xref: /freebsd/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp (revision a8089ea5aee578e08acab2438e82fc9a9ae50ed8)
1 //===-- Symtab.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "lldb/Core/DataFileCache.h"
13 #include "lldb/Core/Module.h"
14 #include "lldb/Core/RichManglingContext.h"
15 #include "lldb/Core/Section.h"
16 #include "lldb/Symbol/ObjectFile.h"
17 #include "lldb/Symbol/Symbol.h"
18 #include "lldb/Symbol/SymbolContext.h"
19 #include "lldb/Symbol/Symtab.h"
20 #include "lldb/Target/Language.h"
21 #include "lldb/Utility/DataEncoder.h"
22 #include "lldb/Utility/Endian.h"
23 #include "lldb/Utility/RegularExpression.h"
24 #include "lldb/Utility/Stream.h"
25 #include "lldb/Utility/Timer.h"
26 
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Support/DJB.h"
30 
31 using namespace lldb;
32 using namespace lldb_private;
33 
34 Symtab::Symtab(ObjectFile *objfile)
35     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
36       m_name_to_symbol_indices(), m_mutex(),
37       m_file_addr_to_index_computed(false), m_name_indexes_computed(false),
38       m_loaded_from_cache(false), m_saved_to_cache(false) {
39   m_name_to_symbol_indices.emplace(std::make_pair(
40       lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
41   m_name_to_symbol_indices.emplace(std::make_pair(
42       lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
43   m_name_to_symbol_indices.emplace(std::make_pair(
44       lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
45   m_name_to_symbol_indices.emplace(std::make_pair(
46       lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
47 }
48 
49 Symtab::~Symtab() = default;
50 
51 void Symtab::Reserve(size_t count) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   m_symbols.reserve(count);
55 }
56 
57 Symbol *Symtab::Resize(size_t count) {
58   // Clients should grab the mutex from this symbol table and lock it manually
59   // when calling this function to avoid performance issues.
60   m_symbols.resize(count);
61   return m_symbols.empty() ? nullptr : &m_symbols[0];
62 }
63 
64 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
65   // Clients should grab the mutex from this symbol table and lock it manually
66   // when calling this function to avoid performance issues.
67   uint32_t symbol_idx = m_symbols.size();
68   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
69   name_to_index.Clear();
70   m_file_addr_to_index.Clear();
71   m_symbols.push_back(symbol);
72   m_file_addr_to_index_computed = false;
73   m_name_indexes_computed = false;
74   return symbol_idx;
75 }
76 
77 size_t Symtab::GetNumSymbols() const {
78   std::lock_guard<std::recursive_mutex> guard(m_mutex);
79   return m_symbols.size();
80 }
81 
82 void Symtab::SectionFileAddressesChanged() {
83   m_file_addr_to_index.Clear();
84   m_file_addr_to_index_computed = false;
85 }
86 
87 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
88                   Mangled::NamePreference name_preference) {
89   std::lock_guard<std::recursive_mutex> guard(m_mutex);
90 
91   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
92   s->Indent();
93   const FileSpec &file_spec = m_objfile->GetFileSpec();
94   const char *object_name = nullptr;
95   if (m_objfile->GetModule())
96     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
97 
98   if (file_spec)
99     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
100               file_spec.GetPath().c_str(), object_name ? "(" : "",
101               object_name ? object_name : "", object_name ? ")" : "",
102               (uint64_t)m_symbols.size());
103   else
104     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
105 
106   if (!m_symbols.empty()) {
107     switch (sort_order) {
108     case eSortOrderNone: {
109       s->PutCString(":\n");
110       DumpSymbolHeader(s);
111       const_iterator begin = m_symbols.begin();
112       const_iterator end = m_symbols.end();
113       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
114         s->Indent();
115         pos->Dump(s, target, std::distance(begin, pos), name_preference);
116       }
117     }
118     break;
119 
120     case eSortOrderByName: {
121       // Although we maintain a lookup by exact name map, the table isn't
122       // sorted by name. So we must make the ordered symbol list up ourselves.
123       s->PutCString(" (sorted by name):\n");
124       DumpSymbolHeader(s);
125 
126       std::multimap<llvm::StringRef, const Symbol *> name_map;
127       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
128            pos != end; ++pos) {
129         const char *name = pos->GetName().AsCString();
130         if (name && name[0])
131           name_map.insert(std::make_pair(name, &(*pos)));
132       }
133 
134       for (const auto &name_to_symbol : name_map) {
135         const Symbol *symbol = name_to_symbol.second;
136         s->Indent();
137         symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
138       }
139     } break;
140 
141     case eSortOrderByAddress:
142       s->PutCString(" (sorted by address):\n");
143       DumpSymbolHeader(s);
144       if (!m_file_addr_to_index_computed)
145         InitAddressIndexes();
146       const size_t num_entries = m_file_addr_to_index.GetSize();
147       for (size_t i = 0; i < num_entries; ++i) {
148         s->Indent();
149         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
150         m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
151       }
152       break;
153     }
154   } else {
155     s->PutCString("\n");
156   }
157 }
158 
159 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
160                   Mangled::NamePreference name_preference) const {
161   std::lock_guard<std::recursive_mutex> guard(m_mutex);
162 
163   const size_t num_symbols = GetNumSymbols();
164   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
165   s->Indent();
166   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
167             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
168   s->IndentMore();
169 
170   if (!indexes.empty()) {
171     std::vector<uint32_t>::const_iterator pos;
172     std::vector<uint32_t>::const_iterator end = indexes.end();
173     DumpSymbolHeader(s);
174     for (pos = indexes.begin(); pos != end; ++pos) {
175       size_t idx = *pos;
176       if (idx < num_symbols) {
177         s->Indent();
178         m_symbols[idx].Dump(s, target, idx, name_preference);
179       }
180     }
181   }
182   s->IndentLess();
183 }
184 
185 void Symtab::DumpSymbolHeader(Stream *s) {
186   s->Indent("               Debug symbol\n");
187   s->Indent("               |Synthetic symbol\n");
188   s->Indent("               ||Externally Visible\n");
189   s->Indent("               |||\n");
190   s->Indent("Index   UserID DSX Type            File Address/Value Load "
191             "Address       Size               Flags      Name\n");
192   s->Indent("------- ------ --- --------------- ------------------ "
193             "------------------ ------------------ ---------- "
194             "----------------------------------\n");
195 }
196 
197 static int CompareSymbolID(const void *key, const void *p) {
198   const user_id_t match_uid = *(const user_id_t *)key;
199   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
200   if (match_uid < symbol_uid)
201     return -1;
202   if (match_uid > symbol_uid)
203     return 1;
204   return 0;
205 }
206 
207 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
208   std::lock_guard<std::recursive_mutex> guard(m_mutex);
209 
210   Symbol *symbol =
211       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
212                           sizeof(m_symbols[0]), CompareSymbolID);
213   return symbol;
214 }
215 
216 Symbol *Symtab::SymbolAtIndex(size_t idx) {
217   // Clients should grab the mutex from this symbol table and lock it manually
218   // when calling this function to avoid performance issues.
