xref: /freebsd/contrib/llvm-project/llvm/include/llvm/ADT/ArrayRef.h (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_ADT_ARRAYREF_H
10 #define LLVM_ADT_ARRAYREF_H
11 
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/None.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Support/Compiler.h"
17 #include <algorithm>
18 #include <array>
19 #include <cassert>
20 #include <cstddef>
21 #include <initializer_list>
22 #include <iterator>
23 #include <memory>
24 #include <type_traits>
25 #include <vector>
26 
27 namespace llvm {
28 
29   /// ArrayRef - Represent a constant reference to an array (0 or more elements
30   /// consecutively in memory), i.e. a start pointer and a length.  It allows
31   /// various APIs to take consecutive elements easily and conveniently.
32   ///
33   /// This class does not own the underlying data, it is expected to be used in
34   /// situations where the data resides in some other buffer, whose lifetime
35   /// extends past that of the ArrayRef. For this reason, it is not in general
36   /// safe to store an ArrayRef.
37   ///
38   /// This is intended to be trivially copyable, so it should be passed by
39   /// value.
40   template<typename T>
41   class LLVM_GSL_POINTER LLVM_NODISCARD ArrayRef {
42   public:
43     using iterator = const T *;
44     using const_iterator = const T *;
45     using size_type = size_t;
46     using reverse_iterator = std::reverse_iterator<iterator>;
47 
48   private:
49     /// The start of the array, in an external buffer.
50     const T *Data = nullptr;
51 
52     /// The number of elements.
53     size_type Length = 0;
54 
55   public:
56     /// @name Constructors
57     /// @{
58 
59     /// Construct an empty ArrayRef.
60     /*implicit*/ ArrayRef() = default;
61 
62     /// Construct an empty ArrayRef from None.
63     /*implicit*/ ArrayRef(NoneType) {}
64 
65     /// Construct an ArrayRef from a single element.
66     /*implicit*/ ArrayRef(const T &OneElt)
67       : Data(&OneElt), Length(1) {}
68 
69     /// Construct an ArrayRef from a pointer and length.
70     /*implicit*/ ArrayRef(const T *data, size_t length)
71       : Data(data), Length(length) {}
72 
73     /// Construct an ArrayRef from a range.
74     ArrayRef(const T *begin, const T *end)
75       : Data(begin), Length(end - begin) {}
76 
77     /// Construct an ArrayRef from a SmallVector. This is templated in order to
78     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
79     /// copy-construct an ArrayRef.
80     template<typename U>
81     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
82       : Data(Vec.data()), Length(Vec.size()) {
83     }
84 
85     /// Construct an ArrayRef from a std::vector.
86     template<typename A>
87     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
88       : Data(Vec.data()), Length(Vec.size()) {}
89 
90     /// Construct an ArrayRef from a std::array
91     template <size_t N>
92     /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
93         : Data(Arr.data()), Length(N) {}
94 
95     /// Construct an ArrayRef from a C array.
96     template <size_t N>
97     /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
98 
99     /// Construct an ArrayRef from a std::initializer_list.
100 #if LLVM_GNUC_PREREQ(9, 0, 0)
101 // Disable gcc's warning in this constructor as it generates an enormous amount
102 // of messages. Anyone using ArrayRef should already be aware of the fact that
103 // it does not do lifetime extension.
104 #pragma GCC diagnostic push
105 #pragma GCC diagnostic ignored "-Winit-list-lifetime"
106 #endif
107     /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
108     : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
109       Length(Vec.size()) {}
110 #if LLVM_GNUC_PREREQ(9, 0, 0)
111 #pragma GCC diagnostic pop
112 #endif
113 
114     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
115     /// ensure that only ArrayRefs of pointers can be converted.
116     template <typename U>
117     ArrayRef(const ArrayRef<U *> &A,
118              std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
119                  * = nullptr)
120         : Data(A.data()), Length(A.size()) {}
121 
122     /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
123     /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
124     /// whenever we copy-construct an ArrayRef.
125     template <typename U, typename DummyT>
126     /*implicit*/ ArrayRef(
127         const SmallVectorTemplateCommon<U *, DummyT> &Vec,
128         std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * =
129             nullptr)
130         : Data(Vec.data()), Length(Vec.size()) {}
131 
132     /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
133     /// to ensure that only vectors of pointers can be converted.
