1 //===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #ifndef LLVM_ADT_ARRAYREF_H 10 #define LLVM_ADT_ARRAYREF_H 11 12 #include "llvm/ADT/Hashing.h" 13 #include "llvm/ADT/None.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/Support/Compiler.h" 17 #include <algorithm> 18 #include <array> 19 #include <cassert> 20 #include <cstddef> 21 #include <initializer_list> 22 #include <iterator> 23 #include <memory> 24 #include <type_traits> 25 #include <vector> 26 27 namespace llvm { 28 template<typename T> class LLVM_NODISCARD MutableArrayRef; 29 30 /// ArrayRef - Represent a constant reference to an array (0 or more elements 31 /// consecutively in memory), i.e. a start pointer and a length. It allows 32 /// various APIs to take consecutive elements easily and conveniently. 33 /// 34 /// This class does not own the underlying data, it is expected to be used in 35 /// situations where the data resides in some other buffer, whose lifetime 36 /// extends past that of the ArrayRef. For this reason, it is not in general 37 /// safe to store an ArrayRef. 38 /// 39 /// This is intended to be trivially copyable, so it should be passed by 40 /// value. 41 template<typename T> 42 class LLVM_GSL_POINTER LLVM_NODISCARD ArrayRef { 43 public: 44 using value_type = T; 45 using pointer = value_type *; 46 using const_pointer = const value_type *; 47 using reference = value_type &; 48 using const_reference = const value_type &; 49 using iterator = const_pointer; 50 using const_iterator = const_pointer; 51 using reverse_iterator = std::reverse_iterator<iterator>; 52 using const_reverse_iterator = std::reverse_iterator<const_iterator>; 53 using size_type = size_t; 54 using difference_type = ptrdiff_t; 55 56 private: 57 /// The start of the array, in an external buffer. 58 const T *Data = nullptr; 59 60 /// The number of elements. 61 size_type Length = 0; 62 63 public: 64 /// @name Constructors 65 /// @{ 66 67 /// Construct an empty ArrayRef. 68 /*implicit*/ ArrayRef() = default; 69 70 /// Construct an empty ArrayRef from None. 71 /*implicit*/ ArrayRef(NoneType) {} 72 73 /// Construct an ArrayRef from a single element. 74 /*implicit*/ ArrayRef(const T &OneElt) 75 : Data(&OneElt), Length(1) {} 76 77 /// Construct an ArrayRef from a pointer and length. 78 /*implicit*/ ArrayRef(const T *data, size_t length) 79 : Data(data), Length(length) {} 80 81 /// Construct an ArrayRef from a range. 82 ArrayRef(const T *begin, const T *end) 83 : Data(begin), Length(end - begin) {} 84 85 /// Construct an ArrayRef from a SmallVector. This is templated in order to 86 /// avoid instantiating SmallVectorTemplateCommon<T> whenever we 87 /// copy-construct an ArrayRef. 88 template<typename U> 89 /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) 90 : Data(Vec.data()), Length(Vec.size()) { 91 } 92 93 /// Construct an ArrayRef from a std::vector. 94 template<typename A> 95 /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) 96 : Data(Vec.data()), Length(Vec.size()) {} 97 98 /// Construct an ArrayRef from a std::array 99 template <size_t N> 100 /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) 101 : Data(Arr.data()), Length(N) {} 102 103 /// Construct an ArrayRef from a C array. 104 template <size_t N> 105 /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} 106 107 /// Construct an ArrayRef from a std::initializer_list. 108 #if LLVM_GNUC_PREREQ(9, 0, 0) 109 // Disable gcc's warning in this constructor as it generates an enormous amount 110 // of messages. Anyone using ArrayRef should already be aware of the fact that 111 // it does not do lifetime extension. 112 #pragma GCC diagnostic push 113 #pragma GCC diagnostic ignored "-Winit-list-lifetime" 114 #endif 115 /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) 116 : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), 117 Length(Vec.size()) {} 118 #if LLVM_GNUC_PREREQ(9, 0, 0) 119 #pragma GCC diagnostic pop 120 #endif 121 122 /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to 123 /// ensure that only ArrayRefs of pointers can be converted. 