1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_ADT_ARRAYREF_H 10 #define LLVM_ADT_ARRAYREF_H 11 12 #include "llvm/ADT/Hashing.h" 13 #include "llvm/ADT/None.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Support/Compiler.h" 17 #include <algorithm> 18 #include <array> 19 #include <cassert> 20 #include <cstddef> 21 #include <initializer_list> 22 #include <iterator> 23 #include <memory> 24 #include <type_traits> 25 #include <vector> 26 27 namespace llvm { 28 29 /// ArrayRef - Represent a constant reference to an array (0 or more elements 30 /// consecutively in memory), i.e. a start pointer and a length. It allows 31 /// various APIs to take consecutive elements easily and conveniently. 32 /// 33 /// This class does not own the underlying data, it is expected to be used in 34 /// situations where the data resides in some other buffer, whose lifetime 35 /// extends past that of the ArrayRef. For this reason, it is not in general 36 /// safe to store an ArrayRef. 37 /// 38 /// This is intended to be trivially copyable, so it should be passed by 39 /// value. 40 template<typename T> 41 class LLVM_GSL_POINTER LLVM_NODISCARD ArrayRef { 42 public: 43 using iterator = const T *; 44 using const_iterator = const T *; 45 using size_type = size_t; 46 using reverse_iterator = std::reverse_iterator<iterator>; 47 48 private: 49 /// The start of the array, in an external buffer. 50 const T *Data = nullptr; 51 52 /// The number of elements. 53 size_type Length = 0; 54 55 public: 56 /// @name Constructors 57 /// @{ 58 59 /// Construct an empty ArrayRef. 60 /*implicit*/ ArrayRef() = default; 61 62 /// Construct an empty ArrayRef from None. 63 /*implicit*/ ArrayRef(NoneType) {} 64 65 /// Construct an ArrayRef from a single element. 66 /*implicit*/ ArrayRef(const T &OneElt) 67 : Data(&OneElt), Length(1) {} 68 69 /// Construct an ArrayRef from a pointer and length. 70 /*implicit*/ ArrayRef(const T *data, size_t length) 71 : Data(data), Length(length) {} 72 73 /// Construct an ArrayRef from a range. 74 ArrayRef(const T *begin, const T *end) 75 : Data(begin), Length(end - begin) {} 76 77 /// Construct an ArrayRef from a SmallVector. This is templated in order to 78 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we 79 /// copy-construct an ArrayRef. 80 template<typename U> 81 /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) 82 : Data(Vec.data()), Length(Vec.size()) { 83 } 84 85 /// Construct an ArrayRef from a std::vector. 86 template<typename A> 87 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) 88 : Data(Vec.data()), Length(Vec.size()) {} 89 90 /// Construct an ArrayRef from a std::array 91 template <size_t N> 92 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) 93 : Data(Arr.data()), Length(N) {} 94 95 /// Construct an ArrayRef from a C array. 96 template <size_t N> 97 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} 98 99 /// Construct an ArrayRef from a std::initializer_list. 100 #if LLVM_GNUC_PREREQ(9, 0, 0) 101 // Disable gcc's warning in this constructor as it generates an enormous amount 102 // of messages. Anyone using ArrayRef should already be aware of the fact that 103 // it does not do lifetime extension. 104 #pragma GCC diagnostic push 105 #pragma GCC diagnostic ignored "-Winit-list-lifetime" 106 #endif 107 /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) 108 : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), 109 Length(Vec.size()) {} 110 #if LLVM_GNUC_PREREQ(9, 0, 0) 111 #pragma GCC diagnostic pop 112 #endif 113 114 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to 115 /// ensure that only ArrayRefs of pointers can be converted. 116 template <typename U> 117 ArrayRef(const ArrayRef<U *> &A, 118 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> 119 * = nullptr) 120 : Data(A.data()), Length(A.size()) {} 121 122 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is 123 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> 124 /// whenever we copy-construct an ArrayRef. 125 template <typename U, typename DummyT> 126 /*implicit*/ ArrayRef( 127 const SmallVectorTemplateCommon<U *, DummyT> &Vec, 128 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = 129 nullptr) 130 : Data(Vec.data()), Length(Vec.size()) {} 131 132 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE 133 /// to ensure that only vectors of pointers can be converted. 