134     template <typename U, typename A>
135     ArrayRef(const std::vector<U *, A> &Vec,
136              std::enable_if_t<std::is_convertible<U *const *, T const *>::value>
137                  * = 0)
138         : Data(Vec.data()), Length(Vec.size()) {}
139 
140     /// @}
141     /// @name Simple Operations
142     /// @{
143 
144     iterator begin() const { return Data; }
145     iterator end() const { return Data + Length; }
146 
147     reverse_iterator rbegin() const { return reverse_iterator(end()); }
148     reverse_iterator rend() const { return reverse_iterator(begin()); }
149 
150     /// empty - Check if the array is empty.
151     bool empty() const { return Length == 0; }
152 
153     const T *data() const { return Data; }
154 
155     /// size - Get the array size.
156     size_t size() const { return Length; }
157 
158     /// front - Get the first element.
159     const T &front() const {
160       assert(!empty());
161       return Data[0];
162     }
163 
164     /// back - Get the last element.
165     const T &back() const {
166       assert(!empty());
167       return Data[Length-1];
168     }
169 
170     // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
171     template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
172       T *Buff = A.template Allocate<T>(Length);
173       std::uninitialized_copy(begin(), end(), Buff);
174       return ArrayRef<T>(Buff, Length);
175     }
176 
177     /// equals - Check for element-wise equality.
178     bool equals(ArrayRef RHS) const {
179       if (Length != RHS.Length)
180         return false;
181       return std::equal(begin(), end(), RHS.begin());
182     }
183 
184     /// slice(n, m) - Chop off the first N elements of the array, and keep M
185     /// elements in the array.
186     ArrayRef<T> slice(size_t N, size_t M) const {
187       assert(N+M <= size() && "Invalid specifier");
188       return ArrayRef<T>(data()+N, M);
189     }
190 
191     /// slice(n) - Chop off the first N elements of the array.
192     ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
193 
194     /// Drop the first \p N elements of the array.
195     ArrayRef<T> drop_front(size_t N = 1) const {
196       assert(size() >= N && "Dropping more elements than exist");
197       return slice(N, size() - N);
198     }
199 
200     /// Drop the last \p N elements of the array.
201     ArrayRef<T> drop_back(size_t N = 1) const {
202       assert(size() >= N && "Dropping more elements than exist");
203       return slice(0, size() - N);
204     }
205 
206     /// Return a copy of *this with the first N elements satisfying the
207     /// given predicate removed.
208     template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
209       return ArrayRef<T>(find_if_not(*this, Pred), end());
210     }
211 
212     /// Return a copy of *this with the first N elements not satisfying
213     /// the given predicate removed.
214     template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
215       return ArrayRef<T>(find_if(*this, Pred), end());
216     }
217 
218     /// Return a copy of *this with only the first \p N elements.
219     ArrayRef<T> take_front(size_t N = 1) const {
220       if (N >= size())
221         return *this;
222       return drop_back(size() - N);
223     }
224 
225     /// Return a copy of *this with only the last \p N elements.
226     ArrayRef<T> take_back(size_t N = 1) const {
227       if (N >= size())
228         return *this;
229       return drop_front(size() - N);
230     }
231 
232     /// Return the first N elements of this Array that satisfy the given
233     /// predicate.
234     template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
235       return ArrayRef<T>(begin(), find_if_not(*this, Pred));
236     }
237 
238     /// Return the first N elements of this Array that don't satisfy the
239     /// given predicate.
240     template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
241       return ArrayRef<T>(begin(), find_if(*this, Pred));
242     }
243 
244     /// @}
245     /// @name Operator Overloads
246     /// @{
247     const T &operator[](size_t Index) const {
248       assert(Index < Length && "Invalid index!");
249       return Data[Index];
250     }
251 
252     /// Disallow accidental assignment from a temporary.
253     ///
254     /// The declaration here is extra complicated so that "arrayRef = {}"
255     /// continues to select the move assignment operator.
256     template <typename U>
257     std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
258     operator=(U &&Temporary) = delete;
259 
260     /// Disallow accidental assignment from a temporary.
261     ///
262     /// The declaration here is extra complicated so that "arrayRef = {}"
263     /// continues to select the move assignment operator.