124 template <typename U> 125 ArrayRef(const ArrayRef<U *> &A, 126 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> 127 * = nullptr) 128 : Data(A.data()), Length(A.size()) {} 129 130 /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is 131 /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> 132 /// whenever we copy-construct an ArrayRef. 133 template <typename U, typename DummyT> 134 /*implicit*/ ArrayRef( 135 const SmallVectorTemplateCommon<U *, DummyT> &Vec, 136 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> * = 137 nullptr) 138 : Data(Vec.data()), Length(Vec.size()) {} 139 140 /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE 141 /// to ensure that only vectors of pointers can be converted. 142 template <typename U, typename A> 143 ArrayRef(const std::vector<U *, A> &Vec, 144 std::enable_if_t<std::is_convertible<U *const *, T const *>::value> 145 * = nullptr) 146 : Data(Vec.data()), Length(Vec.size()) {} 147 148 /// @} 149 /// @name Simple Operations 150 /// @{ 151 152 iterator begin() const { return Data; } 153 iterator end() const { return Data + Length; } 154 155 reverse_iterator rbegin() const { return reverse_iterator(end()); } 156 reverse_iterator rend() const { return reverse_iterator(begin()); } 157 158 /// empty - Check if the array is empty. 159 bool empty() const { return Length == 0; } 160 161 const T *data() const { return Data; } 162 163 /// size - Get the array size. 164 size_t size() const { return Length; } 165 166 /// front - Get the first element. 167 const T &front() const { 168 assert(!empty()); 169 return Data[0]; 170 } 171 172 /// back - Get the last element. 173 const T &back() const { 174 assert(!empty()); 175 return Data[Length-1]; 176 } 177 178 // copy - Allocate copy in Allocator and return ArrayRef<T> to it. 179 template <typename Allocator> MutableArrayRef<T> copy(Allocator &A) { 180 T *Buff = A.template Allocate<T>(Length); 181 std::uninitialized_copy(begin(), end(), Buff); 182 return MutableArrayRef<T>(Buff, Length); 183 } 184 185 /// equals - Check for element-wise equality. 186 bool equals(ArrayRef RHS) const { 187 if (Length != RHS.Length) 188 return false; 189 return std::equal(begin(), end(), RHS.begin()); 190 } 191 192 /// slice(n, m) - Chop off the first N elements of the array, and keep M 193 /// elements in the array. 194 ArrayRef<T> slice(size_t N, size_t M) const { 195 assert(N+M <= size() && "Invalid specifier"); 196 return ArrayRef<T>(data()+N, M); 197 } 198 199 /// slice(n) - Chop off the first N elements of the array. 200 ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } 201 202 /// Drop the first \p N elements of the array. 203 ArrayRef<T> drop_front(size_t N = 1) const { 204 assert(size() >= N && "Dropping more elements than exist"); 205 return slice(N, size() - N); 206 } 207 208 /// Drop the last \p N elements of the array. 209 ArrayRef<T> drop_back(size_t N = 1) const { 210 assert(size() >= N && "Dropping more elements than exist"); 211 return slice(0, size() - N); 212 } 213 214 /// Return a copy of *this with the first N elements satisfying the 215 /// given predicate removed. 216 template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { 217 return ArrayRef<T>(find_if_not(*this, Pred), end()); 218 } 219 220 /// Return a copy of *this with the first N elements not satisfying 221 /// the given predicate removed. 222 template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { 223 return ArrayRef<T>(find_if(*this, Pred), end()); 224 } 225 226 /// Return a copy of *this with only the first \p N elements. 227 ArrayRef<T> take_front(size_t N = 1) const { 228 if (N >= size()) 229 return *this; 230 return drop_back(size() - N); 231 } 232 233 /// Return a copy of *this with only the last \p N elements. 234 ArrayRef<T> take_back(size_t N = 1) const { 235 if (N >= size()) 236 return *this; 237 return drop_front(size() - N); 238 } 239 240 /// Return the first N elements of this Array that satisfy the given 241 /// predicate. 242 template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { 243 return ArrayRef<T>(begin(), find_if_not(*this, Pred)); 244 } 245 246 /// Return the first N elements of this Array that don't satisfy the 247 /// given predicate. 