xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/EquivalenceClasses.h (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Generic implementation of equivalence classes through the use Tarjan's
10 // efficient union-find algorithm.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
15 #define LLVM_ADT_EQUIVALENCECLASSES_H
16 
17 #include <cassert>
18 #include <cstddef>
19 #include <cstdint>
20 #include <iterator>
21 #include <set>
22 
23 namespace llvm {
24 
25 /// EquivalenceClasses - This represents a collection of equivalence classes and
26 /// supports three efficient operations: insert an element into a class of its
27 /// own, union two classes, and find the class for a given element.  In
28 /// addition to these modification methods, it is possible to iterate over all
29 /// of the equivalence classes and all of the elements in a class.
30 ///
31 /// This implementation is an efficient implementation that only stores one copy
32 /// of the element being indexed per entry in the set, and allows any arbitrary
33 /// type to be indexed (as long as it can be ordered with operator< or a
34 /// comparator is provided).
35 ///
36 /// Here is a simple example using integers:
37 ///
38 /// \code
39 ///  EquivalenceClasses<int> EC;
40 ///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
41 ///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
42 ///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
43 ///
44 ///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
45 ///       I != E; ++I) {           // Iterate over all of the equivalence sets.
46 ///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
47 ///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
48 ///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
49 ///      cerr << *MI << " ";  // Print member.
50 ///    cerr << "\n";   // Finish set.
51 ///  }
52 /// \endcode
53 ///
54 /// This example prints:
55 ///   4
56 ///   5 1 2
57 ///
58 template <class ElemTy, class Compare = std::less<ElemTy>>
59 class EquivalenceClasses {
60   /// ECValue - The EquivalenceClasses data structure is just a set of these.
61   /// Each of these represents a relation for a value.  First it stores the
62   /// value itself, which provides the ordering that the set queries.  Next, it
63   /// provides a "next pointer", which is used to enumerate all of the elements
64   /// in the unioned set.  Finally, it defines either a "end of list pointer" or
65   /// "leader pointer" depending on whether the value itself is a leader.  A
66   /// "leader pointer" points to the node that is the leader for this element,
67   /// if the node is not a leader.  A "end of list pointer" points to the last
68   /// node in the list of members of this list.  Whether or not a node is a
69   /// leader is determined by a bit stolen from one of the pointers.
70   class ECValue {
71     friend class EquivalenceClasses;
72 
73     mutable const ECValue *Leader, *Next;
74     ElemTy Data;
75 
76     // ECValue ctor - Start out with EndOfList pointing to this node, Next is
77     // Null, isLeader = true.
78     ECValue(const ElemTy &Elt)
79       : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
80 
81     const ECValue *getLeader() const {
82       if (isLeader()) return this;
83       if (Leader->isLeader()) return Leader;
84       // Path compression.
85       return Leader = Leader->getLeader();
86     }
87 
88     const ECValue *getEndOfList() const {
89       assert(isLeader() && "Cannot get the end of a list for a non-leader!");
90       return Leader;
91     }
92 
93     void setNext(const ECValue *NewNext) const {
94       assert(getNext() == nullptr && "Already has a next pointer!");
95       Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
96     }
97 
98   public:
99     ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
100                                   Data(RHS.Data) {
101       // Only support copying of singleton nodes.
102       assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
103     }
104 
105     bool isLeader() const { return (intptr_t)Next & 1; }
106     const ElemTy &getData() const { return Data; }
107 
108     const ECValue *getNext() const {
109       return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
110     }
111   };
112 
113   /// A wrapper of the comparator, to be passed to the set.
114   struct ECValueComparator {
115     using is_transparent = void;
116 
117     ECValueComparator() : compare(Compare()) {}
118 
119     bool operator()(const ECValue &lhs, const ECValue &rhs) const {
120       return compare(lhs.Data, rhs.Data);
121     }
122 
123     template <typename T>
124     bool operator()(const T &lhs, const ECValue &rhs) const {
125       return compare(lhs, rhs.Data);
126     }
127 
128     template <typename T>
129     bool operator()(const ECValue &lhs, const T &rhs) const {
130       return compare(lhs.Data, rhs);
131     }
132 
133     const Compare compare;
134   };
135 
136   /// TheMapping - This implicitly provides a mapping from ElemTy values to the
137   /// ECValues, it just keeps the key as part of the value.
138   std::set<ECValue, ECValueComparator> TheMapping;
139 
140 public:
141   EquivalenceClasses() = default;
142   EquivalenceClasses(const EquivalenceClasses &RHS) {
143     operator=(RHS);
144   }
145 
146   const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
147     TheMapping.clear();
148     for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
149       if (I->isLeader()) {
150         member_iterator MI = RHS.member_begin(I);
151         member_iterator LeaderIt = member_begin(insert(*MI));
152         for (++MI; MI != member_end(); ++MI)
153           unionSets(LeaderIt, member_begin(insert(*MI)));
154       }
155     return *this;
156   }
157 
158   //===--------------------------------------------------------------------===//
159   // Inspection methods
160   //
161 
162   /// iterator* - Provides a way to iterate over all values in the set.
