1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_ADT_ARRAYREF_H 10 #define LLVM_ADT_ARRAYREF_H 11 12 #include "llvm/ADT/Hashing.h" 13 #include "llvm/ADT/None.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Support/Compiler.h" 17 #include <algorithm> 18 #include <array> 19 #include <cassert> 20 #include <cstddef> 21 #include <initializer_list> 22 #include <iterator> 23 #include <memory> 24 #include <type_traits> 25 #include <vector> 26 27 namespace llvm { 28 29 /// ArrayRef - Represent a constant reference to an array (0 or more elements 30 /// consecutively in memory), i.e. a start pointer and a length. It allows 31 /// various APIs to take consecutive elements easily and conveniently. 32 /// 33 /// This class does not own the underlying data, it is expected to be used in 34 /// situations where the data resides in some other buffer, whose lifetime 35 /// extends past that of the ArrayRef. For this reason, it is not in general 36 /// safe to store an ArrayRef. 37 /// 38 /// This is intended to be trivially copyable, so it should be passed by 39 /// value. 40 template<typename T> 41 class LLVM_NODISCARD ArrayRef { 42 public: 43 using iterator = const T *; 44 using const_iterator = const T *; 45 using size_type = size_t; 46 using reverse_iterator = std::reverse_iterator<iterator>; 47 48 private: 49 /// The start of the array, in an external buffer. 50 const T *Data = nullptr; 51 52 /// The number of elements. 53 size_type Length = 0; 54 55 public: 56 /// @name Constructors 57 /// @{ 58 59 /// Construct an empty ArrayRef. 60 /*implicit*/ ArrayRef() = default; 61 62 /// Construct an empty ArrayRef from None. 63 /*implicit*/ ArrayRef(NoneType) {} 64 65 /// Construct an ArrayRef from a single element. 66 /*implicit*/ ArrayRef(const T &OneElt) 67 : Data(&OneElt), Length(1) {} 68 69 /// Construct an ArrayRef from a pointer and length. 70 /*implicit*/ ArrayRef(const T *data, size_t length) 71 : Data(data), Length(length) {} 72 73 /// Construct an ArrayRef from a range. 74 ArrayRef(const T *begin, const T *end) 75 : Data(begin), Length(end - begin) {} 76 77 /// Construct an ArrayRef from a SmallVector. This is templated in order to 78 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we 79 /// copy-construct an ArrayRef. 80 template<typename U> 81 /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) 82 : Data(Vec.data()), Length(Vec.size()) { 83 } 84 85 /// Construct an ArrayRef from a std::vector. 86 template<typename A> 87 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) 88 : Data(Vec.data()), Length(Vec.size()) {} 89 90 /// Construct an ArrayRef from a std::array 91 template <size_t N> 92 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) 93 : Data(Arr.data()), Length(N) {} 94 95 /// Construct an ArrayRef from a C array. 96 template <size_t N> 97 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} 98 99 /// Construct an ArrayRef from a std::initializer_list. 100 /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) 101 : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), 102 Length(Vec.size()) {} 103 104 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to 105 /// ensure that only ArrayRefs of pointers can be converted. 106 template <typename U> 107 ArrayRef( 108 const ArrayRef<U *> &A, 109 typename std::enable_if< 110 std::is_convertible<U *const *, T const *>::value>::type * = nullptr) 111 : Data(A.data()), Length(A.size()) {} 112 113 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is 114 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> 115 /// whenever we copy-construct an ArrayRef. 116 template<typename U, typename DummyT> 117 /*implicit*/ ArrayRef( 118 const SmallVectorTemplateCommon<U *, DummyT> &Vec, 119 typename std::enable_if< 120 std::is_convertible<U *const *, T const *>::value>::type * = nullptr) 121 : Data(Vec.data()), Length(Vec.size()) { 122 } 123 124 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE 125 /// to ensure that only vectors of pointers can be converted. 