248 template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { 249 return ArrayRef<T>(begin(), find_if(*this, Pred)); 250 } 251 252 /// @} 253 /// @name Operator Overloads 254 /// @{ 255 const T &operator[](size_t Index) const { 256 assert(Index < Length && "Invalid index!"); 257 return Data[Index]; 258 } 259 260 /// Disallow accidental assignment from a temporary. 261 /// 262 /// The declaration here is extra complicated so that "arrayRef = {}" 263 /// continues to select the move assignment operator. 264 template <typename U> 265 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & 266 operator=(U &&Temporary) = delete; 267 268 /// Disallow accidental assignment from a temporary. 269 /// 270 /// The declaration here is extra complicated so that "arrayRef = {}" 271 /// continues to select the move assignment operator. 272 template <typename U> 273 std::enable_if_t<std::is_same<U, T>::value, ArrayRef<T>> & 274 operator=(std::initializer_list<U>) = delete; 275 276 /// @} 277 /// @name Expensive Operations 278 /// @{ 279 std::vector<T> vec() const { 280 return std::vector<T>(Data, Data+Length); 281 } 282 283 /// @} 284 /// @name Conversion operators 285 /// @{ 286 operator std::vector<T>() const { 287 return std::vector<T>(Data, Data+Length); 288 } 289 290 /// @} 291 }; 292 293 /// MutableArrayRef - Represent a mutable reference to an array (0 or more 294 /// elements consecutively in memory), i.e. a start pointer and a length. It 295 /// allows various APIs to take and modify consecutive elements easily and 296 /// conveniently. 297 /// 298 /// This class does not own the underlying data, it is expected to be used in 299 /// situations where the data resides in some other buffer, whose lifetime 300 /// extends past that of the MutableArrayRef. For this reason, it is not in 301 /// general safe to store a MutableArrayRef. 302 /// 303 /// This is intended to be trivially copyable, so it should be passed by 304 /// value. 305 template<typename T> 306 class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { 307 public: 308 using value_type = T; 309 using pointer = value_type *; 310 using const_pointer = const value_type *; 311 using reference = value_type &; 312 using const_reference = const value_type &; 313 using iterator = pointer; 314 using const_iterator = const_pointer; 315 using reverse_iterator = std::reverse_iterator<iterator>; 316 using const_reverse_iterator = std::reverse_iterator<const_iterator>; 317 using size_type = size_t; 318 using difference_type = ptrdiff_t; 319 320 /// Construct an empty MutableArrayRef. 321 /*implicit*/ MutableArrayRef() = default; 322 323 /// Construct an empty MutableArrayRef from None. 324 /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} 325 326 /// Construct a MutableArrayRef from a single element. 327 /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} 328 329 /// Construct a MutableArrayRef from a pointer and length. 330 /*implicit*/ MutableArrayRef(T *data, size_t length) 331 : ArrayRef<T>(data, length) {} 332 333 /// Construct a MutableArrayRef from a range. 334 MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} 335 336 /// Construct a MutableArrayRef from a SmallVector. 337 /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) 338 : ArrayRef<T>(Vec) {} 339 340 /// Construct a MutableArrayRef from a std::vector. 341 /*implicit*/ MutableArrayRef(std::vector<T> &Vec) 342 : ArrayRef<T>(Vec) {} 343 344 /// Construct a MutableArrayRef from a std::array 345 template <size_t N> 346 /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) 347 : ArrayRef<T>(Arr) {} 348 349 /// Construct a MutableArrayRef from a C array. 350 template <size_t N> 351 /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} 352 353 T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } 354 355 iterator begin() const { return data(); } 356 iterator end() const { return data() + this->size(); } 357 358 reverse_iterator rbegin() const { return reverse_iterator(end()); } 359 reverse_iterator rend() const { return reverse_iterator(begin()); } 360 361 /// front - Get the first element. 362 T &front() const { 363 assert(!this->empty()); 364 return data()[0]; 365 } 366 367 /// back - Get the last element. 