1 //===-- Symtab.cpp --------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <map> 10 #include <set> 11 12 #include "lldb/Core/Module.h" 13 #include "lldb/Core/RichManglingContext.h" 14 #include "lldb/Core/Section.h" 15 #include "lldb/Symbol/ObjectFile.h" 16 #include "lldb/Symbol/Symbol.h" 17 #include "lldb/Symbol/SymbolContext.h" 18 #include "lldb/Symbol/Symtab.h" 19 #include "lldb/Target/Language.h" 20 #include "lldb/Utility/RegularExpression.h" 21 #include "lldb/Utility/Stream.h" 22 #include "lldb/Utility/Timer.h" 23 24 #include "llvm/ADT/StringRef.h" 25 26 using namespace lldb; 27 using namespace lldb_private; 28 29 Symtab::Symtab(ObjectFile *objfile) 30 : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), 31 m_name_to_symbol_indices(), m_mutex(), 32 m_file_addr_to_index_computed(false), m_name_indexes_computed(false) { 33 m_name_to_symbol_indices.emplace(std::make_pair( 34 lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); 35 m_name_to_symbol_indices.emplace(std::make_pair( 36 lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); 37 m_name_to_symbol_indices.emplace(std::make_pair( 38 lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); 39 m_name_to_symbol_indices.emplace(std::make_pair( 40 lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); 41 } 42 43 Symtab::~Symtab() = default; 44 45 void Symtab::Reserve(size_t count) { 46 // Clients should grab the mutex from this symbol table and lock it manually 47 // when calling this function to avoid performance issues. 48 m_symbols.reserve(count); 49 } 50 51 Symbol *Symtab::Resize(size_t count) { 52 // Clients should grab the mutex from this symbol table and lock it manually 53 // when calling this function to avoid performance issues. 54 m_symbols.resize(count); 55 return m_symbols.empty() ? nullptr : &m_symbols[0]; 56 } 57 58 uint32_t Symtab::AddSymbol(const Symbol &symbol) { 59 // Clients should grab the mutex from this symbol table and lock it manually 60 // when calling this function to avoid performance issues. 61 uint32_t symbol_idx = m_symbols.size(); 62 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 63 name_to_index.Clear(); 64 m_file_addr_to_index.Clear(); 65 m_symbols.push_back(symbol); 66 m_file_addr_to_index_computed = false; 67 m_name_indexes_computed = false; 68 return symbol_idx; 69 } 70 71 size_t Symtab::GetNumSymbols() const { 72 std::lock_guard<std::recursive_mutex> guard(m_mutex); 73 return m_symbols.size(); 74 } 75 76 void Symtab::SectionFileAddressesChanged() { 77 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 78 name_to_index.Clear(); 79 m_file_addr_to_index_computed = false; 80 } 81 82 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, 83 Mangled::NamePreference name_preference) { 84 std::lock_guard<std::recursive_mutex> guard(m_mutex); 85 86 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 87 s->Indent(); 88 const FileSpec &file_spec = m_objfile->GetFileSpec(); 89 const char *object_name = nullptr; 90 if (m_objfile->GetModule()) 91 object_name = m_objfile->GetModule()->GetObjectName().GetCString(); 92 93 if (file_spec) 94 s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, 95 file_spec.GetPath().c_str(), object_name ? "(" : "", 96 object_name ? object_name : "", object_name ? ")" : "", 97 (uint64_t)m_symbols.size()); 98 else 99 s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); 100 101 if (!m_symbols.empty()) { 102 switch (sort_order) { 103 case eSortOrderNone: { 104 s->PutCString(":\n"); 105 DumpSymbolHeader(s); 106 const_iterator begin = m_symbols.begin(); 107 const_iterator end = m_symbols.end(); 108 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 109 s->Indent(); 110 pos->Dump(s, target, std::distance(begin, pos), name_preference); 111 } 112 } break; 113 114 case eSortOrderByName: { 115 // Although we maintain a lookup by exact name map, the table isn't 116 // sorted by name. So we must make the ordered symbol list up ourselves. 