xref: /freebsd/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===-- Symtab.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "Plugins/Language/ObjC/ObjCLanguage.h"
13 
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/RichManglingContext.h"
16 #include "lldb/Core/Section.h"
17 #include "lldb/Symbol/ObjectFile.h"
18 #include "lldb/Symbol/Symbol.h"
19 #include "lldb/Symbol/SymbolContext.h"
20 #include "lldb/Symbol/Symtab.h"
21 #include "lldb/Utility/RegularExpression.h"
22 #include "lldb/Utility/Stream.h"
23 #include "lldb/Utility/Timer.h"
24 
25 #include "llvm/ADT/StringRef.h"
26 
27 using namespace lldb;
28 using namespace lldb_private;
29 
30 Symtab::Symtab(ObjectFile *objfile)
31     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
32       m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
33       m_name_indexes_computed(false) {}
34 
35 Symtab::~Symtab() {}
36 
37 void Symtab::Reserve(size_t count) {
38   // Clients should grab the mutex from this symbol table and lock it manually
39   // when calling this function to avoid performance issues.
40   m_symbols.reserve(count);
41 }
42 
43 Symbol *Symtab::Resize(size_t count) {
44   // Clients should grab the mutex from this symbol table and lock it manually
45   // when calling this function to avoid performance issues.
46   m_symbols.resize(count);
47   return m_symbols.empty() ? nullptr : &m_symbols[0];
48 }
49 
50 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
51   // Clients should grab the mutex from this symbol table and lock it manually
52   // when calling this function to avoid performance issues.
53   uint32_t symbol_idx = m_symbols.size();
54   m_name_to_index.Clear();
55   m_file_addr_to_index.Clear();
56   m_symbols.push_back(symbol);
57   m_file_addr_to_index_computed = false;
58   m_name_indexes_computed = false;
59   return symbol_idx;
60 }
61 
62 size_t Symtab::GetNumSymbols() const {
63   std::lock_guard<std::recursive_mutex> guard(m_mutex);
64   return m_symbols.size();
65 }
66 
67 void Symtab::SectionFileAddressesChanged() {
68   m_name_to_index.Clear();
69   m_file_addr_to_index_computed = false;
70 }
71 
72 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
73                   Mangled::NamePreference name_preference) {
74   std::lock_guard<std::recursive_mutex> guard(m_mutex);
75 
76   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
77   s->Indent();
78   const FileSpec &file_spec = m_objfile->GetFileSpec();
79   const char *object_name = nullptr;
80   if (m_objfile->GetModule())
81     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
82 
83   if (file_spec)
84     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
85               file_spec.GetPath().c_str(), object_name ? "(" : "",
86               object_name ? object_name : "", object_name ? ")" : "",
87               (uint64_t)m_symbols.size());
88   else
89     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
90 
91   if (!m_symbols.empty()) {
92     switch (sort_order) {
93     case eSortOrderNone: {
94       s->PutCString(":\n");
95       DumpSymbolHeader(s);
96       const_iterator begin = m_symbols.begin();
97       const_iterator end = m_symbols.end();
98       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
99         s->Indent();
100         pos->Dump(s, target, std::distance(begin, pos), name_preference);
101       }
102     } break;
103 
104     case eSortOrderByName: {
105       // Although we maintain a lookup by exact name map, the table isn't
106       // sorted by name. So we must make the ordered symbol list up ourselves.