163   using iterator = typename std::set<ECValue>::const_iterator;
164 
165   iterator begin() const { return TheMapping.begin(); }
166   iterator end() const { return TheMapping.end(); }
167 
168   bool empty() const { return TheMapping.empty(); }
169 
170   /// member_* Iterate over the members of an equivalence class.
171   class member_iterator;
172   member_iterator member_begin(iterator I) const {
173     // Only leaders provide anything to iterate over.
174     return member_iterator(I->isLeader() ? &*I : nullptr);
175   }
176   member_iterator member_end() const {
177     return member_iterator(nullptr);
178   }
179 
180   /// findValue - Return an iterator to the specified value.  If it does not
181   /// exist, end() is returned.
182   iterator findValue(const ElemTy &V) const {
183     return TheMapping.find(V);
184   }
185 
186   /// getLeaderValue - Return the leader for the specified value that is in the
187   /// set.  It is an error to call this method for a value that is not yet in
188   /// the set.  For that, call getOrInsertLeaderValue(V).
189   const ElemTy &getLeaderValue(const ElemTy &V) const {
190     member_iterator MI = findLeader(V);
191     assert(MI != member_end() && "Value is not in the set!");
192     return *MI;
193   }
194 
195   /// getOrInsertLeaderValue - Return the leader for the specified value that is
196   /// in the set.  If the member is not in the set, it is inserted, then
197   /// returned.
198   const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
199     member_iterator MI = findLeader(insert(V));
200     assert(MI != member_end() && "Value is not in the set!");
201     return *MI;
202   }
203 
204   /// getNumClasses - Return the number of equivalence classes in this set.
205   /// Note that this is a linear time operation.
206   unsigned getNumClasses() const {
207     unsigned NC = 0;
208     for (iterator I = begin(), E = end(); I != E; ++I)
209       if (I->isLeader()) ++NC;
210     return NC;
211   }
212 
213   //===--------------------------------------------------------------------===//
214   // Mutation methods
215 
216   /// insert - Insert a new value into the union/find set, ignoring the request
217   /// if the value already exists.
218   iterator insert(const ElemTy &Data) {
219     return TheMapping.insert(ECValue(Data)).first;
220   }
221 
222   /// findLeader - Given a value in the set, return a member iterator for the
223   /// equivalence class it is in.  This does the path-compression part that
224   /// makes union-find "union findy".  This returns an end iterator if the value
225   /// is not in the equivalence class.
226   member_iterator findLeader(iterator I) const {
227     if (I == TheMapping.end()) return member_end();
228     return member_iterator(I->getLeader());
229   }
230   member_iterator findLeader(const ElemTy &V) const {
231     return findLeader(TheMapping.find(V));
232   }
233 
234   /// union - Merge the two equivalence sets for the specified values, inserting
235   /// them if they do not already exist in the equivalence set.
236   member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
237     iterator V1I = insert(V1), V2I = insert(V2);
238     return unionSets(findLeader(V1I), findLeader(V2I));
239   }
240   member_iterator unionSets(member_iterator L1, member_iterator L2) {
241     assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
242     if (L1 == L2) return L1;   // Unifying the same two sets, noop.
243 
244     // Otherwise, this is a real union operation.  Set the end of the L1 list to
245     // point to the L2 leader node.
246     const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
247     L1LV.getEndOfList()->setNext(&L2LV);
248 
249     // Update L1LV's end of list pointer.
250     L1LV.Leader = L2LV.getEndOfList();
251 
252     // Clear L2's leader flag:
253     L2LV.Next = L2LV.getNext();
254 
255     // L2's leader is now L1.
256     L2LV.Leader = &L1LV;
257     return L1;
258   }
259 
260   // isEquivalent - Return true if V1 is equivalent to V2. This can happen if
261   // V1 is equal to V2 or if they belong to one equivalence class.
262   bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const {
263     // Fast path: any element is equivalent to itself.
264     if (V1 == V2)
265       return true;
266     auto It = findLeader(V1);
267     return It != member_end() && It == findLeader(V2);
268   }
269 
270   class member_iterator {
271     friend class EquivalenceClasses;
272 
273     const ECValue *Node;
274 
275   public:
276     using iterator_category = std::forward_iterator_tag;
277     using value_type = const ElemTy;
278     using size_type = std::size_t;
279     using difference_type = std::ptrdiff_t;
280     using pointer = value_type *;
281     using reference = value_type &;
282 
283     explicit member_iterator() = default;
284     explicit member_iterator(const ECValue *N) : Node(N) {}
285 
286     reference operator*() const {
287       assert(Node != nullptr && "Dereferencing end()!");
288       return Node->getData();
289     }
290     pointer operator->() const { return &operator*(); }
291 
292     member_iterator &operator++() {
293       assert(Node != nullptr && "++'d off the end of the list!");
294       Node = Node->getNext();
295       return *this;
296     }
297 
298     member_iterator operator++(int) {    // postincrement operators.
299       member_iterator tmp = *this;
300       ++*this;
301       return tmp;
302     }
303 
304     bool operator==(const member_iterator &RHS) const {
305       return Node == RHS.Node;
306     }
307     bool operator!=(const member_iterator &RHS) const {
308       return Node != RHS.Node;
309     }
310   };
311 };
312 
313 } // end namespace llvm
314 
315 #endif // LLVM_ADT_EQUIVALENCECLASSES_H
316