xref: /freebsd/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- Symtab.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "lldb/Core/DataFileCache.h"
13 #include "lldb/Core/Module.h"
14 #include "lldb/Core/RichManglingContext.h"
15 #include "lldb/Core/Section.h"
16 #include "lldb/Symbol/ObjectFile.h"
17 #include "lldb/Symbol/Symbol.h"
18 #include "lldb/Symbol/SymbolContext.h"
19 #include "lldb/Symbol/Symtab.h"
20 #include "lldb/Target/Language.h"
21 #include "lldb/Utility/DataEncoder.h"
22 #include "lldb/Utility/Endian.h"
23 #include "lldb/Utility/RegularExpression.h"
24 #include "lldb/Utility/Stream.h"
25 #include "lldb/Utility/Timer.h"
26 
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Support/DJB.h"
30 
31 using namespace lldb;
32 using namespace lldb_private;
33 
34 Symtab::Symtab(ObjectFile *objfile)
35     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
36       m_name_to_symbol_indices(), m_mutex(),
37       m_file_addr_to_index_computed(false), m_name_indexes_computed(false),
38       m_loaded_from_cache(false), m_saved_to_cache(false) {
39   m_name_to_symbol_indices.emplace(std::make_pair(
40       lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
41   m_name_to_symbol_indices.emplace(std::make_pair(
42       lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
43   m_name_to_symbol_indices.emplace(std::make_pair(
44       lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
45   m_name_to_symbol_indices.emplace(std::make_pair(
46       lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
47 }
48 
49 Symtab::~Symtab() = default;
50 
51 void Symtab::Reserve(size_t count) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   m_symbols.reserve(count);
55 }
56 
57 Symbol *Symtab::Resize(size_t count) {
58   // Clients should grab the mutex from this symbol table and lock it manually
59   // when calling this function to avoid performance issues.
60   m_symbols.resize(count);
61   return m_symbols.empty() ? nullptr : &m_symbols[0];
62 }
63 
64 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
65   // Clients should grab the mutex from this symbol table and lock it manually
66   // when calling this function to avoid performance issues.
67   uint32_t symbol_idx = m_symbols.size();
68   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
69   name_to_index.Clear();
70   m_file_addr_to_index.Clear();
71   m_symbols.push_back(symbol);
72   m_file_addr_to_index_computed = false;
73   m_name_indexes_computed = false;
74   return symbol_idx;
75 }
76 
77 size_t Symtab::GetNumSymbols() const {
78   std::lock_guard<std::recursive_mutex> guard(m_mutex);
79   return m_symbols.size();
80 }
81 
82 void Symtab::SectionFileAddressesChanged() {
83   m_file_addr_to_index.Clear();
84   m_file_addr_to_index_computed = false;
85 }
86 
87 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
88                   Mangled::NamePreference name_preference) {
89   std::lock_guard<std::recursive_mutex> guard(m_mutex);
90 
91   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
92   s->Indent();
93   const FileSpec &file_spec = m_objfile->GetFileSpec();
94   const char *object_name = nullptr;
95   if (m_objfile->GetModule())
96     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
97 
98   if (file_spec)
99     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
100               file_spec.GetPath().c_str(), object_name ? "(" : "",
101               object_name ? object_name : "", object_name ? ")" : "",
102               (uint64_t)m_symbols.size());
103   else
104     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
105 
106   if (!m_symbols.empty()) {
107     switch (sort_order) {
108     case eSortOrderNone: {
109       s->PutCString(":\n");
110       DumpSymbolHeader(s);
111       const_iterator begin = m_symbols.begin();
112       const_iterator end = m_symbols.end();
113       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
114         s->Indent();
115         pos->Dump(s, target, std::distance(begin, pos), name_preference);
116       }
117     }
118     break;
119 
120     case eSortOrderByName: {
121       // Although we maintain a lookup by exact name map, the table isn't
122       // sorted by name. So we must make the ordered symbol list up ourselves.
123       s->PutCString(" (sorted by name):\n");
124       DumpSymbolHeader(s);
125 
126       std::multimap<llvm::StringRef, const Symbol *> name_map;
127       for (const Symbol &symbol : m_symbols)
128         name_map.emplace(symbol.GetName().GetStringRef(), &symbol);
129 
130       for (const auto &name_to_symbol : name_map) {
131         const Symbol *symbol = name_to_symbol.second;
132         s->Indent();
133         symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
134       }
135     } break;
136 
137     case eSortOrderBySize: {
138       s->PutCString(" (sorted by size):\n");
139       DumpSymbolHeader(s);
140 
141       std::multimap<size_t, const Symbol *, std::greater<size_t>> size_map;
142       for (const Symbol &symbol : m_symbols)
143         size_map.emplace(symbol.GetByteSize(), &symbol);
144 
145       size_t idx = 0;
146       for (const auto &size_to_symbol : size_map) {
147         const Symbol *symbol = size_to_symbol.second;
148         s->Indent();
149         symbol->Dump(s, target, idx++, name_preference);
150       }
151     } break;
152 
153     case eSortOrderByAddress:
154       s->PutCString(" (sorted by address):\n");
155       DumpSymbolHeader(s);
156       if (!m_file_addr_to_index_computed)
157         InitAddressIndexes();
158       const size_t num_entries = m_file_addr_to_index.GetSize();
159       for (size_t i = 0; i < num_entries; ++i) {
160         s->Indent();
161         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
162         m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
163       }
164       break;
165     }
166   } else {
167     s->PutCString("\n");
168   }
169 }
170 
171 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
172                   Mangled::NamePreference name_preference) const {
173   std::lock_guard<std::recursive_mutex> guard(m_mutex);
174 
175   const size_t num_symbols = GetNumSymbols();
176   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
177   s->Indent();
178   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
179             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
180   s->IndentMore();
181 
182   if (!indexes.empty()) {
183     std::vector<uint32_t>::const_iterator pos;
184     std::vector<uint32_t>::const_iterator end = indexes.end();
185     DumpSymbolHeader(s);
186     for (pos = indexes.begin(); pos != end; ++pos) {
187       size_t idx = *pos;
188       if (idx < num_symbols) {
189         s->Indent();
190         m_symbols[idx].Dump(s, target, idx, name_preference);
191       }
192     }
193   }
194   s->IndentLess();
195 }
196 
197 void Symtab::DumpSymbolHeader(Stream *s) {
198   s->Indent("               Debug symbol\n");
199   s->Indent("               |Synthetic symbol\n");
200   s->Indent("               ||Externally Visible\n");
201   s->Indent("               |||\n");
202   s->Indent("Index   UserID DSX Type            File Address/Value Load "
203             "Address       Size               Flags      Name\n");
204   s->Indent("------- ------ --- --------------- ------------------ "
205             "------------------ ------------------ ---------- "
206             "----------------------------------\n");
207 }
208 
209 static int CompareSymbolID(const void *key, const void *p) {
210   const user_id_t match_uid = *(const user_id_t *)key;
211   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
212   if (match_uid < symbol_uid)
213     return -1;
214   if (match_uid > symbol_uid)
215     return 1;
216   return 0;
217 }
218 
219 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
220   std::lock_guard<std::recursive_mutex> guard(m_mutex);
221 
222   Symbol *symbol =
223       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
224                           sizeof(m_symbols[0]), CompareSymbolID);
225   return symbol;
226 }
227 
228 Symbol *Symtab::SymbolAtIndex(size_t idx) {
229   // Clients should grab the mutex from this symbol table and lock it manually
230   // when calling this function to avoid performance issues.