107       s->PutCString(" (sorted by name):\n");
108       DumpSymbolHeader(s);
109 
110       std::multimap<llvm::StringRef, const Symbol *> name_map;
111       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
112            pos != end; ++pos) {
113         const char *name = pos->GetName().AsCString();
114         if (name && name[0])
115           name_map.insert(std::make_pair(name, &(*pos)));
116       }
117 
118       for (const auto &name_to_symbol : name_map) {
119         const Symbol *symbol = name_to_symbol.second;
120         s->Indent();
121         symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
122       }
123     } break;
124 
125     case eSortOrderByAddress:
126       s->PutCString(" (sorted by address):\n");
127       DumpSymbolHeader(s);
128       if (!m_file_addr_to_index_computed)
129         InitAddressIndexes();
130       const size_t num_entries = m_file_addr_to_index.GetSize();
131       for (size_t i = 0; i < num_entries; ++i) {
132         s->Indent();
133         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
134         m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
135       }
136       break;
137     }
138   } else {
139     s->PutCString("\n");
140   }
141 }
142 
143 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
144                   Mangled::NamePreference name_preference) const {
145   std::lock_guard<std::recursive_mutex> guard(m_mutex);
146 
147   const size_t num_symbols = GetNumSymbols();
148   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
149   s->Indent();
150   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
151             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
152   s->IndentMore();
153 
154   if (!indexes.empty()) {
155     std::vector<uint32_t>::const_iterator pos;
156     std::vector<uint32_t>::const_iterator end = indexes.end();
157     DumpSymbolHeader(s);
158     for (pos = indexes.begin(); pos != end; ++pos) {
159       size_t idx = *pos;
160       if (idx < num_symbols) {
161         s->Indent();
162         m_symbols[idx].Dump(s, target, idx, name_preference);
163       }
164     }
165   }
166   s->IndentLess();
167 }
168 
169 void Symtab::DumpSymbolHeader(Stream *s) {
170   s->Indent("               Debug symbol\n");
171   s->Indent("               |Synthetic symbol\n");
172   s->Indent("               ||Externally Visible\n");
173   s->Indent("               |||\n");
174   s->Indent("Index   UserID DSX Type            File Address/Value Load "
175             "Address       Size               Flags      Name\n");
176   s->Indent("------- ------ --- --------------- ------------------ "
177             "------------------ ------------------ ---------- "
178             "----------------------------------\n");
179 }
180 
181 static int CompareSymbolID(const void *key, const void *p) {
182   const user_id_t match_uid = *(const user_id_t *)key;
183   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
184   if (match_uid < symbol_uid)
185     return -1;
186   if (match_uid > symbol_uid)
187     return 1;
188   return 0;
189 }
190 
191 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
192   std::lock_guard<std::recursive_mutex> guard(m_mutex);
193 
194   Symbol *symbol =
195       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
196                           sizeof(m_symbols[0]), CompareSymbolID);
197   return symbol;
198 }
199 
200 Symbol *Symtab::SymbolAtIndex(size_t idx) {
201   // Clients should grab the mutex from this symbol table and lock it manually
202   // when calling this function to avoid performance issues.
203   if (idx < m_symbols.size())
204     return &m_symbols[idx];
205   return nullptr;
206 }
207 
208 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
209   // Clients should grab the mutex from this symbol table and lock it manually
210   // when calling this function to avoid performance issues.
211   if (idx < m_symbols.size())
212     return &m_symbols[idx];
213   return nullptr;
214 }
215 
216 static bool lldb_skip_name(llvm::StringRef mangled,
217                            Mangled::ManglingScheme scheme) {
218   switch (scheme) {
219   case Mangled::eManglingSchemeItanium: {
220     if (mangled.size() < 3 || !mangled.startswith("_Z"))
221       return true;
222 
223     // Avoid the following types of symbols in the index.
224     switch (mangled[2]) {
225     case 'G': // guard variables
226     case 'T': // virtual tables, VTT structures, typeinfo structures + names
227     case 'Z': // named local entities (if we eventually handle
228               // eSymbolTypeData, we will want this back)
229       return true;
230 
231     default:
232       break;
233     }
234 
235     // Include this name in the index.
236     return false;
237   }
238 
239   // No filters for this scheme yet. Include all names in indexing.
240   case Mangled::eManglingSchemeMSVC:
241     return false;
242 
243   // Don't try and demangle things we can't categorize.
244   case Mangled::eManglingSchemeNone:
245     return true;
246   }
247   llvm_unreachable("unknown scheme!");
248 }
249 
250 void Symtab::InitNameIndexes() {
251   // Protected function, no need to lock mutex...
252   if (!m_name_indexes_computed) {
253     m_name_indexes_computed = true;
254     LLDB_SCOPED_TIMER();
255     // Create the name index vector to be able to quickly search by name
256     const size_t num_symbols = m_symbols.size();
257     m_name_to_index.Reserve(num_symbols);
258 
259     // The "const char *" in "class_contexts" and backlog::value_type::second
260     // must come from a ConstString::GetCString()
261     std::set<const char *> class_contexts;
262     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
263     backlog.reserve(num_symbols / 2);
264 
265     // Instantiation of the demangler is expensive, so better use a single one
266     // for all entries during batch processing.
267     RichManglingContext rmc;
268     for (uint32_t value = 0; value < num_symbols; ++value) {
269       Symbol *symbol = &m_symbols[value];
270 
271       // Don't let trampolines get into the lookup by name map If we ever need
272       // the trampoline symbols to be searchable by name we can remove this and
273       // then possibly add a new bool to any of the Symtab functions that
274       // lookup symbols by name to indicate if they want trampolines.
275       if (symbol->IsTrampoline())
276         continue;
277 
278       // If the symbol's name string matched a Mangled::ManglingScheme, it is
279       // stored in the mangled field.