126 template<typename U, typename A> 127 ArrayRef(const std::vector<U *, A> &Vec, 128 typename std::enable_if< 129 std::is_convertible<U *const *, T const *>::value>::type* = 0) 130 : Data(Vec.data()), Length(Vec.size()) {} 131 132 /// @} 133 /// @name Simple Operations 134 /// @{ 135 136 iterator begin() const { return Data; } 137 iterator end() const { return Data + Length; } 138 139 reverse_iterator rbegin() const { return reverse_iterator(end()); } 140 reverse_iterator rend() const { return reverse_iterator(begin()); } 141 142 /// empty - Check if the array is empty. 143 bool empty() const { return Length == 0; } 144 145 const T *data() const { return Data; } 146 147 /// size - Get the array size. 148 size_t size() const { return Length; } 149 150 /// front - Get the first element. 151 const T &front() const { 152 assert(!empty()); 153 return Data[0]; 154 } 155 156 /// back - Get the last element. 157 const T &back() const { 158 assert(!empty()); 159 return Data[Length-1]; 160 } 161 162 // copy - Allocate copy in Allocator and return ArrayRef<T> to it. 163 template <typename Allocator> ArrayRef<T> copy(Allocator &A) { 164 T *Buff = A.template Allocate<T>(Length); 165 std::uninitialized_copy(begin(), end(), Buff); 166 return ArrayRef<T>(Buff, Length); 167 } 168 169 /// equals - Check for element-wise equality. 170 bool equals(ArrayRef RHS) const { 171 if (Length != RHS.Length) 172 return false; 173 return std::equal(begin(), end(), RHS.begin()); 174 } 175 176 /// slice(n, m) - Chop off the first N elements of the array, and keep M 177 /// elements in the array. 178 ArrayRef<T> slice(size_t N, size_t M) const { 179 assert(N+M <= size() && "Invalid specifier"); 180 return ArrayRef<T>(data()+N, M); 181 } 182 183 /// slice(n) - Chop off the first N elements of the array. 184 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } 185 186 /// Drop the first \p N elements of the array. 187 ArrayRef<T> drop_front(size_t N = 1) const { 188 assert(size() >= N && "Dropping more elements than exist"); 189 return slice(N, size() - N); 190 } 191 192 /// Drop the last \p N elements of the array. 193 ArrayRef<T> drop_back(size_t N = 1) const { 194 assert(size() >= N && "Dropping more elements than exist"); 195 return slice(0, size() - N); 196 } 197 198 /// Return a copy of *this with the first N elements satisfying the 199 /// given predicate removed. 200 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { 201 return ArrayRef<T>(find_if_not(*this, Pred), end()); 202 } 203 204 /// Return a copy of *this with the first N elements not satisfying 205 /// the given predicate removed. 206 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { 207 return ArrayRef<T>(find_if(*this, Pred), end()); 208 } 209 210 /// Return a copy of *this with only the first \p N elements. 211 ArrayRef<T> take_front(size_t N = 1) const { 212 if (N >= size()) 213 return *this; 214 return drop_back(size() - N); 215 } 216 217 /// Return a copy of *this with only the last \p N elements. 218 ArrayRef<T> take_back(size_t N = 1) const { 219 if (N >= size()) 220 return *this; 221 return drop_front(size() - N); 222 } 223 224 /// Return the first N elements of this Array that satisfy the given 225 /// predicate. 226 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { 227 return ArrayRef<T>(begin(), find_if_not(*this, Pred)); 228 } 229 230 /// Return the first N elements of this Array that don't satisfy the 231 /// given predicate. 232 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { 233 return ArrayRef<T>(begin(), find_if(*this, Pred)); 234 } 235 236 /// @} 237 /// @name Operator Overloads 238 /// @{ 239 const T &operator[](size_t Index) const { 240 assert(Index < Length && "Invalid index!"); 241 return Data[Index]; 242 } 243 244 /// Disallow accidental assignment from a temporary. 245 /// 246 /// The declaration here is extra complicated so that "arrayRef = {}" 247 /// continues to select the move assignment operator. 248 template <typename U> 249 typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & 250 operator=(U &&Temporary) = delete; 251 252 /// Disallow accidental assignment from a temporary. 253 /// 254 /// The declaration here is extra complicated so that "arrayRef = {}" 255 /// continues to select the move assignment operator. 