231   if (idx < m_symbols.size())
232     return &m_symbols[idx];
233   return nullptr;
234 }
235 
236 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
237   // Clients should grab the mutex from this symbol table and lock it manually
238   // when calling this function to avoid performance issues.
239   if (idx < m_symbols.size())
240     return &m_symbols[idx];
241   return nullptr;
242 }
243 
244 static bool lldb_skip_name(llvm::StringRef mangled,
245                            Mangled::ManglingScheme scheme) {
246   switch (scheme) {
247   case Mangled::eManglingSchemeItanium: {
248     if (mangled.size() < 3 || !mangled.starts_with("_Z"))
249       return true;
250 
251     // Avoid the following types of symbols in the index.
252     switch (mangled[2]) {
253     case 'G': // guard variables
254     case 'T': // virtual tables, VTT structures, typeinfo structures + names
255     case 'Z': // named local entities (if we eventually handle
256               // eSymbolTypeData, we will want this back)
257       return true;
258 
259     default:
260       break;
261     }
262 
263     // Include this name in the index.
264     return false;
265   }
266 
267   // No filters for this scheme yet. Include all names in indexing.
268   case Mangled::eManglingSchemeMSVC:
269   case Mangled::eManglingSchemeRustV0:
270   case Mangled::eManglingSchemeD:
271   case Mangled::eManglingSchemeSwift:
272     return false;
273 
274   // Don't try and demangle things we can't categorize.
275   case Mangled::eManglingSchemeNone:
276     return true;
277   }
278   llvm_unreachable("unknown scheme!");
279 }
280 
281 void Symtab::InitNameIndexes() {
282   // Protected function, no need to lock mutex...
283   if (!m_name_indexes_computed) {
284     m_name_indexes_computed = true;
285     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
286     LLDB_SCOPED_TIMER();
287 
288     // Collect all loaded language plugins.
289     std::vector<Language *> languages;
290     Language::ForEach([&languages](Language *l) {
291       languages.push_back(l);
292       return true;
293     });
294 
295     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
296     auto &basename_to_index =
297         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
298     auto &method_to_index =
299         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
300     auto &selector_to_index =
301         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
302     // Create the name index vector to be able to quickly search by name
303     const size_t num_symbols = m_symbols.size();
304     name_to_index.Reserve(num_symbols);
305 
306     // The "const char *" in "class_contexts" and backlog::value_type::second
307     // must come from a ConstString::GetCString()
308     std::set<const char *> class_contexts;
309     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
310     backlog.reserve(num_symbols / 2);
311 
312     // Instantiation of the demangler is expensive, so better use a single one
313     // for all entries during batch processing.
314     RichManglingContext rmc;
315     for (uint32_t value = 0; value < num_symbols; ++value) {
316       Symbol *symbol = &m_symbols[value];
317 
318       // Don't let trampolines get into the lookup by name map If we ever need
319       // the trampoline symbols to be searchable by name we can remove this and
320       // then possibly add a new bool to any of the Symtab functions that
321       // lookup symbols by name to indicate if they want trampolines. We also
322       // don't want any synthetic symbols with auto generated names in the
323       // name lookups.
324       if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
325         continue;
326 
327       // If the symbol's name string matched a Mangled::ManglingScheme, it is
328       // stored in the mangled field.
329       Mangled &mangled = symbol->GetMangled();
330       if (ConstString name = mangled.GetMangledName()) {
331         name_to_index.Append(name, value);
332 
333         if (symbol->ContainsLinkerAnnotations()) {
334           // If the symbol has linker annotations, also add the version without
335           // the annotations.
336           ConstString stripped = ConstString(
337               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
338           name_to_index.Append(stripped, value);
339         }
340 
341         const SymbolType type = symbol->GetType();
342         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
343           if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) {
344             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
345             continue;
346           }
347         }
348       }
349 
350       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
351       // stored in the demangled field.
352       if (ConstString name = mangled.GetDemangledName()) {
353         name_to_index.Append(name, value);
354 
355         if (symbol->ContainsLinkerAnnotations()) {
356           // If the symbol has linker annotations, also add the version without
357           // the annotations.
358           name = ConstString(
359               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
360           name_to_index.Append(name, value);
361         }
362 
363         // If the demangled name turns out to be an ObjC name, and is a category
364         // name, add the version without categories to the index too.
