1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "lldb/Core/DataFileCache.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/RichManglingContext.h" 15 #include "lldb/Core/Section.h" 16 #include "lldb/Symbol/ObjectFile.h" 17 #include "lldb/Symbol/Symbol.h" 18 #include "lldb/Symbol/SymbolContext.h" 19 #include "lldb/Symbol/Symtab.h" 20 #include "lldb/Target/Language.h" 21 #include "lldb/Utility/DataEncoder.h" 22 #include "lldb/Utility/Endian.h" 23 #include "lldb/Utility/RegularExpression.h" 24 #include "lldb/Utility/Stream.h" 25 #include "lldb/Utility/Timer.h" 26 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/Support/DJB.h" 30 31 using namespace lldb; 32 using namespace lldb_private; 33 34 Symtab::Symtab(ObjectFile *objfile) 35 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 36 m_name_to_symbol_indices(), m_mutex(), 37 m_file_addr_to_index_computed(false), m_name_indexes_computed(false), 38 m_loaded_from_cache(false), m_saved_to_cache(false) { 39 m_name_to_symbol_indices.emplace(std::make_pair( 40 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); 41 m_name_to_symbol_indices.emplace(std::make_pair( 42 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); 43 m_name_to_symbol_indices.emplace(std::make_pair( 44 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); 45 m_name_to_symbol_indices.emplace(std::make_pair( 46 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); 47 } 48 49 Symtab::~Symtab() = default; 50 51 void Symtab::Reserve(size_t count) { 52 // Clients should grab the mutex from this symbol table and lock it manually 53 // when calling this function to avoid performance issues. 54 m_symbols.reserve(count); 55 } 56 57 Symbol *Symtab::Resize(size_t count) { 58 // Clients should grab the mutex from this symbol table and lock it manually 59 // when calling this function to avoid performance issues. 60 m_symbols.resize(count); 61 return m_symbols.empty() ? nullptr : &m_symbols[0]; 62 } 63 64 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 65 // Clients should grab the mutex from this symbol table and lock it manually 66 // when calling this function to avoid performance issues. 67 uint32_t symbol_idx = m_symbols.size(); 68 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 69 name_to_index.Clear(); 70 m_file_addr_to_index.Clear(); 71 m_symbols.push_back(symbol); 72 m_file_addr_to_index_computed = false; 73 m_name_indexes_computed = false; 74 return symbol_idx; 75 } 76 77 size_t Symtab::GetNumSymbols() const { 78 std::lock_guard<std::recursive_mutex> guard(m_mutex); 79 return m_symbols.size(); 80 } 81 82 void Symtab::SectionFileAddressesChanged() { 83 m_file_addr_to_index.Clear(); 84 m_file_addr_to_index_computed = false; 85 } 86 87 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 88 Mangled::NamePreference name_preference) { 89 std::lock_guard<std::recursive_mutex> guard(m_mutex); 90 91 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 92 s->Indent(); 93 const FileSpec &file_spec = m_objfile->GetFileSpec(); 94 const char *object_name = nullptr; 95 if (m_objfile->GetModule()) 96 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 97 98 if (file_spec) 99 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 100 file_spec.GetPath().c_str(), object_name ? "(" : "", 101 object_name ? object_name : "", object_name ? ")" : "", 102 (uint64_t)m_symbols.size()); 103 else 104 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 105 106 if (!m_symbols.empty()) { 107 switch (sort_order) { 108 case eSortOrderNone: { 109 s->PutCString(":\n"); 110 DumpSymbolHeader(s); 111 const_iterator begin = m_symbols.begin(); 112 const_iterator end = m_symbols.end(); 113 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 114 s->Indent(); 115 pos->Dump(s, target, std::distance(begin, pos), name_preference); 116 } 117 } 118 break; 119 120 case eSortOrderByName: { 121 // Although we maintain a lookup by exact name map, the table isn't 122 // sorted by name. So we must make the ordered symbol list up ourselves. 123 s->PutCString(" (sorted by name):\n"); 124 DumpSymbolHeader(s); 125 126 std::multimap<llvm::StringRef, const Symbol *> name_map; 127 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 128 pos != end; ++pos) { 129 const char *name = pos->GetName().AsCString(); 130 if (name && name[0]) 131 name_map.insert(std::make_pair(name, &(*pos))); 132 } 133 134 for (const auto &name_to_symbol : name_map) { 135 const Symbol *symbol = name_to_symbol.second; 136 s->Indent(); 137 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 138 } 139 } break; 140 141 case eSortOrderByAddress: 142 s->PutCString(" (sorted by address):\n"); 143 DumpSymbolHeader(s); 144 if (!m_file_addr_to_index_computed) 145 InitAddressIndexes(); 146 const size_t num_entries = m_file_addr_to_index.GetSize(); 147 for (size_t i = 0; i < num_entries; ++i) { 148 s->Indent(); 149 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 150 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 151 } 152 break; 153 } 154 } else { 155 s->PutCString("\n"); 156 } 157 } 158 159 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 160 Mangled::NamePreference name_preference) const { 161 std::lock_guard<std::recursive_mutex> guard(m_mutex); 162 163 const size_t num_symbols = GetNumSymbols(); 164 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 165 s->Indent(); 166 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 167 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 168 s->IndentMore(); 169 170 if (!indexes.empty()) { 171 std::vector<uint32_t>::const_iterator pos; 172 std::vector<uint32_t>::const_iterator end = indexes.end(); 173 DumpSymbolHeader(s); 174 for (pos = indexes.begin(); pos != end; ++pos) { 175 size_t idx = *pos; 176 if (idx < num_symbols) { 177 s->Indent(); 178 m_symbols[idx].Dump(s, target, idx, name_preference); 179 } 180 } 181 } 182 s->IndentLess(); 