117 s->PutCString(" (sorted by name):\n"); 118 DumpSymbolHeader(s); 119 120 std::multimap<llvm::StringRef, const Symbol *> name_map; 121 for (const_iterator pos = m_symbols.begin(), end = m_symbols.end(); 122 pos != end; ++pos) { 123 const char *name = pos->GetName().AsCString(); 124 if (name && name[0]) 125 name_map.insert(std::make_pair(name, &(*pos))); 126 } 127 128 for (const auto &name_to_symbol : name_map) { 129 const Symbol *symbol = name_to_symbol.second; 130 s->Indent(); 131 symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); 132 } 133 } break; 134 135 case eSortOrderByAddress: 136 s->PutCString(" (sorted by address):\n"); 137 DumpSymbolHeader(s); 138 if (!m_file_addr_to_index_computed) 139 InitAddressIndexes(); 140 const size_t num_entries = m_file_addr_to_index.GetSize(); 141 for (size_t i = 0; i < num_entries; ++i) { 142 s->Indent(); 143 const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; 144 m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); 145 } 146 break; 147 } 148 } else { 149 s->PutCString("\n"); 150 } 151 } 152 153 void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, 154 Mangled::NamePreference name_preference) const { 155 std::lock_guard<std::recursive_mutex> guard(m_mutex); 156 157 const size_t num_symbols = GetNumSymbols(); 158 // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); 159 s->Indent(); 160 s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", 161 (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); 162 s->IndentMore(); 163 164 if (!indexes.empty()) { 165 std::vector<uint32_t>::const_iterator pos; 166 std::vector<uint32_t>::const_iterator end = indexes.end(); 167 DumpSymbolHeader(s); 168 for (pos = indexes.begin(); pos != end; ++pos) { 169 size_t idx = *pos; 170 if (idx < num_symbols) { 171 s->Indent(); 172 m_symbols[idx].Dump(s, target, idx, name_preference); 173 } 174 } 175 } 176 s->IndentLess(); 177 } 178 179 void Symtab::DumpSymbolHeader(Stream *s) { 180 s->Indent(" Debug symbol\n"); 181 s->Indent(" |Synthetic symbol\n"); 182 s->Indent(" ||Externally Visible\n"); 183 s->Indent(" |||\n"); 184 s->Indent("Index UserID DSX Type File Address/Value Load " 185 "Address Size Flags Name\n"); 186 s->Indent("------- ------ --- --------------- ------------------ " 187 "------------------ ------------------ ---------- " 188 "----------------------------------\n"); 189 } 190 191 static int CompareSymbolID(const void *key, const void *p) { 192 const user_id_t match_uid = *(const user_id_t *)key; 193 const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); 194 if (match_uid < symbol_uid) 195 return -1; 196 if (match_uid > symbol_uid) 197 return 1; 198 return 0; 199 } 200 201 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { 202 std::lock_guard<std::recursive_mutex> guard(m_mutex); 203 204 Symbol *symbol = 205 (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), 206 sizeof(m_symbols[0]), CompareSymbolID); 207 return symbol; 208 } 209 210 Symbol *Symtab::SymbolAtIndex(size_t idx) { 211 // Clients should grab the mutex from this symbol table and lock it manually 212 // when calling this function to avoid performance issues. 213 if (idx < m_symbols.size()) 214 return &m_symbols[idx]; 215 return nullptr; 216 } 217 218 const Symbol *Symtab::SymbolAtIndex(size_t idx) const { 219 // Clients should grab the mutex from this symbol table and lock it manually 220 // when calling this function to avoid performance issues. 221 if (idx < m_symbols.size()) 222 return &m_symbols[idx]; 223 return nullptr; 224 } 225 226 static bool lldb_skip_name(llvm::StringRef mangled, 227 Mangled::ManglingScheme scheme) { 228 switch (scheme) { 229 case Mangled::eManglingSchemeItanium: { 230 if (mangled.size() < 3 || !mangled.startswith("_Z")) 231 return true; 232 233 // Avoid the following types of symbols in the index. 234 switch (mangled[2]) { 235 case 'G': // guard variables 236 case 'T': // virtual tables, VTT structures, typeinfo structures + names 237 case 'Z': // named local entities (if we eventually handle 238 // eSymbolTypeData, we will want this back) 239 return true; 240 241 default: 242 break; 243 } 244 245 // Include this name in the index. 246 return false; 247 } 248 249 // No filters for this scheme yet. Include all names in indexing. 250 case Mangled::eManglingSchemeMSVC: 251 return false; 252 253 // No filters for this scheme yet. Include all names in indexing. 254 case Mangled::eManglingSchemeRustV0: 255 return false; 256 257 // Don't try and demangle things we can't categorize. 