365         for (Language *lang : languages) {
366           for (auto variant : lang->GetMethodNameVariants(name)) {
367             if (variant.GetType() & lldb::eFunctionNameTypeSelector)
368               selector_to_index.Append(variant.GetName(), value);
369             else if (variant.GetType() & lldb::eFunctionNameTypeFull)
370               name_to_index.Append(variant.GetName(), value);
371             else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
372               method_to_index.Append(variant.GetName(), value);
373             else if (variant.GetType() & lldb::eFunctionNameTypeBase)
374               basename_to_index.Append(variant.GetName(), value);
375           }
376         }
377       }
378     }
379 
380     for (const auto &record : backlog) {
381       RegisterBacklogEntry(record.first, record.second, class_contexts);
382     }
383 
384     name_to_index.Sort();
385     name_to_index.SizeToFit();
386     selector_to_index.Sort();
387     selector_to_index.SizeToFit();
388     basename_to_index.Sort();
389     basename_to_index.SizeToFit();
390     method_to_index.Sort();
391     method_to_index.SizeToFit();
392   }
393 }
394 
395 void Symtab::RegisterMangledNameEntry(
396     uint32_t value, std::set<const char *> &class_contexts,
397     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
398     RichManglingContext &rmc) {
399   // Only register functions that have a base name.
400   llvm::StringRef base_name = rmc.ParseFunctionBaseName();
401   if (base_name.empty())
402     return;
403 
404   // The base name will be our entry's name.
405   NameToIndexMap::Entry entry(ConstString(base_name), value);
406   llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName();
407 
408   // Register functions with no context.
409   if (decl_context.empty()) {
410     // This has to be a basename
411     auto &basename_to_index =
412         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
413     basename_to_index.Append(entry);
414     // If there is no context (no namespaces or class scopes that come before
415     // the function name) then this also could be a fullname.
416     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
417     name_to_index.Append(entry);
418     return;
419   }
420 
421   // Make sure we have a pool-string pointer and see if we already know the
422   // context name.
423   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
424   auto it = class_contexts.find(decl_context_ccstr);
425 
426   auto &method_to_index =
427       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
428   // Register constructors and destructors. They are methods and create
429   // declaration contexts.
430   if (rmc.IsCtorOrDtor()) {
431     method_to_index.Append(entry);
432     if (it == class_contexts.end())
433       class_contexts.insert(it, decl_context_ccstr);
434     return;
435   }
436 
437   // Register regular methods with a known declaration context.
438   if (it != class_contexts.end()) {
439     method_to_index.Append(entry);
440     return;
441   }
442 
443   // Regular methods in unknown declaration contexts are put to the backlog. We
444   // will revisit them once we processed all remaining symbols.
445   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
446 }
447 
448 void Symtab::RegisterBacklogEntry(
449     const NameToIndexMap::Entry &entry, const char *decl_context,
450     const std::set<const char *> &class_contexts) {
451   auto &method_to_index =
452       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
453   auto it = class_contexts.find(decl_context);
454   if (it != class_contexts.end()) {
455     method_to_index.Append(entry);
456   } else {
457     // If we got here, we have something that had a context (was inside
458     // a namespace or class) yet we don't know the entry
459     method_to_index.Append(entry);
460     auto &basename_to_index =
461         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
462     basename_to_index.Append(entry);
463   }
464 }
465 
466 void Symtab::PreloadSymbols() {
467   std::lock_guard<std::recursive_mutex> guard(m_mutex);
468   InitNameIndexes();
469 }
470 
471 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
472                                     bool add_demangled, bool add_mangled,
473                                     NameToIndexMap &name_to_index_map) const {
474   LLDB_SCOPED_TIMER();
475   if (add_demangled || add_mangled) {
476     std::lock_guard<std::recursive_mutex> guard(m_mutex);
477 
478     // Create the name index vector to be able to quickly search by name
479     const size_t num_indexes = indexes.size();
480     for (size_t i = 0; i < num_indexes; ++i) {
481       uint32_t value = indexes[i];
482       assert(i < m_symbols.size());
483       const Symbol *symbol = &m_symbols[value];
484 
485       const Mangled &mangled = symbol->GetMangled();
486       if (add_demangled) {
487         if (ConstString name = mangled.GetDemangledName())
488           name_to_index_map.Append(name, value);
489       }
490 
491       if (add_mangled) {
492         if (ConstString name = mangled.GetMangledName())
493           name_to_index_map.Append(name, value);
494       }
495     }
496   }
497 }
498 
499 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
500                                              std::vector<uint32_t> &indexes,
501                                              uint32_t start_idx,
502                                              uint32_t end_index) const {
503   std::lock_guard<std::recursive_mutex> guard(m_mutex);
504 
505   uint32_t prev_size = indexes.size();
506 
507   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
508 
509   for (uint32_t i = start_idx; i < count; ++i) {
510     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
511       indexes.push_back(i);
512   }
513 
514   return indexes.size() - prev_size;
515 }
516 
517 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
518     SymbolType symbol_type, uint32_t flags_value,
519     std::vector<uint32_t> &indexes, uint32_t start_idx,
520     uint32_t end_index) const {
521   std::lock_guard<std::recursive_mutex> guard(m_mutex);
522 
523   uint32_t prev_size = indexes.size();
524 
525   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
526 
527   for (uint32_t i = start_idx; i < count; ++i) {
528     if ((symbol_type == eSymbolTypeAny ||
529          m_symbols[i].GetType() == symbol_type) &&
530         m_symbols[i].GetFlags() == flags_value)
531       indexes.push_back(i);
532   }
533 
534   return indexes.size() - prev_size;
535 }
536 
537 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
538                                              Debug symbol_debug_type,
539                                              Visibility symbol_visibility,
540                                              std::vector<uint32_t> &indexes,
541                                              uint32_t start_idx,
542                                              uint32_t end_index) const {
543   std::lock_guard<std::recursive_mutex> guard(m_mutex);
544 
545   uint32_t prev_size = indexes.size();
546 
547   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
548 
549   for (uint32_t i = start_idx; i < count; ++i) {
550     if (symbol_type == eSymbolTypeAny ||
551         m_symbols[i].GetType() == symbol_type) {
552       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
553         indexes.push_back(i);
554     }
555   }
556 
557   return indexes.size() - prev_size;
558 }
559 
560 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
561   if (!m_symbols.empty()) {
562     const Symbol *first_symbol = &m_symbols[0];
563     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
564       return symbol - first_symbol;
565   }
566   return UINT32_MAX;
567 }
568 
569 struct SymbolSortInfo {
570   const bool sort_by_load_addr;
571   const Symbol *symbols;
572 };
573 
574 namespace {
575 struct SymbolIndexComparator {
576   const std::vector<Symbol> &symbols;
577   std::vector<lldb::addr_t> &addr_cache;
578 
579   // Getting from the symbol to the Address to the File Address involves some
580   // work. Since there are potentially many symbols here, and we're using this
581   // for sorting so we're going to be computing the address many times, cache
582   // that in addr_cache. The array passed in has to be the same size as the
583   // symbols array passed into the member variable symbols, and should be
584   // initialized with LLDB_INVALID_ADDRESS.