280       Mangled &mangled = symbol->GetMangled();
281       if (ConstString name = mangled.GetMangledName()) {
282         m_name_to_index.Append(name, value);
283 
284         if (symbol->ContainsLinkerAnnotations()) {
285           // If the symbol has linker annotations, also add the version without
286           // the annotations.
287           ConstString stripped = ConstString(
288               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
289           m_name_to_index.Append(stripped, value);
290         }
291 
292         const SymbolType type = symbol->GetType();
293         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
294           if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
295             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
296         }
297       }
298 
299       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
300       // stored in the demangled field.
301       if (ConstString name = mangled.GetDemangledName()) {
302         m_name_to_index.Append(name, value);
303 
304         if (symbol->ContainsLinkerAnnotations()) {
305           // If the symbol has linker annotations, also add the version without
306           // the annotations.
307           name = ConstString(
308               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
309           m_name_to_index.Append(name, value);
310         }
311 
312         // If the demangled name turns out to be an ObjC name, and is a category
313         // name, add the version without categories to the index too.
314         ObjCLanguage::MethodName objc_method(name.GetStringRef(), true);
315         if (objc_method.IsValid(true)) {
316           m_selector_to_index.Append(objc_method.GetSelector(), value);
317 
318           if (ConstString objc_method_no_category =
319                   objc_method.GetFullNameWithoutCategory(true))
320             m_name_to_index.Append(objc_method_no_category, value);
321         }
322       }
323     }
324 
325     for (const auto &record : backlog) {
326       RegisterBacklogEntry(record.first, record.second, class_contexts);
327     }
328 
329     m_name_to_index.Sort();
330     m_name_to_index.SizeToFit();
331     m_selector_to_index.Sort();
332     m_selector_to_index.SizeToFit();
333     m_basename_to_index.Sort();
334     m_basename_to_index.SizeToFit();
335     m_method_to_index.Sort();
336     m_method_to_index.SizeToFit();
337   }
338 }
339 
340 void Symtab::RegisterMangledNameEntry(
341     uint32_t value, std::set<const char *> &class_contexts,
342     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
343     RichManglingContext &rmc) {
344   // Only register functions that have a base name.
345   rmc.ParseFunctionBaseName();
346   llvm::StringRef base_name = rmc.GetBufferRef();
347   if (base_name.empty())
348     return;
349 
350   // The base name will be our entry's name.
351   NameToIndexMap::Entry entry(ConstString(base_name), value);
352 
353   rmc.ParseFunctionDeclContextName();
354   llvm::StringRef decl_context = rmc.GetBufferRef();
355 
356   // Register functions with no context.
357   if (decl_context.empty()) {
358     // This has to be a basename
359     m_basename_to_index.Append(entry);
360     // If there is no context (no namespaces or class scopes that come before
361     // the function name) then this also could be a fullname.
362     m_name_to_index.Append(entry);
363     return;
364   }
365 
366   // Make sure we have a pool-string pointer and see if we already know the
367   // context name.
368   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
369   auto it = class_contexts.find(decl_context_ccstr);
370 
371   // Register constructors and destructors. They are methods and create
372   // declaration contexts.
373   if (rmc.IsCtorOrDtor()) {
374     m_method_to_index.Append(entry);
375     if (it == class_contexts.end())
376       class_contexts.insert(it, decl_context_ccstr);
377     return;
378   }
379 
380   // Register regular methods with a known declaration context.
381   if (it != class_contexts.end()) {
382     m_method_to_index.Append(entry);
383     return;
384   }
385 
386   // Regular methods in unknown declaration contexts are put to the backlog. We
387   // will revisit them once we processed all remaining symbols.