264     template <typename U>
265     std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> &
266     operator=(std::initializer_list<U>) = delete;
267 
268     /// @}
269     /// @name Expensive Operations
270     /// @{
271     std::vector<T> vec() const {
272       return std::vector<T>(Data, Data+Length);
273     }
274 
275     /// @}
276     /// @name Conversion operators
277     /// @{
278     operator std::vector<T>() const {
279       return std::vector<T>(Data, Data+Length);
280     }
281 
282     /// @}
283   };
284 
285   /// MutableArrayRef - Represent a mutable reference to an array (0 or more
286   /// elements consecutively in memory), i.e. a start pointer and a length.  It
287   /// allows various APIs to take and modify consecutive elements easily and
288   /// conveniently.
289   ///
290   /// This class does not own the underlying data, it is expected to be used in
291   /// situations where the data resides in some other buffer, whose lifetime
292   /// extends past that of the MutableArrayRef. For this reason, it is not in
293   /// general safe to store a MutableArrayRef.
294   ///
295   /// This is intended to be trivially copyable, so it should be passed by
296   /// value.
297   template<typename T>
298   class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> {
299   public:
300     using iterator = T *;
301     using reverse_iterator = std::reverse_iterator<iterator>;
302 
303     /// Construct an empty MutableArrayRef.
304     /*implicit*/ MutableArrayRef() = default;
305 
306     /// Construct an empty MutableArrayRef from None.
307     /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
308 
309     /// Construct a MutableArrayRef from a single element.
310     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
311 
312     /// Construct a MutableArrayRef from a pointer and length.
313     /*implicit*/ MutableArrayRef(T *data, size_t length)
314       : ArrayRef<T>(data, length) {}
315 
316     /// Construct a MutableArrayRef from a range.
317     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
318 
319     /// Construct a MutableArrayRef from a SmallVector.
320     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
321     : ArrayRef<T>(Vec) {}
322 
323     /// Construct a MutableArrayRef from a std::vector.
324     /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
325     : ArrayRef<T>(Vec) {}
326 
327     /// Construct a MutableArrayRef from a std::array
328     template <size_t N>
329     /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
330         : ArrayRef<T>(Arr) {}
331 
332     /// Construct a MutableArrayRef from a C array.
333     template <size_t N>
334     /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
335 
336     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
337 
338     iterator begin() const { return data(); }
339     iterator end() const { return data() + this->size(); }
340 
341     reverse_iterator rbegin() const { return reverse_iterator(end()); }
342     reverse_iterator rend() const { return reverse_iterator(begin()); }
343 
344     /// front - Get the first element.
345     T &front() const {
346       assert(!this->empty());
347       return data()[0];
348     }
349 
350     /// back - Get the last element.
351     T &back() const {
352       assert(!this->empty());
353       return data()[this->size()-1];
354     }
355 
356     /// slice(n, m) - Chop off the first N elements of the array, and keep M
357     /// elements in the array.
358     MutableArrayRef<T> slice(size_t N, size_t M) const {
359       assert(N + M <= this->size() && "Invalid specifier");
360       return MutableArrayRef<T>(this->data() + N, M);
361     }
362 
363     /// slice(n) - Chop off the first N elements of the array.
364     MutableArrayRef<T> slice(size_t N) const {
365       return slice(N, this->size() - N);
366     }
367 
368     /// Drop the first \p N elements of the array.
369     MutableArrayRef<T> drop_front(size_t N = 1) const {
370       assert(this->size() >= N && "Dropping more elements than exist");
371       return slice(N, this->size() - N);
372     }
373 
374     MutableArrayRef<T> drop_back(size_t N = 1) const {
375       assert(this->size() >= N && "Dropping more elements than exist");
376       return slice(0, this->size() - N);
377     }
378 
379     /// Return a copy of *this with the first N elements satisfying the
380     /// given predicate removed.
381     template <class PredicateT>
382     MutableArrayRef<T> drop_while(PredicateT Pred) const {
383       return MutableArrayRef<T>(find_if_not(*this, Pred), end());
384     }
385 
386     /// Return a copy of *this with the first N elements not satisfying
387     /// the given predicate removed.
388     template <class PredicateT>
389     MutableArrayRef<T> drop_until(PredicateT Pred) const {
390       return MutableArrayRef<T>(find_if(*this, Pred), end());
391     }
392 
393     /// Return a copy of *this with only the first \p N elements.
