1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "Plugins/Language/ObjC/ObjCLanguage.h" 13 14 #include "lldb/Core/Module.h" 15 #include "lldb/Core/RichManglingContext.h" 16 #include "lldb/Core/Section.h" 17 #include "lldb/Symbol/ObjectFile.h" 18 #include "lldb/Symbol/Symbol.h" 19 #include "lldb/Symbol/SymbolContext.h" 20 #include "lldb/Symbol/Symtab.h" 21 #include "lldb/Utility/RegularExpression.h" 22 #include "lldb/Utility/Stream.h" 23 #include "lldb/Utility/Timer.h" 24 25 #include "llvm/ADT/StringRef.h" 26 27 using namespace lldb; 28 using namespace lldb_private; 29 30 Symtab::Symtab(ObjectFile *objfile) 31 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 32 m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), 33 m_name_indexes_computed(false) {} 34 35 Symtab::~Symtab() {} 36 37 void Symtab::Reserve(size_t count) { 38 // Clients should grab the mutex from this symbol table and lock it manually 39 // when calling this function to avoid performance issues. 40 m_symbols.reserve(count); 41 } 42 43 Symbol *Symtab::Resize(size_t count) { 44 // Clients should grab the mutex from this symbol table and lock it manually 45 // when calling this function to avoid performance issues. 46 m_symbols.resize(count); 47 return m_symbols.empty() ? nullptr : &m_symbols[0]; 48 } 49 50 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 51 // Clients should grab the mutex from this symbol table and lock it manually 52 // when calling this function to avoid performance issues. 53 uint32_t symbol_idx = m_symbols.size(); 54 m_name_to_index.Clear(); 55 m_file_addr_to_index.Clear(); 56 m_symbols.push_back(symbol); 57 m_file_addr_to_index_computed = false; 58 m_name_indexes_computed = false; 59 return symbol_idx; 60 } 61 62 size_t Symtab::GetNumSymbols() const { 63 std::lock_guard<std::recursive_mutex> guard(m_mutex); 64 return m_symbols.size(); 65 } 66 67 void Symtab::SectionFileAddressesChanged() { 68 m_name_to_index.Clear(); 69 m_file_addr_to_index_computed = false; 70 } 71 72 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 73 Mangled::NamePreference name_preference) { 74 std::lock_guard<std::recursive_mutex> guard(m_mutex); 75 76 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 77 s->Indent(); 78 const FileSpec &file_spec = m_objfile->GetFileSpec(); 79 const char *object_name = nullptr; 80 if (m_objfile->GetModule()) 81 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 82 83 if (file_spec) 84 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 85 file_spec.GetPath().c_str(), object_name ? "(" : "", 86 object_name ? object_name : "", object_name ? ")" : "", 87 (uint64_t)m_symbols.size()); 88 else 89 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 90 91 if (!m_symbols.empty()) { 92 switch (sort_order) { 93 case eSortOrderNone: { 94 s->PutCString(":\n"); 95 DumpSymbolHeader(s); 96 const_iterator begin = m_symbols.begin(); 97 const_iterator end = m_symbols.end(); 98 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 99 s->Indent(); 100 pos->Dump(s, target, std::distance(begin, pos), name_preference); 101 } 102 } break; 103 104 case eSortOrderByName: { 105 // Although we maintain a lookup by exact name map, the table isn't 106 // sorted by name. So we must make the ordered symbol list up ourselves. 107 s->PutCString(" (sorted by name):\n"); 108 DumpSymbolHeader(s); 109 110 std::multimap<llvm::StringRef, const Symbol *> name_map; 111 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 112 pos != end; ++pos) { 113 const char *name = pos->GetName().AsCString(); 114 if (name && name[0]) 115 name_map.insert(std::make_pair(name, &(*pos))); 116 } 117 118 for (const auto &name_to_symbol : name_map) { 119 const Symbol *symbol = name_to_symbol.second; 120 s->Indent(); 121 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 122 } 123 } break; 124 125 case eSortOrderByAddress: 126 s->PutCString(" (sorted by address):\n"); 127 DumpSymbolHeader(s); 128 if (!m_file_addr_to_index_computed) 129 InitAddressIndexes(); 130 const size_t num_entries = m_file_addr_to_index.GetSize(); 131 for (size_t i = 0; i < num_entries; ++i) { 132 s->Indent(); 133 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 134 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 135 } 136 break; 137 } 138 } else { 139 s->PutCString("\n"); 140 } 141 } 142 143 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 144 Mangled::NamePreference name_preference) const { 145 std::lock_guard<std::recursive_mutex> guard(m_mutex); 146 147 const size_t num_symbols = GetNumSymbols(); 148 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 149 s->Indent(); 150 