. This can happen if
242   // V1 is equal to V2 or if they belong to one equivalence class.
243   bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
244     // Fast path: any element is equivalent to itself.
245     if (V1 == V2)
246       return true;
247     auto It = findLeader(V1);
248     return It != member_end() && It == findLeader(V2);
249   }
250 
251   class member_iterator : public std::iterator<std::forward_iterator_tag,
252                                                const ElemTy, ptrdiff_t> {
253     friend class EquivalenceClasses;
254 
255     using super = std::iterator<std::forward_iterator_tag,
256                                 const ElemTy, ptrdiff_t>;
257 
258     const ECValue *Node;
259 
260   public:
261     using size_type = size_t;
262     using pointer = typename super::pointer;
263     using reference = typename super::reference;
264 
265     explicit member_iterator() = default;
266     explicit member_iterator(const ECValue *N) : Node(N) {}
267 
268     reference operator*() const {
269       assert(Node != nullptr && "Dereferencing end()!");
270       return Node->getData();
271     }
272     pointer operator->() const { return &operator*(); }
273 
274     member_iterator &operator++() {
275       assert(Node != nullptr && "++'d off the end of the list!");
276       Node = Node->getNext();
277       return *this;
278     }
279 
280     member_iterator operator++(int) {    // postincrement operators.
281       member_iterator tmp = *this;
282       ++*this;
283       return tmp;
284     }
285 
286     bool operator==(const member_iterator &RHS) const {
287       return Node == RHS.Node;
288     }
289     bool operator!=(const member_iterator &RHS) const {
290       return Node != RHS.Node;
291     }
292   };
293 };
294 
295 } // end namespace llvm
296 
297 #endif // LLVM_ADT_EQUIVALENCECLASSES_H
298