219   if (idx < m_symbols.size())
220     return &m_symbols[idx];
221   return nullptr;
222 }
223 
224 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
225   // Clients should grab the mutex from this symbol table and lock it manually
226   // when calling this function to avoid performance issues.
227   if (idx < m_symbols.size())
228     return &m_symbols[idx];
229   return nullptr;
230 }
231 
232 static bool lldb_skip_name(llvm::StringRef mangled,
233                            Mangled::ManglingScheme scheme) {
234   switch (scheme) {
235   case Mangled::eManglingSchemeItanium: {
236     if (mangled.size() < 3 || !mangled.starts_with("_Z"))
237       return true;
238 
239     // Avoid the following types of symbols in the index.
240     switch (mangled[2]) {
241     case 'G': // guard variables
242     case 'T': // virtual tables, VTT structures, typeinfo structures + names
243     case 'Z': // named local entities (if we eventually handle
244               // eSymbolTypeData, we will want this back)
245       return true;
246 
247     default:
248       break;
249     }
250 
251     // Include this name in the index.
252     return false;
253   }
254 
255   // No filters for this scheme yet. Include all names in indexing.
256   case Mangled::eManglingSchemeMSVC:
257   case Mangled::eManglingSchemeRustV0:
258   case Mangled::eManglingSchemeD:
259   case Mangled::eManglingSchemeSwift:
260     return false;
261 
262   // Don't try and demangle things we can't categorize.
263   case Mangled::eManglingSchemeNone:
264     return true;
265   }
266   llvm_unreachable("unknown scheme!");
267 }
268 
269 void Symtab::InitNameIndexes() {
270   // Protected function, no need to lock mutex...
271   if (!m_name_indexes_computed) {
272     m_name_indexes_computed = true;
273     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
274     LLDB_SCOPED_TIMER();
275 
276     // Collect all loaded language plugins.
277     std::vector<Language *> languages;
278     Language::ForEach([&languages](Language *l) {
279       languages.push_back(l);
280       return true;
281     });
282 
283     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
284     auto &basename_to_index =
285         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
286     auto &method_to_index =
287         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
288     auto &selector_to_index =
289         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
290     // Create the name index vector to be able to quickly search by name
291     const size_t num_symbols = m_symbols.size();
292     name_to_index.Reserve(num_symbols);
293 
294     // The "const char *" in "class_contexts" and backlog::value_type::second
295     // must come from a ConstString::GetCString()
296     std::set<const char *> class_contexts;
297     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
298     backlog.reserve(num_symbols / 2);
299 
300     // Instantiation of the demangler is expensive, so better use a single one
301     // for all entries during batch processing.
302     RichManglingContext rmc;
303     for (uint32_t value = 0; value < num_symbols; ++value) {
304       Symbol *symbol = &m_symbols[value];
305 
306       // Don't let trampolines get into the lookup by name map If we ever need
307       // the trampoline symbols to be searchable by name we can remove this and
308       // then possibly add a new bool to any of the Symtab functions that
309       // lookup symbols by name to indicate if they want trampolines. We also
310       // don't want any synthetic symbols with auto generated names in the
311       // name lookups.
312       if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
313         continue;
314 
315       // If the symbol's name string matched a Mangled::ManglingScheme, it is
316       // stored in the mangled field.
317       Mangled &mangled = symbol->GetMangled();
318       if (ConstString name = mangled.GetMangledName()) {
319         name_to_index.Append(name, value);
320 
321         if (symbol->ContainsLinkerAnnotations()) {
322           // If the symbol has linker annotations, also add the version without
323           // the annotations.
324           ConstString stripped = ConstString(
325               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
326           name_to_index.Append(stripped, value);
327         }
328 
329         const SymbolType type = symbol->GetType();
330         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
331           if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) {
332             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
333             continue;
334           }
335         }
336       }
337 
338       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
339       // stored in the demangled field.
340       if (ConstString name = mangled.GetDemangledName()) {
341         name_to_index.Append(name, value);
342 
343         if (symbol->ContainsLinkerAnnotations()) {
344           // If the symbol has linker annotations, also add the version without
345           // the annotations.
346           name = ConstString(
347               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
348           name_to_index.Append(name, value);
349         }
350 
351         // If the demangled name turns out to be an ObjC name, and is a category
352         // name, add the version without categories to the index too.