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 151 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 152 s->IndentMore(); 153 154 if (!indexes.empty()) { 155 std::vector<uint32_t>::const_iterator pos; 156 std::vector<uint32_t>::const_iterator end = indexes.end(); 157 DumpSymbolHeader(s); 158 for (pos = indexes.begin(); pos != end; ++pos) { 159 size_t idx = *pos; 160 if (idx < num_symbols) { 161 s->Indent(); 162 m_symbols[idx].Dump(s, target, idx, name_preference); 163 } 164 } 165 } 166 s->IndentLess(); 167 } 168 169 void Symtab::DumpSymbolHeader(Stream *s) { 170 s->Indent(" Debug symbol\n"); 171 s->Indent(" |Synthetic symbol\n"); 172 s->Indent(" ||Externally Visible\n"); 173 s->Indent(" |||\n"); 174 s->Indent("Index UserID DSX Type File Address/Value Load " 175 "Address Size Flags Name\n"); 176 s->Indent("------- ------ --- --------------- ------------------ " 177 "------------------ ------------------ ---------- " 178 "----------------------------------\n"); 179 } 180 181 static int CompareSymbolID(const void *key, const void *p) { 182 const user_id_t match_uid = *(const user_id_t *)key; 183 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 184 if (match_uid < symbol_uid) 185 return -1; 186 if (match_uid > symbol_uid) 187 return 1; 188 return 0; 189 } 190 191 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 192 std::lock_guard<std::recursive_mutex> guard(m_mutex); 193 194 Symbol *symbol = 195 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 196 sizeof(m_symbols[0]), CompareSymbolID); 197 return symbol; 198 } 199 200 Symbol *Symtab::SymbolAtIndex(size_t idx) { 201 // Clients should grab the mutex from this symbol table and lock it manually 202 // when calling this function to avoid performance issues. 203 if (idx < m_symbols.size()) 204 return &m_symbols[idx]; 205 return nullptr; 206 } 207 208 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 209 // Clients should grab the mutex from this symbol table and lock it manually 210 // when calling this function to avoid performance issues. 211 if (idx < m_symbols.size()) 212 return &m_symbols[idx]; 213 return nullptr; 214 } 215 216 static bool lldb_skip_name(llvm::StringRef mangled, 217 Mangled::ManglingScheme scheme) { 218 switch (scheme) { 219 case Mangled::eManglingSchemeItanium: { 220 if (mangled.size() < 3 || !mangled.startswith("_Z")) 221 return true; 222 223 // Avoid the following types of symbols in the index. 224 switch (mangled[2]) { 225 case 'G': // guard variables 226 case 'T': // virtual tables, VTT structures, typeinfo structures + names 227 case 'Z': // named local entities (if we eventually handle 228 // eSymbolTypeData, we will want this back) 229 return true; 230 231 default: 232 break; 233 } 234 235 // Include this name in the index. 236 return false; 237 } 238 239 // No filters for this scheme yet. Include all names in indexing. 240 case Mangled::eManglingSchemeMSVC: 241 return false; 242 243 // Don't try and demangle things we can't categorize. 244 case Mangled::eManglingSchemeNone: 245 return true; 246 } 247 llvm_unreachable("unknown scheme!"); 248 } 249 250 void Symtab::InitNameIndexes() { 251 // Protected function, no need to lock mutex... 252 if (!m_name_indexes_computed) { 253 m_name_indexes_computed = true; 254 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 255 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 256 // Create the name index vector to be able to quickly search by name 257 const size_t num_symbols = m_symbols.size(); 258 m_name_to_index.Reserve(num_symbols); 259 260 // The "const char *" in "class_contexts" and backlog::value_type::second 261 // must come from a ConstString::GetCString() 262 std::set<const char *> class_contexts; 263 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 264 backlog.reserve(num_symbols / 2); 265 266 // Instantiation of the demangler is expensive, so better use a single one 267 // for all entries during batch processing. 268 RichManglingContext rmc; 269 for (uint32_t value = 0; value < num_symbols; ++value) { 270 Symbol *symbol = &m_symbols[value]; 271 272 // Don't let trampolines get into the lookup by name map If we ever need 273 // the trampoline symbols to be searchable by name we can remove this and 274 // then possibly add a new bool to any of the Symtab functions that 275 // lookup symbols by name to indicate if they want trampolines. 276 if (symbol->IsTrampoline()) 277 continue; 278 279 // If the symbol's name string matched a Mangled::ManglingScheme, it is 280 // stored in the mangled field. 