388   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
389 }
390 
391 void Symtab::RegisterBacklogEntry(
392     const NameToIndexMap::Entry &entry, const char *decl_context,
393     const std::set<const char *> &class_contexts) {
394   auto it = class_contexts.find(decl_context);
395   if (it != class_contexts.end()) {
396     m_method_to_index.Append(entry);
397   } else {
398     // If we got here, we have something that had a context (was inside
399     // a namespace or class) yet we don't know the entry
400     m_method_to_index.Append(entry);
401     m_basename_to_index.Append(entry);
402   }
403 }
404 
405 void Symtab::PreloadSymbols() {
406   std::lock_guard<std::recursive_mutex> guard(m_mutex);
407   InitNameIndexes();
408 }
409 
410 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
411                                     bool add_demangled, bool add_mangled,
412                                     NameToIndexMap &name_to_index_map) const {
413   LLDB_SCOPED_TIMER();
414   if (add_demangled || add_mangled) {
415     std::lock_guard<std::recursive_mutex> guard(m_mutex);
416 
417     // Create the name index vector to be able to quickly search by name
418     const size_t num_indexes = indexes.size();
419     for (size_t i = 0; i < num_indexes; ++i) {
420       uint32_t value = indexes[i];
421       assert(i < m_symbols.size());
422       const Symbol *symbol = &m_symbols[value];
423 
424       const Mangled &mangled = symbol->GetMangled();
425       if (add_demangled) {
426         if (ConstString name = mangled.GetDemangledName())
427           name_to_index_map.Append(name, value);
428       }
429 
430       if (add_mangled) {
431         if (ConstString name = mangled.GetMangledName())
432           name_to_index_map.Append(name, value);
433       }
434     }
435   }
436 }
437 
438 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
439                                              std::vector<uint32_t> &indexes,
440                                              uint32_t start_idx,
441                                              uint32_t end_index) const {
442   std::lock_guard<std::recursive_mutex> guard(m_mutex);
443 
444   uint32_t prev_size = indexes.size();
445 
446   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
447 
448   for (uint32_t i = start_idx; i < count; ++i) {
449     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
450       indexes.push_back(i);
451   }
452 
453   return indexes.size() - prev_size;
454 }
455 
456 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
457     SymbolType symbol_type, uint32_t flags_value,
458     std::vector<uint32_t> &indexes, uint32_t start_idx,
459     uint32_t end_index) const {
460   std::lock_guard<std::recursive_mutex> guard(m_mutex);
461 
462   uint32_t prev_size = indexes.size();
463 
464   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
465 
466   for (uint32_t i = start_idx; i < count; ++i) {
467     if ((symbol_type == eSymbolTypeAny ||
468          m_symbols[i].GetType() == symbol_type) &&
469         m_symbols[i].GetFlags() == flags_value)
470       indexes.push_back(i);
471   }
472 
473   return indexes.size() - prev_size;
474 }
475 
476 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
477                                              Debug symbol_debug_type,
478                                              Visibility symbol_visibility,
479                                              std::vector<uint32_t> &indexes,
480                                              uint32_t start_idx,
481                                              uint32_t end_index) const {
482   std::lock_guard<std::recursive_mutex> guard(m_mutex);
483 
484   uint32_t prev_size = indexes.size();
485 
486   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
487 
488   for (uint32_t i = start_idx; i < count; ++i) {
489     if (symbol_type == eSymbolTypeAny ||
490         m_symbols[i].GetType() == symbol_type) {
491       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
492         indexes.push_back(i);
493     }
494   }
495 
496   return indexes.size() - prev_size;
497 }
498 
499 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
500   if (!m_symbols.empty()) {
501     const Symbol *first_symbol = &m_symbols[0];
502     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
503       return symbol - first_symbol;
504   }
505   return UINT32_MAX;
506 }
507 
508 struct SymbolSortInfo {
509   const bool sort_by_load_addr;
510   const Symbol *symbols;
511 };
512 
513 namespace {
514 struct SymbolIndexComparator {
515   const std::vector<Symbol> &symbols;
516   std::vector<lldb::addr_t> &addr_cache;
517 
518   // Getting from the symbol to the Address to the File Address involves some
519   // work. Since there are potentially many symbols here, and we're using this
520   // for sorting so we're going to be computing the address many times, cache
521   // that in addr_cache. The array passed in has to be the same size as the
522   // symbols array passed into the member variable symbols, and should be
523   // initialized with LLDB_INVALID_ADDRESS.
524   // NOTE: You have to make addr_cache externally and pass it in because
525   // std::stable_sort
526   // makes copies of the comparator it is initially passed in, and you end up
527   // spending huge amounts of time copying this array...
528 
529   SymbolIndexComparator(const std::vector<Symbol> &s,
530                         std::vector<lldb::addr_t> &a)
531       : symbols(s), addr_cache(a) {
532     assert(symbols.size() == addr_cache.size());
533   }
534   bool operator()(uint32_t index_a, uint32_t index_b) {
535     addr_t value_a = addr_cache[index_a];
536     if (value_a == LLDB_INVALID_ADDRESS) {
537       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
538       addr_cache[index_a] = value_a;
539     }
540 
541     addr_t value_b = addr_cache[index_b];
542     if (value_b == LLDB_INVALID_ADDRESS) {
543       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
544       addr_cache[index_b] = value_b;
545     }
546 
547     if (value_a == value_b) {
548       // The if the values are equal, use the original symbol user ID
549       lldb::user_id_t uid_a = symbols[index_a].GetID();
550       lldb::user_id_t uid_b = symbols[index_b].GetID();
551       if (uid_a < uid_b)
552         return true;
553       if (uid_a > uid_b)
554         return false;
555       return false;
556     } else if (value_a < value_b)
557       return true;
558 
559     return false;
560   }
561 };
562 }
563 
564 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
565                                       bool remove_duplicates) const {
566   std::lock_guard<std::recursive_mutex> guard(m_mutex);
567   LLDB_SCOPED_TIMER();
568   // No need to sort if we have zero or one items...