353         for (Language *lang : languages) {
354           for (auto variant : lang->GetMethodNameVariants(name)) {
355             if (variant.GetType() & lldb::eFunctionNameTypeSelector)
356               selector_to_index.Append(variant.GetName(), value);
357             else if (variant.GetType() & lldb::eFunctionNameTypeFull)
358               name_to_index.Append(variant.GetName(), value);
359             else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
360               method_to_index.Append(variant.GetName(), value);
361             else if (variant.GetType() & lldb::eFunctionNameTypeBase)
362               basename_to_index.Append(variant.GetName(), value);
363           }
364         }
365       }
366     }
367 
368     for (const auto &record : backlog) {
369       RegisterBacklogEntry(record.first, record.second, class_contexts);
370     }
371 
372     name_to_index.Sort();
373     name_to_index.SizeToFit();
374     selector_to_index.Sort();
375     selector_to_index.SizeToFit();
376     basename_to_index.Sort();
377     basename_to_index.SizeToFit();
378     method_to_index.Sort();
379     method_to_index.SizeToFit();
380   }
381 }
382 
383 void Symtab::RegisterMangledNameEntry(
384     uint32_t value, std::set<const char *> &class_contexts,
385     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
386     RichManglingContext &rmc) {
387   // Only register functions that have a base name.
388   llvm::StringRef base_name = rmc.ParseFunctionBaseName();
389   if (base_name.empty())
390     return;
391 
392   // The base name will be our entry's name.
393   NameToIndexMap::Entry entry(ConstString(base_name), value);
394   llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName();
395 
396   // Register functions with no context.
397   if (decl_context.empty()) {
398     // This has to be a basename
399     auto &basename_to_index =
400         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
401     basename_to_index.Append(entry);
402     // If there is no context (no namespaces or class scopes that come before
403     // the function name) then this also could be a fullname.
404     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
405     name_to_index.Append(entry);
406     return;
407   }
408 
409   // Make sure we have a pool-string pointer and see if we already know the
410   // context name.
411   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
412   auto it = class_contexts.find(decl_context_ccstr);
413 
414   auto &method_to_index =
415       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
416   // Register constructors and destructors. They are methods and create
417   // declaration contexts.
418   if (rmc.IsCtorOrDtor()) {
419     method_to_index.Append(entry);
420     if (it == class_contexts.end())
421       class_contexts.insert(it, decl_context_ccstr);
422     return;
423   }
424 
425   // Register regular methods with a known declaration context.
426   if (it != class_contexts.end()) {
427     method_to_index.Append(entry);
428     return;
429   }
430 
431   // Regular methods in unknown declaration contexts are put to the backlog. We
432   // will revisit them once we processed all remaining symbols.
433   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
434 }
435 
436 void Symtab::RegisterBacklogEntry(
437     const NameToIndexMap::Entry &entry, const char *decl_context,
438     const std::set<const char *> &class_contexts) {
439   auto &method_to_index =
440       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
441   auto it = class_contexts.find(decl_context);
442   if (it != class_contexts.end()) {
443     method_to_index.Append(entry);
444   } else {
445     // If we got here, we have something that had a context (was inside
446     // a namespace or class) yet we don't know the entry
447     method_to_index.Append(entry);
448     auto &basename_to_index =
449         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
450     basename_to_index.Append(entry);
451   }
452 }
453 
454 void Symtab::PreloadSymbols() {
455   std::lock_guard<std::recursive_mutex> guard(m_mutex);
456   InitNameIndexes();
457 }
458 
459 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
460                                     bool add_demangled, bool add_mangled,
461                                     NameToIndexMap &name_to_index_map) const {
462   LLDB_SCOPED_TIMER();
463   if (add_demangled || add_mangled) {
464     std::lock_guard<std::recursive_mutex> guard(m_mutex);
465 
466     // Create the name index vector to be able to quickly search by name
467     const size_t num_indexes = indexes.size();
468     for (size_t i = 0; i < num_indexes; ++i) {
469       uint32_t value = indexes[i];
470       assert(i < m_symbols.size());
471       const Symbol *symbol = &m_symbols[value];
472 
473       const Mangled &mangled = symbol->GetMangled();
474       if (add_demangled) {
475         if (ConstString name = mangled.GetDemangledName())
476           name_to_index_map.Append(name, value);
477       }
478 
479       if (add_mangled) {
480         if (ConstString name = mangled.GetMangledName())
481           name_to_index_map.Append(name, value);
482       }
483     }
484   }
485 }
486 
487 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
488                                              std::vector<uint32_t> &indexes,
489                                              uint32_t start_idx,
490                                              uint32_t end_index) const {
491   std::lock_guard<std::recursive_mutex> guard(m_mutex);
492 
493   uint32_t prev_size = indexes.size();
494 
495   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
496 
497   for (uint32_t i = start_idx; i < count; ++i) {
498     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
499       indexes.push_back(i);
500   }
501 
502   return indexes.size() - prev_size;
503 }
504 
505 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
506     SymbolType symbol_type, uint32_t flags_value,
507     std::vector<uint32_t> &indexes, uint32_t start_idx,
508     uint32_t end_index) const {
509   std::lock_guard<std::recursive_mutex> guard(m_mutex);
510 
511   uint32_t prev_size = indexes.size();
512 
513   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
514 
515   for (uint32_t i = start_idx; i < count; ++i) {
516     if ((symbol_type == eSymbolTypeAny ||
517          m_symbols[i].GetType() == symbol_type) &&
518         m_symbols[i].GetFlags() == flags_value)
519       indexes.push_back(i);
520   }
521 
522   return indexes.size() - prev_size;
523 }
524 
525 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
526                                              Debug symbol_debug_type,
527                                              Visibility symbol_visibility,
528                                              std::vector<uint32_t> &indexes,
529                                              uint32_t start_idx,
530                                              uint32_t end_index) const {
531   std::lock_guard<std::recursive_mutex> guard(m_mutex);
532 
533   uint32_t prev_size = indexes.size();
534 
535   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
536 
537   for (uint32_t i = start_idx; i < count; ++i) {
538     if (symbol_type == eSymbolTypeAny ||
539         m_symbols[i].GetType() == symbol_type) {
540       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
541         indexes.push_back(i);
542     }
543   }
544 
545   return indexes.size() - prev_size;
546 }
547 
548 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
549   if (!m_symbols.empty()) {
550     const Symbol *first_symbol = &m_symbols[0];
551     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
552       return symbol - first_symbol;
553   }
554   return UINT32_MAX;
555 }
556 
557 struct SymbolSortInfo {
558   const bool sort_by_load_addr;
559   const Symbol *symbols;
560 };
561 
562 namespace {
563 struct SymbolIndexComparator {
564   const std::vector<Symbol> &symbols;
565   std::vector<lldb::addr_t> &addr_cache;
566 
567   // Getting from the symbol to the Address to the File Address involves some
568   // work. Since there are potentially many symbols here, and we're using this
569   // for sorting so we're going to be computing the address many times, cache
570   // that in addr_cache. The array passed in has to be the same size as the
571   // symbols array passed into the member variable symbols, and should be
572   // initialized with LLDB_INVALID_ADDRESS.
