xref: /freebsd/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- Symtab.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "lldb/Core/Module.h"
13 #include "lldb/Core/RichManglingContext.h"
14 #include "lldb/Core/Section.h"
15 #include "lldb/Symbol/ObjectFile.h"
16 #include "lldb/Symbol/Symbol.h"
17 #include "lldb/Symbol/SymbolContext.h"
18 #include "lldb/Symbol/Symtab.h"
19 #include "lldb/Target/Language.h"
20 #include "lldb/Utility/RegularExpression.h"
21 #include "lldb/Utility/Stream.h"
22 #include "lldb/Utility/Timer.h"
23 
24 #include "llvm/ADT/StringRef.h"
25 
26 using namespace lldb;
27 using namespace lldb_private;
28 
29 Symtab::Symtab(ObjectFile *objfile)
30     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
31       m_name_to_symbol_indices(), m_mutex(),
32       m_file_addr_to_index_computed(false), m_name_indexes_computed(false) {
33   m_name_to_symbol_indices.emplace(std::make_pair(
34       lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
35   m_name_to_symbol_indices.emplace(std::make_pair(
36       lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
37   m_name_to_symbol_indices.emplace(std::make_pair(
38       lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
39   m_name_to_symbol_indices.emplace(std::make_pair(
40       lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
41 }
42 
43 Symtab::~Symtab() = default;
44 
45 void Symtab::Reserve(size_t count) {
46   // Clients should grab the mutex from this symbol table and lock it manually
47   // when calling this function to avoid performance issues.
48   m_symbols.reserve(count);
49 }
50 
51 Symbol *Symtab::Resize(size_t count) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   m_symbols.resize(count);
55   return m_symbols.empty() ? nullptr : &m_symbols[0];
56 }
57 
58 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
59   // Clients should grab the mutex from this symbol table and lock it manually
60   // when calling this function to avoid performance issues.
61   uint32_t symbol_idx = m_symbols.size();
62   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
63   name_to_index.Clear();
64   m_file_addr_to_index.Clear();
65   m_symbols.push_back(symbol);
66   m_file_addr_to_index_computed = false;
67   m_name_indexes_computed = false;
68   return symbol_idx;
69 }
70 
71 size_t Symtab::GetNumSymbols() const {
72   std::lock_guard<std::recursive_mutex> guard(m_mutex);
73   return m_symbols.size();
74 }
75 
76 void Symtab::SectionFileAddressesChanged() {
77   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
78   name_to_index.Clear();
79   m_file_addr_to_index_computed = false;
80 }
81 
82 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
83                   Mangled::NamePreference name_preference) {
84   std::lock_guard<std::recursive_mutex> guard(m_mutex);
85 
86   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
87   s->Indent();
88   const FileSpec &file_spec = m_objfile->GetFileSpec();
89   const char *object_name = nullptr;
90   if (m_objfile->GetModule())
91     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
92 
93   if (file_spec)
94     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
95               file_spec.GetPath().c_str(), object_name ? "(" : "",
96               object_name ? object_name : "", object_name ? ")" : "",
97               (uint64_t)m_symbols.size());
98   else
99     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
100 
101   if (!m_symbols.empty()) {
102     switch (sort_order) {
103     case eSortOrderNone: {
104       s->PutCString(":\n");
105       DumpSymbolHeader(s);
106       const_iterator begin = m_symbols.begin();
107       const_iterator end = m_symbols.end();
108       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
109         s->Indent();
110         pos->Dump(s, target, std::distance(begin, pos), name_preference);
111       }
112     } break;
113 
114     case eSortOrderByName: {
115       // Although we maintain a lookup by exact name map, the table isn't
116       // sorted by name. So we must make the ordered symbol list up ourselves.
