1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "Plugins/Language/ObjC/ObjCLanguage.h" 13 14 #include "lldb/Core/Module.h" 15 #include "lldb/Core/RichManglingContext.h" 16 #include "lldb/Core/Section.h" 17 #include "lldb/Symbol/ObjectFile.h" 18 #include "lldb/Symbol/Symbol.h" 19 #include "lldb/Symbol/SymbolContext.h" 20 #include "lldb/Symbol/Symtab.h" 21 #include "lldb/Utility/RegularExpression.h" 22 #include "lldb/Utility/Stream.h" 23 #include "lldb/Utility/Timer.h" 24 25 #include "llvm/ADT/StringRef.h" 26 27 using namespace lldb; 28 using namespace lldb_private; 29 30 Symtab::Symtab(ObjectFile *objfile) 31 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 32 m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false), 33 m_name_indexes_computed(false) {} 34 35 Symtab::~Symtab() {} 36 37 void Symtab::Reserve(size_t count) { 38 // Clients should grab the mutex from this symbol table and lock it manually 39 // when calling this function to avoid performance issues. 40 m_symbols.reserve(count); 41 } 42 43 Symbol *Symtab::Resize(size_t count) { 44 // Clients should grab the mutex from this symbol table and lock it manually 45 // when calling this function to avoid performance issues. 46 m_symbols.resize(count); 47 return m_symbols.empty() ? nullptr : &m_symbols[0]; 48 } 49 50 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 51 // Clients should grab the mutex from this symbol table and lock it manually 52 // when calling this function to avoid performance issues. 53 uint32_t symbol_idx = m_symbols.size(); 54 m_name_to_index.Clear(); 55 m_file_addr_to_index.Clear(); 56 m_symbols.push_back(symbol); 57 m_file_addr_to_index_computed = false; 58 m_name_indexes_computed = false; 59 return symbol_idx; 60 } 61 62 size_t Symtab::GetNumSymbols() const { 63 std::lock_guard<std::recursive_mutex> guard(m_mutex); 64 return m_symbols.size(); 65 } 66 67 void Symtab::SectionFileAddressesChanged() { 68 m_name_to_index.Clear(); 69 m_file_addr_to_index_computed = false; 70 } 71 72 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 73 Mangled::NamePreference name_preference) { 74 std::lock_guard<std::recursive_mutex> guard(m_mutex); 75 76 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 77 s->Indent(); 78 const FileSpec &file_spec = m_objfile->GetFileSpec(); 79 const char *object_name = nullptr; 80 if (m_objfile->GetModule()) 81 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 82 83 if (file_spec) 84 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 85 file_spec.GetPath().c_str(), object_name ? "(" : "", 86 object_name ? object_name : "", object_name ? ")" : "", 87 (uint64_t)m_symbols.size()); 88 else 89 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 90 91 if (!m_symbols.empty()) { 92 switch (sort_order) { 93 case eSortOrderNone: { 94 s->PutCString(":\n"); 95 DumpSymbolHeader(s); 96 const_iterator begin = m_symbols.begin(); 97 const_iterator end = m_symbols.end(); 98 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 99 s->Indent(); 100 pos->Dump(s, target, std::distance(begin, pos), name_preference); 101 } 102 } break; 103 104 case eSortOrderByName: { 105 // Although we maintain a lookup by exact name map, the table isn't 106 // sorted by name. So we must make the ordered symbol list up ourselves. 107 s->PutCString(" (sorted by name):\n"); 108 DumpSymbolHeader(s); 109 110 std::multimap<llvm::StringRef, const Symbol *> name_map; 111 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 112 pos != end; ++pos) { 113 const char *name = pos->GetName().AsCString(); 114 if (name && name[0]) 115 name_map.insert(std::make_pair(name, &(*pos))); 116 } 117 118 for (const auto &name_to_symbol : name_map) { 119 const Symbol *symbol = name_to_symbol.second; 120 s->Indent(); 121 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 122 } 123 } break; 124 125 case eSortOrderByAddress: 126 s->PutCString(" (sorted by address):\n"); 127 DumpSymbolHeader(s); 128 if (!m_file_addr_to_index_computed) 129 InitAddressIndexes(); 130 const size_t num_entries = m_file_addr_to_index.GetSize(); 131 for (size_t i = 0; i < num_entries; ++i) { 132 s->Indent(); 133 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 134 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 135 } 136 break; 137 } 138 } else { 139 s->PutCString("\n"); 140 } 141 } 142 143 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 144 Mangled::NamePreference name_preference) const { 145 std::lock_guard<std::recursive_mutex> guard(m_mutex); 146 147 const size_t num_symbols = GetNumSymbols(); 148 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 149 s->Indent(); 150 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 151 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 152 s->IndentMore(); 153 154 if (!indexes.empty()) { 155 std::vector<uint32_t>::const_iterator pos; 156 std::vector<uint32_t>::const_iterator end = indexes.end(); 157 DumpSymbolHeader(s); 158 for (pos = indexes.begin(); pos != end; ++pos) { 159 size_t idx = *pos; 160 if (idx < num_symbols) { 161 s->Indent(); 162 m_symbols[idx].Dump(s, target, idx, name_preference); 163 } 164 } 165 } 166 s->IndentLess(); 167 } 168 169 void Symtab::DumpSymbolHeader(Stream *s) { 170 s->Indent(" Debug symbol\n"); 171 s->Indent(" |Synthetic symbol\n"); 172 s->Indent(" ||Externally Visible\n"); 173 s->Indent(" |||\n"); 174 s->Indent("Index UserID DSX Type File Address/Value Load " 175 "Address Size Flags Name\n"); 176 s->Indent("------- ------ --- --------------- ------------------ " 177 "------------------ ------------------ ---------- " 178 "----------------------------------\n"); 179 } 180 181 static int CompareSymbolID(const void *key, const void *p) { 182 const user_id_t match_uid = *(const user_id_t *)key; 183 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 184 if (match_uid < symbol_uid) 185 return -1; 186 if (match_uid > symbol_uid) 187 return 1; 188 return 0; 189 } 190 191 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 192 std::lock_guard<std::recursive_mutex> guard(m_mutex); 193 194 Symbol *symbol = 195 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 196 sizeof(m_symbols[0]), CompareSymbolID); 197 return symbol; 198 } 199 200 Symbol *Symtab::SymbolAtIndex(size_t idx) { 201 // Clients should grab the mutex from this symbol table and lock it manually 202 // when calling this function to avoid performance issues. 203 if (idx < m_symbols.size()) 204 return &m_symbols[idx]; 205 return nullptr; 206 } 207 208 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 209 // Clients should grab the mutex from this symbol table and lock it manually 210 // when calling this function to avoid performance issues. 211 if (idx < m_symbols.size()) 212 return &m_symbols[idx]; 213 return nullptr; 214 } 215 216 static bool lldb_skip_name(llvm::StringRef mangled, 217 Mangled::ManglingScheme scheme) { 218 switch (scheme) { 219 case Mangled::eManglingSchemeItanium: { 220 if (mangled.size() < 3 || !mangled.startswith("_Z")) 221 return true; 222 223 // Avoid the following types of symbols in the index. 224 switch (mangled[2]) { 225 case 'G': // guard variables 226 case 'T': // virtual tables, VTT structures, typeinfo structures + names 227 case 'Z': // named local entities (if we eventually handle 228 // eSymbolTypeData, we will want this back) 229 return true; 230 231 default: 232 break; 233 } 234 235 // Include this name in the index. 236 return false; 237 } 238 239 // No filters for this scheme yet. Include all names in indexing. 240 case Mangled::eManglingSchemeMSVC: 241 return false; 242 243 // Don't try and demangle things we can't categorize. 244 case Mangled::eManglingSchemeNone: 245 return true; 246 } 247 llvm_unreachable("unknown scheme!"); 248 } 249 250 void Symtab::InitNameIndexes() { 251 // Protected function, no need to lock mutex... 252 if (!m_name_indexes_computed) { 253 m_name_indexes_computed = true; 254 LLDB_SCOPED_TIMER(); 255 // Create the name index vector to be able to quickly search by name 256 const size_t num_symbols = m_symbols.size(); 257 m_name_to_index.Reserve(num_symbols); 258 259 // The "const char *" in "class_contexts" and backlog::value_type::second 260 // must come from a ConstString::GetCString() 261 std::set<const char *> class_contexts; 262 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 263 backlog.reserve(num_symbols / 2); 264 265 // Instantiation of the demangler is expensive, so better use a single one 266 // for all entries during batch processing. 267 RichManglingContext rmc; 268 for (uint32_t value = 0; value < num_symbols; ++value) { 269 Symbol *symbol = &m_symbols[value]; 270 271 // Don't let trampolines get into the lookup by name map If we ever need 272 // the trampoline symbols to be searchable by name we can remove this and 273 // then possibly add a new bool to any of the Symtab functions that 274 // lookup symbols by name to indicate if they want trampolines. 275 if (symbol->IsTrampoline()) 276 continue; 277 278 // If the symbol's name string matched a Mangled::ManglingScheme, it is 279 // stored in the mangled field. 