281 Mangled &mangled = symbol->GetMangled(); 282 if (ConstString name = mangled.GetMangledName()) { 283 m_name_to_index.Append(name, value); 284 285 if (symbol->ContainsLinkerAnnotations()) { 286 // If the symbol has linker annotations, also add the version without 287 // the annotations. 288 ConstString stripped = ConstString( 289 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 290 m_name_to_index.Append(stripped, value); 291 } 292 293 const SymbolType type = symbol->GetType(); 294 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 295 if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name)) 296 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 297 } 298 } 299 300 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 301 // stored in the demangled field. 302 if (ConstString name = mangled.GetDemangledName()) { 303 m_name_to_index.Append(name, value); 304 305 if (symbol->ContainsLinkerAnnotations()) { 306 // If the symbol has linker annotations, also add the version without 307 // the annotations. 308 name = ConstString( 309 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 310 m_name_to_index.Append(name, value); 311 } 312 313 // If the demangled name turns out to be an ObjC name, and is a category 314 // name, add the version without categories to the index too. 315 ObjCLanguage::MethodName objc_method(name.GetStringRef(), true); 316 if (objc_method.IsValid(true)) { 317 m_selector_to_index.Append(objc_method.GetSelector(), value); 318 319 if (ConstString objc_method_no_category = 320 objc_method.GetFullNameWithoutCategory(true)) 321 m_name_to_index.Append(objc_method_no_category, value); 322 } 323 } 324 } 325 326 for (const auto &record : backlog) { 327 RegisterBacklogEntry(record.first, record.second, class_contexts); 328 } 329 330 m_name_to_index.Sort(); 331 m_name_to_index.SizeToFit(); 332 m_selector_to_index.Sort(); 333 m_selector_to_index.SizeToFit(); 334 m_basename_to_index.Sort(); 335 m_basename_to_index.SizeToFit(); 336 m_method_to_index.Sort(); 337 m_method_to_index.SizeToFit(); 338 } 339 } 340 341 void Symtab::RegisterMangledNameEntry( 342 uint32_t value, std::set<const char *> &class_contexts, 343 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 344 RichManglingContext &rmc) { 345 // Only register functions that have a base name. 346 rmc.ParseFunctionBaseName(); 347 llvm::StringRef base_name = rmc.GetBufferRef(); 348 if (base_name.empty()) 349 return; 350 351 // The base name will be our entry's name. 352 NameToIndexMap::Entry entry(ConstString(base_name), value); 353 354 rmc.ParseFunctionDeclContextName(); 355 llvm::StringRef decl_context = rmc.GetBufferRef(); 356 357 // Register functions with no context. 358 if (decl_context.empty()) { 359 // This has to be a basename 360 m_basename_to_index.Append(entry); 361 // If there is no context (no namespaces or class scopes that come before 362 // the function name) then this also could be a fullname. 363 m_name_to_index.Append(entry); 364 return; 365 } 366 367 // Make sure we have a pool-string pointer and see if we already know the 368 // context name. 369 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 370 auto it = class_contexts.find(decl_context_ccstr); 371 372 // Register constructors and destructors. They are methods and create 373 // declaration contexts. 374 if (rmc.IsCtorOrDtor()) { 375 m_method_to_index.Append(entry); 376 if (it == class_contexts.end()) 377 class_contexts.insert(it, decl_context_ccstr); 378 return; 379 } 380 381 // Register regular methods with a known declaration context. 382 if (it != class_contexts.end()) { 383 m_method_to_index.Append(entry); 384 return; 385 } 386 387 // Regular methods in unknown declaration contexts are put to the backlog. We 388 // will revisit them once we processed all remaining symbols. 389 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 390 } 391 392 void Symtab::RegisterBacklogEntry( 393 const NameToIndexMap::Entry &entry, const char *decl_context, 394 const std::set<const char *> &class_contexts) { 395 auto it = class_contexts.find(decl_context); 396 if (it != class_contexts.end()) { 397 m_method_to_index.Append(entry); 398 } else { 399 // If we got here, we have something that had a context (was inside 400 // a namespace or class) yet we don't know the entry 401 m_method_to_index.Append(entry); 402 m_basename_to_index.Append(entry); 403 } 404 } 405 406 void Symtab::PreloadSymbols() { 407 std::lock_guard<std::recursive_mutex> guard(m_mutex); 408 InitNameIndexes(); 409 } 410 411 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 412 bool add_demangled, bool add_mangled, 413 NameToIndexMap &name_to_index_map) const { 414 if (add_demangled || add_mangled) { 