258 case Mangled::eManglingSchemeNone: 259 return true; 260 } 261 llvm_unreachable("unknown scheme!"); 262 } 263 264 void Symtab::InitNameIndexes() { 265 // Protected function, no need to lock mutex... 266 if (!m_name_indexes_computed) { 267 m_name_indexes_computed = true; 268 LLDB_SCOPED_TIMER(); 269 270 // Collect all loaded language plugins. 271 std::vector<Language *> languages; 272 Language::ForEach([&languages](Language *l) { 273 languages.push_back(l); 274 return true; 275 }); 276 277 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 278 auto &basename_to_index = 279 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 280 auto &method_to_index = 281 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 282 auto &selector_to_index = 283 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); 284 // Create the name index vector to be able to quickly search by name 285 const size_t num_symbols = m_symbols.size(); 286 name_to_index.Reserve(num_symbols); 287 288 // The "const char *" in "class_contexts" and backlog::value_type::second 289 // must come from a ConstString::GetCString() 290 std::set<const char *> class_contexts; 291 std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; 292 backlog.reserve(num_symbols / 2); 293 294 // Instantiation of the demangler is expensive, so better use a single one 295 // for all entries during batch processing. 296 RichManglingContext rmc; 297 for (uint32_t value = 0; value < num_symbols; ++value) { 298 Symbol *symbol = &m_symbols[value]; 299 300 // Don't let trampolines get into the lookup by name map If we ever need 301 // the trampoline symbols to be searchable by name we can remove this and 302 // then possibly add a new bool to any of the Symtab functions that 303 // lookup symbols by name to indicate if they want trampolines. We also 304 // don't want any synthetic symbols with auto generated names in the 305 // name lookups. 306 if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) 307 continue; 308 309 // If the symbol's name string matched a Mangled::ManglingScheme, it is 310 // stored in the mangled field. 311 Mangled &mangled = symbol->GetMangled(); 312 if (ConstString name = mangled.GetMangledName()) { 313 name_to_index.Append(name, value); 314 315 if (symbol->ContainsLinkerAnnotations()) { 316 // If the symbol has linker annotations, also add the version without 317 // the annotations. 318 ConstString stripped = ConstString( 319 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 320 name_to_index.Append(stripped, value); 321 } 322 323 const SymbolType type = symbol->GetType(); 324 if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { 325 if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name)) 326 RegisterMangledNameEntry(value, class_contexts, backlog, rmc); 327 } 328 } 329 330 // Symbol name strings that didn't match a Mangled::ManglingScheme, are 331 // stored in the demangled field. 332 if (ConstString name = mangled.GetDemangledName()) { 333 name_to_index.Append(name, value); 334 335 if (symbol->ContainsLinkerAnnotations()) { 336 // If the symbol has linker annotations, also add the version without 337 // the annotations. 338 name = ConstString( 339 m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); 340 name_to_index.Append(name, value); 341 } 342 343 // If the demangled name turns out to be an ObjC name, and is a category 344 // name, add the version without categories to the index too. 345 for (Language *lang : languages) { 346 for (auto variant : lang->GetMethodNameVariants(name)) { 347 if (variant.GetType() & lldb::eFunctionNameTypeSelector) 348 selector_to_index.Append(variant.GetName(), value); 349 else if (variant.GetType() & lldb::eFunctionNameTypeFull) 350 name_to_index.Append(variant.GetName(), value); 351 else if (variant.GetType() & lldb::eFunctionNameTypeMethod) 352 method_to_index.Append(variant.GetName(), value); 353 else if (variant.GetType() & lldb::eFunctionNameTypeBase) 354 basename_to_index.Append(variant.GetName(), value); 355 } 356 } 357 } 358 } 359 360 for (const auto &record : backlog) { 361 RegisterBacklogEntry(record.first, record.second, class_contexts); 362 } 363 364 