569   if (indexes.size() <= 1)
570     return;
571 
572   // Sort the indexes in place using std::stable_sort.
573   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
574   // for performance, not correctness.  The indexes vector tends to be "close"
575   // to sorted, which the stable sort handles better.
576 
577   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
578 
579   SymbolIndexComparator comparator(m_symbols, addr_cache);
580   std::stable_sort(indexes.begin(), indexes.end(), comparator);
581 
582   // Remove any duplicates if requested
583   if (remove_duplicates) {
584     auto last = std::unique(indexes.begin(), indexes.end());
585     indexes.erase(last, indexes.end());
586   }
587 }
588 
589 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
590                                              std::vector<uint32_t> &indexes) {
591   std::lock_guard<std::recursive_mutex> guard(m_mutex);
592 
593   LLDB_SCOPED_TIMER();
594   if (symbol_name) {
595     if (!m_name_indexes_computed)
596       InitNameIndexes();
597 
598     return m_name_to_index.GetValues(symbol_name, indexes);
599   }
600   return 0;
601 }
602 
603 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
604                                              Debug symbol_debug_type,
605                                              Visibility symbol_visibility,
606                                              std::vector<uint32_t> &indexes) {
607   std::lock_guard<std::recursive_mutex> guard(m_mutex);
608 
609   LLDB_SCOPED_TIMER();
610   if (symbol_name) {
611     const size_t old_size = indexes.size();
612     if (!m_name_indexes_computed)
613       InitNameIndexes();
614 
615     std::vector<uint32_t> all_name_indexes;
616     const size_t name_match_count =
617         m_name_to_index.GetValues(symbol_name, all_name_indexes);
618     for (size_t i = 0; i < name_match_count; ++i) {
619       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
620                              symbol_visibility))
621         indexes.push_back(all_name_indexes[i]);
622     }
623     return indexes.size() - old_size;
624   }
625   return 0;
626 }
627 
628 uint32_t
629 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
630                                            SymbolType symbol_type,
631                                            std::vector<uint32_t> &indexes) {
632   std::lock_guard<std::recursive_mutex> guard(m_mutex);
633 
634   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
635     std::vector<uint32_t>::iterator pos = indexes.begin();
636     while (pos != indexes.end()) {
637       if (symbol_type == eSymbolTypeAny ||
638           m_symbols[*pos].GetType() == symbol_type)
639         ++pos;
640       else
641         pos = indexes.erase(pos);
642     }
643   }
644   return indexes.size();
645 }
646 
647 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
648     ConstString symbol_name, SymbolType symbol_type,
649     Debug symbol_debug_type, Visibility symbol_visibility,
650     std::vector<uint32_t> &indexes) {
651   std::lock_guard<std::recursive_mutex> guard(m_mutex);
652 
653   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
654                                   symbol_visibility, indexes) > 0) {
655     std::vector<uint32_t>::iterator pos = indexes.begin();
656     while (pos != indexes.end()) {
657       if (symbol_type == eSymbolTypeAny ||
658           m_symbols[*pos].GetType() == symbol_type)
659         ++pos;
660       else
661         pos = indexes.erase(pos);
662     }
663   }
664   return indexes.size();
665 }
666 
667 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
668     const RegularExpression &regexp, SymbolType symbol_type,
669     std::vector<uint32_t> &indexes) {
670   std::lock_guard<std::recursive_mutex> guard(m_mutex);
671 
672   uint32_t prev_size = indexes.size();
673   uint32_t sym_end = m_symbols.size();
674 
675   for (uint32_t i = 0; i < sym_end; i++) {
676     if (symbol_type == eSymbolTypeAny ||
677         m_symbols[i].GetType() == symbol_type) {
678       const char *name = m_symbols[i].GetName().AsCString();
679       if (name) {
680         if (regexp.Execute(name))
681           indexes.push_back(i);
682       }
683     }
684   }
685   return indexes.size() - prev_size;
686 }
687 
688 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
689     const RegularExpression &regexp, SymbolType symbol_type,
690     Debug symbol_debug_type, Visibility symbol_visibility,
691     std::vector<uint32_t> &indexes) {
692   std::lock_guard<std::recursive_mutex> guard(m_mutex);
693 
694   uint32_t prev_size = indexes.size();
695   uint32_t sym_end = m_symbols.size();
696 
697   for (uint32_t i = 0; i < sym_end; i++) {
698     if (symbol_type == eSymbolTypeAny ||
699         m_symbols[i].GetType() == symbol_type) {
700       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
701         continue;
702 