280 Mangled &mangled = symbol->GetMangled(); 281 if (ConstString name = mangled.GetMangledName()) { 282 m_name_to_index.Append(name, value); 283 284 if (symbol->ContainsLinkerAnnotations()) { 285 // If the symbol has linker annotations, also add the version without 286 // the annotations. 287 ConstString stripped = ConstString( 288 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 289 m_name_to_index.Append(stripped, value); 290 } 291 292 const SymbolType type = symbol->GetType(); 293 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 294 if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name)) 295 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 296 } 297 } 298 299 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 300 // stored in the demangled field. 301 if (ConstString name = mangled.GetDemangledName()) { 302 m_name_to_index.Append(name, value); 303 304 if (symbol->ContainsLinkerAnnotations()) { 305 // If the symbol has linker annotations, also add the version without 306 // the annotations. 307 name = ConstString( 308 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 309 m_name_to_index.Append(name, value); 310 } 311 312 // If the demangled name turns out to be an ObjC name, and is a category 313 // name, add the version without categories to the index too. 314 ObjCLanguage::MethodName objc_method(name.GetStringRef(), true); 315 if (objc_method.IsValid(true)) { 316 m_selector_to_index.Append(objc_method.GetSelector(), value); 317 318 if (ConstString objc_method_no_category = 319 objc_method.GetFullNameWithoutCategory(true)) 320 m_name_to_index.Append(objc_method_no_category, value); 321 } 322 } 323 } 324 325 for (const auto &record : backlog) { 326 RegisterBacklogEntry(record.first, record.second, class_contexts); 327 } 328 329 m_name_to_index.Sort(); 330 m_name_to_index.SizeToFit(); 331 m_selector_to_index.Sort(); 332 m_selector_to_index.SizeToFit(); 333 m_basename_to_index.Sort(); 334 m_basename_to_index.SizeToFit(); 335 m_method_to_index.Sort(); 336 m_method_to_index.SizeToFit(); 337 } 338 } 339 340 void Symtab::RegisterMangledNameEntry( 341 uint32_t value, std::set<const char *> &class_contexts, 342 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 343 RichManglingContext &rmc) { 344 // Only register functions that have a base name. 345 rmc.ParseFunctionBaseName(); 346 llvm::StringRef base_name = rmc.GetBufferRef(); 347 if (base_name.empty()) 348 return; 349 350 // The base name will be our entry's name. 351 NameToIndexMap::Entry entry(ConstString(base_name), value); 352 353 rmc.ParseFunctionDeclContextName(); 354 llvm::StringRef decl_context = rmc.GetBufferRef(); 355 356 // Register functions with no context. 357 if (decl_context.empty()) { 358 // This has to be a basename 359 m_basename_to_index.Append(entry); 360 // If there is no context (no namespaces or class scopes that come before 361 // the function name) then this also could be a fullname. 362 m_name_to_index.Append(entry); 363 return; 364 } 365 366 // Make sure we have a pool-string pointer and see if we already know the 367 // context name. 368 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 369 auto it = class_contexts.find(decl_context_ccstr); 370 371 // Register constructors and destructors. They are methods and create 372 // declaration contexts. 373 if (rmc.IsCtorOrDtor()) { 374 m_method_to_index.Append(entry); 375 if (it == class_contexts.end()) 376 class_contexts.insert(it, decl_context_ccstr); 377 return; 378 } 379 380 // Register regular methods with a known declaration context. 381 if (it != class_contexts.end()) { 382 m_method_to_index.Append(entry); 383 return; 384 } 385 386 // Regular methods in unknown declaration contexts are put to the backlog. We 387 // will revisit them once we processed all remaining symbols. 388 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 389 } 390 391 void Symtab::RegisterBacklogEntry( 392 const NameToIndexMap::Entry &entry, const char *decl_context, 393 const std::set<const char *> &class_contexts) { 394 auto it = class_contexts.find(decl_context); 395 if (it != class_contexts.end()) { 396 m_method_to_index.Append(entry); 397 } else { 398 // If we got here, we have something that had a context (was inside 399 // a namespace or class) yet we don't know the entry 400 m_method_to_index.Append(entry); 401 m_basename_to_index.Append(entry); 402 } 403 } 404 405 void Symtab::PreloadSymbols() { 406 std::lock_guard<std::recursive_mutex> guard(m_mutex); 407 InitNameIndexes(); 