name_to_index.Sort(); 365 name_to_index.SizeToFit(); 366 selector_to_index.Sort(); 367 selector_to_index.SizeToFit(); 368 basename_to_index.Sort(); 369 basename_to_index.SizeToFit(); 370 method_to_index.Sort(); 371 method_to_index.SizeToFit(); 372 } 373 } 374 375 void Symtab::RegisterMangledNameEntry( 376 uint32_t value, std::set<const char *> &class_contexts, 377 std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, 378 RichManglingContext &rmc) { 379 // Only register functions that have a base name. 380 rmc.ParseFunctionBaseName(); 381 llvm::StringRef base_name = rmc.GetBufferRef(); 382 if (base_name.empty()) 383 return; 384 385 // The base name will be our entry's name. 386 NameToIndexMap::Entry entry(ConstString(base_name), value); 387 388 rmc.ParseFunctionDeclContextName(); 389 llvm::StringRef decl_context = rmc.GetBufferRef(); 390 391 // Register functions with no context. 392 if (decl_context.empty()) { 393 // This has to be a basename 394 auto &basename_to_index = 395 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 396 basename_to_index.Append(entry); 397 // If there is no context (no namespaces or class scopes that come before 398 // the function name) then this also could be a fullname. 399 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 400 name_to_index.Append(entry); 401 return; 402 } 403 404 // Make sure we have a pool-string pointer and see if we already know the 405 // context name. 406 const char *decl_context_ccstr = ConstString(decl_context).GetCString(); 407 auto it = class_contexts.find(decl_context_ccstr); 408 409 auto &method_to_index = 410 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 411 // Register constructors and destructors. They are methods and create 412 // declaration contexts. 413 if (rmc.IsCtorOrDtor()) { 414 method_to_index.Append(entry); 415 if (it == class_contexts.end()) 416 class_contexts.insert(it, decl_context_ccstr); 417 return; 418 } 419 420 // Register regular methods with a known declaration context. 421 if (it != class_contexts.end()) { 422 method_to_index.Append(entry); 423 return; 424 } 425 426 // Regular methods in unknown declaration contexts are put to the backlog. We 427 // will revisit them once we processed all remaining symbols. 428 backlog.push_back(std::make_pair(entry, decl_context_ccstr)); 429 } 430 431 void Symtab::RegisterBacklogEntry( 432 const NameToIndexMap::Entry &entry, const char *decl_context, 433 const std::set<const char *> &class_contexts) { 434 auto &method_to_index = 435 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); 436 auto it = class_contexts.find(decl_context); 437 if (it != class_contexts.end()) { 438 method_to_index.Append(entry); 439 } else { 440 // If we got here, we have something that had a context (was inside 441 // a namespace or class) yet we don't know the entry 442 method_to_index.Append(entry); 443 auto &basename_to_index = 444 GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); 445 basename_to_index.Append(entry); 446 } 447 } 448 449 void Symtab::PreloadSymbols() { 450 std::lock_guard<std::recursive_mutex> guard(m_mutex); 451 InitNameIndexes(); 452 } 453 454 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, 455 bool add_demangled, bool add_mangled, 456 NameToIndexMap &name_to_index_map) const { 457 LLDB_SCOPED_TIMER(); 458 if (add_demangled || add_mangled) { 459 std::lock_guard<std::recursive_mutex> guard(m_mutex); 460 461 // Create the name index vector to be able to quickly search by name 462 const size_t num_indexes = indexes.size(); 463 for (size_t i = 0; i < num_indexes; ++i) { 464 uint32_t value = indexes[i]; 465 assert(i < m_symbols.size()); 466 const Symbol *symbol = &m_symbols[value]; 467 468 const Mangled &mangled = symbol->GetMangled(); 469 if (add_demangled) { 470 if (ConstString name = mangled.GetDemangledName()) 471 name_to_index_map.Append(name, value); 472 } 473 474 if (add_mangled) { 475 if (ConstString name = mangled.GetMangledName()) 476 name_to_index_map.Append(name, value); 477 } 478 } 479 } 480 } 481 482 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 483 std::vector<uint32_t> &indexes, 484 uint32_t start_idx, 485 uint32_t end_index) const { 486 std::lock_guard<std::recursive_mutex> guard(m_mutex); 