117       s->PutCString(" (sorted by name):\n");
118       DumpSymbolHeader(s);
119 
120       std::multimap<llvm::StringRef, const Symbol *> name_map;
121       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
122            pos != end; ++pos) {
123         const char *name = pos->GetName().AsCString();
124         if (name && name[0])
125           name_map.insert(std::make_pair(name, &(*pos)));
126       }
127 
128       for (const auto &name_to_symbol : name_map) {
129         const Symbol *symbol = name_to_symbol.second;
130         s->Indent();
131         symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
132       }
133     } break;
134 
135     case eSortOrderByAddress:
136       s->PutCString(" (sorted by address):\n");
137       DumpSymbolHeader(s);
138       if (!m_file_addr_to_index_computed)
139         InitAddressIndexes();
140       const size_t num_entries = m_file_addr_to_index.GetSize();
141       for (size_t i = 0; i < num_entries; ++i) {
142         s->Indent();
143         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
144         m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
145       }
146       break;
147     }
148   } else {
149     s->PutCString("\n");
150   }
151 }
152 
153 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
154                   Mangled::NamePreference name_preference) const {
155   std::lock_guard<std::recursive_mutex> guard(m_mutex);
156 
157   const size_t num_symbols = GetNumSymbols();
158   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
159   s->Indent();
160   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
161             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
162   s->IndentMore();
163 
164   if (!indexes.empty()) {
165     std::vector<uint32_t>::const_iterator pos;
166     std::vector<uint32_t>::const_iterator end = indexes.end();
167     DumpSymbolHeader(s);
168     for (pos = indexes.begin(); pos != end; ++pos) {
169       size_t idx = *pos;
170       if (idx < num_symbols) {
171         s->Indent();
172         m_symbols[idx].Dump(s, target, idx, name_preference);
173       }
174     }
175   }
176   s->IndentLess();
177 }
178 
179 void Symtab::DumpSymbolHeader(Stream *s) {
180   s->Indent("               Debug symbol\n");
181   s->Indent("               |Synthetic symbol\n");
182   s->Indent("               ||Externally Visible\n");
183   s->Indent("               |||\n");
184   s->Indent("Index   UserID DSX Type            File Address/Value Load "
185             "Address       Size               Flags      Name\n");
186   s->Indent("------- ------ --- --------------- ------------------ "
187             "------------------ ------------------ ---------- "
188             "----------------------------------\n");
189 }
190 
191 static int CompareSymbolID(const void *key, const void *p) {
192   const user_id_t match_uid = *(const user_id_t *)key;
193   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
194   if (match_uid < symbol_uid)
195     return -1;
196   if (match_uid > symbol_uid)
197     return 1;
198   return 0;
199 }
200 
201 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
202   std::lock_guard<std::recursive_mutex> guard(m_mutex);
203 
204   Symbol *symbol =
205       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
206                           sizeof(m_symbols[0]), CompareSymbolID);
207   return symbol;
208 }
209 
210 Symbol *Symtab::SymbolAtIndex(size_t idx) {
211   // Clients should grab the mutex from this symbol table and lock it manually
212   // when calling this function to avoid performance issues.
213   if (idx < m_symbols.size())
214     return &m_symbols[idx];
215   return nullptr;
216 }
217 
218 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
219   // Clients should grab the mutex from this symbol table and lock it manually
220   // when calling this function to avoid performance issues.
221   if (idx < m_symbols.size())
222     return &m_symbols[idx];
223   return nullptr;
224 }
225 
226 static bool lldb_skip_name(llvm::StringRef mangled,
227                            Mangled::ManglingScheme scheme) {
228   switch (scheme) {
229   case Mangled::eManglingSchemeItanium: {
230     if (mangled.size() < 3 || !mangled.startswith("_Z"))
231       return true;
232 
233     // Avoid the following types of symbols in the index.
234     switch (mangled[2]) {
235     case 'G': // guard variables
236     case 'T': // virtual tables, VTT structures, typeinfo structures + names
237     case 'Z': // named local entities (if we eventually handle
238               // eSymbolTypeData, we will want this back)
239       return true;
240 
241     default:
242       break;
243     }
244 
245     // Include this name in the index.
246     return false;
247   }
248 
249   // No filters for this scheme yet. Include all names in indexing.
250   case Mangled::eManglingSchemeMSVC:
251   case Mangled::eManglingSchemeRustV0:
252   case Mangled::eManglingSchemeD:
253     return false;
254 
255   // Don't try and demangle things we can't categorize.
256   case Mangled::eManglingSchemeNone:
257     return true;
258   }
259   llvm_unreachable("unknown scheme!");
260 }
261 
262 void Symtab::InitNameIndexes() {
263   // Protected function, no need to lock mutex...
264   if (!m_name_indexes_computed) {
265     m_name_indexes_computed = true;
266     ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
267     LLDB_SCOPED_TIMER();
268 
269     // Collect all loaded language plugins.
270     std::vector<Language *> languages;
271     Language::ForEach([&languages](Language *l) {
272       languages.push_back(l);
273       return true;
274     });
275 
276     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
277     auto &basename_to_index =
278         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
279     auto &method_to_index =
280         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
281     auto &selector_to_index =
282         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
283     // Create the name index vector to be able to quickly search by name
284     const size_t num_symbols = m_symbols.size();
285     name_to_index.Reserve(num_symbols);
286 
287     // The "const char *" in "class_contexts" and backlog::value_type::second
288     // must come from a ConstString::GetCString()
289     std::set<const char *> class_contexts;
290     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
291     backlog.reserve(num_symbols / 2);
292 
293     // Instantiation of the demangler is expensive, so better use a single one
294     // for all entries during batch processing.