183 } 184 185 void Symtab::DumpSymbolHeader(Stream *s) { 186 s->Indent(" Debug symbol\n"); 187 s->Indent(" |Synthetic symbol\n"); 188 s->Indent(" ||Externally Visible\n"); 189 s->Indent(" |||\n"); 190 s->Indent("Index UserID DSX Type File Address/Value Load " 191 "Address Size Flags Name\n"); 192 s->Indent("------- ------ --- --------------- ------------------ " 193 "------------------ ------------------ ---------- " 194 "----------------------------------\n"); 195 } 196 197 static int CompareSymbolID(const void *key, const void *p) { 198 const user_id_t match_uid = *(const user_id_t *)key; 199 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 200 if (match_uid < symbol_uid) 201 return -1; 202 if (match_uid > symbol_uid) 203 return 1; 204 return 0; 205 } 206 207 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 208 std::lock_guard<std::recursive_mutex> guard(m_mutex); 209 210 Symbol *symbol = 211 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 212 sizeof(m_symbols[0]), CompareSymbolID); 213 return symbol; 214 } 215 216 Symbol *Symtab::SymbolAtIndex(size_t idx) { 217 // Clients should grab the mutex from this symbol table and lock it manually 218 // when calling this function to avoid performance issues. 219 if (idx < m_symbols.size()) 220 return &m_symbols[idx]; 221 return nullptr; 222 } 223 224 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 225 // Clients should grab the mutex from this symbol table and lock it manually 226 // when calling this function to avoid performance issues. 227 if (idx < m_symbols.size()) 228 return &m_symbols[idx]; 229 return nullptr; 230 } 231 232 static bool lldb_skip_name(llvm::StringRef mangled, 233 Mangled::ManglingScheme scheme) { 234 switch (scheme) { 235 case Mangled::eManglingSchemeItanium: { 236 if (mangled.size() < 3 || !mangled.starts_with("_Z")) 237 return true; 238 239 // Avoid the following types of symbols in the index. 240 switch (mangled[2]) { 241 case 'G': // guard variables 242 case 'T': // virtual tables, VTT structures, typeinfo structures + names 243 case 'Z': // named local entities (if we eventually handle 244 // eSymbolTypeData, we will want this back) 245 return true; 246 247 default: 248 break; 249 } 250 251 // Include this name in the index. 252 return false; 253 } 254 255 // No filters for this scheme yet. Include all names in indexing. 256 case Mangled::eManglingSchemeMSVC: 257 case Mangled::eManglingSchemeRustV0: 258 case Mangled::eManglingSchemeD: 259 case Mangled::eManglingSchemeSwift: 260 return false; 261 262 // Don't try and demangle things we can't categorize. 263 case Mangled::eManglingSchemeNone: 264 return true; 265 } 266 llvm_unreachable("unknown scheme!"); 267 } 268 269 void Symtab::InitNameIndexes() { 270 // Protected function, no need to lock mutex... 271 if (!m_name_indexes_computed) { 272 m_name_indexes_computed = true; 273 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); 274 LLDB_SCOPED_TIMER(); 275 276 // Collect all loaded language plugins. 277 std::vector<Language *> languages; 278 Language::ForEach([&languages](Language *l) { 279 languages.push_back(l); 280 return true; 281 }); 282 283 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 284 auto &basename_to_index = 285 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 286 auto &method_to_index = 287 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 288 auto &selector_to_index = 289 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); 290 // Create the name index vector to be able to quickly search by name 291 const size_t num_symbols = m_symbols.size(); 292 name_to_index.Reserve(num_symbols); 293 294 // The "const char *" in "class_contexts" and backlog::value_type::second 295 // must come from a ConstString::GetCString() 296 std::set<const char *> class_contexts; 297 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 298 backlog.reserve(num_symbols / 2); 299 300 // Instantiation of the demangler is expensive, so better use a single one 301 // for all entries during batch processing. 302 RichManglingContext rmc; 303 for (uint32_t value = 0; value < num_symbols; ++value) { 304 Symbol *symbol = &m_symbols[value]; 305 306 // Don't let trampolines get into the lookup by name map If we ever need 307 // the trampoline symbols to be searchable by name we can remove this and 308 // then possibly add a new bool to any of the Symtab functions that 309 // lookup symbols by name to indicate if they want trampolines. We also 310 // don't want any synthetic symbols with auto generated names in the 311 // name lookups. 312 if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) 313 continue; 314 315 // If the symbol's name string matched a Mangled::ManglingScheme, it is 316 // stored in the mangled field. 317 Mangled &mangled = symbol->GetMangled(); 318 if (ConstString name = mangled.GetMangledName()) { 319 name_to_index.Append(name, value); 320 321 if (symbol->ContainsLinkerAnnotations()) { 322 // If the symbol has linker annotations, also add the version without 323 // the annotations. 324 ConstString stripped = ConstString( 325 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 326 name_to_index.Append(stripped, value); 327 } 328 329 const SymbolType type = symbol->GetType(); 330 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 331 if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) { 332 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 333 continue; 334 } 335 } 336 } 337 338 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 339 // stored in the demangled field. 340 if (ConstString name = mangled.GetDemangledName()) { 341 name_to_index.Append(name, value); 342 343 if (symbol->ContainsLinkerAnnotations()) { 344 // If the symbol has linker annotations, also add the version without 345 // the annotations. 