487 488 uint32_t prev_size = indexes.size(); 489 490 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 491 492 for (uint32_t i = start_idx; i < count; ++i) { 493 if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) 494 indexes.push_back(i); 495 } 496 497 return indexes.size() - prev_size; 498 } 499 500 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( 501 SymbolType symbol_type, uint32_t flags_value, 502 std::vector<uint32_t> &indexes, uint32_t start_idx, 503 uint32_t end_index) const { 504 std::lock_guard<std::recursive_mutex> guard(m_mutex); 505 506 uint32_t prev_size = indexes.size(); 507 508 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 509 510 for (uint32_t i = start_idx; i < count; ++i) { 511 if ((symbol_type == eSymbolTypeAny || 512 m_symbols[i].GetType() == symbol_type) && 513 m_symbols[i].GetFlags() == flags_value) 514 indexes.push_back(i); 515 } 516 517 return indexes.size() - prev_size; 518 } 519 520 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, 521 Debug symbol_debug_type, 522 Visibility symbol_visibility, 523 std::vector<uint32_t> &indexes, 524 uint32_t start_idx, 525 uint32_t end_index) const { 526 std::lock_guard<std::recursive_mutex> guard(m_mutex); 527 528 uint32_t prev_size = indexes.size(); 529 530 const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); 531 532 for (uint32_t i = start_idx; i < count; ++i) { 533 if (symbol_type == eSymbolTypeAny || 534 m_symbols[i].GetType() == symbol_type) { 535 if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 536 indexes.push_back(i); 537 } 538 } 539 540 return indexes.size() - prev_size; 541 } 542 543 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { 544 if (!m_symbols.empty()) { 545 const Symbol *first_symbol = &m_symbols[0]; 546 if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) 547 return symbol - first_symbol; 548 } 549 return UINT32_MAX; 550 } 551 552 struct SymbolSortInfo { 553 const bool sort_by_load_addr; 554 const Symbol *symbols; 555 }; 556 557 namespace { 558 struct SymbolIndexComparator { 559 const std::vector<Symbol> &symbols; 560 std::vector<lldb::addr_t> &addr_cache; 561 562 // Getting from the symbol to the Address to the File Address involves some 563 // work. Since there are potentially many symbols here, and we're using this 564 // for sorting so we're going to be computing the address many times, cache 565 // that in addr_cache. The array passed in has to be the same size as the 566 // symbols array passed into the member variable symbols, and should be 567 // initialized with LLDB_INVALID_ADDRESS. 568 // NOTE: You have to make addr_cache externally and pass it in because 569 // std::stable_sort 570 // makes copies of the comparator it is initially passed in, and you end up 571 // spending huge amounts of time copying this array... 572 573 SymbolIndexComparator(const std::vector<Symbol> &s, 574 std::vector<lldb::addr_t> &a) 575 : symbols(s), addr_cache(a) { 576 assert(symbols.size() == addr_cache.size()); 577 } 578 bool operator()(uint32_t index_a, uint32_t index_b) { 579 addr_t value_a = addr_cache[index_a]; 580 if (value_a == LLDB_INVALID_ADDRESS) { 581 value_a = symbols[index_a].GetAddressRef().GetFileAddress(); 582 addr_cache[index_a] = value_a; 583 } 584 585 addr_t value_b = addr_cache[index_b]; 586 if (value_b == LLDB_INVALID_ADDRESS) { 587 value_b = symbols[index_b].GetAddressRef().GetFileAddress(); 588 addr_cache[index_b] = value_b; 589 } 590 591 if (value_a == value_b) { 592 // The if the values are equal, use the original symbol user ID 593 lldb::user_id_t uid_a = symbols[index_a].GetID(); 594 lldb::user_id_t uid_b = symbols[index_b].GetID(); 595 if (uid_a < uid_b) 596 return true; 597 if (uid_a > uid_b) 598 return false; 599 return false; 600 } else if (value_a < value_b) 601 return true; 602 603 return false; 604 } 605 }; 606 } 607 608 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, 609 bool remove_duplicates) const { 610 std::lock_guard<std::recursive_mutex> guard(m_mutex); 611 LLDB_SCOPED_TIMER(); 612 // No need to sort if we have zero or one items... 