1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_ADT_ARRAYREF_H 10 #define LLVM_ADT_ARRAYREF_H 11 12 #include "llvm/ADT/Hashing.h" 13 #include "llvm/ADT/None.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Support/Compiler.h" 17 #include <algorithm> 18 #include <array> 19 #include <cassert> 20 #include <cstddef> 21 #include <initializer_list> 22 #include <iterator> 23 #include <memory> 24 #include <type_traits> 25 #include <vector> 26 27 namespace llvm { 28 29 /// ArrayRef - Represent a constant reference to an array (0 or more elements 30 /// consecutively in memory), i.e. a start pointer and a length. It allows 31 /// various APIs to take consecutive elements easily and conveniently. 32 /// 33 /// This class does not own the underlying data, it is expected to be used in 34 /// situations where the data resides in some other buffer, whose lifetime 35 /// extends past that of the ArrayRef. For this reason, it is not in general 36 /// safe to store an ArrayRef. 37 /// 38 /// This is intended to be trivially copyable, so it should be passed by 39 /// value. 40 template<typename T> 41 class LLVM_NODISCARD ArrayRef { 42 public: 43 using iterator = const T *; 44 using const_iterator = const T *; 45 using size_type = size_t; 46 using reverse_iterator = std::reverse_iterator<iterator>; 47 48 private: 49 /// The start of the array, in an external buffer. 50 const T *Data = nullptr; 51 52 /// The number of elements. 53 size_type Length = 0; 54 55 public: 56 /// @name Constructors 57 /// @{ 58 59 /// Construct an empty ArrayRef. 60 /*implicit*/ ArrayRef() = default; 61 62 /// Construct an empty ArrayRef from None. 63 /*implicit*/ ArrayRef(NoneType) {} 64 65 /// Construct an ArrayRef from a single element. 66 /*implicit*/ ArrayRef(const T &OneElt) 67 : Data(&OneElt), Length(1) {} 68 69 /// Construct an ArrayRef from a pointer and length. 70 /*implicit*/ ArrayRef(const T *data, size_t length) 71 : Data(data), Length(length) {} 72 73 /// Construct an ArrayRef from a range. 74 ArrayRef(const T *begin, const T *end) 75 : Data(begin), Length(end - begin) {} 76 77 /// Construct an ArrayRef from a SmallVector. This is templated in order to 78 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we 79 /// copy-construct an ArrayRef. 80 template<typename U> 81 /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) 82 : Data(Vec.data()), Length(Vec.size()) { 83 } 84 85 /// Construct an ArrayRef from a std::vector. 86 template<typename A> 87 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) 88 : Data(Vec.data()), Length(Vec.size()) {} 89 90 /// Construct an ArrayRef from a std::array 91 template <size_t N> 92 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) 93 : Data(Arr.data()), Length(N) {} 94 95 /// Construct an ArrayRef from a C array. 96 template <size_t N> 97 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} 98 99 /// Construct an ArrayRef from a std::initializer_list. 100 #if LLVM_GNUC_PREREQ(9, 0, 0) 101 // Disable gcc's warning in this constructor as it generates an enormous amount 102 // of messages. Anyone using ArrayRef should already be aware of the fact that 103 // it does not do lifetime extension. 104 #pragma GCC diagnostic push 105 #pragma GCC diagnostic ignored "-Winit-list-lifetime" 106 #endif 107 /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) 108 : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), 109 Length(Vec.size()) {} 110 #if LLVM_GNUC_PREREQ(9, 0, 0) 111 #pragma GCC diagnostic pop 112 #endif 113 114 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to 115 /// ensure that only ArrayRefs of pointers can be converted. 116 template <typename U> 117 ArrayRef( 118 const ArrayRef<U *> &A, 119 typename std::enable_if< 120 std::is_convertible<U *const *, T const *>::value>::type * = nullptr) 121 : Data(A.data()), Length(A.size()) {} 122 123 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is 124 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> 125 /// whenever we copy-construct an ArrayRef. 126 template<typename U, typename DummyT> 127 /*implicit*/ ArrayRef( 128 const SmallVectorTemplateCommon<U *, DummyT> &Vec, 129 typename std::enable_if< 130 std::is_convertible<U *const *, T const *>::value>::type * = nullptr) 131 : Data(Vec.data()), Length(Vec.size()) { 132 } 133 134 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE 135 /// to ensure that only vectors of pointers can be converted. 