256 template <typename U> 257 typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & 258 operator=(std::initializer_list<U>) = delete; 259 260 /// @} 261 /// @name Expensive Operations 262 /// @{ 263 std::vector<T> vec() const { 264 return std::vector<T>(Data, Data+Length); 265 } 266 267 /// @} 268 /// @name Conversion operators 269 /// @{ 270 operator std::vector<T>() const { 271 return std::vector<T>(Data, Data+Length); 272 } 273 274 /// @} 275 }; 276 277 /// MutableArrayRef - Represent a mutable reference to an array (0 or more 278 /// elements consecutively in memory), i.e. a start pointer and a length. It 279 /// allows various APIs to take and modify consecutive elements easily and 280 /// conveniently. 281 /// 282 /// This class does not own the underlying data, it is expected to be used in 283 /// situations where the data resides in some other buffer, whose lifetime 284 /// extends past that of the MutableArrayRef. For this reason, it is not in 285 /// general safe to store a MutableArrayRef. 286 /// 287 /// This is intended to be trivially copyable, so it should be passed by 288 /// value. 289 template<typename T> 290 class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { 291 public: 292 using iterator = T *; 293 using reverse_iterator = std::reverse_iterator<iterator>; 294 295 /// Construct an empty MutableArrayRef. 296 /*implicit*/ MutableArrayRef() = default; 297 298 /// Construct an empty MutableArrayRef from None. 299 /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} 300 301 /// Construct an MutableArrayRef from a single element. 302 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} 303 304 /// Construct an MutableArrayRef from a pointer and length. 305 /*implicit*/ MutableArrayRef(T *data, size_t length) 306 : ArrayRef<T>(data, length) {} 307 308 /// Construct an MutableArrayRef from a range. 309 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} 310 311 /// Construct an MutableArrayRef from a SmallVector. 312 /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) 313 : ArrayRef<T>(Vec) {} 314 315 /// Construct a MutableArrayRef from a std::vector. 316 /*implicit*/ MutableArrayRef(std::vector<T> &Vec) 317 : ArrayRef<T>(Vec) {} 318 319 /// Construct an ArrayRef from a std::array 320 template <size_t N> 321 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) 322 : ArrayRef<T>(Arr) {} 323 324 /// Construct an MutableArrayRef from a C array. 325 template <size_t N> 326 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} 327 328 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } 329 330 iterator begin() const { return data(); } 331 iterator end() const { return data() + this->size(); } 332 333 reverse_iterator rbegin() const { return reverse_iterator(end()); } 334 reverse_iterator rend() const { return reverse_iterator(begin()); } 335 336 /// front - Get the first element. 337 T &front() const { 338 assert(!this->empty()); 339 return data()[0]; 340 } 341 342 /// back - Get the last element. 343 T &back() const { 344 assert(!this->empty()); 345 return data()[this->size()-1]; 346 } 347 348 /// slice(n, m) - Chop off the first N elements of the array, and keep M 349 /// elements in the array. 350 MutableArrayRef<T> slice(size_t N, size_t M) const { 351 assert(N + M <= this->size() && "Invalid specifier"); 352 return MutableArrayRef<T>(this->data() + N, M); 353 } 354 355 /// slice(n) - Chop off the first N elements of the array. 356 MutableArrayRef<T> slice(size_t N) const { 357 return slice(N, this->size() - N); 358 } 359 360 /// Drop the first \p N elements of the array. 361 MutableArrayRef<T> drop_front(size_t N = 1) const { 362 assert(this->size() >= N && "Dropping more elements than exist"); 363 return slice(N, this->size() - N); 364 } 365 366 MutableArrayRef<T> drop_back(size_t N = 1) const { 367 assert(this->size() >= N && "Dropping more elements than exist"); 368 return slice(0, this->size() - N); 369 } 370 371 /// Return a copy of *this with the first N elements satisfying the 372 /// given predicate removed. 373 template <class PredicateT> 374 MutableArrayRef<T> drop_while(PredicateT Pred) const { 375 return MutableArrayRef<T>(find_if_not(*this, Pred), end()); 376 } 377 378 /// Return a copy of *this with the first N elements not satisfying 379 /// the given predicate removed. 380 template <class PredicateT> 381 MutableArrayRef<T> drop_until(PredicateT Pred) const { 382 return MutableArrayRef<T>(find_if(*this, Pred), end()); 383 } 384 385 /// Return a copy of *this with only the first \p N elements. 