613 if (indexes.size() <= 1) 614 return; 615 616 // Sort the indexes in place using std::stable_sort. 617 // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly 618 // for performance, not correctness. The indexes vector tends to be "close" 619 // to sorted, which the stable sort handles better. 620 621 std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); 622 623 SymbolIndexComparator comparator(m_symbols, addr_cache); 624 std::stable_sort(indexes.begin(), indexes.end(), comparator); 625 626 // Remove any duplicates if requested 627 if (remove_duplicates) { 628 auto last = std::unique(indexes.begin(), indexes.end()); 629 indexes.erase(last, indexes.end()); 630 } 631 } 632 633 uint32_t Symtab::GetNameIndexes(ConstString symbol_name, 634 std::vector<uint32_t> &indexes) { 635 auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); 636 const uint32_t count = name_to_index.GetValues(symbol_name, indexes); 637 if (count) 638 return count; 639 // Synthetic symbol names are not added to the name indexes, but they start 640 // with a prefix and end with a the symbol UserID. This allows users to find 641 // these symbols without having to add them to the name indexes. These 642 // queries will not happen very often since the names don't mean anything, so 643 // performance is not paramount in this case. 644 llvm::StringRef name = symbol_name.GetStringRef(); 645 // String the synthetic prefix if the name starts with it. 646 if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) 647 return 0; // Not a synthetic symbol name 648 649 // Extract the user ID from the symbol name 650 unsigned long long uid = 0; 651 if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) 652 return 0; // Failed to extract the user ID as an integer 653 Symbol *symbol = FindSymbolByID(uid); 654 if (symbol == nullptr) 655 return 0; 656 const uint32_t symbol_idx = GetIndexForSymbol(symbol); 657 if (symbol_idx == UINT32_MAX) 658 return 0; 659 indexes.push_back(symbol_idx); 660 return 1; 661 } 662 663 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 664 std::vector<uint32_t> &indexes) { 665 std::lock_guard<std::recursive_mutex> guard(m_mutex); 666 667 LLDB_SCOPED_TIMER(); 668 if (symbol_name) { 669 if (!m_name_indexes_computed) 670 InitNameIndexes(); 671 672 return GetNameIndexes(symbol_name, indexes); 673 } 674 return 0; 675 } 676 677 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, 678 Debug symbol_debug_type, 679 Visibility symbol_visibility, 680 std::vector<uint32_t> &indexes) { 681 std::lock_guard<std::recursive_mutex> guard(m_mutex); 682 683 LLDB_SCOPED_TIMER(); 684 if (symbol_name) { 685 const size_t old_size = indexes.size(); 686 if (!m_name_indexes_computed) 687 InitNameIndexes(); 688 689 std::vector<uint32_t> all_name_indexes; 690 const size_t name_match_count = 691 GetNameIndexes(symbol_name, all_name_indexes); 692 for (size_t i = 0; i < name_match_count; ++i) { 693 if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, 694 symbol_visibility)) 695 indexes.push_back(all_name_indexes[i]); 696 } 697 return indexes.size() - old_size; 698 } 699 return 0; 700 } 701 702 uint32_t 703 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, 704 SymbolType symbol_type, 705 std::vector<uint32_t> &indexes) { 706 std::lock_guard<std::recursive_mutex> guard(m_mutex); 707 708 if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { 709 std::vector<uint32_t>::iterator pos = indexes.begin(); 710 while (pos != indexes.end()) { 711 if (symbol_type == eSymbolTypeAny || 712 m_symbols[*pos].GetType() == symbol_type) 713 ++pos; 714 else 715 pos = indexes.erase(pos); 716 } 717 } 718 return indexes.size(); 719 } 720 721 uint32_t Symtab::AppendSymbolIndexesWithNameAndType( 722 ConstString symbol_name, SymbolType symbol_type, 723 Debug symbol_debug_type, Visibility symbol_visibility, 724 std::vector<uint32_t> &indexes) { 725 std::lock_guard<std::recursive_mutex> guard(m_mutex); 726 727 if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, 728 symbol_visibility, indexes) > 0) { 729 std::vector<uint32_t>::iterator pos = indexes.begin(); 730 while (pos != indexes.end()) { 731 if (symbol_type == eSymbolTypeAny || 732 m_symbols[*pos].GetType() == symbol_type) 733 ++pos; 734 else 735 pos = indexes.erase(pos); 736 } 737 } 738 return indexes.size(); 739 } 740 741 