368 T &back() const { 369 assert(!this->empty()); 370 return data()[this->size()-1]; 371 } 372 373 /// slice(n, m) - Chop off the first N elements of the array, and keep M 374 /// elements in the array. 375 MutableArrayRef<T> slice(size_t N, size_t M) const { 376 assert(N + M <= this->size() && "Invalid specifier"); 377 return MutableArrayRef<T>(this->data() + N, M); 378 } 379 380 /// slice(n) - Chop off the first N elements of the array. 381 MutableArrayRef<T> slice(size_t N) const { 382 return slice(N, this->size() - N); 383 } 384 385 /// Drop the first \p N elements of the array. 386 MutableArrayRef<T> drop_front(size_t N = 1) const { 387 assert(this->size() >= N && "Dropping more elements than exist"); 388 return slice(N, this->size() - N); 389 } 390 391 MutableArrayRef<T> drop_back(size_t N = 1) const { 392 assert(this->size() >= N && "Dropping more elements than exist"); 393 return slice(0, this->size() - N); 394 } 395 396 /// Return a copy of *this with the first N elements satisfying the 397 /// given predicate removed. 398 template <class PredicateT> 399 MutableArrayRef<T> drop_while(PredicateT Pred) const { 400 return MutableArrayRef<T>(find_if_not(*this, Pred), end()); 401 } 402 403 /// Return a copy of *this with the first N elements not satisfying 404 /// the given predicate removed. 405 template <class PredicateT> 406 MutableArrayRef<T> drop_until(PredicateT Pred) const { 407 return MutableArrayRef<T>(find_if(*this, Pred), end()); 408 } 409 410 /// Return a copy of *this with only the first \p N elements. 411 MutableArrayRef<T> take_front(size_t N = 1) const { 412 if (N >= this->size()) 413 return *this; 414 return drop_back(this->size() - N); 415 } 416 417 /// Return a copy of *this with only the last \p N elements. 418 MutableArrayRef<T> take_back(size_t N = 1) const { 419 if (N >= this->size()) 420 return *this; 421 return drop_front(this->size() - N); 422 } 423 424 /// Return the first N elements of this Array that satisfy the given 425 /// predicate. 426 template <class PredicateT> 427 MutableArrayRef<T> take_while(PredicateT Pred) const { 428 return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); 429 } 430 431 /// Return the first N elements of this Array that don't satisfy the 432 /// given predicate. 433 template <class PredicateT> 434 MutableArrayRef<T> take_until(PredicateT Pred) const { 435 return MutableArrayRef<T>(begin(), find_if(*this, Pred)); 436 } 437 438 /// @} 439 /// @name Operator Overloads 440 /// @{ 441 T &operator[](size_t Index) const { 442 assert(Index < this->size() && "Invalid index!"); 443 return data()[Index]; 444 } 445 }; 446 447 /// This is a MutableArrayRef that owns its array. 448 template <typename T> class OwningArrayRef : public MutableArrayRef<T> { 449 public: 450 OwningArrayRef() = default; 451 OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} 452 453 OwningArrayRef(ArrayRef<T> Data) 454 : MutableArrayRef<T>(new T[Data.size()], Data.size()) { 455 std::copy(Data.begin(), Data.end(), this->begin()); 456 } 457 458 OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } 459 460 OwningArrayRef &operator=(OwningArrayRef &&Other) { 461 delete[] this->data(); 462 this->MutableArrayRef<T>::operator=(Other); 463 Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); 464 return *this; 465 } 466 467 ~OwningArrayRef() { delete[] this->data(); } 468 }; 469 470 /// @name ArrayRef Convenience constructors 471 /// @{ 472 473 /// Construct an ArrayRef from a single element. 474 template<typename T> 475 ArrayRef<T> makeArrayRef(const T &OneElt) { 476 return OneElt; 477 } 478 479 /// Construct an ArrayRef from a pointer and length. 480 template<typename T> 481 ArrayRef<T> makeArrayRef(const T *data, size_t length) { 482 return ArrayRef<T>(data, length); 483 } 484 485 /// Construct an ArrayRef from a range. 486 template<typename T> 487 ArrayRef<T> makeArrayRef(const T *begin, const T *end) { 488 return ArrayRef<T>(begin, end); 489 } 490 491 /// Construct an ArrayRef from a SmallVector. 492 template <typename T> 493 ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { 494 return Vec; 495 } 496 497 /// Construct an ArrayRef from a SmallVector. 