134 template <typename U, typename A> 135 ArrayRef(const std::vector<U *, A> &Vec, 136 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> 137 * = 0) 138 : Data(Vec.data()), Length(Vec.size()) {} 139 140 /// @} 141 /// @name Simple Operations 142 /// @{ 143 144 iterator begin() const { return Data; } 145 iterator end() const { return Data + Length; } 146 147 reverse_iterator rbegin() const { return reverse_iterator(end()); } 148 reverse_iterator rend() const { return reverse_iterator(begin()); } 149 150 /// empty - Check if the array is empty. 151 bool empty() const { return Length == 0; } 152 153 const T *data() const { return Data; } 154 155 /// size - Get the array size. 156 size_t size() const { return Length; } 157 158 /// front - Get the first element. 159 const T &front() const { 160 assert(!empty()); 161 return Data[0]; 162 } 163 164 /// back - Get the last element. 165 const T &back() const { 166 assert(!empty()); 167 return Data[Length-1]; 168 } 169 170 // copy - Allocate copy in Allocator and return ArrayRef<T> to it. 171 template <typename Allocator> ArrayRef<T> copy(Allocator &A) { 172 T *Buff = A.template Allocate<T>(Length); 173 std::uninitialized_copy(begin(), end(), Buff); 174 return ArrayRef<T>(Buff, Length); 175 } 176 177 /// equals - Check for element-wise equality. 178 bool equals(ArrayRef RHS) const { 179 if (Length != RHS.Length) 180 return false; 181 return std::equal(begin(), end(), RHS.begin()); 182 } 183 184 /// slice(n, m) - Chop off the first N elements of the array, and keep M 185 /// elements in the array. 186 ArrayRef<T> slice(size_t N, size_t M) const { 187 assert(N+M <= size() && "Invalid specifier"); 188 return ArrayRef<T>(data()+N, M); 189 } 190 191 /// slice(n) - Chop off the first N elements of the array. 192 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } 193 194 /// Drop the first \p N elements of the array. 195 ArrayRef<T> drop_front(size_t N = 1) const { 196 assert(size() >= N && "Dropping more elements than exist"); 197 return slice(N, size() - N); 198 } 199 200 /// Drop the last \p N elements of the array. 201 ArrayRef<T> drop_back(size_t N = 1) const { 202 assert(size() >= N && "Dropping more elements than exist"); 203 return slice(0, size() - N); 204 } 205 206 /// Return a copy of *this with the first N elements satisfying the 207 /// given predicate removed. 208 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { 209 return ArrayRef<T>(find_if_not(*this, Pred), end()); 210 } 211 212 /// Return a copy of *this with the first N elements not satisfying 213 /// the given predicate removed. 214 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { 215 return ArrayRef<T>(find_if(*this, Pred), end()); 216 } 217 218 /// Return a copy of *this with only the first \p N elements. 219 ArrayRef<T> take_front(size_t N = 1) const { 220 if (N >= size()) 221 return *this; 222 return drop_back(size() - N); 223 } 224 225 /// Return a copy of *this with only the last \p N elements. 226 ArrayRef<T> take_back(size_t N = 1) const { 227 if (N >= size()) 228 return *this; 229 return drop_front(size() - N); 230 } 231 232 /// Return the first N elements of this Array that satisfy the given 233 /// predicate. 234 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { 235 return ArrayRef<T>(begin(), find_if_not(*this, Pred)); 236 } 237 238 /// Return the first N elements of this Array that don't satisfy the 239 /// given predicate. 240 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { 241 return ArrayRef<T>(begin(), find_if(*this, Pred)); 242 } 243 244 /// @} 245 /// @name Operator Overloads 246 /// @{ 247 const T &operator[](size_t Index) const { 248 assert(Index < Length && "Invalid index!"); 249 return Data[Index]; 250 } 251 252 /// Disallow accidental assignment from a temporary. 253 /// 254 /// The declaration here is extra complicated so that "arrayRef = {}" 255 /// continues to select the move assignment operator. 256 template <typename U> 257 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & 258 operator=(U &&Temporary) = delete; 259 260 /// Disallow accidental assignment from a temporary. 261 /// 262 /// The declaration here is extra complicated so that "arrayRef = {}" 263 /// continues to select the move assignment operator. 