415 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 416 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 417 std::lock_guard<std::recursive_mutex> guard(m_mutex); 418 419 // Create the name index vector to be able to quickly search by name 420 const size_t num_indexes = indexes.size(); 421 for (size_t i = 0; i < num_indexes; ++i) { 422 uint32_t value = indexes[i]; 423 assert(i < m_symbols.size()); 424 const Symbol *symbol = &m_symbols[value]; 425 426 const Mangled &mangled = symbol->GetMangled(); 427 if (add_demangled) { 428 if (ConstString name = mangled.GetDemangledName()) 429 name_to_index_map.Append(name, value); 430 } 431 432 if (add_mangled) { 433 if (ConstString name = mangled.GetMangledName()) 434 name_to_index_map.Append(name, value); 435 } 436 } 437 } 438 } 439 440 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 441 std::vector<uint32_t> &indexes, 442 uint32_t start_idx, 443 uint32_t end_index) const { 444 std::lock_guard<std::recursive_mutex> guard(m_mutex); 445 446 uint32_t prev_size = indexes.size(); 447 448 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 449 450 for (uint32_t i = start_idx; i < count; ++i) { 451 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 452 indexes.push_back(i); 453 } 454 455 return indexes.size() - prev_size; 456 } 457 458 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 459 SymbolType symbol_type, uint32_t flags_value, 460 std::vector<uint32_t> &indexes, uint32_t start_idx, 461 uint32_t end_index) const { 462 std::lock_guard<std::recursive_mutex> guard(m_mutex); 463 464 uint32_t prev_size = indexes.size(); 465 466 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 467 468 for (uint32_t i = start_idx; i < count; ++i) { 469 if ((symbol_type == eSymbolTypeAny || 470 m_symbols[i].GetType() == symbol_type) && 471 m_symbols[i].GetFlags() == flags_value) 472 indexes.push_back(i); 473 } 474 475 return indexes.size() - prev_size; 476 } 477 478 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 479 Debug symbol_debug_type, 480 Visibility symbol_visibility, 481 std::vector<uint32_t> &indexes, 482 uint32_t start_idx, 483 uint32_t end_index) const { 484 std::lock_guard<std::recursive_mutex> guard(m_mutex); 485 486 uint32_t prev_size = indexes.size(); 487 488 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 489 490 for (uint32_t i = start_idx; i < count; ++i) { 491 if (symbol_type == eSymbolTypeAny || 492 m_symbols[i].GetType() == symbol_type) { 493 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 494 indexes.push_back(i); 495 } 496 } 497 498 return indexes.size() - prev_size; 499 } 500 501 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 502 if (!m_symbols.empty()) { 503 const Symbol *first_symbol = &m_symbols[0]; 504 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 505 return symbol - first_symbol; 506 } 507 return UINT32_MAX; 508 } 509 510 struct SymbolSortInfo { 511 const bool sort_by_load_addr; 512 const Symbol *symbols; 513 }; 514 515 namespace { 516 struct SymbolIndexComparator { 517 const std::vector<Symbol> &symbols; 518 std::vector<lldb::addr_t> &addr_cache; 519 520 // Getting from the symbol to the Address to the File Address involves some 521 // work. Since there are potentially many symbols here, and we're using this 522 // for sorting so we're going to be computing the address many times, cache 523 // that in addr_cache. The array passed in has to be the same size as the 524 // symbols array passed into the member variable symbols, and should be 525 // initialized with LLDB_INVALID_ADDRESS. 526 // NOTE: You have to make addr_cache externally and pass it in because 527 // std::stable_sort 528 // makes copies of the comparator it is initially passed in, and you end up 529 // spending huge amounts of time copying this array... 530 531 SymbolIndexComparator(const std::vector<Symbol> &s, 532 std::vector<lldb::addr_t> &a) 533 : symbols(s), addr_cache(a) { 534 assert(symbols.size() == addr_cache.size()); 535 } 536 bool operator()(uint32_t index_a, uint32_t index_b) { 537 addr_t value_a = addr_cache[index_a]; 538 if (value_a == LLDB_INVALID_ADDRESS) { 539 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 540 addr_cache[index_a] = value_a; 541 } 542 543 addr_t value_b = addr_cache[index_b]; 544 if (value_b == LLDB_INVALID_ADDRESS) { 545 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 546 addr_cache[index_b] = value_b; 547 } 548 549 if (value_a == value_b) { 550 // The if the values are equal, use the original symbol user ID 551 lldb::user_id_t uid_a = symbols[index_a].GetID(); 552 lldb::user_id_t uid_b = symbols[index_b].GetID(); 553 if (uid_a < uid_b) 554 return true; 555 if (uid_a > uid_b) 556 return false; 557 return false; 558 } else if (value_a < value_b) 559 return true; 560 561 return false; 562 } 563 }; 564 } 565 566 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 567 bool remove_duplicates) const { 568 std::lock_guard<std::recursive_mutex> guard(m_mutex); 569 570 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 571 Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION); 572 // No need to sort if we have zero or one items... 