703       const char *name = m_symbols[i].GetName().AsCString();
704       if (name) {
705         if (regexp.Execute(name))
706           indexes.push_back(i);
707       }
708     }
709   }
710   return indexes.size() - prev_size;
711 }
712 
713 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
714                                    Debug symbol_debug_type,
715                                    Visibility symbol_visibility,
716                                    uint32_t &start_idx) {
717   std::lock_guard<std::recursive_mutex> guard(m_mutex);
718 
719   const size_t count = m_symbols.size();
720   for (size_t idx = start_idx; idx < count; ++idx) {
721     if (symbol_type == eSymbolTypeAny ||
722         m_symbols[idx].GetType() == symbol_type) {
723       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
724         start_idx = idx;
725         return &m_symbols[idx];
726       }
727     }
728   }
729   return nullptr;
730 }
731 
732 void
733 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
734                                       SymbolType symbol_type,
735                                       std::vector<uint32_t> &symbol_indexes) {
736   std::lock_guard<std::recursive_mutex> guard(m_mutex);
737 
738   LLDB_SCOPED_TIMER();
739   // Initialize all of the lookup by name indexes before converting NAME to a
740   // uniqued string NAME_STR below.
741   if (!m_name_indexes_computed)
742     InitNameIndexes();
743 
744   if (name) {
745     // The string table did have a string that matched, but we need to check
746     // the symbols and match the symbol_type if any was given.
747     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
748   }
749 }
750 
751 void Symtab::FindAllSymbolsWithNameAndType(
752     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
753     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
754   std::lock_guard<std::recursive_mutex> guard(m_mutex);
755 
756   LLDB_SCOPED_TIMER();
757   // Initialize all of the lookup by name indexes before converting NAME to a
758   // uniqued string NAME_STR below.
759   if (!m_name_indexes_computed)
760     InitNameIndexes();
761 
762   if (name) {
763     // The string table did have a string that matched, but we need to check
764     // the symbols and match the symbol_type if any was given.
765     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
766                                        symbol_visibility, symbol_indexes);
767   }
768 }
769 
770 void Symtab::FindAllSymbolsMatchingRexExAndType(
771     const RegularExpression &regex, SymbolType symbol_type,
772     Debug symbol_debug_type, Visibility symbol_visibility,
773     std::vector<uint32_t> &symbol_indexes) {
774   std::lock_guard<std::recursive_mutex> guard(m_mutex);
775 
776   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
777                                           symbol_visibility, symbol_indexes);
778 }
779 
780 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
781                                                SymbolType symbol_type,
782                                                Debug symbol_debug_type,
783                                                Visibility symbol_visibility) {
784   std::lock_guard<std::recursive_mutex> guard(m_mutex);
785   LLDB_SCOPED_TIMER();
786   if (!m_name_indexes_computed)
787     InitNameIndexes();
788 
789   if (name) {
790     std::vector<uint32_t> matching_indexes;
791     // The string table did have a string that matched, but we need to check
792     // the symbols and match the symbol_type if any was given.
793     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
794                                            symbol_visibility,
795                                            matching_indexes)) {
796       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
797       for (pos = matching_indexes.begin(); pos != end; ++pos) {
798         Symbol *symbol = SymbolAtIndex(*pos);
799 
800         if (symbol->Compare(name, symbol_type))
801           return symbol;
802       }
803     }
804   }
805   return nullptr;
806 }
807 
808 typedef struct {
809   const Symtab *symtab;
810   const addr_t file_addr;
811   Symbol *match_symbol;
812   const uint32_t *match_index_ptr;
813   addr_t match_offset;
814 } SymbolSearchInfo;
815 
816 // Add all the section file start address & size to the RangeVector, recusively
817 // adding any children sections.
818 static void AddSectionsToRangeMap(SectionList *sectlist,
819                                   RangeVector<addr_t, addr_t> &section_ranges) {
820   const int num_sections = sectlist->GetNumSections(0);
821   for (int i = 0; i < num_sections; i++) {
822     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
823     if (sect_sp) {
824       SectionList &child_sectlist = sect_sp->GetChildren();
825 
826       // If this section has children, add the children to the RangeVector.
827       // Else add this section to the RangeVector.