295     RichManglingContext rmc;
296     for (uint32_t value = 0; value < num_symbols; ++value) {
297       Symbol *symbol = &m_symbols[value];
298 
299       // Don't let trampolines get into the lookup by name map If we ever need
300       // the trampoline symbols to be searchable by name we can remove this and
301       // then possibly add a new bool to any of the Symtab functions that
302       // lookup symbols by name to indicate if they want trampolines. We also
303       // don't want any synthetic symbols with auto generated names in the
304       // name lookups.
305       if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
306         continue;
307 
308       // If the symbol's name string matched a Mangled::ManglingScheme, it is
309       // stored in the mangled field.
310       Mangled &mangled = symbol->GetMangled();
311       if (ConstString name = mangled.GetMangledName()) {
312         name_to_index.Append(name, value);
313 
314         if (symbol->ContainsLinkerAnnotations()) {
315           // If the symbol has linker annotations, also add the version without
316           // the annotations.
317           ConstString stripped = ConstString(
318               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
319           name_to_index.Append(stripped, value);
320         }
321 
322         const SymbolType type = symbol->GetType();
323         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
324           if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
325             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
326         }
327       }
328 
329       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
330       // stored in the demangled field.
331       if (ConstString name = mangled.GetDemangledName()) {
332         name_to_index.Append(name, value);
333 
334         if (symbol->ContainsLinkerAnnotations()) {
335           // If the symbol has linker annotations, also add the version without
336           // the annotations.
337           name = ConstString(
338               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
339           name_to_index.Append(name, value);
340         }
341 
342         // If the demangled name turns out to be an ObjC name, and is a category
343         // name, add the version without categories to the index too.
344         for (Language *lang : languages) {
345           for (auto variant : lang->GetMethodNameVariants(name)) {
346             if (variant.GetType() & lldb::eFunctionNameTypeSelector)
347               selector_to_index.Append(variant.GetName(), value);
348             else if (variant.GetType() & lldb::eFunctionNameTypeFull)
349               name_to_index.Append(variant.GetName(), value);
350             else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
351               method_to_index.Append(variant.GetName(), value);
352             else if (variant.GetType() & lldb::eFunctionNameTypeBase)
353               basename_to_index.Append(variant.GetName(), value);
354           }
355         }
356       }
357     }
358 
359     for (const auto &record : backlog) {
360       RegisterBacklogEntry(record.first, record.second, class_contexts);
361     }
362 
363     name_to_index.Sort();
364     name_to_index.SizeToFit();
365     selector_to_index.Sort();
366     selector_to_index.SizeToFit();
367     basename_to_index.Sort();
368     basename_to_index.SizeToFit();
369     method_to_index.Sort();
370     method_to_index.SizeToFit();
371   }
372 }
373 
374 void Symtab::RegisterMangledNameEntry(
375     uint32_t value, std::set<const char *> &class_contexts,
376     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
377     RichManglingContext &rmc) {
378   // Only register functions that have a base name.
379   rmc.ParseFunctionBaseName();
380   llvm::StringRef base_name = rmc.GetBufferRef();
381   if (base_name.empty())
382     return;
383 
384   // The base name will be our entry's name.
385   NameToIndexMap::Entry entry(ConstString(base_name), value);
386 
387   rmc.ParseFunctionDeclContextName();
388   llvm::StringRef decl_context = rmc.GetBufferRef();
389 
390   // Register functions with no context.
391   if (decl_context.empty()) {
392     // This has to be a basename
393     auto &basename_to_index =
394         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
395     basename_to_index.Append(entry);
396     // If there is no context (no namespaces or class scopes that come before
397     // the function name) then this also could be a fullname.
398     auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
399     name_to_index.Append(entry);
400     return;
401   }
402 
403   // Make sure we have a pool-string pointer and see if we already know the
404   // context name.
405   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
406   auto it = class_contexts.find(decl_context_ccstr);
407 
408   auto &method_to_index =
409       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
410   // Register constructors and destructors. They are methods and create
411   // declaration contexts.
412   if (rmc.IsCtorOrDtor()) {
413     method_to_index.Append(entry);
414     if (it == class_contexts.end())
415       class_contexts.insert(it, decl_context_ccstr);
416     return;
417   }
418 
419   // Register regular methods with a known declaration context.
420   if (it != class_contexts.end()) {
421     method_to_index.Append(entry);
422     return;
423   }
424 
425   // Regular methods in unknown declaration contexts are put to the backlog. We
426   // will revisit them once we processed all remaining symbols.