573   // NOTE: You have to make addr_cache externally and pass it in because
574   // std::stable_sort
575   // makes copies of the comparator it is initially passed in, and you end up
576   // spending huge amounts of time copying this array...
577 
578   SymbolIndexComparator(const std::vector<Symbol> &s,
579                         std::vector<lldb::addr_t> &a)
580       : symbols(s), addr_cache(a) {
581     assert(symbols.size() == addr_cache.size());
582   }
583   bool operator()(uint32_t index_a, uint32_t index_b) {
584     addr_t value_a = addr_cache[index_a];
585     if (value_a == LLDB_INVALID_ADDRESS) {
586       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
587       addr_cache[index_a] = value_a;
588     }
589 
590     addr_t value_b = addr_cache[index_b];
591     if (value_b == LLDB_INVALID_ADDRESS) {
592       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
593       addr_cache[index_b] = value_b;
594     }
595 
596     if (value_a == value_b) {
597       // The if the values are equal, use the original symbol user ID
598       lldb::user_id_t uid_a = symbols[index_a].GetID();
599       lldb::user_id_t uid_b = symbols[index_b].GetID();
600       if (uid_a < uid_b)
601         return true;
602       if (uid_a > uid_b)
603         return false;
604       return false;
605     } else if (value_a < value_b)
606       return true;
607 
608     return false;
609   }
610 };
611 }
612 
613 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
614                                       bool remove_duplicates) const {
615   std::lock_guard<std::recursive_mutex> guard(m_mutex);
616   LLDB_SCOPED_TIMER();
617   // No need to sort if we have zero or one items...
618   if (indexes.size() <= 1)
619     return;
620 
621   // Sort the indexes in place using std::stable_sort.
622   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
623   // for performance, not correctness.  The indexes vector tends to be "close"
624   // to sorted, which the stable sort handles better.
625 
626   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
627 
628   SymbolIndexComparator comparator(m_symbols, addr_cache);
629   std::stable_sort(indexes.begin(), indexes.end(), comparator);
630 
631   // Remove any duplicates if requested
632   if (remove_duplicates) {
633     auto last = std::unique(indexes.begin(), indexes.end());
634     indexes.erase(last, indexes.end());
635   }
636 }
637 
638 uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
639                                 std::vector<uint32_t> &indexes) {
640   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
641   const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
642   if (count)
643     return count;
644   // Synthetic symbol names are not added to the name indexes, but they start
645   // with a prefix and end with a the symbol UserID. This allows users to find
646   // these symbols without having to add them to the name indexes. These
647   // queries will not happen very often since the names don't mean anything, so
648   // performance is not paramount in this case.
649   llvm::StringRef name = symbol_name.GetStringRef();
650   // String the synthetic prefix if the name starts with it.
651   if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
652     return 0; // Not a synthetic symbol name
653 
654   // Extract the user ID from the symbol name
655   unsigned long long uid = 0;
656   if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
657     return 0; // Failed to extract the user ID as an integer
658   Symbol *symbol = FindSymbolByID(uid);
659   if (symbol == nullptr)
660     return 0;
661   const uint32_t symbol_idx = GetIndexForSymbol(symbol);
662   if (symbol_idx == UINT32_MAX)
663     return 0;
664   indexes.push_back(symbol_idx);
665   return 1;
666 }
667 
668 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
669                                              std::vector<uint32_t> &indexes) {
670   std::lock_guard<std::recursive_mutex> guard(m_mutex);
671 
672   if (symbol_name) {
673     if (!m_name_indexes_computed)
674       InitNameIndexes();
675 
676     return GetNameIndexes(symbol_name, indexes);
677   }
678   return 0;
679 }
680 
681 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
682                                              Debug symbol_debug_type,
683                                              Visibility symbol_visibility,
684                                              std::vector<uint32_t> &indexes) {
685   std::lock_guard<std::recursive_mutex> guard(m_mutex);
686 
687   LLDB_SCOPED_TIMER();
688   if (symbol_name) {
689     const size_t old_size = indexes.size();
690     if (!m_name_indexes_computed)
691       InitNameIndexes();
692 
693     std::vector<uint32_t> all_name_indexes;
694     const size_t name_match_count =
695         GetNameIndexes(symbol_name, all_name_indexes);
696     for (size_t i = 0; i < name_match_count; ++i) {
697       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
698                              symbol_visibility))
699         indexes.push_back(all_name_indexes[i]);
700     }
701     return indexes.size() - old_size;
702   }
703   return 0;
704 }
705 
706 uint32_t
707 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
708                                            SymbolType symbol_type,
709                                            std::vector<uint32_t> &indexes) {
710   std::lock_guard<std::recursive_mutex> guard(m_mutex);
711 
712   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
713     std::vector<uint32_t>::iterator pos = indexes.begin();
714     while (pos != indexes.end()) {
715       if (symbol_type == eSymbolTypeAny ||
716           m_symbols[*pos].GetType() == symbol_type)
717         ++pos;
718       else
719         pos = indexes.erase(pos);
720     }
721   }
722   return indexes.size();
723 }
724 
725 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
726     ConstString symbol_name, SymbolType symbol_type,
727     Debug symbol_debug_type, Visibility symbol_visibility,
728     std::vector<uint32_t> &indexes) {
729   std::lock_guard<std::recursive_mutex> guard(m_mutex);
730 
731   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
732                                   symbol_visibility, indexes) > 0) {