585   // NOTE: You have to make addr_cache externally and pass it in because
586   // std::stable_sort
587   // makes copies of the comparator it is initially passed in, and you end up
588   // spending huge amounts of time copying this array...
589 
590   SymbolIndexComparator(const std::vector<Symbol> &s,
591                         std::vector<lldb::addr_t> &a)
592       : symbols(s), addr_cache(a) {
593     assert(symbols.size() == addr_cache.size());
594   }
595   bool operator()(uint32_t index_a, uint32_t index_b) {
596     addr_t value_a = addr_cache[index_a];
597     if (value_a == LLDB_INVALID_ADDRESS) {
598       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
599       addr_cache[index_a] = value_a;
600     }
601 
602     addr_t value_b = addr_cache[index_b];
603     if (value_b == LLDB_INVALID_ADDRESS) {
604       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
605       addr_cache[index_b] = value_b;
606     }
607 
608     if (value_a == value_b) {
609       // The if the values are equal, use the original symbol user ID
610       lldb::user_id_t uid_a = symbols[index_a].GetID();
611       lldb::user_id_t uid_b = symbols[index_b].GetID();
612       if (uid_a < uid_b)
613         return true;
614       if (uid_a > uid_b)
615         return false;
616       return false;
617     } else if (value_a < value_b)
618       return true;
619 
620     return false;
621   }
622 };
623 }
624 
625 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
626                                       bool remove_duplicates) const {
627   std::lock_guard<std::recursive_mutex> guard(m_mutex);
628   LLDB_SCOPED_TIMER();
629   // No need to sort if we have zero or one items...
630   if (indexes.size() <= 1)
631     return;
632 
633   // Sort the indexes in place using std::stable_sort.
634   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
635   // for performance, not correctness.  The indexes vector tends to be "close"
636   // to sorted, which the stable sort handles better.
637 
638   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
639 
640   SymbolIndexComparator comparator(m_symbols, addr_cache);
641   std::stable_sort(indexes.begin(), indexes.end(), comparator);
642 
643   // Remove any duplicates if requested
644   if (remove_duplicates) {
645     auto last = std::unique(indexes.begin(), indexes.end());
646     indexes.erase(last, indexes.end());
647   }
648 }
649 
650 uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
651                                 std::vector<uint32_t> &indexes) {
652   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
653   const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
654   if (count)
655     return count;
656   // Synthetic symbol names are not added to the name indexes, but they start
657   // with a prefix and end with a the symbol UserID. This allows users to find
658   // these symbols without having to add them to the name indexes. These
659   // queries will not happen very often since the names don't mean anything, so
660   // performance is not paramount in this case.
661   llvm::StringRef name = symbol_name.GetStringRef();
662   // String the synthetic prefix if the name starts with it.