498 template <typename T, unsigned N> 499 ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { 500 return Vec; 501 } 502 503 /// Construct an ArrayRef from a std::vector. 504 template<typename T> 505 ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { 506 return Vec; 507 } 508 509 /// Construct an ArrayRef from a std::array. 510 template <typename T, std::size_t N> 511 ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) { 512 return Arr; 513 } 514 515 /// Construct an ArrayRef from an ArrayRef (no-op) (const) 516 template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { 517 return Vec; 518 } 519 520 /// Construct an ArrayRef from an ArrayRef (no-op) 521 template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { 522 return Vec; 523 } 524 525 /// Construct an ArrayRef from a C array. 526 template<typename T, size_t N> 527 ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { 528 return ArrayRef<T>(Arr); 529 } 530 531 /// Construct a MutableArrayRef from a single element. 532 template<typename T> 533 MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { 534 return OneElt; 535 } 536 537 /// Construct a MutableArrayRef from a pointer and length. 538 template<typename T> 539 MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { 540 return MutableArrayRef<T>(data, length); 541 } 542 543 /// Construct a MutableArrayRef from a SmallVector. 544 template <typename T> 545 MutableArrayRef<T> makeMutableArrayRef(SmallVectorImpl<T> &Vec) { 546 return Vec; 547 } 548 549 /// Construct a MutableArrayRef from a SmallVector. 550 template <typename T, unsigned N> 551 MutableArrayRef<T> makeMutableArrayRef(SmallVector<T, N> &Vec) { 552 return Vec; 553 } 554 555 /// Construct a MutableArrayRef from a std::vector. 556 template<typename T> 557 MutableArrayRef<T> makeMutableArrayRef(std::vector<T> &Vec) { 558 return Vec; 559 } 560 561 /// Construct a MutableArrayRef from a std::array. 562 template <typename T, std::size_t N> 563 MutableArrayRef<T> makeMutableArrayRef(std::array<T, N> &Arr) { 564 return Arr; 565 } 566 567 /// Construct a MutableArrayRef from a MutableArrayRef (no-op) (const) 568 template <typename T> 569 MutableArrayRef<T> makeMutableArrayRef(const MutableArrayRef<T> &Vec) { 570 return Vec; 571 } 572 573 /// Construct a MutableArrayRef from a C array. 574 template<typename T, size_t N> 575 MutableArrayRef<T> makeMutableArrayRef(T (&Arr)[N]) { 576 return MutableArrayRef<T>(Arr); 577 } 578 579 /// @} 580 /// @name ArrayRef Comparison Operators 581 /// @{ 582 583 template<typename T> 584 inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { 585 return LHS.equals(RHS); 586 } 587 588 template <typename T> 589 inline bool operator==(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { 590 return ArrayRef<T>(LHS).equals(RHS); 591 } 592 593 template <typename T> 594 inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { 595 return !(LHS == RHS); 596 } 597 598 template <typename T> 599 inline bool operator!=(SmallVectorImpl<T> &LHS, ArrayRef<T> RHS) { 600 return !(LHS == RHS); 601 } 602 603 /// @} 604 605 template <typename T> hash_code hash_value(ArrayRef<T> S) { 606 return hash_combine_range(S.begin(), S.end()); 607 } 608 609 // Provide DenseMapInfo for ArrayRefs. 610 template <typename T> struct DenseMapInfo<ArrayRef<T>, void> { 611 static inline ArrayRef<T> getEmptyKey() { 612 return ArrayRef<T>( 613 reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)), size_t(0)); 614 } 615 616 static inline ArrayRef<T> getTombstoneKey() { 617 return ArrayRef<T>( 618 reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)), size_t(0)); 619 } 620 621 static unsigned getHashValue(ArrayRef<T> Val) { 622 assert(Val.data() != getEmptyKey().data() && 623 "Cannot hash the empty key!"); 624 assert(Val.data() != getTombstoneKey().data() && 625 "Cannot hash the tombstone key!"); 626 return (unsigned)(hash_value(Val)); 627 } 628 629 static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) { 630 if (RHS.data() == getEmptyKey().data()) 631 return LHS.data() == getEmptyKey().data(); 632 if (RHS.data() == getTombstoneKey().data()) 633 return LHS.data() == getTombstoneKey().data(); 634 return LHS == RHS; 635 } 636 }; 637 638 } // end namespace llvm 639 640 #endif // LLVM_ADT_ARRAYREF_H 641