573 if (indexes.size() <= 1) 574 return; 575 576 // Sort the indexes in place using std::stable_sort. 577 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 578 // for performance, not correctness. The indexes vector tends to be "close" 579 // to sorted, which the stable sort handles better. 580 581 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 582 583 SymbolIndexComparator comparator(m_symbols, addr_cache); 584 std::stable_sort(indexes.begin(), indexes.end(), comparator); 585 586 // Remove any duplicates if requested 587 if (remove_duplicates) { 588 auto last = std::unique(indexes.begin(), indexes.end()); 589 indexes.erase(last, indexes.end()); 590 } 591 } 592 593 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 594 std::vector<uint32_t> &indexes) { 595 std::lock_guard<std::recursive_mutex> guard(m_mutex); 596 597 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 598 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 599 if (symbol_name) { 600 if (!m_name_indexes_computed) 601 InitNameIndexes(); 602 603 return m_name_to_index.GetValues(symbol_name, indexes); 604 } 605 return 0; 606 } 607 608 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 609 Debug symbol_debug_type, 610 Visibility symbol_visibility, 611 std::vector<uint32_t> &indexes) { 612 std::lock_guard<std::recursive_mutex> guard(m_mutex); 613 614 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 615 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 616 if (symbol_name) { 617 const size_t old_size = indexes.size(); 618 if (!m_name_indexes_computed) 619 InitNameIndexes(); 620 621 std::vector<uint32_t> all_name_indexes; 622 const size_t name_match_count = 623 m_name_to_index.GetValues(symbol_name, all_name_indexes); 624 for (size_t i = 0; i < name_match_count; ++i) { 625 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 626 symbol_visibility)) 627 indexes.push_back(all_name_indexes[i]); 628 } 629 return indexes.size() - old_size; 630 } 631 return 0; 632 } 633 634 uint32_t 635 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 636 SymbolType symbol_type, 637 std::vector<uint32_t> &indexes) { 638 std::lock_guard<std::recursive_mutex> guard(m_mutex); 639 640 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 641 std::vector<uint32_t>::iterator pos = indexes.begin(); 642 while (pos != indexes.end()) { 643 if (symbol_type == eSymbolTypeAny || 644 m_symbols[*pos].GetType() == symbol_type) 645 ++pos; 646 else 647 pos = indexes.erase(pos); 648 } 649 } 650 return indexes.size(); 651 } 652 653 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 654 ConstString symbol_name, SymbolType symbol_type, 655 Debug symbol_debug_type, Visibility symbol_visibility, 656 std::vector<uint32_t> &indexes) { 657 std::lock_guard<std::recursive_mutex> guard(m_mutex); 658 659 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 660 symbol_visibility, indexes) > 0) { 661 std::vector<uint32_t>::iterator pos = indexes.begin(); 662 while (pos != indexes.end()) { 663 if (symbol_type == eSymbolTypeAny || 664 m_symbols[*pos].GetType() == symbol_type) 665 ++pos; 666 else 667 pos = indexes.erase(pos); 668 } 669 } 670 return indexes.size(); 671 } 672 673 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 674 const RegularExpression ®exp, SymbolType symbol_type, 675 std::vector<uint32_t> &indexes) { 676 std::lock_guard<std::recursive_mutex> guard(m_mutex); 677 678 uint32_t prev_size = indexes.size(); 679 uint32_t sym_end = m_symbols.size(); 680 681 for (uint32_t i = 0; i < sym_end; i++) { 682 if (symbol_type == eSymbolTypeAny || 683 m_symbols[i].GetType() == symbol_type) { 684 const char *name = m_symbols[i].GetName().AsCString(); 685 if (name) { 686 if (regexp.Execute(name)) 687 indexes.push_back(i); 688 } 689 } 690 } 691 return indexes.size() - prev_size; 692 } 693 694 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 695 const RegularExpression ®exp, SymbolType symbol_type, 696 Debug symbol_debug_type, Visibility symbol_visibility, 697 std::vector<uint32_t> &indexes) { 698 std::lock_guard<std::recursive_mutex> guard(m_mutex); 699 