663   if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
664     return 0; // Not a synthetic symbol name
665 
666   // Extract the user ID from the symbol name
667   unsigned long long uid = 0;
668   if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
669     return 0; // Failed to extract the user ID as an integer
670   Symbol *symbol = FindSymbolByID(uid);
671   if (symbol == nullptr)
672     return 0;
673   const uint32_t symbol_idx = GetIndexForSymbol(symbol);
674   if (symbol_idx == UINT32_MAX)
675     return 0;
676   indexes.push_back(symbol_idx);
677   return 1;
678 }
679 
680 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
681                                              std::vector<uint32_t> &indexes) {
682   std::lock_guard<std::recursive_mutex> guard(m_mutex);
683 
684   if (symbol_name) {
685     if (!m_name_indexes_computed)
686       InitNameIndexes();
687 
688     return GetNameIndexes(symbol_name, indexes);
689   }
690   return 0;
691 }
692 
693 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
694                                              Debug symbol_debug_type,
695                                              Visibility symbol_visibility,
696                                              std::vector<uint32_t> &indexes) {
697   std::lock_guard<std::recursive_mutex> guard(m_mutex);
698 
699   LLDB_SCOPED_TIMER();
700   if (symbol_name) {
701     const size_t old_size = indexes.size();
702     if (!m_name_indexes_computed)
703       InitNameIndexes();
704 
705     std::vector<uint32_t> all_name_indexes;
706     const size_t name_match_count =
707         GetNameIndexes(symbol_name, all_name_indexes);
708     for (size_t i = 0; i < name_match_count; ++i) {
709       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
710                              symbol_visibility))
711         indexes.push_back(all_name_indexes[i]);
712     }
713     return indexes.size() - old_size;
714   }
715   return 0;
716 }
717 
718 uint32_t
719 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
720                                            SymbolType symbol_type,
721                                            std::vector<uint32_t> &indexes) {
722   std::lock_guard<std::recursive_mutex> guard(m_mutex);
723 
724   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
725     std::vector<uint32_t>::iterator pos = indexes.begin();
726     while (pos != indexes.end()) {
727       if (symbol_type == eSymbolTypeAny ||
728           m_symbols[*pos].GetType() == symbol_type)
729         ++pos;
730       else
731         pos = indexes.erase(pos);
732     }
733   }
734   return indexes.size();
735 }
736 
737 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
738     ConstString symbol_name, SymbolType symbol_type,
739     Debug symbol_debug_type, Visibility symbol_visibility,
740     std::vector<uint32_t> &indexes) {
741   std::lock_guard<std::recursive_mutex> guard(m_mutex);
742 
743   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
744                                   symbol_visibility, indexes) > 0) {
745     std::vector<uint32_t>::iterator pos = indexes.begin();
746     while (pos != indexes.end()) {
747       if (symbol_type == eSymbolTypeAny ||
748           m_symbols[*pos].GetType() == symbol_type)
749         ++pos;
750       else
751         pos = indexes.erase(pos);
752     }
753   }
754   return indexes.size();
755 }
756 
757 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
758     const RegularExpression &regexp, SymbolType symbol_type,
759     std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) {
760   std::lock_guard<std::recursive_mutex> guard(m_mutex);
761 
762   uint32_t prev_size = indexes.size();
763   uint32_t sym_end = m_symbols.size();
764 
765   for (uint32_t i = 0; i < sym_end; i++) {
766     if (symbol_type == eSymbolTypeAny ||
767         m_symbols[i].GetType() == symbol_type) {
768       const char *name =
769           m_symbols[i].GetMangled().GetName(name_preference).AsCString();
770       if (name) {
771         if (regexp.Execute(name))
772           indexes.push_back(i);
773       }
774     }
775   }
776   return indexes.size() - prev_size;
777 }
778 
779 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
780     const RegularExpression &regexp, SymbolType symbol_type,
781     Debug symbol_debug_type, Visibility symbol_visibility,
782     std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) {
783   std::lock_guard<std::recursive_mutex> guard(m_mutex);
784 
785   uint32_t prev_size = indexes.size();
786   uint32_t sym_end = m_symbols.size();
787 
788   for (uint32_t i = 0; i < sym_end; i++) {
789     if (symbol_type == eSymbolTypeAny ||
790         m_symbols[i].GetType() == symbol_type) {
791       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
792         continue;
793 
794       const char *name =
795           m_symbols[i].GetMangled().GetName(name_preference).AsCString();
796       if (name) {
797         if (regexp.Execute(name))
798           indexes.push_back(i);
799       }
800     }
801   }
802   return indexes.size() - prev_size;
803 }
804 
805 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
806                                    Debug symbol_debug_type,
807                                    Visibility symbol_visibility,
808                                    uint32_t &start_idx) {
809   std::lock_guard<std::recursive_mutex> guard(m_mutex);
810 
811   const size_t count = m_symbols.size();
812   for (size_t idx = start_idx; idx < count; ++idx) {
813     if (symbol_type == eSymbolTypeAny ||
814         m_symbols[idx].GetType() == symbol_type) {
815       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
816         start_idx = idx;
817         return &m_symbols[idx];
818       }
819     }
820   }
821   return nullptr;
822 }
823 
824 void
825 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
826                                       SymbolType symbol_type,
827                                       std::vector<uint32_t> &symbol_indexes) {
828   std::lock_guard<std::recursive_mutex> guard(m_mutex);
829 
830   // Initialize all of the lookup by name indexes before converting NAME to a
831   // uniqued string NAME_STR below.
832   if (!m_name_indexes_computed)
833     InitNameIndexes();
834 
835   if (name) {
836     // The string table did have a string that matched, but we need to check
837     // the symbols and match the symbol_type if any was given.
838     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
839   }
840 }
841 
842 void Symtab::FindAllSymbolsWithNameAndType(
843     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
844     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
845   std::lock_guard<std::recursive_mutex> guard(m_mutex);
846 
847   LLDB_SCOPED_TIMER();
848   // Initialize all of the lookup by name indexes before converting NAME to a
849   // uniqued string NAME_STR below.
850   if (!m_name_indexes_computed)
851     InitNameIndexes();
852 
853   if (name) {
854     // The string table did have a string that matched, but we need to check
855     // the symbols and match the symbol_type if any was given.
856     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
857                                        symbol_visibility, symbol_indexes);
858   }
859 }
860 
861 void Symtab::FindAllSymbolsMatchingRexExAndType(
862     const RegularExpression &regex, SymbolType symbol_type,
863     Debug symbol_debug_type, Visibility symbol_visibility,
864     std::vector<uint32_t> &symbol_indexes,
865     Mangled::NamePreference name_preference) {
866   std::lock_guard<std::recursive_mutex> guard(m_mutex);
867 
868   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
869                                           symbol_visibility, symbol_indexes,
870                                           name_preference);
871 }
872 
873 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
874                                                SymbolType symbol_type,
875                                                Debug symbol_debug_type,
876                                                Visibility symbol_visibility) {
877   std::lock_guard<std::recursive_mutex> guard(m_mutex);
878   LLDB_SCOPED_TIMER();
879   if (!m_name_indexes_computed)
880     InitNameIndexes();
881 
882   if (name) {
883     std::vector<uint32_t> matching_indexes;
884     // The string table did have a string that matched, but we need to check
885     // the symbols and match the symbol_type if any was given.