427   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
428 }
429 
430 void Symtab::RegisterBacklogEntry(
431     const NameToIndexMap::Entry &entry, const char *decl_context,
432     const std::set<const char *> &class_contexts) {
433   auto &method_to_index =
434       GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
435   auto it = class_contexts.find(decl_context);
436   if (it != class_contexts.end()) {
437     method_to_index.Append(entry);
438   } else {
439     // If we got here, we have something that had a context (was inside
440     // a namespace or class) yet we don't know the entry
441     method_to_index.Append(entry);
442     auto &basename_to_index =
443         GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
444     basename_to_index.Append(entry);
445   }
446 }
447 
448 void Symtab::PreloadSymbols() {
449   std::lock_guard<std::recursive_mutex> guard(m_mutex);
450   InitNameIndexes();
451 }
452 
453 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
454                                     bool add_demangled, bool add_mangled,
455                                     NameToIndexMap &name_to_index_map) const {
456   LLDB_SCOPED_TIMER();
457   if (add_demangled || add_mangled) {
458     std::lock_guard<std::recursive_mutex> guard(m_mutex);
459 
460     // Create the name index vector to be able to quickly search by name
461     const size_t num_indexes = indexes.size();
462     for (size_t i = 0; i < num_indexes; ++i) {
463       uint32_t value = indexes[i];
464       assert(i < m_symbols.size());
465       const Symbol *symbol = &m_symbols[value];
466 
467       const Mangled &mangled = symbol->GetMangled();
468       if (add_demangled) {
469         if (ConstString name = mangled.GetDemangledName())
470           name_to_index_map.Append(name, value);
471       }
472 
473       if (add_mangled) {
474         if (ConstString name = mangled.GetMangledName())
475           name_to_index_map.Append(name, value);
476       }
477     }
478   }
479 }
480 
481 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
482                                              std::vector<uint32_t> &indexes,
483                                              uint32_t start_idx,
484                                              uint32_t end_index) const {
485   std::lock_guard<std::recursive_mutex> guard(m_mutex);
486 
487   uint32_t prev_size = indexes.size();
488 
489   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
490 
491   for (uint32_t i = start_idx; i < count; ++i) {
492     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
493       indexes.push_back(i);
494   }
495 
496   return indexes.size() - prev_size;
497 }
498 
499 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
500     SymbolType symbol_type, uint32_t flags_value,
501     std::vector<uint32_t> &indexes, uint32_t start_idx,
502     uint32_t end_index) const {
503   std::lock_guard<std::recursive_mutex> guard(m_mutex);
504 
505   uint32_t prev_size = indexes.size();
506 
507   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
508 
509   for (uint32_t i = start_idx; i < count; ++i) {
510     if ((symbol_type == eSymbolTypeAny ||
511          m_symbols[i].GetType() == symbol_type) &&
512         m_symbols[i].GetFlags() == flags_value)
513       indexes.push_back(i);
514   }
515 
516   return indexes.size() - prev_size;
517 }
518 
519 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
520                                              Debug symbol_debug_type,
521                                              Visibility symbol_visibility,
522                                              std::vector<uint32_t> &indexes,
523                                              uint32_t start_idx,
524                                              uint32_t end_index) const {
525   std::lock_guard<std::recursive_mutex> guard(m_mutex);
526 
527   uint32_t prev_size = indexes.size();
528 
529   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
530 
531   for (uint32_t i = start_idx; i < count; ++i) {
532     if (symbol_type == eSymbolTypeAny ||
533         m_symbols[i].GetType() == symbol_type) {
534       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
535         indexes.push_back(i);
536     }
537   }
538 
539   return indexes.size() - prev_size;
540 }
541 
542 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
543   if (!m_symbols.empty()) {
544     const Symbol *first_symbol = &m_symbols[0];
545     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
546       return symbol - first_symbol;
547   }
548   return UINT32_MAX;
549 }
550 
551 struct SymbolSortInfo {
552   const bool sort_by_load_addr;
553   const Symbol *symbols;
554 };
555 
556 namespace {
557 struct SymbolIndexComparator {
558   const std::vector<Symbol> &symbols;
559   std::vector<lldb::addr_t> &addr_cache;
560 
561   // Getting from the symbol to the Address to the File Address involves some
562   // work. Since there are potentially many symbols here, and we're using this
563   // for sorting so we're going to be computing the address many times, cache
564   // that in addr_cache. The array passed in has to be the same size as the
565   // symbols array passed into the member variable symbols, and should be
566   // initialized with LLDB_INVALID_ADDRESS.
567   // NOTE: You have to make addr_cache externally and pass it in because
568   // std::stable_sort
569   // makes copies of the comparator it is initially passed in, and you end up
570   // spending huge amounts of time copying this array...