408 } 409 410 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 411 bool add_demangled, bool add_mangled, 412 NameToIndexMap &name_to_index_map) const { 413 LLDB_SCOPED_TIMER(); 414 if (add_demangled || add_mangled) { 415 std::lock_guard<std::recursive_mutex> guard(m_mutex); 416 417 // Create the name index vector to be able to quickly search by name 418 const size_t num_indexes = indexes.size(); 419 for (size_t i = 0; i < num_indexes; ++i) { 420 uint32_t value = indexes[i]; 421 assert(i < m_symbols.size()); 422 const Symbol *symbol = &m_symbols[value]; 423 424 const Mangled &mangled = symbol->GetMangled(); 425 if (add_demangled) { 426 if (ConstString name = mangled.GetDemangledName()) 427 name_to_index_map.Append(name, value); 428 } 429 430 if (add_mangled) { 431 if (ConstString name = mangled.GetMangledName()) 432 name_to_index_map.Append(name, value); 433 } 434 } 435 } 436 } 437 438 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 439 std::vector<uint32_t> &indexes, 440 uint32_t start_idx, 441 uint32_t end_index) const { 442 std::lock_guard<std::recursive_mutex> guard(m_mutex); 443 444 uint32_t prev_size = indexes.size(); 445 446 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 447 448 for (uint32_t i = start_idx; i < count; ++i) { 449 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 450 indexes.push_back(i); 451 } 452 453 return indexes.size() - prev_size; 454 } 455 456 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 457 SymbolType symbol_type, uint32_t flags_value, 458 std::vector<uint32_t> &indexes, uint32_t start_idx, 459 uint32_t end_index) const { 460 std::lock_guard<std::recursive_mutex> guard(m_mutex); 461 462 uint32_t prev_size = indexes.size(); 463 464 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 465 466 for (uint32_t i = start_idx; i < count; ++i) { 467 if ((symbol_type == eSymbolTypeAny || 468 m_symbols[i].GetType() == symbol_type) && 469 m_symbols[i].GetFlags() == flags_value) 470 indexes.push_back(i); 471 } 472 473 return indexes.size() - prev_size; 474 } 475 476 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 477 Debug symbol_debug_type, 478 Visibility symbol_visibility, 479 std::vector<uint32_t> &indexes, 480 uint32_t start_idx, 481 uint32_t end_index) const { 482 std::lock_guard<std::recursive_mutex> guard(m_mutex); 483 484 uint32_t prev_size = indexes.size(); 485 486 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 487 488 for (uint32_t i = start_idx; i < count; ++i) { 489 if (symbol_type == eSymbolTypeAny || 490 m_symbols[i].GetType() == symbol_type) { 491 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 492 indexes.push_back(i); 493 } 494 } 495 496 return indexes.size() - prev_size; 497 } 498 499 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 500 if (!m_symbols.empty()) { 501 const Symbol *first_symbol = &m_symbols[0]; 502 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 503 return symbol - first_symbol; 504 } 505 return UINT32_MAX; 506 } 507 508 struct SymbolSortInfo { 509 const bool sort_by_load_addr; 510 const Symbol *symbols; 511 }; 512 513 namespace { 514 struct SymbolIndexComparator { 515 const std::vector<Symbol> &symbols; 516 std::vector<lldb::addr_t> &addr_cache; 517 518 // Getting from the symbol to the Address to the File Address involves some 519 // work. Since there are potentially many symbols here, and we're using this 520 // for sorting so we're going to be computing the address many times, cache 521 // that in addr_cache. The array passed in has to be the same size as the 522 // symbols array passed into the member variable symbols, and should be 523 // initialized with LLDB_INVALID_ADDRESS. 524 // NOTE: You have to make addr_cache externally and pass it in because 525 // std::stable_sort 526 // makes copies of the comparator it is initially passed in, and you end up 527 // spending huge amounts of time copying this array... 