136 template<typename U, typename A> 137 ArrayRef(const std::vector<U *, A> &Vec, 138 typename std::enable_if< 139 std::is_convertible<U *const *, T const *>::value>::type* = 0) 140 : Data(Vec.data()), Length(Vec.size()) {} 141 142 /// @} 143 /// @name Simple Operations 144 /// @{ 145 146 iterator begin() const { return Data; } 147 iterator end() const { return Data + Length; } 148 149 reverse_iterator rbegin() const { return reverse_iterator(end()); } 150 reverse_iterator rend() const { return reverse_iterator(begin()); } 151 152 /// empty - Check if the array is empty. 153 bool empty() const { return Length == 0; } 154 155 const T *data() const { return Data; } 156 157 /// size - Get the array size. 158 size_t size() const { return Length; } 159 160 /// front - Get the first element. 161 const T &front() const { 162 assert(!empty()); 163 return Data[0]; 164 } 165 166 /// back - Get the last element. 167 const T &back() const { 168 assert(!empty()); 169 return Data[Length-1]; 170 } 171 172 // copy - Allocate copy in Allocator and return ArrayRef<T> to it. 173 template <typename Allocator> ArrayRef<T> copy(Allocator &A) { 174 T *Buff = A.template Allocate<T>(Length); 175 std::uninitialized_copy(begin(), end(), Buff); 176 return ArrayRef<T>(Buff, Length); 177 } 178 179 /// equals - Check for element-wise equality. 180 bool equals(ArrayRef RHS) const { 181 if (Length != RHS.Length) 182 return false; 183 return std::equal(begin(), end(), RHS.begin()); 184 } 185 186 /// slice(n, m) - Chop off the first N elements of the array, and keep M 187 /// elements in the array. 188 ArrayRef<T> slice(size_t N, size_t M) const { 189 assert(N+M <= size() && "Invalid specifier"); 190 return ArrayRef<T>(data()+N, M); 191 } 192 193 /// slice(n) - Chop off the first N elements of the array. 194 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } 195 196 /// Drop the first \p N elements of the array. 197 ArrayRef<T> drop_front(size_t N = 1) const { 198 assert(size() >= N && "Dropping more elements than exist"); 199 return slice(N, size() - N); 200 } 201 202 /// Drop the last \p N elements of the array. 203 ArrayRef<T> drop_back(size_t N = 1) const { 204 assert(size() >= N && "Dropping more elements than exist"); 205 return slice(0, size() - N); 206 } 207 208 /// Return a copy of *this with the first N elements satisfying the 209 /// given predicate removed. 210 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { 211 return ArrayRef<T>(find_if_not(*this, Pred), end()); 212 } 213 214 /// Return a copy of *this with the first N elements not satisfying 215 /// the given predicate removed. 216 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { 217 return ArrayRef<T>(find_if(*this, Pred), end()); 218 } 219 220 /// Return a copy of *this with only the first \p N elements. 221 ArrayRef<T> take_front(size_t N = 1) const { 222 if (N >= size()) 223 return *this; 224 return drop_back(size() - N); 225 } 226 227 /// Return a copy of *this with only the last \p N elements. 228 ArrayRef<T> take_back(size_t N = 1) const { 229 if (N >= size()) 230 return *this; 231 return drop_front(size() - N); 232 } 233 234 /// Return the first N elements of this Array that satisfy the given 235 /// predicate. 236 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { 237 return ArrayRef<T>(begin(), find_if_not(*this, Pred)); 238 } 239 240 /// Return the first N elements of this Array that don't satisfy the 241 /// given predicate. 242 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { 243 return ArrayRef<T>(begin(), find_if(*this, Pred)); 244 } 245 246 /// @} 247 /// @name Operator Overloads 248 /// @{ 249 const T &operator[](size_t Index) const { 250 assert(Index < Length && "Invalid index!"); 251 return Data[Index]; 252 } 253 254 /// Disallow accidental assignment from a temporary. 255 /// 256 /// The declaration here is extra complicated so that "arrayRef = {}" 257 /// continues to select the move assignment operator. 258 template <typename U> 259 typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & 260 operator=(U &&Temporary) = delete; 261 262 /// Disallow accidental assignment from a temporary. 263 /// 264 /// The declaration here is extra complicated so that "arrayRef = {}" 265 /// continues to select the move assignment operator. 