828       if (child_sectlist.GetNumSections(0) > 0) {
829         AddSectionsToRangeMap(&child_sectlist, section_ranges);
830       } else {
831         size_t size = sect_sp->GetByteSize();
832         if (size > 0) {
833           addr_t base_addr = sect_sp->GetFileAddress();
834           RangeVector<addr_t, addr_t>::Entry entry;
835           entry.SetRangeBase(base_addr);
836           entry.SetByteSize(size);
837           section_ranges.Append(entry);
838         }
839       }
840     }
841   }
842 }
843 
844 void Symtab::InitAddressIndexes() {
845   // Protected function, no need to lock mutex...
846   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
847     m_file_addr_to_index_computed = true;
848 
849     FileRangeToIndexMap::Entry entry;
850     const_iterator begin = m_symbols.begin();
851     const_iterator end = m_symbols.end();
852     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
853       if (pos->ValueIsAddress()) {
854         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
855         entry.SetByteSize(pos->GetByteSize());
856         entry.data = std::distance(begin, pos);
857         m_file_addr_to_index.Append(entry);
858       }
859     }
860     const size_t num_entries = m_file_addr_to_index.GetSize();
861     if (num_entries > 0) {
862       m_file_addr_to_index.Sort();
863 
864       // Create a RangeVector with the start & size of all the sections for
865       // this objfile.  We'll need to check this for any FileRangeToIndexMap
866       // entries with an uninitialized size, which could potentially be a large
867       // number so reconstituting the weak pointer is busywork when it is
868       // invariant information.
869       SectionList *sectlist = m_objfile->GetSectionList();
870       RangeVector<addr_t, addr_t> section_ranges;
871       if (sectlist) {
872         AddSectionsToRangeMap(sectlist, section_ranges);
873         section_ranges.Sort();
874       }
875 
876       // Iterate through the FileRangeToIndexMap and fill in the size for any
877       // entries that didn't already have a size from the Symbol (e.g. if we
878       // have a plain linker symbol with an address only, instead of debug info
879       // where we get an address and a size and a type, etc.)
880       for (size_t i = 0; i < num_entries; i++) {
881         FileRangeToIndexMap::Entry *entry =
882             m_file_addr_to_index.GetMutableEntryAtIndex(i);
883         if (entry->GetByteSize() == 0) {
884           addr_t curr_base_addr = entry->GetRangeBase();
885           const RangeVector<addr_t, addr_t>::Entry *containing_section =
886               section_ranges.FindEntryThatContains(curr_base_addr);
887 
888           // Use the end of the section as the default max size of the symbol
889           addr_t sym_size = 0;
890           if (containing_section) {
891             sym_size =
892                 containing_section->GetByteSize() -
893                 (entry->GetRangeBase() - containing_section->GetRangeBase());
894           }
895 
896           for (size_t j = i; j < num_entries; j++) {
897             FileRangeToIndexMap::Entry *next_entry =
898                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
899             addr_t next_base_addr = next_entry->GetRangeBase();
900             if (next_base_addr > curr_base_addr) {
901               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
902 
903               // Take the difference between this symbol and the next one as
904               // its size, if it is less than the size of the section.
905               if (sym_size == 0 || size_to_next_symbol < sym_size) {
906                 sym_size = size_to_next_symbol;
907               }
908               break;
909             }
910           }
911 
912           if (sym_size > 0) {
913             entry->SetByteSize(sym_size);
914             Symbol &symbol = m_symbols[entry->data];
915             symbol.SetByteSize(sym_size);
916             symbol.SetSizeIsSynthesized(true);
917           }
918         }
919       }
920 
921       // Sort again in case the range size changes the ordering
922       m_file_addr_to_index.Sort();
923     }
924   }
925 }
926 
927 void Symtab::CalculateSymbolSizes() {
928   std::lock_guard<std::recursive_mutex> guard(m_mutex);
929   // Size computation happens inside InitAddressIndexes.