886     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
887                                            symbol_visibility,
888                                            matching_indexes)) {
889       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
890       for (pos = matching_indexes.begin(); pos != end; ++pos) {
891         Symbol *symbol = SymbolAtIndex(*pos);
892 
893         if (symbol->Compare(name, symbol_type))
894           return symbol;
895       }
896     }
897   }
898   return nullptr;
899 }
900 
901 typedef struct {
902   const Symtab *symtab;
903   const addr_t file_addr;
904   Symbol *match_symbol;
905   const uint32_t *match_index_ptr;
906   addr_t match_offset;
907 } SymbolSearchInfo;
908 
909 // Add all the section file start address & size to the RangeVector, recusively
910 // adding any children sections.
911 static void AddSectionsToRangeMap(SectionList *sectlist,
912                                   RangeVector<addr_t, addr_t> &section_ranges) {
913   const int num_sections = sectlist->GetNumSections(0);
914   for (int i = 0; i < num_sections; i++) {
915     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
916     if (sect_sp) {
917       SectionList &child_sectlist = sect_sp->GetChildren();
918 
919       // If this section has children, add the children to the RangeVector.
920       // Else add this section to the RangeVector.
921       if (child_sectlist.GetNumSections(0) > 0) {
922         AddSectionsToRangeMap(&child_sectlist, section_ranges);
923       } else {
924         size_t size = sect_sp->GetByteSize();
925         if (size > 0) {
926           addr_t base_addr = sect_sp->GetFileAddress();
927           RangeVector<addr_t, addr_t>::Entry entry;
928           entry.SetRangeBase(base_addr);
929           entry.SetByteSize(size);
930           section_ranges.Append(entry);
931         }
932       }
933     }
934   }
935 }
936 
937 void Symtab::InitAddressIndexes() {
938   // Protected function, no need to lock mutex...
939   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
940     m_file_addr_to_index_computed = true;
941 
942     FileRangeToIndexMap::Entry entry;
943     const_iterator begin = m_symbols.begin();
944     const_iterator end = m_symbols.end();
945     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
946       if (pos->ValueIsAddress()) {
947         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
948         entry.SetByteSize(pos->GetByteSize());
949         entry.data = std::distance(begin, pos);
950         m_file_addr_to_index.Append(entry);
951       }
952     }
953     const size_t num_entries = m_file_addr_to_index.GetSize();
954     if (num_entries > 0) {
955       m_file_addr_to_index.Sort();
956 
957       // Create a RangeVector with the start & size of all the sections for
958       // this objfile.  We'll need to check this for any FileRangeToIndexMap
959       // entries with an uninitialized size, which could potentially be a large
960       // number so reconstituting the weak pointer is busywork when it is
961       // invariant information.
962       SectionList *sectlist = m_objfile->GetSectionList();
963       RangeVector<addr_t, addr_t> section_ranges;
964       if (sectlist) {
965         AddSectionsToRangeMap(sectlist, section_ranges);
966         section_ranges.Sort();
967       }
968 
969       // Iterate through the FileRangeToIndexMap and fill in the size for any
970       // entries that didn't already have a size from the Symbol (e.g. if we
971       // have a plain linker symbol with an address only, instead of debug info
972       // where we get an address and a size and a type, etc.)
973       for (size_t i = 0; i < num_entries; i++) {
974         FileRangeToIndexMap::Entry *entry =
975             m_file_addr_to_index.GetMutableEntryAtIndex(i);
976         if (entry->GetByteSize() == 0) {
977           addr_t curr_base_addr = entry->GetRangeBase();
978           const RangeVector<addr_t, addr_t>::Entry *containing_section =
979               section_ranges.FindEntryThatContains(curr_base_addr);
980 
981           // Use the end of the section as the default max size of the symbol
982           addr_t sym_size = 0;
983           if (containing_section) {
984             sym_size =
985                 containing_section->GetByteSize() -
986                 (entry->GetRangeBase() - containing_section->GetRangeBase());
987           }
988 
989           for (size_t j = i; j < num_entries; j++) {
990             FileRangeToIndexMap::Entry *next_entry =
991                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
992             addr_t next_base_addr = next_entry->GetRangeBase();
993             if (next_base_addr > curr_base_addr) {
994               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
995 
996               // Take the difference between this symbol and the next one as
997               // its size, if it is less than the size of the section.
998               if (sym_size == 0 || size_to_next_symbol < sym_size) {
999                 sym_size = size_to_next_symbol;
1000               }
1001               break;
1002             }
1003           }
1004 
1005           if (sym_size > 0) {
1006             entry->SetByteSize(sym_size);
1007             Symbol &symbol = m_symbols[entry->data];
1008             symbol.SetByteSize(sym_size);
1009             symbol.SetSizeIsSynthesized(true);
1010           }
1011         }
1012       }
1013 
1014       // Sort again in case the range size changes the ordering
1015       m_file_addr_to_index.Sort();
1016     }
1017   }
1018 }
1019 
1020 void Symtab::Finalize() {
1021   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1022   // Calculate the size of symbols inside InitAddressIndexes.
1023   InitAddressIndexes();
1024   // Shrink to fit the symbols so we don't waste memory
1025   m_symbols.shrink_to_fit();
1026   SaveToCache();
1027 }
1028 
1029 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1030   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1031   if (!m_file_addr_to_index_computed)
1032     InitAddressIndexes();
1033 
1034   const FileRangeToIndexMap::Entry *entry =
1035       m_file_addr_to_index.FindEntryStartsAt(file_addr);
1036   if (entry) {
1037     Symbol *symbol = SymbolAtIndex(entry->data);
1038     if (symbol->GetFileAddress() == file_addr)
1039       return symbol;
1040   }
1041   return nullptr;
1042 }
1043 
1044 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1045   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1046 
1047   if (!m_file_addr_to_index_computed)
1048     InitAddressIndexes();
1049 
1050   const FileRangeToIndexMap::Entry *entry =
1051       m_file_addr_to_index.FindEntryThatContains(file_addr);
1052   if (entry) {
1053     Symbol *symbol = SymbolAtIndex(entry->data);
1054     if (symbol->ContainsFileAddress(file_addr))
1055       return symbol;
1056   }
1057   return nullptr;
1058 }
1059 
1060 void Symtab::ForEachSymbolContainingFileAddress(
1061     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1062   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1063 
1064   if (!m_file_addr_to_index_computed)
1065     InitAddressIndexes();
1066 
1067   std::vector<uint32_t> all_addr_indexes;
1068 
1069   // Get all symbols with file_addr
1070   const size_t addr_match_count =
1071       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1072                                                        all_addr_indexes);
1073 
1074   for (size_t i = 0; i < addr_match_count; ++i) {
1075     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1076     if (symbol->ContainsFileAddress(file_addr)) {
1077       if (!callback(symbol))
1078         break;
1079     }
1080   }
1081 }
1082 
1083 void Symtab::SymbolIndicesToSymbolContextList(
1084     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1085   // No need to protect this call using m_mutex all other method calls are
1086   // already thread safe.