700 uint32_t prev_size = indexes.size(); 701 uint32_t sym_end = m_symbols.size(); 702 703 for (uint32_t i = 0; i < sym_end; i++) { 704 if (symbol_type == eSymbolTypeAny || 705 m_symbols[i].GetType() == symbol_type) { 706 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 707 continue; 708 709 const char *name = m_symbols[i].GetName().AsCString(); 710 if (name) { 711 if (regexp.Execute(name)) 712 indexes.push_back(i); 713 } 714 } 715 } 716 return indexes.size() - prev_size; 717 } 718 719 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 720 Debug symbol_debug_type, 721 Visibility symbol_visibility, 722 uint32_t &start_idx) { 723 std::lock_guard<std::recursive_mutex> guard(m_mutex); 724 725 const size_t count = m_symbols.size(); 726 for (size_t idx = start_idx; idx < count; ++idx) { 727 if (symbol_type == eSymbolTypeAny || 728 m_symbols[idx].GetType() == symbol_type) { 729 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 730 start_idx = idx; 731 return &m_symbols[idx]; 732 } 733 } 734 } 735 return nullptr; 736 } 737 738 void 739 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 740 SymbolType symbol_type, 741 std::vector<uint32_t> &symbol_indexes) { 742 std::lock_guard<std::recursive_mutex> guard(m_mutex); 743 744 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 745 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 746 // Initialize all of the lookup by name indexes before converting NAME to a 747 // uniqued string NAME_STR below. 748 if (!m_name_indexes_computed) 749 InitNameIndexes(); 750 751 if (name) { 752 // The string table did have a string that matched, but we need to check 753 // the symbols and match the symbol_type if any was given. 754 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 755 } 756 } 757 758 void Symtab::FindAllSymbolsWithNameAndType( 759 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 760 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 761 std::lock_guard<std::recursive_mutex> guard(m_mutex); 762 763 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 764 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 765 // Initialize all of the lookup by name indexes before converting NAME to a 766 // uniqued string NAME_STR below. 767 if (!m_name_indexes_computed) 768 InitNameIndexes(); 769 770 if (name) { 771 // The string table did have a string that matched, but we need to check 772 // the symbols and match the symbol_type if any was given. 773 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 774 symbol_visibility, symbol_indexes); 775 } 776 } 777 778 void Symtab::FindAllSymbolsMatchingRexExAndType( 779 const RegularExpression ®ex, SymbolType symbol_type, 780 Debug symbol_debug_type, Visibility symbol_visibility, 781 std::vector<uint32_t> &symbol_indexes) { 782 std::lock_guard<std::recursive_mutex> guard(m_mutex); 783 784 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 785 symbol_visibility, symbol_indexes); 786 } 787 788 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 789 SymbolType symbol_type, 790 Debug symbol_debug_type, 791 Visibility symbol_visibility) { 792 std::lock_guard<std::recursive_mutex> guard(m_mutex); 793 794 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 795 Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION); 796 if (!m_name_indexes_computed) 797 InitNameIndexes(); 798 799 if (name) { 800 std::vector<uint32_t> matching_indexes; 801 // The string table did have a string that matched, but we need to check 802 // the symbols and match the symbol_type if any was given. 803 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 804 symbol_visibility, 805 matching_indexes)) { 806 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 807 for (pos = matching_indexes.begin(); pos != end; ++pos) { 808 Symbol *symbol = SymbolAtIndex(*pos); 809 810 if (symbol->Compare(name, symbol_type)) 811 return symbol; 812 } 813 } 814 } 815 return nullptr; 816 } 817 818 typedef struct { 819 const Symtab *symtab; 820 const addr_t file_addr; 821 Symbol *match_symbol; 822 const uint32_t *match_index_ptr; 823 addr_t match_offset; 824 } SymbolSearchInfo; 825 826 // Add all the section file start address & size to the RangeVector, recusively 827 // adding any children sections. 828 static void AddSectionsToRangeMap(SectionList *sectlist, 829 RangeVector<addr_t, addr_t> §ion_ranges) { 830 const int num_sections = sectlist->GetNumSections(0); 831 for (int i = 0; i < num_sections; i++) { 832 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 833 if (sect_sp) { 834 SectionList &child_sectlist = sect_sp->GetChildren(); 835 836 // If this section has children, add the children to the RangeVector. 