346 name = ConstString( 347 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 348 name_to_index.Append(name, value); 349 } 350 351 // If the demangled name turns out to be an ObjC name, and is a category 352 // name, add the version without categories to the index too. 353 for (Language *lang : languages) { 354 for (auto variant : lang->GetMethodNameVariants(name)) { 355 if (variant.GetType() & lldb::eFunctionNameTypeSelector) 356 selector_to_index.Append(variant.GetName(), value); 357 else if (variant.GetType() & lldb::eFunctionNameTypeFull) 358 name_to_index.Append(variant.GetName(), value); 359 else if (variant.GetType() & lldb::eFunctionNameTypeMethod) 360 method_to_index.Append(variant.GetName(), value); 361 else if (variant.GetType() & lldb::eFunctionNameTypeBase) 362 basename_to_index.Append(variant.GetName(), value); 363 } 364 } 365 } 366 } 367 368 for (const auto &record : backlog) { 369 RegisterBacklogEntry(record.first, record.second, class_contexts); 370 } 371 372 name_to_index.Sort(); 373 name_to_index.SizeToFit(); 374 selector_to_index.Sort(); 375 selector_to_index.SizeToFit(); 376 basename_to_index.Sort(); 377 basename_to_index.SizeToFit(); 378 method_to_index.Sort(); 379 method_to_index.SizeToFit(); 380 } 381 } 382 383 void Symtab::RegisterMangledNameEntry( 384 uint32_t value, std::set<const char *> &class_contexts, 385 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 386 RichManglingContext &rmc) { 387 // Only register functions that have a base name. 388 llvm::StringRef base_name = rmc.ParseFunctionBaseName(); 389 if (base_name.empty()) 390 return; 391 392 // The base name will be our entry's name. 393 NameToIndexMap::Entry entry(ConstString(base_name), value); 394 llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName(); 395 396 // Register functions with no context. 397 if (decl_context.empty()) { 398 // This has to be a basename 399 auto &basename_to_index = 400 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 401 basename_to_index.Append(entry); 402 // If there is no context (no namespaces or class scopes that come before 403 // the function name) then this also could be a fullname. 404 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 405 name_to_index.Append(entry); 406 return; 407 } 408 409 // Make sure we have a pool-string pointer and see if we already know the 410 // context name. 411 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 412 auto it = class_contexts.find(decl_context_ccstr); 413 414 auto &method_to_index = 415 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 416 // Register constructors and destructors. They are methods and create 417 // declaration contexts. 418 if (rmc.IsCtorOrDtor()) { 419 method_to_index.Append(entry); 420 if (it == class_contexts.end()) 421 class_contexts.insert(it, decl_context_ccstr); 422 return; 423 } 424 425 // Register regular methods with a known declaration context. 426 if (it != class_contexts.end()) { 427 method_to_index.Append(entry); 428 return; 429 } 430 431 // Regular methods in unknown declaration contexts are put to the backlog. We 432 // will revisit them once we processed all remaining symbols. 433 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 434 } 435 436 void Symtab::RegisterBacklogEntry( 437 const NameToIndexMap::Entry &entry, const char *decl_context, 438 const std::set<const char *> &class_contexts) { 439 auto &method_to_index = 440 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 441 auto it = class_contexts.find(decl_context); 442 if (it != class_contexts.end()) { 443 method_to_index.Append(entry); 444 } else { 445 // If we got here, we have something that had a context (was inside 446 // a namespace or class) yet we don't know the entry 447 method_to_index.Append(entry); 448 auto &basename_to_index = 449 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 450 basename_to_index.Append(entry); 451 } 452 } 453 454 void Symtab::PreloadSymbols() { 455 std::lock_guard<std::recursive_mutex> guard(m_mutex); 456 InitNameIndexes(); 457 } 458 459 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 460 bool add_demangled, bool add_mangled, 461 NameToIndexMap &name_to_index_map) const { 462 LLDB_SCOPED_TIMER(); 463 if (add_demangled || add_mangled) { 464 std::lock_guard<std::recursive_mutex> guard(m_mutex); 465 466 // Create the name index vector to be able to quickly search by name 467 const size_t num_indexes = indexes.size(); 468 for (size_t i = 0; i < num_indexes; ++i) { 469 uint32_t value = indexes[i]; 470 assert(i < m_symbols.size()); 471 const Symbol *symbol = &m_symbols[value]; 472 473 const Mangled &mangled = symbol->GetMangled(); 474 if (add_demangled) { 475 if (ConstString name = mangled.GetDemangledName()) 476 name_to_index_map.Append(name, value); 477 } 478 479 if (add_mangled) { 480 if (ConstString name = mangled.GetMangledName()) 481 name_to_index_map.Append(name, value); 482 } 483 } 484 } 485 } 486 487 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 488 std::vector<uint32_t> &indexes, 489 uint32_t start_idx, 490 uint32_t end_index) const { 491 std::lock_guard<std::recursive_mutex> guard(m_mutex); 492 493 uint32_t prev_size = indexes.size(); 494 495 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 496 497 for (uint32_t i = start_idx; i < count; ++i) { 498 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 499 indexes.push_back(i); 500 } 501 502 return indexes.size() - prev_size; 503 } 504 505 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 506 SymbolType symbol_type, uint32_t flags_value, 507 std::vector<uint32_t> &indexes, uint32_t start_idx, 508 uint32_t end_index) const { 509 std::lock_guard<std::recursive_mutex> guard(m_mutex); 510 511 uint32_t prev_size = indexes.size(); 512 513 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 514 515 for (uint32_t i = start_idx; i < count; ++i) { 516 if ((symbol_type == eSymbolTypeAny || 517 m_symbols[i].GetType() == symbol_type) && 