528 529 SymbolIndexComparator(const std::vector<Symbol> &s, 530 std::vector<lldb::addr_t> &a) 531 : symbols(s), addr_cache(a) { 532 assert(symbols.size() == addr_cache.size()); 533 } 534 bool operator()(uint32_t index_a, uint32_t index_b) { 535 addr_t value_a = addr_cache[index_a]; 536 if (value_a == LLDB_INVALID_ADDRESS) { 537 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 538 addr_cache[index_a] = value_a; 539 } 540 541 addr_t value_b = addr_cache[index_b]; 542 if (value_b == LLDB_INVALID_ADDRESS) { 543 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 544 addr_cache[index_b] = value_b; 545 } 546 547 if (value_a == value_b) { 548 // The if the values are equal, use the original symbol user ID 549 lldb::user_id_t uid_a = symbols[index_a].GetID(); 550 lldb::user_id_t uid_b = symbols[index_b].GetID(); 551 if (uid_a < uid_b) 552 return true; 553 if (uid_a > uid_b) 554 return false; 555 return false; 556 } else if (value_a < value_b) 557 return true; 558 559 return false; 560 } 561 }; 562 } 563 564 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 565 bool remove_duplicates) const { 566 std::lock_guard<std::recursive_mutex> guard(m_mutex); 567 LLDB_SCOPED_TIMER(); 568 // No need to sort if we have zero or one items... 569 if (indexes.size() <= 1) 570 return; 571 572 // Sort the indexes in place using std::stable_sort. 573 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 574 // for performance, not correctness. The indexes vector tends to be "close" 575 // to sorted, which the stable sort handles better. 576 577 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 578 579 SymbolIndexComparator comparator(m_symbols, addr_cache); 580 std::stable_sort(indexes.begin(), indexes.end(), comparator); 581 582 // Remove any duplicates if requested 583 if (remove_duplicates) { 584 auto last = std::unique(indexes.begin(), indexes.end()); 585 indexes.erase(last, indexes.end()); 586 } 587 } 588 589 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 590 std::vector<uint32_t> &indexes) { 591 std::lock_guard<std::recursive_mutex> guard(m_mutex); 592 593 LLDB_SCOPED_TIMER(); 594 if (symbol_name) { 595 if (!m_name_indexes_computed) 596 InitNameIndexes(); 597 598 return m_name_to_index.GetValues(symbol_name, indexes); 599 } 600 return 0; 601 } 602 603 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 604 Debug symbol_debug_type, 605 Visibility symbol_visibility, 606 std::vector<uint32_t> &indexes) { 607 std::lock_guard<std::recursive_mutex> guard(m_mutex); 608 609 LLDB_SCOPED_TIMER(); 610 if (symbol_name) { 611 const size_t old_size = indexes.size(); 612 if (!m_name_indexes_computed) 613 InitNameIndexes(); 614 615 std::vector<uint32_t> all_name_indexes; 616 const size_t name_match_count = 617 m_name_to_index.GetValues(symbol_name, all_name_indexes); 618 for (size_t i = 0; i < name_match_count; ++i) { 619 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 620 symbol_visibility)) 621 indexes.push_back(all_name_indexes[i]); 622 } 623 return indexes.size() - old_size; 624 } 625 return 0; 626 } 627 628 uint32_t 629 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 630 SymbolType symbol_type, 631 std::vector<uint32_t> &indexes) { 632 std::lock_guard<std::recursive_mutex> guard(m_mutex); 633 634 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 635 std::vector<uint32_t>::iterator pos = indexes.begin(); 636 while (pos != indexes.end()) { 637 if (symbol_type == eSymbolTypeAny || 638 m_symbols[*pos].GetType() == symbol_type) 639 ++pos; 640 else 641 pos = indexes.erase(pos); 642 } 643 } 644 return indexes.size(); 645 } 646 647 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 648 ConstString symbol_name, SymbolType symbol_type, 649 Debug symbol_debug_type, Visibility symbol_visibility, 650 std::vector<uint32_t> &indexes) { 651 std::lock_guard<std::recursive_mutex> guard(m_mutex); 652 653 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 654 symbol_visibility, indexes) > 0) { 655 std::vector<uint32_t>::iterator pos = indexes.begin(); 656 while (pos != indexes.end()) { 657 if (symbol_type == eSymbolTypeAny || 658 m_symbols[*pos].GetType() == symbol_type) 659 ++pos; 660 else 661 pos = indexes.erase(pos); 662 } 663 } 664 return indexes.size(); 665 } 666 667 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 668 const RegularExpression ®exp, SymbolType symbol_type, 669 std::vector<uint32_t> &indexes) { 670 std::lock_guard<std::recursive_mutex> guard(m_mutex); 671 672 uint32_t prev_size = indexes.size(); 673 uint32_t sym_end = m_symbols.size(); 674 675 for (uint32_t i = 0; i < sym_end; i++) { 676 if (symbol_type == eSymbolTypeAny || 677 m_symbols[i].GetType() == symbol_type) { 678 const char *name = m_symbols[i].GetName().AsCString(); 679 if (name) { 680 if (regexp.Execute(name)) 681 indexes.push_back(i); 682 } 683 } 684 } 685 return indexes.size() - prev_size; 686 } 687 688 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 689 const RegularExpression ®exp, SymbolType symbol_type, 690 Debug symbol_debug_type, Visibility symbol_visibility, 691 std::vector<uint32_t> &indexes) { 692 std::lock_guard<std::recursive_mutex> guard(m_mutex); 