266 template <typename U> 267 typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & 268 operator=(std::initializer_list<U>) = delete; 269 270 /// @} 271 /// @name Expensive Operations 272 /// @{ 273 std::vector<T> vec() const { 274 return std::vector<T>(Data, Data+Length); 275 } 276 277 /// @} 278 /// @name Conversion operators 279 /// @{ 280 operator std::vector<T>() const { 281 return std::vector<T>(Data, Data+Length); 282 } 283 284 /// @} 285 }; 286 287 /// MutableArrayRef - Represent a mutable reference to an array (0 or more 288 /// elements consecutively in memory), i.e. a start pointer and a length. It 289 /// allows various APIs to take and modify consecutive elements easily and 290 /// conveniently. 291 /// 292 /// This class does not own the underlying data, it is expected to be used in 293 /// situations where the data resides in some other buffer, whose lifetime 294 /// extends past that of the MutableArrayRef. For this reason, it is not in 295 /// general safe to store a MutableArrayRef. 296 /// 297 /// This is intended to be trivially copyable, so it should be passed by 298 /// value. 299 template<typename T> 300 class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { 301 public: 302 using iterator = T *; 303 using reverse_iterator = std::reverse_iterator<iterator>; 304 305 /// Construct an empty MutableArrayRef. 306 /*implicit*/ MutableArrayRef() = default; 307 308 /// Construct an empty MutableArrayRef from None. 309 /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} 310 311 /// Construct an MutableArrayRef from a single element. 312 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} 313 314 /// Construct an MutableArrayRef from a pointer and length. 315 /*implicit*/ MutableArrayRef(T *data, size_t length) 316 : ArrayRef<T>(data, length) {} 317 318 /// Construct an MutableArrayRef from a range. 319 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} 320 321 /// Construct an MutableArrayRef from a SmallVector. 322 /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) 323 : ArrayRef<T>(Vec) {} 324 325 /// Construct a MutableArrayRef from a std::vector. 326 /*implicit*/ MutableArrayRef(std::vector<T> &Vec) 327 : ArrayRef<T>(Vec) {} 328 329 /// Construct an ArrayRef from a std::array 330 template <size_t N> 331 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) 332 : ArrayRef<T>(Arr) {} 333 334 /// Construct an MutableArrayRef from a C array. 335 template <size_t N> 336 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} 337 338 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } 339 340 iterator begin() const { return data(); } 341 iterator end() const { return data() + this->size(); } 342 343 reverse_iterator rbegin() const { return reverse_iterator(end()); } 344 reverse_iterator rend() const { return reverse_iterator(begin()); } 345 346 /// front - Get the first element. 347 T &front() const { 348 assert(!this->empty()); 349 return data()[0]; 350 } 351 352 /// back - Get the last element. 353 T &back() const { 354 assert(!this->empty()); 355 return data()[this->size()-1]; 356 } 357 358 /// slice(n, m) - Chop off the first N elements of the array, and keep M 359 /// elements in the array. 360 MutableArrayRef<T> slice(size_t N, size_t M) const { 361 assert(N + M <= this->size() && "Invalid specifier"); 362 return MutableArrayRef<T>(this->data() + N, M); 363 } 364 365 /// slice(n) - Chop off the first N elements of the array. 366 MutableArrayRef<T> slice(size_t N) const { 367 return slice(N, this->size() - N); 368 } 369 370 /// Drop the first \p N elements of the array. 371 MutableArrayRef<T> drop_front(size_t N = 1) const { 372 assert(this->size() >= N && "Dropping more elements than exist"); 373 return slice(N, this->size() - N); 374 } 375 376 MutableArrayRef<T> drop_back(size_t N = 1) const { 377 assert(this->size() >= N && "Dropping more elements than exist"); 378 return slice(0, this->size() - N); 379 } 380 381 /// Return a copy of *this with the first N elements satisfying the 382 /// given predicate removed. 383 template <class PredicateT> 384 MutableArrayRef<T> drop_while(PredicateT Pred) const { 385 return MutableArrayRef<T>(find_if_not(*this, Pred), end()); 386 } 387 388 /// Return a copy of *this with the first N elements not satisfying 389 /// the given predicate removed. 390 template <class PredicateT> 391 MutableArrayRef<T> drop_until(PredicateT Pred) const { 392 return MutableArrayRef<T>(find_if(*this, Pred), end()); 393 } 394 395 /// Return a copy of *this with only the first \p N elements. 