930   InitAddressIndexes();
931 }
932 
933 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
934   std::lock_guard<std::recursive_mutex> guard(m_mutex);
935   if (!m_file_addr_to_index_computed)
936     InitAddressIndexes();
937 
938   const FileRangeToIndexMap::Entry *entry =
939       m_file_addr_to_index.FindEntryStartsAt(file_addr);
940   if (entry) {
941     Symbol *symbol = SymbolAtIndex(entry->data);
942     if (symbol->GetFileAddress() == file_addr)
943       return symbol;
944   }
945   return nullptr;
946 }
947 
948 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
949   std::lock_guard<std::recursive_mutex> guard(m_mutex);
950 
951   if (!m_file_addr_to_index_computed)
952     InitAddressIndexes();
953 
954   const FileRangeToIndexMap::Entry *entry =
955       m_file_addr_to_index.FindEntryThatContains(file_addr);
956   if (entry) {
957     Symbol *symbol = SymbolAtIndex(entry->data);
958     if (symbol->ContainsFileAddress(file_addr))
959       return symbol;
960   }
961   return nullptr;
962 }
963 
964 void Symtab::ForEachSymbolContainingFileAddress(
965     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
966   std::lock_guard<std::recursive_mutex> guard(m_mutex);
967 
968   if (!m_file_addr_to_index_computed)
969     InitAddressIndexes();
970 
971   std::vector<uint32_t> all_addr_indexes;
972 
973   // Get all symbols with file_addr
974   const size_t addr_match_count =
975       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
976                                                        all_addr_indexes);
977 
978   for (size_t i = 0; i < addr_match_count; ++i) {
979     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
980     if (symbol->ContainsFileAddress(file_addr)) {
981       if (!callback(symbol))
982         break;
983     }
984   }
985 }
986 
987 void Symtab::SymbolIndicesToSymbolContextList(
988     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
989   // No need to protect this call using m_mutex all other method calls are
990   // already thread safe.
991 
992   const bool merge_symbol_into_function = true;
993   size_t num_indices = symbol_indexes.size();
994   if (num_indices > 0) {
995     SymbolContext sc;
996     sc.module_sp = m_objfile->GetModule();
997     for (size_t i = 0; i < num_indices; i++) {
998       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
999       if (sc.symbol)
1000         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1001     }
1002   }
1003 }
1004 
1005 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1006                                  SymbolContextList &sc_list) {
1007   std::vector<uint32_t> symbol_indexes;
1008 
1009   // eFunctionNameTypeAuto should be pre-resolved by a call to
1010   // Module::LookupInfo::LookupInfo()
1011   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1012 
1013   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1014     std::vector<uint32_t> temp_symbol_indexes;
1015     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1016 
1017     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1018     if (temp_symbol_indexes_size > 0) {
1019       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1020       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1021         SymbolContext sym_ctx;
1022         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1023         if (sym_ctx.symbol) {
1024           switch (sym_ctx.symbol->GetType()) {
1025           case eSymbolTypeCode:
1026           case eSymbolTypeResolver:
1027           case eSymbolTypeReExported:
1028             symbol_indexes.push_back(temp_symbol_indexes[i]);
1029             break;
1030           default:
1031             break;
1032           }
1033         }
1034       }
1035     }
1036   }
1037 
1038   if (name_type_mask & eFunctionNameTypeBase) {
1039     // From mangled names we can't tell what is a basename and what is a method
1040     // name, so we just treat them the same
1041     if (!m_name_indexes_computed)
1042       InitNameIndexes();
1043 
1044     if (!m_basename_to_index.IsEmpty()) {
1045       const UniqueCStringMap<uint32_t>::Entry *match;
1046       for (match = m_basename_to_index.FindFirstValueForName(name);
1047            match != nullptr;
1048            match = m_basename_to_index.FindNextValueForName(match)) {
1049         symbol_indexes.push_back(match->value);
1050       }
1051     }
1052   }
1053 
1054   if (name_type_mask & eFunctionNameTypeMethod) {
1055     if (!m_name_indexes_computed)
1056       InitNameIndexes();
1057 
1058     if (!m_method_to_index.IsEmpty()) {
1059       const UniqueCStringMap<uint32_t>::Entry *match;
1060       for (match = m_method_to_index.FindFirstValueForName(name);
1061            match != nullptr;
1062            match = m_method_to_index.FindNextValueForName(match)) {
1063         symbol_indexes.push_back(match->value);
1064       }
1065     }
1066   }
1067 
1068   if (name_type_mask & eFunctionNameTypeSelector) {
1069     if (!m_name_indexes_computed)
1070       InitNameIndexes();
1071 
1072     if (!m_selector_to_index.IsEmpty()) {
1073       const UniqueCStringMap<uint32_t>::Entry *match;
1074       for (match = m_selector_to_index.FindFirstValueForName(name);
1075            match != nullptr;
1076            match = m_selector_to_index.FindNextValueForName(match)) {
1077         symbol_indexes.push_back(match->value);
1078       }
1079     }
1080   }
1081 
1082   if (!symbol_indexes.empty()) {
1083     llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
1084     symbol_indexes.erase(
1085         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1086         symbol_indexes.end());
1087     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1088   }
1089 }
1090 
1091 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1092   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1093   if (child_idx != UINT32_MAX && child_idx > 0) {
1094     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1095       const Symbol *symbol = SymbolAtIndex(idx);
1096       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1097       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1098         return symbol;
1099     }
1100   }
1101   return nullptr;
1102 }
1103