693 694 uint32_t prev_size = indexes.size(); 695 uint32_t sym_end = m_symbols.size(); 696 697 for (uint32_t i = 0; i < sym_end; i++) { 698 if (symbol_type == eSymbolTypeAny || 699 m_symbols[i].GetType() == symbol_type) { 700 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 701 continue; 702 703 const char *name = m_symbols[i].GetName().AsCString(); 704 if (name) { 705 if (regexp.Execute(name)) 706 indexes.push_back(i); 707 } 708 } 709 } 710 return indexes.size() - prev_size; 711 } 712 713 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 714 Debug symbol_debug_type, 715 Visibility symbol_visibility, 716 uint32_t &start_idx) { 717 std::lock_guard<std::recursive_mutex> guard(m_mutex); 718 719 const size_t count = m_symbols.size(); 720 for (size_t idx = start_idx; idx < count; ++idx) { 721 if (symbol_type == eSymbolTypeAny || 722 m_symbols[idx].GetType() == symbol_type) { 723 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 724 start_idx = idx; 725 return &m_symbols[idx]; 726 } 727 } 728 } 729 return nullptr; 730 } 731 732 void 733 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 734 SymbolType symbol_type, 735 std::vector<uint32_t> &symbol_indexes) { 736 std::lock_guard<std::recursive_mutex> guard(m_mutex); 737 738 LLDB_SCOPED_TIMER(); 739 // Initialize all of the lookup by name indexes before converting NAME to a 740 // uniqued string NAME_STR below. 741 if (!m_name_indexes_computed) 742 InitNameIndexes(); 743 744 if (name) { 745 // The string table did have a string that matched, but we need to check 746 // the symbols and match the symbol_type if any was given. 747 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 748 } 749 } 750 751 void Symtab::FindAllSymbolsWithNameAndType( 752 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 753 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 754 std::lock_guard<std::recursive_mutex> guard(m_mutex); 755 756 LLDB_SCOPED_TIMER(); 757 // Initialize all of the lookup by name indexes before converting NAME to a 758 // uniqued string NAME_STR below. 759 if (!m_name_indexes_computed) 760 InitNameIndexes(); 761 762 if (name) { 763 // The string table did have a string that matched, but we need to check 764 // the symbols and match the symbol_type if any was given. 765 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 766 symbol_visibility, symbol_indexes); 767 } 768 } 769 770 void Symtab::FindAllSymbolsMatchingRexExAndType( 771 const RegularExpression ®ex, SymbolType symbol_type, 772 Debug symbol_debug_type, Visibility symbol_visibility, 773 std::vector<uint32_t> &symbol_indexes) { 774 std::lock_guard<std::recursive_mutex> guard(m_mutex); 775 776 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 777 symbol_visibility, symbol_indexes); 778 } 779 780 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 781 SymbolType symbol_type, 782 Debug symbol_debug_type, 783 Visibility symbol_visibility) { 784 std::lock_guard<std::recursive_mutex> guard(m_mutex); 785 LLDB_SCOPED_TIMER(); 786 if (!m_name_indexes_computed) 787 InitNameIndexes(); 788 789 if (name) { 790 std::vector<uint32_t> matching_indexes; 791 // The string table did have a string that matched, but we need to check 792 // the symbols and match the symbol_type if any was given. 793 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 794 symbol_visibility, 795 matching_indexes)) { 796 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 797 for (pos = matching_indexes.begin(); pos != end; ++pos) { 798 Symbol *symbol = SymbolAtIndex(*pos); 799 800 if (symbol->Compare(name, symbol_type)) 801 return symbol; 802 } 803 } 804 } 805 return nullptr; 806 } 807 808 typedef struct { 809 const Symtab *symtab; 810 const addr_t file_addr; 811 Symbol *match_symbol; 812 const uint32_t *match_index_ptr; 813 addr_t match_offset; 814 } SymbolSearchInfo; 815 816 // Add all the section file start address & size to the RangeVector, recusively 817 // adding any children sections. 818 static void AddSectionsToRangeMap(SectionList *sectlist, 819 RangeVector<addr_t, addr_t> §ion_ranges) { 820 const int num_sections = sectlist->GetNumSections(0); 821 for (int i = 0; i < num_sections; i++) { 822 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 823 if (sect_sp) { 824 SectionList &child_sectlist = sect_sp->GetChildren(); 825 826 // If this section has children, add the children to the RangeVector. 827 // Else add this section to the RangeVector. 