1087 
1088   const bool merge_symbol_into_function = true;
1089   size_t num_indices = symbol_indexes.size();
1090   if (num_indices > 0) {
1091     SymbolContext sc;
1092     sc.module_sp = m_objfile->GetModule();
1093     for (size_t i = 0; i < num_indices; i++) {
1094       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1095       if (sc.symbol)
1096         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1097     }
1098   }
1099 }
1100 
1101 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1102                                  SymbolContextList &sc_list) {
1103   std::vector<uint32_t> symbol_indexes;
1104 
1105   // eFunctionNameTypeAuto should be pre-resolved by a call to
1106   // Module::LookupInfo::LookupInfo()
1107   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1108 
1109   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1110     std::vector<uint32_t> temp_symbol_indexes;
1111     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1112 
1113     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1114     if (temp_symbol_indexes_size > 0) {
1115       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1116       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1117         SymbolContext sym_ctx;
1118         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1119         if (sym_ctx.symbol) {
1120           switch (sym_ctx.symbol->GetType()) {
1121           case eSymbolTypeCode:
1122           case eSymbolTypeResolver:
1123           case eSymbolTypeReExported:
1124           case eSymbolTypeAbsolute:
1125             symbol_indexes.push_back(temp_symbol_indexes[i]);
1126             break;
1127           default:
1128             break;
1129           }
1130         }
1131       }
1132     }
1133   }
1134 
1135   if (!m_name_indexes_computed)
1136     InitNameIndexes();
1137 
1138   for (lldb::FunctionNameType type :
1139        {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
1140         lldb::eFunctionNameTypeSelector}) {
1141     if (name_type_mask & type) {
1142       auto map = GetNameToSymbolIndexMap(type);
1143 
1144       const UniqueCStringMap<uint32_t>::Entry *match;
1145       for (match = map.FindFirstValueForName(name); match != nullptr;
1146            match = map.FindNextValueForName(match)) {
1147         symbol_indexes.push_back(match->value);
1148       }
1149     }
1150   }
1151 
1152   if (!symbol_indexes.empty()) {
1153     llvm::sort(symbol_indexes);
1154     symbol_indexes.erase(
1155         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1156         symbol_indexes.end());
1157     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1158   }
1159 }
1160 
1161 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1162   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1163   if (child_idx != UINT32_MAX && child_idx > 0) {
1164     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1165       const Symbol *symbol = SymbolAtIndex(idx);
1166       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1167       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1168         return symbol;
1169     }
1170   }
1171   return nullptr;
1172 }
1173 
1174 std::string Symtab::GetCacheKey() {
1175   std::string key;
1176   llvm::raw_string_ostream strm(key);
1177   // Symbol table can come from different object files for the same module. A
1178   // module can have one object file as the main executable and might have
1179   // another object file in a separate symbol file.
1180   strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-"
1181       << llvm::format_hex(m_objfile->GetCacheHash(), 10);
1182   return strm.str();
1183 }
1184 
1185 void Symtab::SaveToCache() {
1186   DataFileCache *cache = Module::GetIndexCache();
1187   if (!cache)
1188     return; // Caching is not enabled.
1189   InitNameIndexes(); // Init the name indexes so we can cache them as well.
1190   const auto byte_order = endian::InlHostByteOrder();
1191   DataEncoder file(byte_order, /*addr_size=*/8);
1192   // Encode will return false if the symbol table's object file doesn't have
1193   // anything to make a signature from.
1194   if (Encode(file))
1195     if (cache->SetCachedData(GetCacheKey(), file.GetData()))
1196       SetWasSavedToCache();
1197 }
1198 
1199 constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP");
1200 
1201 static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab,
1202                           const UniqueCStringMap<uint32_t> &cstr_map) {
1203   encoder.AppendData(kIdentifierCStrMap);
1204   encoder.AppendU32(cstr_map.GetSize());
1205   for (const auto &entry: cstr_map) {
1206     // Make sure there are no empty strings.
1207     assert((bool)entry.cstring);
1208     encoder.AppendU32(strtab.Add(entry.cstring));
1209     encoder.AppendU32(entry.value);
1210   }
1211 }
1212 
1213 bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr,
1214                    const StringTableReader &strtab,
1215                    UniqueCStringMap<uint32_t> &cstr_map) {
1216   llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1217   if (identifier != kIdentifierCStrMap)
1218     return false;
1219   const uint32_t count = data.GetU32(offset_ptr);
1220   cstr_map.Reserve(count);
1221   for (uint32_t i=0; i<count; ++i)
1222   {
1223     llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr)));
1224     uint32_t value = data.GetU32(offset_ptr);
1225     // No empty strings in the name indexes in Symtab
1226     if (str.empty())
1227       return false;
1228     cstr_map.Append(ConstString(str), value);
1229   }
1230   // We must sort the UniqueCStringMap after decoding it since it is a vector
1231   // of UniqueCStringMap::Entry objects which contain a ConstString and type T.