733     std::vector<uint32_t>::iterator pos = indexes.begin();
734     while (pos != indexes.end()) {
735       if (symbol_type == eSymbolTypeAny ||
736           m_symbols[*pos].GetType() == symbol_type)
737         ++pos;
738       else
739         pos = indexes.erase(pos);
740     }
741   }
742   return indexes.size();
743 }
744 
745 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
746     const RegularExpression &regexp, SymbolType symbol_type,
747     std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) {
748   std::lock_guard<std::recursive_mutex> guard(m_mutex);
749 
750   uint32_t prev_size = indexes.size();
751   uint32_t sym_end = m_symbols.size();
752 
753   for (uint32_t i = 0; i < sym_end; i++) {
754     if (symbol_type == eSymbolTypeAny ||
755         m_symbols[i].GetType() == symbol_type) {
756       const char *name =
757           m_symbols[i].GetMangled().GetName(name_preference).AsCString();
758       if (name) {
759         if (regexp.Execute(name))
760           indexes.push_back(i);
761       }
762     }
763   }
764   return indexes.size() - prev_size;
765 }
766 
767 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
768     const RegularExpression &regexp, SymbolType symbol_type,
769     Debug symbol_debug_type, Visibility symbol_visibility,
770     std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) {
771   std::lock_guard<std::recursive_mutex> guard(m_mutex);
772 
773   uint32_t prev_size = indexes.size();
774   uint32_t sym_end = m_symbols.size();
775 
776   for (uint32_t i = 0; i < sym_end; i++) {
777     if (symbol_type == eSymbolTypeAny ||
778         m_symbols[i].GetType() == symbol_type) {
779       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
780         continue;
781 
782       const char *name =
783           m_symbols[i].GetMangled().GetName(name_preference).AsCString();
784       if (name) {
785         if (regexp.Execute(name))
786           indexes.push_back(i);
787       }
788     }
789   }
790   return indexes.size() - prev_size;
791 }
792 
793 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
794                                    Debug symbol_debug_type,
795                                    Visibility symbol_visibility,
796                                    uint32_t &start_idx) {
797   std::lock_guard<std::recursive_mutex> guard(m_mutex);
798 
799   const size_t count = m_symbols.size();
800   for (size_t idx = start_idx; idx < count; ++idx) {
801     if (symbol_type == eSymbolTypeAny ||
802         m_symbols[idx].GetType() == symbol_type) {
803       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
804         start_idx = idx;
805         return &m_symbols[idx];
806       }
807     }
808   }
809   return nullptr;
810 }
811 
812 void
813 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
814                                       SymbolType symbol_type,
815                                       std::vector<uint32_t> &symbol_indexes) {
816   std::lock_guard<std::recursive_mutex> guard(m_mutex);
817 
818   // Initialize all of the lookup by name indexes before converting NAME to a
819   // uniqued string NAME_STR below.
820   if (!m_name_indexes_computed)
821     InitNameIndexes();
822 
823   if (name) {
824     // The string table did have a string that matched, but we need to check
825     // the symbols and match the symbol_type if any was given.
826     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
827   }
828 }
829 
830 void Symtab::FindAllSymbolsWithNameAndType(
831     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
832     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
833   std::lock_guard<std::recursive_mutex> guard(m_mutex);
834 
835   LLDB_SCOPED_TIMER();
836   // Initialize all of the lookup by name indexes before converting NAME to a
837   // uniqued string NAME_STR below.
838   if (!m_name_indexes_computed)
839     InitNameIndexes();
840 
841   if (name) {
842     // The string table did have a string that matched, but we need to check
843     // the symbols and match the symbol_type if any was given.
844     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
845                                        symbol_visibility, symbol_indexes);
846   }
847 }
848 
849 void Symtab::FindAllSymbolsMatchingRexExAndType(
850     const RegularExpression &regex, SymbolType symbol_type,
851     Debug symbol_debug_type, Visibility symbol_visibility,
852     std::vector<uint32_t> &symbol_indexes,
853     Mangled::NamePreference name_preference) {
854   std::lock_guard<std::recursive_mutex> guard(m_mutex);
855 
856   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
857                                           symbol_visibility, symbol_indexes,
858                                           name_preference);
859 }
860 
861 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
862                                                SymbolType symbol_type,
863                                                Debug symbol_debug_type,
864                                                Visibility symbol_visibility) {
865   std::lock_guard<std::recursive_mutex> guard(m_mutex);
866   LLDB_SCOPED_TIMER();
867   if (!m_name_indexes_computed)
868     InitNameIndexes();
869 
870   if (name) {
871     std::vector<uint32_t> matching_indexes;
872     // The string table did have a string that matched, but we need to check
873     // the symbols and match the symbol_type if any was given.
874     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
875                                            symbol_visibility,
876                                            matching_indexes)) {
877       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
878       for (pos = matching_indexes.begin(); pos != end; ++pos) {
879         Symbol *symbol = SymbolAtIndex(*pos);
880 
881         if (symbol->Compare(name, symbol_type))
882           return symbol;
883       }
884     }
885   }
886   return nullptr;
887 }
888 
889 typedef struct {
890   const Symtab *symtab;
891   const addr_t file_addr;
892   Symbol *match_symbol;
893   const uint32_t *match_index_ptr;
894   addr_t match_offset;
895 } SymbolSearchInfo;
896 
897 // Add all the section file start address & size to the RangeVector, recusively
898 // adding any children sections.