518 m_symbols[i].GetFlags() == flags_value) 519 indexes.push_back(i); 520 } 521 522 return indexes.size() - prev_size; 523 } 524 525 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 526 Debug symbol_debug_type, 527 Visibility symbol_visibility, 528 std::vector<uint32_t> &indexes, 529 uint32_t start_idx, 530 uint32_t end_index) const { 531 std::lock_guard<std::recursive_mutex> guard(m_mutex); 532 533 uint32_t prev_size = indexes.size(); 534 535 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 536 537 for (uint32_t i = start_idx; i < count; ++i) { 538 if (symbol_type == eSymbolTypeAny || 539 m_symbols[i].GetType() == symbol_type) { 540 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 541 indexes.push_back(i); 542 } 543 } 544 545 return indexes.size() - prev_size; 546 } 547 548 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 549 if (!m_symbols.empty()) { 550 const Symbol *first_symbol = &m_symbols[0]; 551 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 552 return symbol - first_symbol; 553 } 554 return UINT32_MAX; 555 } 556 557 struct SymbolSortInfo { 558 const bool sort_by_load_addr; 559 const Symbol *symbols; 560 }; 561 562 namespace { 563 struct SymbolIndexComparator { 564 const std::vector<Symbol> &symbols; 565 std::vector<lldb::addr_t> &addr_cache; 566 567 // Getting from the symbol to the Address to the File Address involves some 568 // work. Since there are potentially many symbols here, and we're using this 569 // for sorting so we're going to be computing the address many times, cache 570 // that in addr_cache. The array passed in has to be the same size as the 571 // symbols array passed into the member variable symbols, and should be 572 // initialized with LLDB_INVALID_ADDRESS. 573 // NOTE: You have to make addr_cache externally and pass it in because 574 // std::stable_sort 575 // makes copies of the comparator it is initially passed in, and you end up 576 // spending huge amounts of time copying this array... 577 578 SymbolIndexComparator(const std::vector<Symbol> &s, 579 std::vector<lldb::addr_t> &a) 580 : symbols(s), addr_cache(a) { 581 assert(symbols.size() == addr_cache.size()); 582 } 583 bool operator()(uint32_t index_a, uint32_t index_b) { 584 addr_t value_a = addr_cache[index_a]; 585 if (value_a == LLDB_INVALID_ADDRESS) { 586 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 587 addr_cache[index_a] = value_a; 588 } 589 590 addr_t value_b = addr_cache[index_b]; 591 if (value_b == LLDB_INVALID_ADDRESS) { 592 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 593 addr_cache[index_b] = value_b; 594 } 595 596 if (value_a == value_b) { 597 // The if the values are equal, use the original symbol user ID 598 lldb::user_id_t uid_a = symbols[index_a].GetID(); 599 lldb::user_id_t uid_b = symbols[index_b].GetID(); 600 if (uid_a < uid_b) 601 return true; 602 if (uid_a > uid_b) 603 return false; 604 return false; 605 } else if (value_a < value_b) 606 return true; 607 608 return false; 609 } 610 }; 611 } 612 613 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 614 bool remove_duplicates) const { 615 std::lock_guard<std::recursive_mutex> guard(m_mutex); 616 LLDB_SCOPED_TIMER(); 617 // No need to sort if we have zero or one items... 618 if (indexes.size() <= 1) 619 return; 620 621 // Sort the indexes in place using std::stable_sort. 622 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 623 // for performance, not correctness. The indexes vector tends to be "close" 624 // to sorted, which the stable sort handles better. 625 626 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 627 628 SymbolIndexComparator comparator(m_symbols, addr_cache); 629 std::stable_sort(indexes.begin(), indexes.end(), comparator); 630 631 // Remove any duplicates if requested 632 if (remove_duplicates) { 633 auto last = std::unique(indexes.begin(), indexes.end()); 634 indexes.erase(last, indexes.end()); 635 } 636 } 637 638 uint32_t Symtab::GetNameIndexes(ConstString symbol_name, 639 std::vector<uint32_t> &indexes) { 640 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 641 const uint32_t count = name_to_index.GetValues(symbol_name, indexes); 642 if (count) 643 return count; 644 // Synthetic symbol names are not added to the name indexes, but they start 645 // with a prefix and end with a the symbol UserID. This allows users to find 646 // these symbols without having to add them to the name indexes. These 647 // queries will not happen very often since the names don't mean anything, so 648 // performance is not paramount in this case. 649 llvm::StringRef name = symbol_name.GetStringRef(); 650 // String the synthetic prefix if the name starts with it. 651 if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) 652 return 0; // Not a synthetic symbol name 653 654 // Extract the user ID from the symbol name 655 unsigned long long uid = 0; 656 if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) 657 return 0; // Failed to extract the user ID as an integer 658 Symbol *symbol = FindSymbolByID(uid); 659 if (symbol == nullptr) 660 return 0; 661 const uint32_t symbol_idx = GetIndexForSymbol(symbol); 662 if (symbol_idx == UINT32_MAX) 663 return 0; 664 indexes.push_back(symbol_idx); 665 return 1; 666 } 667 668 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 669 std::vector<uint32_t> &indexes) { 670 std::lock_guard<std::recursive_mutex> guard(m_mutex); 671 672 if (symbol_name) { 673 if (!m_name_indexes_computed) 674 InitNameIndexes(); 675 676 return GetNameIndexes(symbol_name, indexes); 677 } 678 return 0; 679 } 680 681 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 682 Debug symbol_debug_type, 683 Visibility symbol_visibility, 684 std::vector<uint32_t> &indexes) { 685 std::lock_guard<std::recursive_mutex> guard(m_mutex); 686 687 LLDB_SCOPED_TIMER(); 688 if (symbol_name) { 689 const size_t old_size = indexes.size(); 690 if (!m_name_indexes_computed) 691 InitNameIndexes(); 692 693 std::vector<uint32_t> all_name_indexes; 694 const size_t name_match_count = 695 GetNameIndexes(symbol_name, all_name_indexes); 696 for (size_t i = 0; i < name_match_count; ++i) { 697 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 698 symbol_visibility)) 699 indexes.push_back(all_name_indexes[i]); 700 } 701 return indexes.size() - old_size; 702 } 703 return 0; 704 } 705 706 uint32_t 707 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 708 SymbolType symbol_type, 709 std::vector<uint32_t> &indexes) { 710 std::lock_guard<std::recursive_mutex> guard(m_mutex); 711 712 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 713 std::vector<uint32_t>::iterator pos = indexes.begin(); 714 while (pos != indexes.end()) { 715 if (symbol_type == eSymbolTypeAny || 716 m_symbols[*pos].GetType() == symbol_type) 717 ++pos; 718 else 719 pos = indexes.erase(pos); 720 } 721 } 722 return indexes.size(); 723 } 724 725 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 726 ConstString symbol_name, SymbolType symbol_type, 727 Debug symbol_debug_type, Visibility symbol_visibility, 728 std::vector<uint32_t> &indexes) { 729 std::lock_guard<std::recursive_mutex> guard(m_mutex); 730 731 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 732 symbol_visibility, indexes) > 0) { 733 std::vector<uint32_t>::iterator pos = indexes.begin(); 734 while (pos != indexes.end()) { 735 if (symbol_type == eSymbolTypeAny || 736 m_symbols[*pos].GetType() == symbol_type) 737 ++pos; 738 else 739 pos = indexes.erase(pos); 740 } 741 } 742 return indexes.size(); 743 } 744 745 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 746 const RegularExpression ®exp, SymbolType symbol_type, 747 std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { 748 std::lock_guard<std::recursive_mutex> guard(m_mutex); 749 750 uint32_t prev_size = indexes.size(); 751 uint32_t sym_end = m_symbols.size(); 752 753 for (uint32_t i = 0; i < sym_end; i++) { 754 if (symbol_type == eSymbolTypeAny || 755 m_symbols[i].GetType() == symbol_type) { 756 const char *name = 757 m_symbols[i].GetMangled().GetName(name_preference).AsCString(); 758 if (name) { 759 if (regexp.Execute(name)) 760 indexes.push_back(i); 761 } 762 } 763 } 764 return indexes.size() - prev_size; 765 } 766 767 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 768 const RegularExpression ®exp, SymbolType symbol_type, 769 Debug symbol_debug_type, Visibility symbol_visibility, 770 std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { 771 std::lock_guard<std::recursive_mutex> guard(m_mutex); 772 773 uint32_t prev_size = indexes.size(); 774 uint32_t sym_end = m_symbols.size(); 775 776 for (uint32_t i = 0; i < sym_end; i++) { 777 if (symbol_type == eSymbolTypeAny || 778 m_symbols[i].GetType() == symbol_type) { 779 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 780 continue; 781 782 const char *name = 783 m_symbols[i].GetMangled().GetName(name_preference).AsCString(); 784 if (name) { 785 if (regexp.Execute(name)) 786 indexes.push_back(i); 787 } 788 } 789 } 790 return indexes.size() - prev_size; 791 } 792 793 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 794 Debug symbol_debug_type, 795 Visibility symbol_visibility, 796 uint32_t &start_idx) { 797 std::lock_guard<std::recursive_mutex> guard(m_mutex); 798 799 const size_t count = m_symbols.size(); 800 for (size_t idx = start_idx; idx < count; ++idx) { 801 if (symbol_type == eSymbolTypeAny || 802 m_symbols[idx].GetType() == symbol_type) { 803 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 804 start_idx = idx; 805 return &m_symbols[idx]; 806 } 807 } 808 } 809 return nullptr; 810 } 811 812 void 813 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 814 SymbolType symbol_type, 815 std::vector<uint32_t> &symbol_indexes) { 816 std::lock_guard<std::recursive_mutex> guard(m_mutex); 817 818 // Initialize all of the lookup by name indexes before converting NAME to a 819 // uniqued string NAME_STR below. 820 if (!m_name_indexes_computed) 821 InitNameIndexes(); 822 823 if (name) { 824 // The string table did have a string that matched, but we need to check 825 // the symbols and match the symbol_type if any was given. 826 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 827 } 828 } 829 830 void Symtab::FindAllSymbolsWithNameAndType( 831 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 832 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 833 std::lock_guard<std::recursive_mutex> guard(m_mutex); 834 835 LLDB_SCOPED_TIMER(); 836 // Initialize all of the lookup by name indexes before converting NAME to a 837 // uniqued string NAME_STR below. 838 if (!m_name_indexes_computed) 839 InitNameIndexes(); 840 841 if (name) { 842 // The string table did have a string that matched, but we need to check 843 // the symbols and match the symbol_type if any was given. 844 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 845 symbol_visibility, symbol_indexes); 846 } 847 } 848 849 void Symtab::FindAllSymbolsMatchingRexExAndType( 850 const RegularExpression ®ex, SymbolType symbol_type, 851 Debug symbol_debug_type, Visibility symbol_visibility, 852 std::vector<uint32_t> &symbol_indexes, 853 Mangled::NamePreference name_preference) { 854 std::lock_guard<std::recursive_mutex> guard(m_mutex); 855 856 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 857 symbol_visibility, symbol_indexes, 858 name_preference); 859 } 860 861 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 862 SymbolType symbol_type, 863 Debug symbol_debug_type, 864 Visibility symbol_visibility) { 865 std::lock_guard<std::recursive_mutex> guard(m_mutex); 866 LLDB_SCOPED_TIMER(); 867 if (!m_name_indexes_computed) 868 InitNameIndexes(); 869 870 if (name) { 871 std::vector<uint32_t> matching_indexes; 872 // The string table did have a string that matched, but we need to check 873 // the symbols and match the symbol_type if any was given. 