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 742 const RegularExpression ®exp, SymbolType symbol_type, 743 std::vector<uint32_t> &indexes) { 744 std::lock_guard<std::recursive_mutex> guard(m_mutex); 745 746 uint32_t prev_size = indexes.size(); 747 uint32_t sym_end = m_symbols.size(); 748 749 for (uint32_t i = 0; i < sym_end; i++) { 750 if (symbol_type == eSymbolTypeAny || 751 m_symbols[i].GetType() == symbol_type) { 752 const char *name = m_symbols[i].GetName().AsCString(); 753 if (name) { 754 if (regexp.Execute(name)) 755 indexes.push_back(i); 756 } 757 } 758 } 759 return indexes.size() - prev_size; 760 } 761 762 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( 763 const RegularExpression ®exp, SymbolType symbol_type, 764 Debug symbol_debug_type, Visibility symbol_visibility, 765 std::vector<uint32_t> &indexes) { 766 std::lock_guard<std::recursive_mutex> guard(m_mutex); 767 768 uint32_t prev_size = indexes.size(); 769 uint32_t sym_end = m_symbols.size(); 770 771 for (uint32_t i = 0; i < sym_end; i++) { 772 if (symbol_type == eSymbolTypeAny || 773 m_symbols[i].GetType() == symbol_type) { 774 if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) 775 continue; 776 777 const char *name = m_symbols[i].GetName().AsCString(); 778 if (name) { 779 if (regexp.Execute(name)) 780 indexes.push_back(i); 781 } 782 } 783 } 784 return indexes.size() - prev_size; 785 } 786 787 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, 788 Debug symbol_debug_type, 789 Visibility symbol_visibility, 790 uint32_t &start_idx) { 791 std::lock_guard<std::recursive_mutex> guard(m_mutex); 792 793 const size_t count = m_symbols.size(); 794 for (size_t idx = start_idx; idx < count; ++idx) { 795 if (symbol_type == eSymbolTypeAny || 796 m_symbols[idx].GetType() == symbol_type) { 797 if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { 798 start_idx = idx; 799 return &m_symbols[idx]; 800 } 801 } 802 } 803 return nullptr; 804 } 805 806 void 807 Symtab::FindAllSymbolsWithNameAndType(ConstString name, 808 SymbolType symbol_type, 809 std::vector<uint32_t> &symbol_indexes) { 810 std::lock_guard<std::recursive_mutex> guard(m_mutex); 811 812 LLDB_SCOPED_TIMER(); 813 // Initialize all of the lookup by name indexes before converting NAME to a 814 // uniqued string NAME_STR below. 815 if (!m_name_indexes_computed) 816 InitNameIndexes(); 817 818 if (name) { 819 // The string table did have a string that matched, but we need to check 820 // the symbols and match the symbol_type if any was given. 821 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); 822 } 823 } 824 825 void Symtab::FindAllSymbolsWithNameAndType( 826 ConstString name, SymbolType symbol_type, Debug symbol_debug_type, 827 Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { 828 std::lock_guard<std::recursive_mutex> guard(m_mutex); 829 830 LLDB_SCOPED_TIMER(); 831 // Initialize all of the lookup by name indexes before converting NAME to a 832 // uniqued string NAME_STR below. 833 if (!m_name_indexes_computed) 834 InitNameIndexes(); 835 836 if (name) { 837 // The string table did have a string that matched, but we need to check 838 // the symbols and match the symbol_type if any was given. 839 AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 840 symbol_visibility, symbol_indexes); 841 } 842 } 843 844 void Symtab::FindAllSymbolsMatchingRexExAndType( 845 const RegularExpression ®ex, SymbolType symbol_type, 846 Debug symbol_debug_type, Visibility symbol_visibility, 847 std::vector<uint32_t> &symbol_indexes) { 848 std::lock_guard<std::recursive_mutex> guard(m_mutex); 849 850 AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, 851 symbol_visibility, symbol_indexes); 852 } 853 854 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, 855 SymbolType symbol_type, 856 Debug symbol_debug_type, 857 Visibility symbol_visibility) { 858 std::lock_guard<std::recursive_mutex> guard(m_mutex); 859 LLDB_SCOPED_TIMER(); 860 if (!m_name_indexes_computed) 861 InitNameIndexes(); 862 863 if (name) { 864 std::vector<uint32_t> matching_indexes; 865 // The string table did have a string that matched, but we need to check 866 // the symbols and match the symbol_type if any was given. 