899 static void AddSectionsToRangeMap(SectionList *sectlist,
900                                   RangeVector<addr_t, addr_t> &section_ranges) {
901   const int num_sections = sectlist->GetNumSections(0);
902   for (int i = 0; i < num_sections; i++) {
903     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
904     if (sect_sp) {
905       SectionList &child_sectlist = sect_sp->GetChildren();
906 
907       // If this section has children, add the children to the RangeVector.
908       // Else add this section to the RangeVector.
909       if (child_sectlist.GetNumSections(0) > 0) {
910         AddSectionsToRangeMap(&child_sectlist, section_ranges);
911       } else {
912         size_t size = sect_sp->GetByteSize();
913         if (size > 0) {
914           addr_t base_addr = sect_sp->GetFileAddress();
915           RangeVector<addr_t, addr_t>::Entry entry;
916           entry.SetRangeBase(base_addr);
917           entry.SetByteSize(size);
918           section_ranges.Append(entry);
919         }
920       }
921     }
922   }
923 }
924 
925 void Symtab::InitAddressIndexes() {
926   // Protected function, no need to lock mutex...
927   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
928     m_file_addr_to_index_computed = true;
929 
930     FileRangeToIndexMap::Entry entry;
931     const_iterator begin = m_symbols.begin();
932     const_iterator end = m_symbols.end();
933     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
934       if (pos->ValueIsAddress()) {
935         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
936         entry.SetByteSize(pos->GetByteSize());
937         entry.data = std::distance(begin, pos);
938         m_file_addr_to_index.Append(entry);
939       }
940     }
941     const size_t num_entries = m_file_addr_to_index.GetSize();
942     if (num_entries > 0) {
943       m_file_addr_to_index.Sort();
944 
945       // Create a RangeVector with the start & size of all the sections for
946       // this objfile.  We'll need to check this for any FileRangeToIndexMap
947       // entries with an uninitialized size, which could potentially be a large
948       // number so reconstituting the weak pointer is busywork when it is
949       // invariant information.
950       SectionList *sectlist = m_objfile->GetSectionList();
951       RangeVector<addr_t, addr_t> section_ranges;
952       if (sectlist) {
953         AddSectionsToRangeMap(sectlist, section_ranges);
954         section_ranges.Sort();
955       }
956 
957       // Iterate through the FileRangeToIndexMap and fill in the size for any
958       // entries that didn't already have a size from the Symbol (e.g. if we
959       // have a plain linker symbol with an address only, instead of debug info
960       // where we get an address and a size and a type, etc.)
961       for (size_t i = 0; i < num_entries; i++) {
962         FileRangeToIndexMap::Entry *entry =
963             m_file_addr_to_index.GetMutableEntryAtIndex(i);
964         if (entry->GetByteSize() == 0) {
965           addr_t curr_base_addr = entry->GetRangeBase();
966           const RangeVector<addr_t, addr_t>::Entry *containing_section =
967               section_ranges.FindEntryThatContains(curr_base_addr);
968 
969           // Use the end of the section as the default max size of the symbol
970           addr_t sym_size = 0;
971           if (containing_section) {
972             sym_size =
973                 containing_section->GetByteSize() -
974                 (entry->GetRangeBase() - containing_section->GetRangeBase());
975           }
976 
977           for (size_t j = i; j < num_entries; j++) {
978             FileRangeToIndexMap::Entry *next_entry =
979                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
980             addr_t next_base_addr = next_entry->GetRangeBase();
981             if (next_base_addr > curr_base_addr) {
982               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
983 
984               // Take the difference between this symbol and the next one as
985               // its size, if it is less than the size of the section.
986               if (sym_size == 0 || size_to_next_symbol < sym_size) {
987                 sym_size = size_to_next_symbol;
988               }
989               break;
990             }
991           }
992 
993           if (sym_size > 0) {
994             entry->SetByteSize(sym_size);
995             Symbol &symbol = m_symbols[entry->data];
996             symbol.SetByteSize(sym_size);
997             symbol.SetSizeIsSynthesized(true);
998           }
999         }
1000       }
1001 
1002       // Sort again in case the range size changes the ordering
1003       m_file_addr_to_index.Sort();
1004     }
1005   }
1006 }
1007 
1008 void Symtab::Finalize() {
1009   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1010   // Calculate the size of symbols inside InitAddressIndexes.
1011   InitAddressIndexes();
1012   // Shrink to fit the symbols so we don't waste memory
1013   m_symbols.shrink_to_fit();
1014   SaveToCache();
1015 }
1016 
1017 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1018   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1019   if (!m_file_addr_to_index_computed)
1020     InitAddressIndexes();
1021 
1022   const FileRangeToIndexMap::Entry *entry =
1023       m_file_addr_to_index.FindEntryStartsAt(file_addr);
1024   if (entry) {
1025     Symbol *symbol = SymbolAtIndex(entry->data);
1026     if (symbol->GetFileAddress() == file_addr)
1027       return symbol;
1028   }
1029   return nullptr;
1030 }
1031 
1032 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1033   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1034 
1035   if (!m_file_addr_to_index_computed)
1036     InitAddressIndexes();
1037 
1038   const FileRangeToIndexMap::Entry *entry =
1039       m_file_addr_to_index.FindEntryThatContains(file_addr);
1040   if (entry) {
1041     Symbol *symbol = SymbolAtIndex(entry->data);
1042     if (symbol->ContainsFileAddress(file_addr))
1043       return symbol;
1044   }
1045   return nullptr;
1046 }
1047 
1048 void Symtab::ForEachSymbolContainingFileAddress(
1049     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1050   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1051 
1052   if (!m_file_addr_to_index_computed)
1053     InitAddressIndexes();
1054 
1055   std::vector<uint32_t> all_addr_indexes;
1056 
1057   // Get all symbols with file_addr
1058   const size_t addr_match_count =
1059       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1060                                                        all_addr_indexes);
1061 
1062   for (size_t i = 0; i < addr_match_count; ++i) {
1063     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1064     if (symbol->ContainsFileAddress(file_addr)) {
1065       if (!callback(symbol))
1066         break;
1067     }
1068   }
1069 }
1070 
1071 void Symtab::SymbolIndicesToSymbolContextList(
1072     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1073   // No need to protect this call using m_mutex all other method calls are
1074   // already thread safe.