571 
572   SymbolIndexComparator(const std::vector<Symbol> &s,
573                         std::vector<lldb::addr_t> &a)
574       : symbols(s), addr_cache(a) {
575     assert(symbols.size() == addr_cache.size());
576   }
577   bool operator()(uint32_t index_a, uint32_t index_b) {
578     addr_t value_a = addr_cache[index_a];
579     if (value_a == LLDB_INVALID_ADDRESS) {
580       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
581       addr_cache[index_a] = value_a;
582     }
583 
584     addr_t value_b = addr_cache[index_b];
585     if (value_b == LLDB_INVALID_ADDRESS) {
586       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
587       addr_cache[index_b] = value_b;
588     }
589 
590     if (value_a == value_b) {
591       // The if the values are equal, use the original symbol user ID
592       lldb::user_id_t uid_a = symbols[index_a].GetID();
593       lldb::user_id_t uid_b = symbols[index_b].GetID();
594       if (uid_a < uid_b)
595         return true;
596       if (uid_a > uid_b)
597         return false;
598       return false;
599     } else if (value_a < value_b)
600       return true;
601 
602     return false;
603   }
604 };
605 }
606 
607 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
608                                       bool remove_duplicates) const {
609   std::lock_guard<std::recursive_mutex> guard(m_mutex);
610   LLDB_SCOPED_TIMER();
611   // No need to sort if we have zero or one items...
612   if (indexes.size() <= 1)
613     return;
614 
615   // Sort the indexes in place using std::stable_sort.
616   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
617   // for performance, not correctness.  The indexes vector tends to be "close"
618   // to sorted, which the stable sort handles better.
619 
620   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
621 
622   SymbolIndexComparator comparator(m_symbols, addr_cache);
623   std::stable_sort(indexes.begin(), indexes.end(), comparator);
624 
625   // Remove any duplicates if requested
626   if (remove_duplicates) {
627     auto last = std::unique(indexes.begin(), indexes.end());
628     indexes.erase(last, indexes.end());
629   }
630 }
631 
632 uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
633                                 std::vector<uint32_t> &indexes) {
634   auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
635   const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
636   if (count)
637     return count;
638   // Synthetic symbol names are not added to the name indexes, but they start
639   // with a prefix and end with a the symbol UserID. This allows users to find
640   // these symbols without having to add them to the name indexes. These
641   // queries will not happen very often since the names don't mean anything, so
642   // performance is not paramount in this case.
643   llvm::StringRef name = symbol_name.GetStringRef();
644   // String the synthetic prefix if the name starts with it.
645   if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
646     return 0; // Not a synthetic symbol name
647 
648   // Extract the user ID from the symbol name
649   unsigned long long uid = 0;
650   if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
651     return 0; // Failed to extract the user ID as an integer
652   Symbol *symbol = FindSymbolByID(uid);
653   if (symbol == nullptr)
654     return 0;
655   const uint32_t symbol_idx = GetIndexForSymbol(symbol);
656   if (symbol_idx == UINT32_MAX)
657     return 0;
658   indexes.push_back(symbol_idx);
659   return 1;
660 }
661 
662 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
663                                              std::vector<uint32_t> &indexes) {
664   std::lock_guard<std::recursive_mutex> guard(m_mutex);
665 
666   LLDB_SCOPED_TIMER();
667   if (symbol_name) {
668     if (!m_name_indexes_computed)
669       InitNameIndexes();
670 
671     return GetNameIndexes(symbol_name, indexes);
672   }
673   return 0;
674 }
675 
676 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
677                                              Debug symbol_debug_type,
678                                              Visibility symbol_visibility,
679                                              std::vector<uint32_t> &indexes) {
680   std::lock_guard<std::recursive_mutex> guard(m_mutex);
681 
682   LLDB_SCOPED_TIMER();
683   if (symbol_name) {
684     const size_t old_size = indexes.size();
685     if (!m_name_indexes_computed)
686       InitNameIndexes();
687 
688     std::vector<uint32_t> all_name_indexes;
689     const size_t name_match_count =
690         GetNameIndexes(symbol_name, all_name_indexes);
691     for (size_t i = 0; i < name_match_count; ++i) {
692       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
693                              symbol_visibility))
694         indexes.push_back(all_name_indexes[i]);
695     }
696     return indexes.size() - old_size;
697   }
698   return 0;
699 }
700 
701 uint32_t
702 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
703                                            SymbolType symbol_type,
704                                            std::vector<uint32_t> &indexes) {
705   std::lock_guard<std::recursive_mutex> guard(m_mutex);
706 
707   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
708     std::vector<uint32_t>::iterator pos = indexes.begin();
709     while (pos != indexes.end()) {
710       if (symbol_type == eSymbolTypeAny ||
711           m_symbols[*pos].GetType() == symbol_type)
712         ++pos;
713       else
714         pos = indexes.erase(pos);
715     }
716   }
717   return indexes.size();
718 }
719 