386 MutableArrayRef<T> take_front(size_t N = 1) const { 387 if (N >= this->size()) 388 return *this; 389 return drop_back(this->size() - N); 390 } 391 392 /// Return a copy of *this with only the last \p N elements. 393 MutableArrayRef<T> take_back(size_t N = 1) const { 394 if (N >= this->size()) 395 return *this; 396 return drop_front(this->size() - N); 397 } 398 399 /// Return the first N elements of this Array that satisfy the given 400 /// predicate. 401 template <class PredicateT> 402 MutableArrayRef<T> take_while(PredicateT Pred) const { 403 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); 404 } 405 406 /// Return the first N elements of this Array that don't satisfy the 407 /// given predicate. 408 template <class PredicateT> 409 MutableArrayRef<T> take_until(PredicateT Pred) const { 410 return MutableArrayRef<T>(begin(), find_if(*this, Pred)); 411 } 412 413 /// @} 414 /// @name Operator Overloads 415 /// @{ 416 T &operator[](size_t Index) const { 417 assert(Index < this->size() && "Invalid index!"); 418 return data()[Index]; 419 } 420 }; 421 422 /// This is a MutableArrayRef that owns its array. 423 template <typename T> class OwningArrayRef : public MutableArrayRef<T> { 424 public: 425 OwningArrayRef() = default; 426 OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} 427 428 OwningArrayRef(ArrayRef<T> Data) 429 : MutableArrayRef<T>(new T[Data.size()], Data.size()) { 430 std::copy(Data.begin(), Data.end(), this->begin()); 431 } 432 433 OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } 434 435 OwningArrayRef &operator=(OwningArrayRef &&Other) { 436 delete[] this->data(); 437 this->MutableArrayRef<T>::operator=(Other); 438 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); 439 return *this; 440 } 441 442 ~OwningArrayRef() { delete[] this->data(); } 443 }; 444 445 /// @name ArrayRef Convenience constructors 446 /// @{ 447 448 /// Construct an ArrayRef from a single element. 449 template<typename T> 450 ArrayRef<T> makeArrayRef(const T &OneElt) { 451 return OneElt; 452 } 453 454 /// Construct an ArrayRef from a pointer and length. 455 template<typename T> 456 ArrayRef<T> makeArrayRef(const T *data, size_t length) { 457 return ArrayRef<T>(data, length); 458 } 459 460 /// Construct an ArrayRef from a range. 461 template<typename T> 462 ArrayRef<T> makeArrayRef(const T *begin, const T *end) { 463 return ArrayRef<T>(begin, end); 464 } 465 466 /// Construct an ArrayRef from a SmallVector. 467 template <typename T> 468 ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { 469 return Vec; 470 } 471 472 /// Construct an ArrayRef from a SmallVector. 473 template <typename T, unsigned N> 474 ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { 475 return Vec; 476 } 477 478 /// Construct an ArrayRef from a std::vector. 479 template<typename T> 480 ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { 481 return Vec; 482 } 483 484 /// Construct an ArrayRef from an ArrayRef (no-op) (const) 485 template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { 486 return Vec; 487 } 488 489 /// Construct an ArrayRef from an ArrayRef (no-op) 490 template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { 491 return Vec; 492 } 493 494 /// Construct an ArrayRef from a C array. 495 template<typename T, size_t N> 496 ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { 497 return ArrayRef<T>(Arr); 498 } 499 500 /// Construct a MutableArrayRef from a single element. 501 template<typename T> 502 MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { 503 return OneElt; 504 } 505 506 /// Construct a MutableArrayRef from a pointer and length. 507 template<typename T> 508 MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { 509 return MutableArrayRef<T>(data, length); 510 } 511 512 /// @} 513 /// @name ArrayRef Comparison Operators 514 /// @{ 515 516 template<typename T> 517 inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { 518 return LHS.equals(RHS); 519 } 520 521 template<typename T> 522 inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { 523 return !(LHS == RHS); 524 } 525 526 /// @} 527 528 template <typename T> hash_code hash_value(ArrayRef<T> S) { 529 return hash_combine_range(S.begin(), S.end()); 530 } 531 532 } // end namespace llvm 533 534 #endif // LLVM_ADT_ARRAYREF_H 535