837 // Else add this section to the RangeVector. 838 if (child_sectlist.GetNumSections(0) > 0) { 839 AddSectionsToRangeMap(&child_sectlist, section_ranges); 840 } else { 841 size_t size = sect_sp->GetByteSize(); 842 if (size > 0) { 843 addr_t base_addr = sect_sp->GetFileAddress(); 844 RangeVector<addr_t, addr_t>::Entry entry; 845 entry.SetRangeBase(base_addr); 846 entry.SetByteSize(size); 847 section_ranges.Append(entry); 848 } 849 } 850 } 851 } 852 } 853 854 void Symtab::InitAddressIndexes() { 855 // Protected function, no need to lock mutex... 856 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 857 m_file_addr_to_index_computed = true; 858 859 FileRangeToIndexMap::Entry entry; 860 const_iterator begin = m_symbols.begin(); 861 const_iterator end = m_symbols.end(); 862 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 863 if (pos->ValueIsAddress()) { 864 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 865 entry.SetByteSize(pos->GetByteSize()); 866 entry.data = std::distance(begin, pos); 867 m_file_addr_to_index.Append(entry); 868 } 869 } 870 const size_t num_entries = m_file_addr_to_index.GetSize(); 871 if (num_entries > 0) { 872 m_file_addr_to_index.Sort(); 873 874 // Create a RangeVector with the start & size of all the sections for 875 // this objfile. We'll need to check this for any FileRangeToIndexMap 876 // entries with an uninitialized size, which could potentially be a large 877 // number so reconstituting the weak pointer is busywork when it is 878 // invariant information. 879 SectionList *sectlist = m_objfile->GetSectionList(); 880 RangeVector<addr_t, addr_t> section_ranges; 881 if (sectlist) { 882 AddSectionsToRangeMap(sectlist, section_ranges); 883 section_ranges.Sort(); 884 } 885 886 // Iterate through the FileRangeToIndexMap and fill in the size for any 887 // entries that didn't already have a size from the Symbol (e.g. if we 888 // have a plain linker symbol with an address only, instead of debug info 889 // where we get an address and a size and a type, etc.) 890 for (size_t i = 0; i < num_entries; i++) { 891 FileRangeToIndexMap::Entry *entry = 892 m_file_addr_to_index.GetMutableEntryAtIndex(i); 893 if (entry->GetByteSize() == 0) { 894 addr_t curr_base_addr = entry->GetRangeBase(); 895 const RangeVector<addr_t, addr_t>::Entry *containing_section = 896 section_ranges.FindEntryThatContains(curr_base_addr); 897 898 // Use the end of the section as the default max size of the symbol 899 addr_t sym_size = 0; 900 if (containing_section) { 901 sym_size = 902 containing_section->GetByteSize() - 903 (entry->GetRangeBase() - containing_section->GetRangeBase()); 904 } 905 906 for (size_t j = i; j < num_entries; j++) { 907 FileRangeToIndexMap::Entry *next_entry = 908 m_file_addr_to_index.GetMutableEntryAtIndex(j); 909 addr_t next_base_addr = next_entry->GetRangeBase(); 910 if (next_base_addr > curr_base_addr) { 911 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 912 913 // Take the difference between this symbol and the next one as 914 // its size, if it is less than the size of the section. 915 if (sym_size == 0 || size_to_next_symbol < sym_size) { 916 sym_size = size_to_next_symbol; 917 } 918 break; 919 } 920 } 921 922 if (sym_size > 0) { 923 entry->SetByteSize(sym_size); 924 Symbol &symbol = m_symbols[entry->data]; 925 symbol.SetByteSize(sym_size); 926 symbol.SetSizeIsSynthesized(true); 927 } 928 } 929 } 930 931 // Sort again in case the range size changes the ordering 932 m_file_addr_to_index.Sort(); 933 } 934 } 935 } 936 937 void Symtab::CalculateSymbolSizes() { 938 std::lock_guard<std::recursive_mutex> guard(m_mutex); 939 // Size computation happens inside InitAddressIndexes. 940 InitAddressIndexes(); 941 } 942 943 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 944 std::lock_guard<std::recursive_mutex> guard(m_mutex); 945 if (!m_file_addr_to_index_computed) 946 InitAddressIndexes(); 947 948 const FileRangeToIndexMap::Entry *entry = 949 m_file_addr_to_index.FindEntryStartsAt(file_addr); 950 if (entry) { 951 Symbol *symbol = SymbolAtIndex(entry->data); 952 if (symbol->GetFileAddress() == file_addr) 953 return symbol; 954 } 955 return nullptr; 956 } 957 958 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 959 std::lock_guard<std::recursive_mutex> guard(m_mutex); 960 961 if (!m_file_addr_to_index_computed) 962 InitAddressIndexes(); 963 964 const FileRangeToIndexMap::Entry *entry = 965 m_file_addr_to_index.FindEntryThatContains(file_addr); 966 if (entry) { 967 Symbol *symbol = SymbolAtIndex(entry->data); 968 if (symbol->ContainsFileAddress(file_addr)) 