874 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 875 symbol_visibility, 876 matching_indexes)) { 877 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 878 for (pos = matching_indexes.begin(); pos != end; ++pos) { 879 Symbol *symbol = SymbolAtIndex(*pos); 880 881 if (symbol->Compare(name, symbol_type)) 882 return symbol; 883 } 884 } 885 } 886 return nullptr; 887 } 888 889 typedef struct { 890 const Symtab *symtab; 891 const addr_t file_addr; 892 Symbol *match_symbol; 893 const uint32_t *match_index_ptr; 894 addr_t match_offset; 895 } SymbolSearchInfo; 896 897 // Add all the section file start address & size to the RangeVector, recusively 898 // adding any children sections. 899 static void AddSectionsToRangeMap(SectionList *sectlist, 900 RangeVector<addr_t, addr_t> §ion_ranges) { 901 const int num_sections = sectlist->GetNumSections(0); 902 for (int i = 0; i < num_sections; i++) { 903 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 904 if (sect_sp) { 905 SectionList &child_sectlist = sect_sp->GetChildren(); 906 907 // If this section has children, add the children to the RangeVector. 908 // Else add this section to the RangeVector. 909 if (child_sectlist.GetNumSections(0) > 0) { 910 AddSectionsToRangeMap(&child_sectlist, section_ranges); 911 } else { 912 size_t size = sect_sp->GetByteSize(); 913 if (size > 0) { 914 addr_t base_addr = sect_sp->GetFileAddress(); 915 RangeVector<addr_t, addr_t>::Entry entry; 916 entry.SetRangeBase(base_addr); 917 entry.SetByteSize(size); 918 section_ranges.Append(entry); 919 } 920 } 921 } 922 } 923 } 924 925 void Symtab::InitAddressIndexes() { 926 // Protected function, no need to lock mutex... 927 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 928 m_file_addr_to_index_computed = true; 929 930 FileRangeToIndexMap::Entry entry; 931 const_iterator begin = m_symbols.begin(); 932 const_iterator end = m_symbols.end(); 933 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 934 if (pos->ValueIsAddress()) { 935 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 936 entry.SetByteSize(pos->GetByteSize()); 937 entry.data = std::distance(begin, pos); 938 m_file_addr_to_index.Append(entry); 939 } 940 } 941 const size_t num_entries = m_file_addr_to_index.GetSize(); 942 if (num_entries > 0) { 943 m_file_addr_to_index.Sort(); 944 945 // Create a RangeVector with the start & size of all the sections for 946 // this objfile. We'll need to check this for any FileRangeToIndexMap 947 // entries with an uninitialized size, which could potentially be a large 948 // number so reconstituting the weak pointer is busywork when it is 949 // invariant information. 950 SectionList *sectlist = m_objfile->GetSectionList(); 951 RangeVector<addr_t, addr_t> section_ranges; 952 if (sectlist) { 953 AddSectionsToRangeMap(sectlist, section_ranges); 954 section_ranges.Sort(); 955 } 956 957 // Iterate through the FileRangeToIndexMap and fill in the size for any 958 // entries that didn't already have a size from the Symbol (e.g. if we 959 // have a plain linker symbol with an address only, instead of debug info 960 // where we get an address and a size and a type, etc.) 961 for (size_t i = 0; i < num_entries; i++) { 962 FileRangeToIndexMap::Entry *entry = 963 m_file_addr_to_index.GetMutableEntryAtIndex(i); 964 if (entry->GetByteSize() == 0) { 965 addr_t curr_base_addr = entry->GetRangeBase(); 966 const RangeVector<addr_t, addr_t>::Entry *containing_section = 967 section_ranges.FindEntryThatContains(curr_base_addr); 968 969 // Use the end of the section as the default max size of the symbol 970 addr_t sym_size = 0; 971 if (containing_section) { 972 sym_size = 973 containing_section->GetByteSize() - 974 (entry->GetRangeBase() - containing_section->GetRangeBase()); 975 } 976 977 for (size_t j = i; j < num_entries; j++) { 978 FileRangeToIndexMap::Entry *next_entry = 979 m_file_addr_to_index.GetMutableEntryAtIndex(j); 980 addr_t next_base_addr = next_entry->GetRangeBase(); 981 if (next_base_addr > curr_base_addr) { 982 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 983 984 // Take the difference between this symbol and the next one as 985 // its size, if it is less than the size of the section. 986 if (sym_size == 0 || size_to_next_symbol < sym_size) { 987 sym_size = size_to_next_symbol; 988 } 989 break; 990 } 991 } 992 993 if (sym_size > 0) { 994 entry->SetByteSize(sym_size); 995 Symbol &symbol = m_symbols[entry->data]; 996 symbol.SetByteSize(sym_size); 997 symbol.SetSizeIsSynthesized(true); 998 } 999 } 1000 } 1001 1002 // Sort again in case the range size changes the ordering 1003 m_file_addr_to_index.Sort(); 1004 } 1005 } 1006 } 1007 1008 void Symtab::Finalize() { 1009 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1010 // Calculate the size of symbols inside InitAddressIndexes. 1011 InitAddressIndexes(); 1012 // Shrink to fit the symbols so we don't waste memory 1013 m_symbols.shrink_to_fit(); 1014 SaveToCache(); 1015 } 1016 1017 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 1018 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1019 if (!m_file_addr_to_index_computed) 1020 InitAddressIndexes(); 1021 1022 const FileRangeToIndexMap::Entry *entry = 1023 m_file_addr_to_index.FindEntryStartsAt(file_addr); 1024 if (entry) { 1025 Symbol *symbol = SymbolAtIndex(entry->data); 1026 if (symbol->GetFileAddress() == file_addr) 1027 return symbol; 1028 } 1029 return nullptr; 1030 } 1031 1032 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1033 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1034 1035 if (!m_file_addr_to_index_computed) 1036 InitAddressIndexes(); 1037 1038 const FileRangeToIndexMap::Entry *entry = 1039 m_file_addr_to_index.FindEntryThatContains(file_addr); 1040 if (entry) { 1041 Symbol *symbol = SymbolAtIndex(entry->data); 1042 if (symbol->ContainsFileAddress(file_addr)) 1043 return symbol; 1044 } 1045 return nullptr; 1046 } 1047 1048 void Symtab::ForEachSymbolContainingFileAddress( 1049 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1050 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1051 1052 if (!m_file_addr_to_index_computed) 1053 InitAddressIndexes(); 1054 1055 std::vector<uint32_t> all_addr_indexes; 1056 1057 // Get all symbols with file_addr 1058 const size_t addr_match_count = 1059 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1060 all_addr_indexes); 1061 1062 for (size_t i = 0; i < addr_match_count; ++i) { 1063 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1064 if (symbol->ContainsFileAddress(file_addr)) { 1065 if (!callback(symbol)) 1066 break; 1067 } 1068 } 1069 } 1070 1071 void Symtab::SymbolIndicesToSymbolContextList( 1072 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1073 // No need to protect this call using m_mutex all other method calls are 1074 // already thread safe. 1075 1076 const bool merge_symbol_into_function = true; 1077 size_t num_indices = symbol_indexes.size(); 1078 if (num_indices > 0) { 1079 SymbolContext sc; 1080 sc.module_sp = m_objfile->GetModule(); 1081 for (size_t i = 0; i < num_indices; i++) { 1082 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1083 if (sc.symbol) 1084 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1085 } 1086 } 1087 } 1088 1089 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1090 SymbolContextList &sc_list) { 1091 std::vector<uint32_t> symbol_indexes; 1092 1093 // eFunctionNameTypeAuto should be pre-resolved by a call to 1094 // Module::LookupInfo::LookupInfo() 1095 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1096 1097 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1098 std::vector<uint32_t> temp_symbol_indexes; 1099 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1100 1101 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1102 if (temp_symbol_indexes_size > 0) { 1103 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1104 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1105 SymbolContext sym_ctx; 1106 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1107 if (sym_ctx.symbol) { 1108 switch (sym_ctx.symbol->GetType()) { 1109 case eSymbolTypeCode: 1110 case eSymbolTypeResolver: 1111 case eSymbolTypeReExported: 1112 case eSymbolTypeAbsolute: 1113 symbol_indexes.push_back(temp_symbol_indexes[i]); 1114 break; 1115 default: 1116 break; 1117 } 1118 } 1119 } 1120 } 1121 } 1122 1123 if (!m_name_indexes_computed) 1124 InitNameIndexes(); 1125 1126 for (lldb::FunctionNameType type : 1127 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, 1128 lldb::eFunctionNameTypeSelector}) { 1129 if (name_type_mask & type) { 1130 auto map = GetNameToSymbolIndexMap(type); 1131 1132 const UniqueCStringMap<uint32_t>::Entry *match; 1133 for (match = map.FindFirstValueForName(name); match != nullptr; 1134 match = map.FindNextValueForName(match)) { 1135 symbol_indexes.push_back(match->value); 1136 } 1137 } 1138 } 1139 1140 if (!symbol_indexes.empty()) { 1141 llvm::sort(symbol_indexes); 1142 symbol_indexes.erase( 1143 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1144 symbol_indexes.end()); 1145 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1146 } 1147 } 1148 1149 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1150 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1151 if (child_idx != UINT32_MAX && child_idx > 0) { 1152 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1153 const Symbol *symbol = SymbolAtIndex(idx); 1154 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1155 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1156 return symbol; 1157 } 1158 } 1159 return nullptr; 1160 } 1161 1162 std::string Symtab::GetCacheKey() { 1163 std::string key; 1164 llvm::raw_string_ostream strm(key); 1165 // Symbol table can come from different object files for the same module. A 1166 // module can have one object file as the main executable and might have 1167 // another object file in a separate symbol file. 1168 strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-" 1169 << llvm::format_hex(m_objfile->GetCacheHash(), 10); 1170 return strm.str(); 1171 } 1172 1173 void Symtab::SaveToCache() { 1174 DataFileCache *cache = Module::GetIndexCache(); 1175 if (!cache) 1176 return; // Caching is not enabled. 1177 InitNameIndexes(); // Init the name indexes so we can cache them as well. 1178 const auto byte_order = endian::InlHostByteOrder(); 1179 DataEncoder file(byte_order, /*addr_size=*/8); 1180 // Encode will return false if the symbol table's object file doesn't have 1181 // anything to make a signature from. 1182 if (Encode(file)) 1183 if (cache->SetCachedData(GetCacheKey(), file.GetData())) 1184 SetWasSavedToCache(); 1185 } 1186 1187 constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP"); 1188 1189 static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab, 1190 const UniqueCStringMap<uint32_t> &cstr_map) { 1191 encoder.AppendData(kIdentifierCStrMap); 1192 encoder.AppendU32(cstr_map.GetSize()); 1193 for (const auto &entry: cstr_map) { 1194 // Make sure there are no empty strings. 