720 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
721     ConstString symbol_name, SymbolType symbol_type,
722     Debug symbol_debug_type, Visibility symbol_visibility,
723     std::vector<uint32_t> &indexes) {
724   std::lock_guard<std::recursive_mutex> guard(m_mutex);
725 
726   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
727                                   symbol_visibility, indexes) > 0) {
728     std::vector<uint32_t>::iterator pos = indexes.begin();
729     while (pos != indexes.end()) {
730       if (symbol_type == eSymbolTypeAny ||
731           m_symbols[*pos].GetType() == symbol_type)
732         ++pos;
733       else
734         pos = indexes.erase(pos);
735     }
736   }
737   return indexes.size();
738 }
739 
740 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
741     const RegularExpression &regexp, SymbolType symbol_type,
742     std::vector<uint32_t> &indexes) {
743   std::lock_guard<std::recursive_mutex> guard(m_mutex);
744 
745   uint32_t prev_size = indexes.size();
746   uint32_t sym_end = m_symbols.size();
747 
748   for (uint32_t i = 0; i < sym_end; i++) {
749     if (symbol_type == eSymbolTypeAny ||
750         m_symbols[i].GetType() == symbol_type) {
751       const char *name = m_symbols[i].GetName().AsCString();
752       if (name) {
753         if (regexp.Execute(name))
754           indexes.push_back(i);
755       }
756     }
757   }
758   return indexes.size() - prev_size;
759 }
760 
761 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
762     const RegularExpression &regexp, SymbolType symbol_type,
763     Debug symbol_debug_type, Visibility symbol_visibility,
764     std::vector<uint32_t> &indexes) {
765   std::lock_guard<std::recursive_mutex> guard(m_mutex);
766 
767   uint32_t prev_size = indexes.size();
768   uint32_t sym_end = m_symbols.size();
769 
770   for (uint32_t i = 0; i < sym_end; i++) {
771     if (symbol_type == eSymbolTypeAny ||
772         m_symbols[i].GetType() == symbol_type) {
773       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
774         continue;
775 
776       const char *name = m_symbols[i].GetName().AsCString();
777       if (name) {
778         if (regexp.Execute(name))
779           indexes.push_back(i);
780       }
781     }
782   }
783   return indexes.size() - prev_size;
784 }
785 
786 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
787                                    Debug symbol_debug_type,
788                                    Visibility symbol_visibility,
789                                    uint32_t &start_idx) {
790   std::lock_guard<std::recursive_mutex> guard(m_mutex);
791 
792   const size_t count = m_symbols.size();
793   for (size_t idx = start_idx; idx < count; ++idx) {
794     if (symbol_type == eSymbolTypeAny ||
795         m_symbols[idx].GetType() == symbol_type) {
796       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
797         start_idx = idx;
798         return &m_symbols[idx];
799       }
800     }
801   }
802   return nullptr;
803 }
804 
805 void
806 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
807                                       SymbolType symbol_type,
808                                       std::vector<uint32_t> &symbol_indexes) {
809   std::lock_guard<std::recursive_mutex> guard(m_mutex);
810 
811   LLDB_SCOPED_TIMER();
812   // Initialize all of the lookup by name indexes before converting NAME to a
813   // uniqued string NAME_STR below.
814   if (!m_name_indexes_computed)
815     InitNameIndexes();
816 
817   if (name) {
818     // The string table did have a string that matched, but we need to check
819     // the symbols and match the symbol_type if any was given.
820     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
821   }
822 }
823 
824 void Symtab::FindAllSymbolsWithNameAndType(
825     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
826     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
827   std::lock_guard<std::recursive_mutex> guard(m_mutex);
828 
829   LLDB_SCOPED_TIMER();
830   // Initialize all of the lookup by name indexes before converting NAME to a
831   // uniqued string NAME_STR below.
832   if (!m_name_indexes_computed)
833     InitNameIndexes();
834 
835   if (name) {
836     // The string table did have a string that matched, but we need to check
837     // the symbols and match the symbol_type if any was given.
838     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
839                                        symbol_visibility, symbol_indexes);
840   }
841 }
842 
843 void Symtab::FindAllSymbolsMatchingRexExAndType(
844     const RegularExpression &regex, SymbolType symbol_type,
845     Debug symbol_debug_type, Visibility symbol_visibility,
846     std::vector<uint32_t> &symbol_indexes) {
847   std::lock_guard<std::recursive_mutex> guard(m_mutex);
848 
849   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
850                                           symbol_visibility, symbol_indexes);
851 }
852 
853 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
854                                                SymbolType symbol_type,
855                                                Debug symbol_debug_type,
856                                                Visibility symbol_visibility) {
857   std::lock_guard<std::recursive_mutex> guard(m_mutex);
858   LLDB_SCOPED_TIMER();
859   if (!m_name_indexes_computed)
860     InitNameIndexes();
861 
862   if (name) {
863     std::vector<uint32_t> matching_indexes;
864     // The string table did have a string that matched, but we need to check
865     // the symbols and match the symbol_type if any was given.