828 if (child_sectlist.GetNumSections(0) > 0) { 829 AddSectionsToRangeMap(&child_sectlist, section_ranges); 830 } else { 831 size_t size = sect_sp->GetByteSize(); 832 if (size > 0) { 833 addr_t base_addr = sect_sp->GetFileAddress(); 834 RangeVector<addr_t, addr_t>::Entry entry; 835 entry.SetRangeBase(base_addr); 836 entry.SetByteSize(size); 837 section_ranges.Append(entry); 838 } 839 } 840 } 841 } 842 } 843 844 void Symtab::InitAddressIndexes() { 845 // Protected function, no need to lock mutex... 846 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 847 m_file_addr_to_index_computed = true; 848 849 FileRangeToIndexMap::Entry entry; 850 const_iterator begin = m_symbols.begin(); 851 const_iterator end = m_symbols.end(); 852 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 853 if (pos->ValueIsAddress()) { 854 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 855 entry.SetByteSize(pos->GetByteSize()); 856 entry.data = std::distance(begin, pos); 857 m_file_addr_to_index.Append(entry); 858 } 859 } 860 const size_t num_entries = m_file_addr_to_index.GetSize(); 861 if (num_entries > 0) { 862 m_file_addr_to_index.Sort(); 863 864 // Create a RangeVector with the start & size of all the sections for 865 // this objfile. We'll need to check this for any FileRangeToIndexMap 866 // entries with an uninitialized size, which could potentially be a large 867 // number so reconstituting the weak pointer is busywork when it is 868 // invariant information. 869 SectionList *sectlist = m_objfile->GetSectionList(); 870 RangeVector<addr_t, addr_t> section_ranges; 871 if (sectlist) { 872 AddSectionsToRangeMap(sectlist, section_ranges); 873 section_ranges.Sort(); 874 } 875 876 // Iterate through the FileRangeToIndexMap and fill in the size for any 877 // entries that didn't already have a size from the Symbol (e.g. if we 878 // have a plain linker symbol with an address only, instead of debug info 879 // where we get an address and a size and a type, etc.) 880 for (size_t i = 0; i < num_entries; i++) { 881 FileRangeToIndexMap::Entry *entry = 882 m_file_addr_to_index.GetMutableEntryAtIndex(i); 883 if (entry->GetByteSize() == 0) { 884 addr_t curr_base_addr = entry->GetRangeBase(); 885 const RangeVector<addr_t, addr_t>::Entry *containing_section = 886 section_ranges.FindEntryThatContains(curr_base_addr); 887 888 // Use the end of the section as the default max size of the symbol 889 addr_t sym_size = 0; 890 if (containing_section) { 891 sym_size = 892 containing_section->GetByteSize() - 893 (entry->GetRangeBase() - containing_section->GetRangeBase()); 894 } 895 896 for (size_t j = i; j < num_entries; j++) { 897 FileRangeToIndexMap::Entry *next_entry = 898 m_file_addr_to_index.GetMutableEntryAtIndex(j); 899 addr_t next_base_addr = next_entry->GetRangeBase(); 900 if (next_base_addr > curr_base_addr) { 901 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 902 903 // Take the difference between this symbol and the next one as 904 // its size, if it is less than the size of the section. 905 if (sym_size == 0 || size_to_next_symbol < sym_size) { 906 sym_size = size_to_next_symbol; 907 } 908 break; 909 } 910 } 911 912 if (sym_size > 0) { 913 entry->SetByteSize(sym_size); 914 Symbol &symbol = m_symbols[entry->data]; 915 symbol.SetByteSize(sym_size); 916 symbol.SetSizeIsSynthesized(true); 917 } 918 } 919 } 920 921 // Sort again in case the range size changes the ordering 922 m_file_addr_to_index.Sort(); 923 } 924 } 925 } 926 927 void Symtab::CalculateSymbolSizes() { 928 std::lock_guard<std::recursive_mutex> guard(m_mutex); 929 // Size computation happens inside InitAddressIndexes. 930 InitAddressIndexes(); 931 } 932 933 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 934 std::lock_guard<std::recursive_mutex> guard(m_mutex); 935 if (!m_file_addr_to_index_computed) 936 InitAddressIndexes(); 937 938 const FileRangeToIndexMap::Entry *entry = 939 m_file_addr_to_index.FindEntryStartsAt(file_addr); 940 if (entry) { 941 Symbol *symbol = SymbolAtIndex(entry->data); 942 if (symbol->GetFileAddress() == file_addr) 943 return symbol; 944 } 945 return nullptr; 946 } 947 948 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 949 std::lock_guard<std::recursive_mutex> guard(m_mutex); 950 951 if (!m_file_addr_to_index_computed) 952 InitAddressIndexes(); 953 954 const FileRangeToIndexMap::Entry *entry = 955 m_file_addr_to_index.FindEntryThatContains(file_addr); 956 if (entry) { 957 Symbol *symbol = SymbolAtIndex(entry->data); 958 if (symbol->ContainsFileAddress(file_addr)) 959 return symbol; 960 } 961 return nullptr; 962 } 963 964 void