1195 assert((bool)entry.cstring); 1196 encoder.AppendU32(strtab.Add(entry.cstring)); 1197 encoder.AppendU32(entry.value); 1198 } 1199 } 1200 1201 bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr, 1202 const StringTableReader &strtab, 1203 UniqueCStringMap<uint32_t> &cstr_map) { 1204 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); 1205 if (identifier != kIdentifierCStrMap) 1206 return false; 1207 const uint32_t count = data.GetU32(offset_ptr); 1208 cstr_map.Reserve(count); 1209 for (uint32_t i=0; i<count; ++i) 1210 { 1211 llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr))); 1212 uint32_t value = data.GetU32(offset_ptr); 1213 // No empty strings in the name indexes in Symtab 1214 if (str.empty()) 1215 return false; 1216 cstr_map.Append(ConstString(str), value); 1217 } 1218 // We must sort the UniqueCStringMap after decoding it since it is a vector 1219 // of UniqueCStringMap::Entry objects which contain a ConstString and type T. 1220 // ConstString objects are sorted by "const char *" and then type T and 1221 // the "const char *" are point values that will depend on the order in which 1222 // ConstString objects are created and in which of the 256 string pools they 1223 // are created in. So after we decode all of the entries, we must sort the 1224 // name map to ensure name lookups succeed. If we encode and decode within 1225 // the same process we wouldn't need to sort, so unit testing didn't catch 1226 // this issue when first checked in. 1227 cstr_map.Sort(); 1228 return true; 1229 } 1230 1231 constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB"); 1232 constexpr uint32_t CURRENT_CACHE_VERSION = 1; 1233 1234 /// The encoding format for the symbol table is as follows: 1235 /// 1236 /// Signature signature; 1237 /// ConstStringTable strtab; 1238 /// Identifier four character code: 'SYMB' 1239 /// uint32_t version; 1240 /// uint32_t num_symbols; 1241 /// Symbol symbols[num_symbols]; 1242 /// uint8_t num_cstr_maps; 1243 /// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps] 1244 bool Symtab::Encode(DataEncoder &encoder) const { 1245 // Name indexes must be computed before calling this function. 1246 assert(m_name_indexes_computed); 1247 1248 // Encode the object file's signature 1249 CacheSignature signature(m_objfile); 1250 if (!signature.Encode(encoder)) 1251 return false; 1252 ConstStringTable strtab; 1253 1254 // Encoder the symbol table into a separate encoder first. This allows us 1255 // gather all of the strings we willl need in "strtab" as we will need to 1256 // write the string table out before the symbol table. 1257 DataEncoder symtab_encoder(encoder.GetByteOrder(), 1258 encoder.GetAddressByteSize()); 1259 symtab_encoder.AppendData(kIdentifierSymbolTable); 1260 // Encode the symtab data version. 1261 symtab_encoder.AppendU32(CURRENT_CACHE_VERSION); 1262 // Encode the number of symbols. 1263 symtab_encoder.AppendU32(m_symbols.size()); 1264 // Encode the symbol data for all symbols. 1265 for (const auto &symbol: m_symbols) 1266 symbol.Encode(symtab_encoder, strtab); 1267 1268 // Emit a byte for how many C string maps we emit. We will fix this up after 1269 // we emit the C string maps since we skip emitting C string maps if they are 1270 // empty. 1271 size_t num_cmaps_offset = symtab_encoder.GetByteSize(); 1272 uint8_t num_cmaps = 0; 1273 symtab_encoder.AppendU8(0); 1274 for (const auto &pair: m_name_to_symbol_indices) { 1275 if (pair.second.IsEmpty()) 1276 continue; 1277 ++num_cmaps; 1278 symtab_encoder.AppendU8(pair.first); 1279 EncodeCStrMap(symtab_encoder, strtab, pair.second); 1280 } 1281 if (num_cmaps > 0) 1282 symtab_encoder.PutU8(num_cmaps_offset, num_cmaps); 1283 1284 // Now that all strings have been gathered, we will emit the string table. 1285 strtab.Encode(encoder); 1286 // Followed by the symbol table data. 1287 encoder.AppendData(symtab_encoder.GetData()); 1288 return true; 1289 } 1290 1291 bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr, 1292 bool &signature_mismatch) { 1293 signature_mismatch = false; 1294 CacheSignature signature; 1295 StringTableReader strtab; 1296 { // Scope for "elapsed" object below so it can measure the time parse. 1297 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime()); 1298 if (!signature.Decode(data, offset_ptr)) 1299 return false; 1300 if (CacheSignature(m_objfile) != signature) { 1301 signature_mismatch = true; 1302 return false; 1303 } 1304 // We now decode the string table for all strings in the data cache file. 1305 if (!strtab.Decode(data, offset_ptr)) 1306 return false; 1307 1308 // And now we can decode the symbol table with string table we just decoded. 1309 llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); 1310 if (identifier != kIdentifierSymbolTable) 1311 return false; 1312 const uint32_t version = data.GetU32(offset_ptr); 1313 if (version != CURRENT_CACHE_VERSION) 1314 return false; 1315 const uint32_t num_symbols = data.GetU32(offset_ptr); 1316 if (num_symbols == 0) 1317 return true; 1318 m_symbols.resize(num_symbols); 1319 SectionList *sections = m_objfile->GetModule()->GetSectionList(); 1320 for (uint32_t i=0; i<num_symbols; ++i) { 1321 if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab)) 1322 return false; 1323 } 1324 } 1325 1326 { // Scope for "elapsed" object below so it can measure the time to index. 1327 ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); 1328 const uint8_t num_cstr_maps = data.GetU8(offset_ptr); 1329 for (uint8_t i=0; i<num_cstr_maps; ++i) { 1330 uint8_t type = data.GetU8(offset_ptr); 1331 UniqueCStringMap<uint32_t> &cstr_map = 1332 GetNameToSymbolIndexMap((lldb::FunctionNameType)type); 1333 if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map)) 1334 return false; 1335 } 1336 m_name_indexes_computed = true; 1337 } 1338 return true; 1339 } 1340 1341 bool Symtab::LoadFromCache() { 1342 DataFileCache *cache = Module::GetIndexCache(); 1343 if (!cache) 1344 return false; 1345 1346 std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up = 1347 cache->GetCachedData(GetCacheKey()); 1348 if (!mem_buffer_up) 1349 return false; 1350 DataExtractor data(mem_buffer_up->getBufferStart(), 1351 mem_buffer_up->getBufferSize(), 1352 m_objfile->GetByteOrder(), 1353 m_objfile->GetAddressByteSize()); 1354 bool signature_mismatch = false; 1355 lldb::offset_t offset = 0; 1356 const bool result = Decode(data, &offset, signature_mismatch); 1357 if (signature_mismatch) 1358 cache->RemoveCacheFile(GetCacheKey()); 1359 if (result) 1360 SetWasLoadedFromCache(); 1361 return result; 1362 } 1363