1075 
1076   const bool merge_symbol_into_function = true;
1077   size_t num_indices = symbol_indexes.size();
1078   if (num_indices > 0) {
1079     SymbolContext sc;
1080     sc.module_sp = m_objfile->GetModule();
1081     for (size_t i = 0; i < num_indices; i++) {
1082       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1083       if (sc.symbol)
1084         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1085     }
1086   }
1087 }
1088 
1089 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1090                                  SymbolContextList &sc_list) {
1091   std::vector<uint32_t> symbol_indexes;
1092 
1093   // eFunctionNameTypeAuto should be pre-resolved by a call to
1094   // Module::LookupInfo::LookupInfo()
1095   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1096 
1097   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1098     std::vector<uint32_t> temp_symbol_indexes;
1099     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1100 
1101     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1102     if (temp_symbol_indexes_size > 0) {
1103       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1104       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1105         SymbolContext sym_ctx;
1106         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1107         if (sym_ctx.symbol) {
1108           switch (sym_ctx.symbol->GetType()) {
1109           case eSymbolTypeCode:
1110           case eSymbolTypeResolver:
1111           case eSymbolTypeReExported:
1112           case eSymbolTypeAbsolute:
1113             symbol_indexes.push_back(temp_symbol_indexes[i]);
1114             break;
1115           default:
1116             break;
1117           }
1118         }
1119       }
1120     }
1121   }
1122 
1123   if (!m_name_indexes_computed)
1124     InitNameIndexes();
1125 
1126   for (lldb::FunctionNameType type :
1127        {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
1128         lldb::eFunctionNameTypeSelector}) {
1129     if (name_type_mask & type) {
1130       auto map = GetNameToSymbolIndexMap(type);
1131 
1132       const UniqueCStringMap<uint32_t>::Entry *match;
1133       for (match = map.FindFirstValueForName(name); match != nullptr;
1134            match = map.FindNextValueForName(match)) {
1135         symbol_indexes.push_back(match->value);
1136       }
1137     }
1138   }
1139 
1140   if (!symbol_indexes.empty()) {
1141     llvm::sort(symbol_indexes);
1142     symbol_indexes.erase(
1143         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1144         symbol_indexes.end());
1145     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1146   }
1147 }
1148 
1149 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1150   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1151   if (child_idx != UINT32_MAX && child_idx > 0) {
1152     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1153       const Symbol *symbol = SymbolAtIndex(idx);
1154       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1155       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1156         return symbol;
1157     }
1158   }
1159   return nullptr;
1160 }
1161 
1162 std::string Symtab::GetCacheKey() {
1163   std::string key;
1164   llvm::raw_string_ostream strm(key);
1165   // Symbol table can come from different object files for the same module. A
1166   // module can have one object file as the main executable and might have
1167   // another object file in a separate symbol file.
1168   strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-"
1169       << llvm::format_hex(m_objfile->GetCacheHash(), 10);
1170   return strm.str();
1171 }
1172 
1173 void Symtab::SaveToCache() {
1174   DataFileCache *cache = Module::GetIndexCache();
1175   if (!cache)
1176     return; // Caching is not enabled.
1177   InitNameIndexes(); // Init the name indexes so we can cache them as well.
1178   const auto byte_order = endian::InlHostByteOrder();
1179   DataEncoder file(byte_order, /*addr_size=*/8);
1180   // Encode will return false if the symbol table's object file doesn't have
1181   // anything to make a signature from.
1182   if (Encode(file))
1183     if (cache->SetCachedData(GetCacheKey(), file.GetData()))
1184       SetWasSavedToCache();
1185 }
1186 
1187 constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP");
1188 
1189 static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab,
1190                           const UniqueCStringMap<uint32_t> &cstr_map) {
1191   encoder.AppendData(kIdentifierCStrMap);
1192   encoder.AppendU32(cstr_map.GetSize());
1193   for (const auto &entry: cstr_map) {
1194     // Make sure there are no empty strings.
1195     assert((bool)entry.cstring);
1196     encoder.AppendU32(strtab.Add(entry.cstring));
1197     encoder.AppendU32(entry.value);
1198   }
1199 }
1200 
1201 bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr,
1202                    const StringTableReader &strtab,
1203                    UniqueCStringMap<uint32_t> &cstr_map) {
1204   llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1205   if (identifier != kIdentifierCStrMap)
1206     return false;
1207   const uint32_t count = data.GetU32(offset_ptr);
1208   cstr_map.Reserve(count);
1209   for (uint32_t i=0; i<count; ++i)
1210   {
1211     llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr)));
1212     uint32_t value = data.GetU32(offset_ptr);
1213     // No empty strings in the name indexes in Symtab
1214     if (str.empty())
1215       return false;
1216     cstr_map.Append(ConstString(str), value);
1217   }
1218   // We must sort the UniqueCStringMap after decoding it since it is a vector
1219   // of UniqueCStringMap::Entry objects which contain a ConstString and type T.