Symtab::ForEachSymbolContainingFileAddress( 965 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 966 std::lock_guard<std::recursive_mutex> guard(m_mutex); 967 968 if (!m_file_addr_to_index_computed) 969 InitAddressIndexes(); 970 971 std::vector<uint32_t> all_addr_indexes; 972 973 // Get all symbols with file_addr 974 const size_t addr_match_count = 975 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 976 all_addr_indexes); 977 978 for (size_t i = 0; i < addr_match_count; ++i) { 979 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 980 if (symbol->ContainsFileAddress(file_addr)) { 981 if (!callback(symbol)) 982 break; 983 } 984 } 985 } 986 987 void Symtab::SymbolIndicesToSymbolContextList( 988 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 989 // No need to protect this call using m_mutex all other method calls are 990 // already thread safe. 991 992 const bool merge_symbol_into_function = true; 993 size_t num_indices = symbol_indexes.size(); 994 if (num_indices > 0) { 995 SymbolContext sc; 996 sc.module_sp = m_objfile->GetModule(); 997 for (size_t i = 0; i < num_indices; i++) { 998 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 999 if (sc.symbol) 1000 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1001 } 1002 } 1003 } 1004 1005 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1006 SymbolContextList &sc_list) { 1007 std::vector<uint32_t> symbol_indexes; 1008 1009 // eFunctionNameTypeAuto should be pre-resolved by a call to 1010 // Module::LookupInfo::LookupInfo() 1011 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1012 1013 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1014 std::vector<uint32_t> temp_symbol_indexes; 1015 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1016 1017 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1018 if (temp_symbol_indexes_size > 0) { 1019 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1020 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1021 SymbolContext sym_ctx; 1022 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1023 if (sym_ctx.symbol) { 1024 switch (sym_ctx.symbol->GetType()) { 1025 case eSymbolTypeCode: 1026 case eSymbolTypeResolver: 1027 case eSymbolTypeReExported: 1028 symbol_indexes.push_back(temp_symbol_indexes[i]); 1029 break; 1030 default: 1031 break; 1032 } 1033 } 1034 } 1035 } 1036 } 1037 1038 if (name_type_mask & eFunctionNameTypeBase) { 1039 // From mangled names we can't tell what is a basename and what is a method 1040 // name, so we just treat them the same 1041 if (!m_name_indexes_computed) 1042 InitNameIndexes(); 1043 1044 if (!m_basename_to_index.IsEmpty()) { 1045 const UniqueCStringMap<uint32_t>::Entry *match; 1046 for (match = m_basename_to_index.FindFirstValueForName(name); 1047 match != nullptr; 1048 match = m_basename_to_index.FindNextValueForName(match)) { 1049 symbol_indexes.push_back(match->value); 1050 } 1051 } 1052 } 1053 1054 if (name_type_mask & eFunctionNameTypeMethod) { 1055 if (!m_name_indexes_computed) 1056 InitNameIndexes(); 1057 1058 if (!m_method_to_index.IsEmpty()) { 1059 const UniqueCStringMap<uint32_t>::Entry *match; 1060 for (match = m_method_to_index.FindFirstValueForName(name); 1061 match != nullptr; 1062 match = m_method_to_index.FindNextValueForName(match)) { 1063 symbol_indexes.push_back(match->value); 1064 } 1065 } 1066 } 1067 1068 if (name_type_mask & eFunctionNameTypeSelector) { 1069 if (!m_name_indexes_computed) 1070 InitNameIndexes(); 1071 1072 if (!m_selector_to_index.IsEmpty()) { 1073 const UniqueCStringMap<uint32_t>::Entry *match; 1074 for (match = m_selector_to_index.FindFirstValueForName(name); 1075 match != nullptr; 1076 match = m_selector_to_index.FindNextValueForName(match)) { 1077 symbol_indexes.push_back(match->value); 1078 } 1079 } 1080 } 1081 1082 if (!symbol_indexes.empty()) { 1083 llvm::sort(symbol_indexes.begin(), symbol_indexes.end()); 1084 symbol_indexes.erase( 1085 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1086 symbol_indexes.end()); 1087 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1088 } 1089 } 1090 1091 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1092 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1093 if (child_idx != UINT32_MAX && child_idx > 0) { 1094 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1095 const Symbol *symbol = SymbolAtIndex(idx); 1096 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1097 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1098 return symbol; 1099 } 1100 } 1101 return nullptr; 1102 } 1103