264 template <typename U> 265 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & 266 operator=(std::initializer_list<U>) = delete; 267 268 /// @} 269 /// @name Expensive Operations 270 /// @{ 271 std::vector<T> vec() const { 272 return std::vector<T>(Data, Data+Length); 273 } 274 275 /// @} 276 /// @name Conversion operators 277 /// @{ 278 operator std::vector<T>() const { 279 return std::vector<T>(Data, Data+Length); 280 } 281 282 /// @} 283 }; 284 285 /// MutableArrayRef - Represent a mutable reference to an array (0 or more 286 /// elements consecutively in memory), i.e. a start pointer and a length. It 287 /// allows various APIs to take and modify consecutive elements easily and 288 /// conveniently. 289 /// 290 /// This class does not own the underlying data, it is expected to be used in 291 /// situations where the data resides in some other buffer, whose lifetime 292 /// extends past that of the MutableArrayRef. For this reason, it is not in 293 /// general safe to store a MutableArrayRef. 294 /// 295 /// This is intended to be trivially copyable, so it should be passed by 296 /// value. 297 template<typename T> 298 class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { 299 public: 300 using iterator = T *; 301 using reverse_iterator = std::reverse_iterator<iterator>; 302 303 /// Construct an empty MutableArrayRef. 304 /*implicit*/ MutableArrayRef() = default; 305 306 /// Construct an empty MutableArrayRef from None. 307 /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} 308 309 /// Construct a MutableArrayRef from a single element. 310 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} 311 312 /// Construct a MutableArrayRef from a pointer and length. 313 /*implicit*/ MutableArrayRef(T *data, size_t length) 314 : ArrayRef<T>(data, length) {} 315 316 /// Construct a MutableArrayRef from a range. 317 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} 318 319 /// Construct a MutableArrayRef from a SmallVector. 320 /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) 321 : ArrayRef<T>(Vec) {} 322 323 /// Construct a MutableArrayRef from a std::vector. 324 /*implicit*/ MutableArrayRef(std::vector<T> &Vec) 325 : ArrayRef<T>(Vec) {} 326 327 /// Construct a MutableArrayRef from a std::array 328 template <size_t N> 329 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) 330 : ArrayRef<T>(Arr) {} 331 332 /// Construct a MutableArrayRef from a C array. 333 template <size_t N> 334 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} 335 336 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } 337 338 iterator begin() const { return data(); } 339 iterator end() const { return data() + this->size(); } 340 341 reverse_iterator rbegin() const { return reverse_iterator(end()); } 342 reverse_iterator rend() const { return reverse_iterator(begin()); } 343 344 /// front - Get the first element. 345 T &front() const { 346 assert(!this->empty()); 347 return data()[0]; 348 } 349 350 /// back - Get the last element. 351 T &back() const { 352 assert(!this->empty()); 353 return data()[this->size()-1]; 354 } 355 356 /// slice(n, m) - Chop off the first N elements of the array, and keep M 357 /// elements in the array. 358 MutableArrayRef<T> slice(size_t N, size_t M) const { 359 assert(N + M <= this->size() && "Invalid specifier"); 360 return MutableArrayRef<T>(this->data() + N, M); 361 } 362 363 /// slice(n) - Chop off the first N elements of the array. 364 MutableArrayRef<T> slice(size_t N) const { 365 return slice(N, this->size() - N); 366 } 367 368 /// Drop the first \p N elements of the array. 369 MutableArrayRef<T> drop_front(size_t N = 1) const { 370 assert(this->size() >= N && "Dropping more elements than exist"); 371 return slice(N, this->size() - N); 372 } 373 374 MutableArrayRef<T> drop_back(size_t N = 1) const { 375 assert(this->size() >= N && "Dropping more elements than exist"); 376 return slice(0, this->size() - N); 377 } 378 379 /// Return a copy of *this with the first N elements satisfying the 380 /// given predicate removed. 381 template <class PredicateT> 382 MutableArrayRef<T> drop_while(PredicateT Pred) const { 383 return MutableArrayRef<T>(find_if_not(*this, Pred), end()); 384 } 385 386 /// Return a copy of *this with the first N elements not satisfying 387 /// the given predicate removed. 388 template <class PredicateT> 389 MutableArrayRef<T> drop_until(PredicateT Pred) const { 390 return MutableArrayRef<T>(find_if(*this, Pred), end()); 391 } 392 393 /// Return a copy of *this with only the first \p N elements. 394 MutableArrayRef<T> take_front(size_t N = 1) const { 395 if (N >= this->size()) 396 return *this; 397 return drop_back(this->size() - N); 398 } 399 400 /// Return a copy of *this with only the last \p N elements. 