1220   // ConstString objects are sorted by "const char *" and then type T and
1221   // the "const char *" are point values that will depend on the order in which
1222   // ConstString objects are created and in which of the 256 string pools they
1223   // are created in. So after we decode all of the entries, we must sort the
1224   // name map to ensure name lookups succeed. If we encode and decode within
1225   // the same process we wouldn't need to sort, so unit testing didn't catch
1226   // this issue when first checked in.
1227   cstr_map.Sort();
1228   return true;
1229 }
1230 
1231 constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB");
1232 constexpr uint32_t CURRENT_CACHE_VERSION = 1;
1233 
1234 /// The encoding format for the symbol table is as follows:
1235 ///
1236 /// Signature signature;
1237 /// ConstStringTable strtab;
1238 /// Identifier four character code: 'SYMB'
1239 /// uint32_t version;
1240 /// uint32_t num_symbols;
1241 /// Symbol symbols[num_symbols];
1242 /// uint8_t num_cstr_maps;
1243 /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps]
1244 bool Symtab::Encode(DataEncoder &encoder) const {
1245   // Name indexes must be computed before calling this function.
1246   assert(m_name_indexes_computed);
1247 
1248   // Encode the object file's signature
1249   CacheSignature signature(m_objfile);
1250   if (!signature.Encode(encoder))
1251     return false;
1252   ConstStringTable strtab;
1253 
1254   // Encoder the symbol table into a separate encoder first. This allows us
1255   // gather all of the strings we willl need in "strtab" as we will need to
1256   // write the string table out before the symbol table.
1257   DataEncoder symtab_encoder(encoder.GetByteOrder(),
1258                               encoder.GetAddressByteSize());
1259   symtab_encoder.AppendData(kIdentifierSymbolTable);
1260   // Encode the symtab data version.
1261   symtab_encoder.AppendU32(CURRENT_CACHE_VERSION);
1262   // Encode the number of symbols.
1263   symtab_encoder.AppendU32(m_symbols.size());
1264   // Encode the symbol data for all symbols.
1265   for (const auto &symbol: m_symbols)
1266     symbol.Encode(symtab_encoder, strtab);
1267 
1268   // Emit a byte for how many C string maps we emit. We will fix this up after
1269   // we emit the C string maps since we skip emitting C string maps if they are
1270   // empty.
1271   size_t num_cmaps_offset = symtab_encoder.GetByteSize();
1272   uint8_t num_cmaps = 0;
1273   symtab_encoder.AppendU8(0);
1274   for (const auto &pair: m_name_to_symbol_indices) {
1275     if (pair.second.IsEmpty())
1276       continue;
1277     ++num_cmaps;
1278     symtab_encoder.AppendU8(pair.first);
1279     EncodeCStrMap(symtab_encoder, strtab, pair.second);
1280   }
1281   if (num_cmaps > 0)
1282     symtab_encoder.PutU8(num_cmaps_offset, num_cmaps);
1283 
1284   // Now that all strings have been gathered, we will emit the string table.
1285   strtab.Encode(encoder);
1286   // Followed by the symbol table data.
1287   encoder.AppendData(symtab_encoder.GetData());
1288   return true;
1289 }
1290 
1291 bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr,
1292                     bool &signature_mismatch) {
1293   signature_mismatch = false;
1294   CacheSignature signature;
1295   StringTableReader strtab;
1296   { // Scope for "elapsed" object below so it can measure the time parse.
1297     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime());
1298     if (!signature.Decode(data, offset_ptr))
1299       return false;
1300     if (CacheSignature(m_objfile) != signature) {
1301       signature_mismatch = true;
1302       return false;
1303     }
1304     // We now decode the string table for all strings in the data cache file.
1305     if (!strtab.Decode(data, offset_ptr))
1306       return false;
1307 
1308     // And now we can decode the symbol table with string table we just decoded.
1309     llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1310     if (identifier != kIdentifierSymbolTable)
1311       return false;
1312     const uint32_t version = data.GetU32(offset_ptr);
1313     if (version != CURRENT_CACHE_VERSION)
1314       return false;
1315     const uint32_t num_symbols = data.GetU32(offset_ptr);
1316     if (num_symbols == 0)
1317       return true;
1318     m_symbols.resize(num_symbols);
1319     SectionList *sections = m_objfile->GetModule()->GetSectionList();
1320     for (uint32_t i=0; i<num_symbols; ++i) {
1321       if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab))
1322         return false;
1323     }
1324   }
1325 
1326   { // Scope for "elapsed" object below so it can measure the time to index.
1327     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
1328     const uint8_t num_cstr_maps = data.GetU8(offset_ptr);
1329     for (uint8_t i=0; i<num_cstr_maps; ++i) {
1330       uint8_t type = data.GetU8(offset_ptr);
1331       UniqueCStringMap<uint32_t> &cstr_map =
1332           GetNameToSymbolIndexMap((lldb::FunctionNameType)type);
1333       if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map))
1334         return false;
1335     }
1336     m_name_indexes_computed = true;
1337   }
1338   return true;
1339 }
1340 
1341 bool Symtab::LoadFromCache() {
1342   DataFileCache *cache = Module::GetIndexCache();
1343   if (!cache)
1344     return false;
1345 
1346   std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up =
1347       cache->GetCachedData(GetCacheKey());
1348   if (!mem_buffer_up)
1349     return false;
1350   DataExtractor data(mem_buffer_up->getBufferStart(),
1351                      mem_buffer_up->getBufferSize(),
1352                      m_objfile->GetByteOrder(),
1353                      m_objfile->GetAddressByteSize());
1354   bool signature_mismatch = false;
1355   lldb::offset_t offset = 0;
1356   const bool result = Decode(data, &offset, signature_mismatch);
1357   if (signature_mismatch)
1358     cache->RemoveCacheFile(GetCacheKey());
1359   if (result)
1360     SetWasLoadedFromCache();
1361   return result;
1362 }
1363