394     MutableArrayRef<T> take_front(size_t N = 1) const {
395       if (N >= this->size())
396         return *this;
397       return drop_back(this->size() - N);
398     }
399 
400     /// Return a copy of *this with only the last \p N elements.
401     MutableArrayRef<T> take_back(size_t N = 1) const {
402       if (N >= this->size())
403         return *this;
404       return drop_front(this->size() - N);
405     }
406 
407     /// Return the first N elements of this Array that satisfy the given
408     /// predicate.
409     template <class PredicateT>
410     MutableArrayRef<T> take_while(PredicateT Pred) const {
411       return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
412     }
413 
414     /// Return the first N elements of this Array that don't satisfy the
415     /// given predicate.
416     template <class PredicateT>
417     MutableArrayRef<T> take_until(PredicateT Pred) const {
418       return MutableArrayRef<T>(begin(), find_if(*this, Pred));
419     }
420 
421     /// @}
422     /// @name Operator Overloads
423     /// @{
424     T &operator[](size_t Index) const {
425       assert(Index < this->size() && "Invalid index!");
426       return data()[Index];
427     }
428   };
429 
430   /// This is a MutableArrayRef that owns its array.
431   template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
432   public:
433     OwningArrayRef() = default;
434     OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
435 
436     OwningArrayRef(ArrayRef<T> Data)
437         : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
438       std::copy(Data.begin(), Data.end(), this->begin());
439     }
440 
441     OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
442 
443     OwningArrayRef &operator=(OwningArrayRef &&Other) {
444       delete[] this->data();
445       this->MutableArrayRef<T>::operator=(Other);
446       Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
447       return *this;
448     }
449 
450     ~OwningArrayRef() { delete[] this->data(); }
451   };
452 
453   /// @name ArrayRef Convenience constructors
454   /// @{
455 
456   /// Construct an ArrayRef from a single element.
457   template<typename T>
458   ArrayRef<T> makeArrayRef(const T &OneElt) {
459     return OneElt;
460   }
461 
462   /// Construct an ArrayRef from a pointer and length.
463   template<typename T>
464   ArrayRef<T> makeArrayRef(const T *data, size_t length) {
465     return ArrayRef<T>(data, length);
466   }
467 
468   /// Construct an ArrayRef from a range.
469   template<typename T>
470   ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
471     return ArrayRef<T>(begin, end);
472   }
473 
474   /// Construct an ArrayRef from a SmallVector.
475   template <typename T>
476   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
477     return Vec;
478   }
479 
480   /// Construct an ArrayRef from a SmallVector.
481   template <typename T, unsigned N>
482   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
483     return Vec;
484   }
485 
486   /// Construct an ArrayRef from a std::vector.
487   template<typename T>
488   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
489     return Vec;
490   }
491 
492   /// Construct an ArrayRef from a std::array.
493   template <typename T, std::size_t N>
494   ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
495     return Arr;
496   }
497 
498   /// Construct an ArrayRef from an ArrayRef (no-op) (const)
499   template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
500     return Vec;
501   }
502 
503   /// Construct an ArrayRef from an ArrayRef (no-op)
504   template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
505     return Vec;
506   }
507 
508   /// Construct an ArrayRef from a C array.
509   template<typename T, size_t N>
510   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
511     return ArrayRef<T>(Arr);
512   }
513 
514   /// Construct a MutableArrayRef from a single element.
515   template<typename T>
516   MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
517     return OneElt;
518   }
519 
520   /// Construct a MutableArrayRef from a pointer and length.
521   template<typename T>
522   MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
523     return MutableArrayRef<T>(data, length);
524   }
525 
526   /// @}
527   /// @name ArrayRef Comparison Operators
528   /// @{
529 
530   template<typename T>
531   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
532     return LHS.equals(RHS);
533   }
534 
535   template <typename T>
536   inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
537     return ArrayRef<T>(LHS).equals(RHS);
538   }
539 
540   template <typename T>
541   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
542     return !(LHS == RHS);
543   }
544 
545   template <typename T>
546   inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) {
547     return !(LHS == RHS);
548   }
549 
550   /// @}
551 
552   template <typename T> hash_code hash_value(ArrayRef<T> S) {
553     return hash_combine_range(S.begin(), S.end());
554   }
555 
556 } // end namespace llvm
557 
558 #endif // LLVM_ADT_ARRAYREF_H
559