401 MutableArrayRef<T> take_back(size_t N = 1) const { 402 if (N >= this->size()) 403 return *this; 404 return drop_front(this->size() - N); 405 } 406 407 /// Return the first N elements of this Array that satisfy the given 408 /// predicate. 409 template <class PredicateT> 410 MutableArrayRef<T> take_while(PredicateT Pred) const { 411 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); 412 } 413 414 /// Return the first N elements of this Array that don't satisfy the 415 /// given predicate. 416 template <class PredicateT> 417 MutableArrayRef<T> take_until(PredicateT Pred) const { 418 return MutableArrayRef<T>(begin(), find_if(*this, Pred)); 419 } 420 421 /// @} 422 /// @name Operator Overloads 423 /// @{ 424 T &operator[](size_t Index) const { 425 assert(Index < this->size() && "Invalid index!"); 426 return data()[Index]; 427 } 428 }; 429 430 /// This is a MutableArrayRef that owns its array. 431 template <typename T> class OwningArrayRef : public MutableArrayRef<T> { 432 public: 433 OwningArrayRef() = default; 434 OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} 435 436 OwningArrayRef(ArrayRef<T> Data) 437 : MutableArrayRef<T>(new T[Data.size()], Data.size()) { 438 std::copy(Data.begin(), Data.end(), this->begin()); 439 } 440 441 OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } 442 443 OwningArrayRef &operator=(OwningArrayRef &&Other) { 444 delete[] this->data(); 445 this->MutableArrayRef<T>::operator=(Other); 446 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); 447 return *this; 448 } 449 450 ~OwningArrayRef() { delete[] this->data(); } 451 }; 452 453 /// @name ArrayRef Convenience constructors 454 /// @{ 455 456 /// Construct an ArrayRef from a single element. 457 template<typename T> 458 ArrayRef<T> makeArrayRef(const T &OneElt) { 459 return OneElt; 460 } 461 462 /// Construct an ArrayRef from a pointer and length. 463 template<typename T> 464 ArrayRef<T> makeArrayRef(const T *data, size_t length) { 465 return ArrayRef<T>(data, length); 466 } 467 468 /// Construct an ArrayRef from a range. 469 template<typename T> 470 ArrayRef<T> makeArrayRef(const T *begin, const T *end) { 471 return ArrayRef<T>(begin, end); 472 } 473 474 /// Construct an ArrayRef from a SmallVector. 475 template <typename T> 476 ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { 477 return Vec; 478 } 479 480 /// Construct an ArrayRef from a SmallVector. 481 template <typename T, unsigned N> 482 ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { 483 return Vec; 484 } 485 486 /// Construct an ArrayRef from a std::vector. 487 template<typename T> 488 ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { 489 return Vec; 490 } 491 492 /// Construct an ArrayRef from a std::array. 493 template <typename T, std::size_t N> 494 ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) { 495 return Arr; 496 } 497 498 /// Construct an ArrayRef from an ArrayRef (no-op) (const) 499 template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { 500 return Vec; 501 } 502 503 /// Construct an ArrayRef from an ArrayRef (no-op) 504 template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { 505 return Vec; 506 } 507 508 /// Construct an ArrayRef from a C array. 509 template<typename T, size_t N> 510 ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { 511 return ArrayRef<T>(Arr); 512 } 513 514 /// Construct a MutableArrayRef from a single element. 515 template<typename T> 516 MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { 517 return OneElt; 518 } 519 520 /// Construct a MutableArrayRef from a pointer and length. 521 template<typename T> 522 MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { 523 return MutableArrayRef<T>(data, length); 524 } 525 526 /// @} 527 /// @name ArrayRef Comparison Operators 528 /// @{ 529 530 template<typename T> 531 inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { 532 return LHS.equals(RHS); 533 } 534 535 template <typename T> 536 inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { 537 return ArrayRef<T>(LHS).equals(RHS); 538 } 539 540 template <typename T> 541 inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { 542 return !(LHS == RHS); 543 } 544 545 template <typename T> 546 inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { 547 return !(LHS == RHS); 548 } 549 550 /// @} 551 552 template <typename T> hash_code hash_value(ArrayRef<T> S) { 553 return hash_combine_range(S.begin(), S.end()); 554 } 555 556 } // end namespace llvm 557 558 #endif // LLVM_ADT_ARRAYREF_H 559