969 return symbol; 970 } 971 return nullptr; 972 } 973 974 void Symtab::ForEachSymbolContainingFileAddress( 975 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 976 std::lock_guard<std::recursive_mutex> guard(m_mutex); 977 978 if (!m_file_addr_to_index_computed) 979 InitAddressIndexes(); 980 981 std::vector<uint32_t> all_addr_indexes; 982 983 // Get all symbols with file_addr 984 const size_t addr_match_count = 985 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 986 all_addr_indexes); 987 988 for (size_t i = 0; i < addr_match_count; ++i) { 989 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 990 if (symbol->ContainsFileAddress(file_addr)) { 991 if (!callback(symbol)) 992 break; 993 } 994 } 995 } 996 997 void Symtab::SymbolIndicesToSymbolContextList( 998 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 999 // No need to protect this call using m_mutex all other method calls are 1000 // already thread safe. 1001 1002 const bool merge_symbol_into_function = true; 1003 size_t num_indices = symbol_indexes.size(); 1004 if (num_indices > 0) { 1005 SymbolContext sc; 1006 sc.module_sp = m_objfile->GetModule(); 1007 for (size_t i = 0; i < num_indices; i++) { 1008 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1009 if (sc.symbol) 1010 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1011 } 1012 } 1013 } 1014 1015 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1016 SymbolContextList &sc_list) { 1017 std::vector<uint32_t> symbol_indexes; 1018 1019 // eFunctionNameTypeAuto should be pre-resolved by a call to 1020 // Module::LookupInfo::LookupInfo() 1021 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1022 1023 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1024 std::vector<uint32_t> temp_symbol_indexes; 1025 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1026 1027 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1028 if (temp_symbol_indexes_size > 0) { 1029 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1030 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1031 SymbolContext sym_ctx; 1032 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1033 if (sym_ctx.symbol) { 1034 switch (sym_ctx.symbol->GetType()) { 1035 case eSymbolTypeCode: 1036 case eSymbolTypeResolver: 1037 case eSymbolTypeReExported: 1038 symbol_indexes.push_back(temp_symbol_indexes[i]); 1039 break; 1040 default: 1041 break; 1042 } 1043 } 1044 } 1045 } 1046 } 1047 1048 if (name_type_mask & eFunctionNameTypeBase) { 1049 // From mangled names we can't tell what is a basename and what is a method 1050 // name, so we just treat them the same 1051 if (!m_name_indexes_computed) 1052 InitNameIndexes(); 1053 1054 if (!m_basename_to_index.IsEmpty()) { 1055 const UniqueCStringMap<uint32_t>::Entry *match; 1056 for (match = m_basename_to_index.FindFirstValueForName(name); 1057 match != nullptr; 1058 match = m_basename_to_index.FindNextValueForName(match)) { 1059 symbol_indexes.push_back(match->value); 1060 } 1061 } 1062 } 1063 1064 if (name_type_mask & eFunctionNameTypeMethod) { 1065 if (!m_name_indexes_computed) 1066 InitNameIndexes(); 1067 1068 if (!m_method_to_index.IsEmpty()) { 1069 const UniqueCStringMap<uint32_t>::Entry *match; 1070 for (match = m_method_to_index.FindFirstValueForName(name); 1071 match != nullptr; 1072 match = m_method_to_index.FindNextValueForName(match)) { 1073 symbol_indexes.push_back(match->value); 1074 } 1075 } 1076 } 1077 1078 if (name_type_mask & eFunctionNameTypeSelector) { 1079 if (!m_name_indexes_computed) 1080 InitNameIndexes(); 1081 1082 if (!m_selector_to_index.IsEmpty()) { 1083 const UniqueCStringMap<uint32_t>::Entry *match; 1084 for (match = m_selector_to_index.FindFirstValueForName(name); 1085 match != nullptr; 1086 match = m_selector_to_index.FindNextValueForName(match)) { 1087 symbol_indexes.push_back(match->value); 1088 } 1089 } 1090 } 1091 1092 if (!symbol_indexes.empty()) { 1093 llvm::sort(symbol_indexes.begin(), symbol_indexes.end()); 1094 symbol_indexes.erase( 1095 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1096 symbol_indexes.end()); 1097 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1098 } 1099 } 1100 1101 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1102 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1103 if (child_idx != UINT32_MAX && child_idx > 0) { 1104 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1105 const Symbol *symbol = SymbolAtIndex(idx); 1106 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1107 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1108 return symbol; 1109 } 1110 } 1111 return nullptr; 1112 } 1113