396 MutableArrayRef<T> take_front(size_t N = 1) const { 397 if (N >= this->size()) 398 return *this; 399 return drop_back(this->size() - N); 400 } 401 402 /// Return a copy of *this with only the last \p N elements. 403 MutableArrayRef<T> take_back(size_t N = 1) const { 404 if (N >= this->size()) 405 return *this; 406 return drop_front(this->size() - N); 407 } 408 409 /// Return the first N elements of this Array that satisfy the given 410 /// predicate. 411 template <class PredicateT> 412 MutableArrayRef<T> take_while(PredicateT Pred) const { 413 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); 414 } 415 416 /// Return the first N elements of this Array that don't satisfy the 417 /// given predicate. 418 template <class PredicateT> 419 MutableArrayRef<T> take_until(PredicateT Pred) const { 420 return MutableArrayRef<T>(begin(), find_if(*this, Pred)); 421 } 422 423 /// @} 424 /// @name Operator Overloads 425 /// @{ 426 T &operator[](size_t Index) const { 427 assert(Index < this->size() && "Invalid index!"); 428 return data()[Index]; 429 } 430 }; 431 432 /// This is a MutableArrayRef that owns its array. 433 template <typename T> class OwningArrayRef : public MutableArrayRef<T> { 434 public: 435 OwningArrayRef() = default; 436 OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} 437 438 OwningArrayRef(ArrayRef<T> Data) 439 : MutableArrayRef<T>(new T[Data.size()], Data.size()) { 440 std::copy(Data.begin(), Data.end(), this->begin()); 441 } 442 443 OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } 444 445 OwningArrayRef &operator=(OwningArrayRef &&Other) { 446 delete[] this->data(); 447 this->MutableArrayRef<T>::operator=(Other); 448 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); 449 return *this; 450 } 451 452 ~OwningArrayRef() { delete[] this->data(); } 453 }; 454 455 /// @name ArrayRef Convenience constructors 456 /// @{ 457 458 /// Construct an ArrayRef from a single element. 459 template<typename T> 460 ArrayRef<T> makeArrayRef(const T &OneElt) { 461 return OneElt; 462 } 463 464 /// Construct an ArrayRef from a pointer and length. 465 template<typename T> 466 ArrayRef<T> makeArrayRef(const T *data, size_t length) { 467 return ArrayRef<T>(data, length); 468 } 469 470 /// Construct an ArrayRef from a range. 471 template<typename T> 472 ArrayRef<T> makeArrayRef(const T *begin, const T *end) { 473 return ArrayRef<T>(begin, end); 474 } 475 476 /// Construct an ArrayRef from a SmallVector. 477 template <typename T> 478 ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { 479 return Vec; 480 } 481 482 /// Construct an ArrayRef from a SmallVector. 483 template <typename T, unsigned N> 484 ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { 485 return Vec; 486 } 487 488 /// Construct an ArrayRef from a std::vector. 489 template<typename T> 490 ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { 491 return Vec; 492 } 493 494 /// Construct an ArrayRef from a std::array. 495 template <typename T, std::size_t N> 496 ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) { 497 return Arr; 498 } 499 500 /// Construct an ArrayRef from an ArrayRef (no-op) (const) 501 template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { 502 return Vec; 503 } 504 505 /// Construct an ArrayRef from an ArrayRef (no-op) 506 template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { 507 return Vec; 508 } 509 510 /// Construct an ArrayRef from a C array. 511 template<typename T, size_t N> 512 ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { 513 return ArrayRef<T>(Arr); 514 } 515 516 /// Construct a MutableArrayRef from a single element. 517 template<typename T> 518 MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { 519 return OneElt; 520 } 521 522 /// Construct a MutableArrayRef from a pointer and length. 523 template<typename T> 524 MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { 525 return MutableArrayRef<T>(data, length); 526 } 527 528 /// @} 529 /// @name ArrayRef Comparison Operators 530 /// @{ 531 532 template<typename T> 533 inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { 534 return LHS.equals(RHS); 535 } 536 537 template<typename T> 538 inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { 539 return !(LHS == RHS); 540 } 541 542 /// @} 543 544 template <typename T> hash_code hash_value(ArrayRef<T> S) { 545 return hash_combine_range(S.begin(), S.end()); 546 } 547 548 } // end namespace llvm 549 550 #endif // LLVM_ADT_ARRAYREF_H 551