866     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
867                                            symbol_visibility,
868                                            matching_indexes)) {
869       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
870       for (pos = matching_indexes.begin(); pos != end; ++pos) {
871         Symbol *symbol = SymbolAtIndex(*pos);
872 
873         if (symbol->Compare(name, symbol_type))
874           return symbol;
875       }
876     }
877   }
878   return nullptr;
879 }
880 
881 typedef struct {
882   const Symtab *symtab;
883   const addr_t file_addr;
884   Symbol *match_symbol;
885   const uint32_t *match_index_ptr;
886   addr_t match_offset;
887 } SymbolSearchInfo;
888 
889 // Add all the section file start address & size to the RangeVector, recusively
890 // adding any children sections.
891 static void AddSectionsToRangeMap(SectionList *sectlist,
892                                   RangeVector<addr_t, addr_t> &section_ranges) {
893   const int num_sections = sectlist->GetNumSections(0);
894   for (int i = 0; i < num_sections; i++) {
895     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
896     if (sect_sp) {
897       SectionList &child_sectlist = sect_sp->GetChildren();
898 
899       // If this section has children, add the children to the RangeVector.
900       // Else add this section to the RangeVector.
901       if (child_sectlist.GetNumSections(0) > 0) {
902         AddSectionsToRangeMap(&child_sectlist, section_ranges);
903       } else {
904         size_t size = sect_sp->GetByteSize();
905         if (size > 0) {
906           addr_t base_addr = sect_sp->GetFileAddress();
907           RangeVector<addr_t, addr_t>::Entry entry;
908           entry.SetRangeBase(base_addr);
909           entry.SetByteSize(size);
910           section_ranges.Append(entry);
911         }
912       }
913     }
914   }
915 }
916 
917 void Symtab::InitAddressIndexes() {
918   // Protected function, no need to lock mutex...
919   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
920     m_file_addr_to_index_computed = true;
921 
922     FileRangeToIndexMap::Entry entry;
923     const_iterator begin = m_symbols.begin();
924     const_iterator end = m_symbols.end();
925     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
926       if (pos->ValueIsAddress()) {
927         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
928         entry.SetByteSize(pos->GetByteSize());
929         entry.data = std::distance(begin, pos);
930         m_file_addr_to_index.Append(entry);
931       }
932     }
933     const size_t num_entries = m_file_addr_to_index.GetSize();
934     if (num_entries > 0) {
935       m_file_addr_to_index.Sort();
936 
937       // Create a RangeVector with the start & size of all the sections for
938       // this objfile.  We'll need to check this for any FileRangeToIndexMap
939       // entries with an uninitialized size, which could potentially be a large
940       // number so reconstituting the weak pointer is busywork when it is
941       // invariant information.
942       SectionList *sectlist = m_objfile->GetSectionList();
943       RangeVector<addr_t, addr_t> section_ranges;
944       if (sectlist) {
945         AddSectionsToRangeMap(sectlist, section_ranges);
946         section_ranges.Sort();
947       }
948 
949       // Iterate through the FileRangeToIndexMap and fill in the size for any
950       // entries that didn't already have a size from the Symbol (e.g. if we
951       // have a plain linker symbol with an address only, instead of debug info
952       // where we get an address and a size and a type, etc.)
953       for (size_t i = 0; i < num_entries; i++) {
954         FileRangeToIndexMap::Entry *entry =
955             m_file_addr_to_index.GetMutableEntryAtIndex(i);
956         if (entry->GetByteSize() == 0) {
957           addr_t curr_base_addr = entry->GetRangeBase();
958           const RangeVector<addr_t, addr_t>::Entry *containing_section =
959               section_ranges.FindEntryThatContains(curr_base_addr);
960 
961           // Use the end of the section as the default max size of the symbol
962           addr_t sym_size = 0;
963           if (containing_section) {
964             sym_size =
965                 containing_section->GetByteSize() -
966                 (entry->GetRangeBase() - containing_section->GetRangeBase());
967           }
968 
969           for (size_t j = i; j < num_entries; j++) {
970             FileRangeToIndexMap::Entry *next_entry =
971                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
972             addr_t next_base_addr = next_entry->GetRangeBase();
973             if (next_base_addr > curr_base_addr) {
974               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
975 
976               // Take the difference between this symbol and the next one as
977               // its size, if it is less than the size of the section.
978               if (sym_size == 0 || size_to_next_symbol < sym_size) {
979                 sym_size = size_to_next_symbol;
980               }
981               break;
982             }
983           }
984 
985           if (sym_size > 0) {
986             entry->SetByteSize(sym_size);
987             Symbol &symbol = m_symbols[entry->data];
988             symbol.SetByteSize(sym_size);
989             symbol.SetSizeIsSynthesized(true);
990           }
991         }
992       }
993 
994       // Sort again in case the range size changes the ordering
995       m_file_addr_to_index.Sort();
996     }
997   }
998 }
999 
1000 void Symtab::CalculateSymbolSizes() {
1001   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1002   // Size computation happens inside InitAddressIndexes.