1232   // ConstString objects are sorted by "const char *" and then type T and
1233   // the "const char *" are point values that will depend on the order in which
1234   // ConstString objects are created and in which of the 256 string pools they
1235   // are created in. So after we decode all of the entries, we must sort the
1236   // name map to ensure name lookups succeed. If we encode and decode within
1237   // the same process we wouldn't need to sort, so unit testing didn't catch
1238   // this issue when first checked in.
1239   cstr_map.Sort();
1240   return true;
1241 }
1242 
1243 constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB");
1244 constexpr uint32_t CURRENT_CACHE_VERSION = 1;
1245 
1246 /// The encoding format for the symbol table is as follows:
1247 ///
1248 /// Signature signature;
1249 /// ConstStringTable strtab;
1250 /// Identifier four character code: 'SYMB'
1251 /// uint32_t version;
1252 /// uint32_t num_symbols;
1253 /// Symbol symbols[num_symbols];
1254 /// uint8_t num_cstr_maps;
1255 /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps]
1256 bool Symtab::Encode(DataEncoder &encoder) const {
1257   // Name indexes must be computed before calling this function.
1258   assert(m_name_indexes_computed);
1259 
1260   // Encode the object file's signature
1261   CacheSignature signature(m_objfile);
1262   if (!signature.Encode(encoder))
1263     return false;
1264   ConstStringTable strtab;
1265 
1266   // Encoder the symbol table into a separate encoder first. This allows us
1267   // gather all of the strings we willl need in "strtab" as we will need to
1268   // write the string table out before the symbol table.
1269   DataEncoder symtab_encoder(encoder.GetByteOrder(),
1270                               encoder.GetAddressByteSize());
1271   symtab_encoder.AppendData(kIdentifierSymbolTable);
1272   // Encode the symtab data version.
1273   symtab_encoder.AppendU32(CURRENT_CACHE_VERSION);
1274   // Encode the number of symbols.
1275   symtab_encoder.AppendU32(m_symbols.size());
1276   // Encode the symbol data for all symbols.
1277   for (const auto &symbol: m_symbols)
1278     symbol.Encode(symtab_encoder, strtab);
1279 
1280   // Emit a byte for how many C string maps we emit. We will fix this up after
1281   // we emit the C string maps since we skip emitting C string maps if they are
1282   // empty.
1283   size_t num_cmaps_offset = symtab_encoder.GetByteSize();
1284   uint8_t num_cmaps = 0;
1285   symtab_encoder.AppendU8(0);
1286   for (const auto &pair: m_name_to_symbol_indices) {
1287     if (pair.second.IsEmpty())
1288       continue;
1289     ++num_cmaps;
1290     symtab_encoder.AppendU8(pair.first);
1291     EncodeCStrMap(symtab_encoder, strtab, pair.second);
1292   }
1293   if (num_cmaps > 0)
1294     symtab_encoder.PutU8(num_cmaps_offset, num_cmaps);
1295 
1296   // Now that all strings have been gathered, we will emit the string table.
1297   strtab.Encode(encoder);
1298   // Followed by the symbol table data.
1299   encoder.AppendData(symtab_encoder.GetData());
1300   return true;
1301 }
1302 
1303 bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr,
1304                     bool &signature_mismatch) {
1305   signature_mismatch = false;
1306   CacheSignature signature;
1307   StringTableReader strtab;
1308   { // Scope for "elapsed" object below so it can measure the time parse.
1309     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime());
1310     if (!signature.Decode(data, offset_ptr))
1311       return false;
1312     if (CacheSignature(m_objfile) != signature) {
1313       signature_mismatch = true;
1314       return false;
1315     }
1316     // We now decode the string table for all strings in the data cache file.
1317     if (!strtab.Decode(data, offset_ptr))
1318       return false;
1319 
1320     // And now we can decode the symbol table with string table we just decoded.
1321     llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1322     if (identifier != kIdentifierSymbolTable)
1323       return false;
1324     const uint32_t version = data.GetU32(offset_ptr);
1325     if (version != CURRENT_CACHE_VERSION)
1326       return false;
1327     const uint32_t num_symbols = data.GetU32(offset_ptr);
1328     if (num_symbols == 0)
1329       return true;
1330     m_symbols.resize(num_symbols);
1331     SectionList *sections = m_objfile->GetModule()->GetSectionList();
1332     for (uint32_t i=0; i<num_symbols; ++i) {
1333       if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab))
1334         return false;
1335     }
1336   }
1337 
1338   { // Scope for "elapsed" object below so it can measure the time to index.
1339     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
1340     const uint8_t num_cstr_maps = data.GetU8(offset_ptr);
1341     for (uint8_t i=0; i<num_cstr_maps; ++i) {
1342       uint8_t type = data.GetU8(offset_ptr);
1343       UniqueCStringMap<uint32_t> &cstr_map =
1344           GetNameToSymbolIndexMap((lldb::FunctionNameType)type);
1345       if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map))
1346         return false;
1347     }
1348     m_name_indexes_computed = true;
1349   }
1350   return true;
1351 }
1352 
1353 bool Symtab::LoadFromCache() {
1354   DataFileCache *cache = Module::GetIndexCache();
1355   if (!cache)
1356     return false;
1357 
1358   std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up =
1359       cache->GetCachedData(GetCacheKey());
1360   if (!mem_buffer_up)
1361     return false;
1362   DataExtractor data(mem_buffer_up->getBufferStart(),
1363                      mem_buffer_up->getBufferSize(),
1364                      m_objfile->GetByteOrder(),
1365                      m_objfile->GetAddressByteSize());
1366   bool signature_mismatch = false;
1367   lldb::offset_t offset = 0;
1368   const bool result = Decode(data, &offset, signature_mismatch);
1369   if (signature_mismatch)
1370     cache->RemoveCacheFile(GetCacheKey());
1371   if (result)
1372     SetWasLoadedFromCache();
1373   return result;
1374 }
1375