1003   InitAddressIndexes();
1004 }
1005 
1006 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1007   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1008   if (!m_file_addr_to_index_computed)
1009     InitAddressIndexes();
1010 
1011   const FileRangeToIndexMap::Entry *entry =
1012       m_file_addr_to_index.FindEntryStartsAt(file_addr);
1013   if (entry) {
1014     Symbol *symbol = SymbolAtIndex(entry->data);
1015     if (symbol->GetFileAddress() == file_addr)
1016       return symbol;
1017   }
1018   return nullptr;
1019 }
1020 
1021 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1022   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1023 
1024   if (!m_file_addr_to_index_computed)
1025     InitAddressIndexes();
1026 
1027   const FileRangeToIndexMap::Entry *entry =
1028       m_file_addr_to_index.FindEntryThatContains(file_addr);
1029   if (entry) {
1030     Symbol *symbol = SymbolAtIndex(entry->data);
1031     if (symbol->ContainsFileAddress(file_addr))
1032       return symbol;
1033   }
1034   return nullptr;
1035 }
1036 
1037 void Symtab::ForEachSymbolContainingFileAddress(
1038     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1039   std::lock_guard<std::recursive_mutex> guard(m_mutex);
1040 
1041   if (!m_file_addr_to_index_computed)
1042     InitAddressIndexes();
1043 
1044   std::vector<uint32_t> all_addr_indexes;
1045 
1046   // Get all symbols with file_addr
1047   const size_t addr_match_count =
1048       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1049                                                        all_addr_indexes);
1050 
1051   for (size_t i = 0; i < addr_match_count; ++i) {
1052     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1053     if (symbol->ContainsFileAddress(file_addr)) {
1054       if (!callback(symbol))
1055         break;
1056     }
1057   }
1058 }
1059 
1060 void Symtab::SymbolIndicesToSymbolContextList(
1061     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1062   // No need to protect this call using m_mutex all other method calls are
1063   // already thread safe.
1064 
1065   const bool merge_symbol_into_function = true;
1066   size_t num_indices = symbol_indexes.size();
1067   if (num_indices > 0) {
1068     SymbolContext sc;
1069     sc.module_sp = m_objfile->GetModule();
1070     for (size_t i = 0; i < num_indices; i++) {
1071       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1072       if (sc.symbol)
1073         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1074     }
1075   }
1076 }
1077 
1078 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1079                                  SymbolContextList &sc_list) {
1080   std::vector<uint32_t> symbol_indexes;
1081 
1082   // eFunctionNameTypeAuto should be pre-resolved by a call to
1083   // Module::LookupInfo::LookupInfo()
1084   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1085 
1086   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1087     std::vector<uint32_t> temp_symbol_indexes;
1088     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1089 
1090     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1091     if (temp_symbol_indexes_size > 0) {
1092       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1093       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1094         SymbolContext sym_ctx;
1095         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1096         if (sym_ctx.symbol) {
1097           switch (sym_ctx.symbol->GetType()) {
1098           case eSymbolTypeCode:
1099           case eSymbolTypeResolver:
1100           case eSymbolTypeReExported:
1101           case eSymbolTypeAbsolute:
1102             symbol_indexes.push_back(temp_symbol_indexes[i]);
1103             break;
1104           default:
1105             break;
1106           }
1107         }
1108       }
1109     }
1110   }
1111 
1112   if (!m_name_indexes_computed)
1113     InitNameIndexes();
1114 
1115   for (lldb::FunctionNameType type :
1116        {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
1117         lldb::eFunctionNameTypeSelector}) {
1118     if (name_type_mask & type) {
1119       auto map = GetNameToSymbolIndexMap(type);
1120 
1121       const UniqueCStringMap<uint32_t>::Entry *match;
1122       for (match = map.FindFirstValueForName(name); match != nullptr;
1123            match = map.FindNextValueForName(match)) {
1124         symbol_indexes.push_back(match->value);
1125       }
1126     }
1127   }
1128 
1129   if (!symbol_indexes.empty()) {
1130     llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
1131     symbol_indexes.erase(
1132         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1133         symbol_indexes.end());
1134     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1135   }
1136 }
1137 
1138 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1139   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1140   if (child_idx != UINT32_MAX && child_idx > 0) {
1141     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1142       const Symbol *symbol = SymbolAtIndex(idx);
1143       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1144       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1145         return symbol;
1146     }
1147   }
1148   return nullptr;
1149 }
1150