867 if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, 868 symbol_visibility, 869 matching_indexes)) { 870 std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); 871 for (pos = matching_indexes.begin(); pos != end; ++pos) { 872 Symbol *symbol = SymbolAtIndex(*pos); 873 874 if (symbol->Compare(name, symbol_type)) 875 return symbol; 876 } 877 } 878 } 879 return nullptr; 880 } 881 882 typedef struct { 883 const Symtab *symtab; 884 const addr_t file_addr; 885 Symbol *match_symbol; 886 const uint32_t *match_index_ptr; 887 addr_t match_offset; 888 } SymbolSearchInfo; 889 890 // Add all the section file start address & size to the RangeVector, recusively 891 // adding any children sections. 892 static void AddSectionsToRangeMap(SectionList *sectlist, 893 RangeVector<addr_t, addr_t> §ion_ranges) { 894 const int num_sections = sectlist->GetNumSections(0); 895 for (int i = 0; i < num_sections; i++) { 896 SectionSP sect_sp = sectlist->GetSectionAtIndex(i); 897 if (sect_sp) { 898 SectionList &child_sectlist = sect_sp->GetChildren(); 899 900 // If this section has children, add the children to the RangeVector. 901 // Else add this section to the RangeVector. 902 if (child_sectlist.GetNumSections(0) > 0) { 903 AddSectionsToRangeMap(&child_sectlist, section_ranges); 904 } else { 905 size_t size = sect_sp->GetByteSize(); 906 if (size > 0) { 907 addr_t base_addr = sect_sp->GetFileAddress(); 908 RangeVector<addr_t, addr_t>::Entry entry; 909 entry.SetRangeBase(base_addr); 910 entry.SetByteSize(size); 911 section_ranges.Append(entry); 912 } 913 } 914 } 915 } 916 } 917 918 void Symtab::InitAddressIndexes() { 919 // Protected function, no need to lock mutex... 920 if (!m_file_addr_to_index_computed && !m_symbols.empty()) { 921 m_file_addr_to_index_computed = true; 922 923 FileRangeToIndexMap::Entry entry; 924 const_iterator begin = m_symbols.begin(); 925 const_iterator end = m_symbols.end(); 926 for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { 927 if (pos->ValueIsAddress()) { 928 entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); 929 entry.SetByteSize(pos->GetByteSize()); 930 entry.data = std::distance(begin, pos); 931 m_file_addr_to_index.Append(entry); 932 } 933 } 934 const size_t num_entries = m_file_addr_to_index.GetSize(); 935 if (num_entries > 0) { 936 m_file_addr_to_index.Sort(); 937 938 // Create a RangeVector with the start & size of all the sections for 939 // this objfile. We'll need to check this for any FileRangeToIndexMap 940 // entries with an uninitialized size, which could potentially be a large 941 // number so reconstituting the weak pointer is busywork when it is 942 // invariant information. 943 SectionList *sectlist = m_objfile->GetSectionList(); 944 RangeVector<addr_t, addr_t> section_ranges; 945 if (sectlist) { 946 AddSectionsToRangeMap(sectlist, section_ranges); 947 section_ranges.Sort(); 948 } 949 950 // Iterate through the FileRangeToIndexMap and fill in the size for any 951 // entries that didn't already have a size from the Symbol (e.g. if we 952 // have a plain linker symbol with an address only, instead of debug info 953 // where we get an address and a size and a type, etc.) 954 for (size_t i = 0; i < num_entries; i++) { 955 FileRangeToIndexMap::Entry *entry = 956 m_file_addr_to_index.GetMutableEntryAtIndex(i); 957 if (entry->GetByteSize() == 0) { 958 addr_t curr_base_addr = entry->GetRangeBase(); 959 const RangeVector<addr_t, addr_t>::Entry *containing_section = 960 section_ranges.FindEntryThatContains(curr_base_addr); 961 962 // Use the end of the section as the default max size of the symbol 963 addr_t sym_size = 0; 964 if (containing_section) { 965 sym_size = 966 containing_section->GetByteSize() - 967 (entry->GetRangeBase() - containing_section->GetRangeBase()); 968 } 969 970 for (size_t j = i; j < num_entries; j++) { 971 FileRangeToIndexMap::Entry *next_entry = 972 m_file_addr_to_index.GetMutableEntryAtIndex(j); 973 addr_t next_base_addr = next_entry->GetRangeBase(); 974 if (next_base_addr > curr_base_addr) { 975 addr_t size_to_next_symbol = next_base_addr - curr_base_addr; 976 977 // Take the difference between this symbol and the next one as 978 // its size, if it is less than the size of the section. 979 if (sym_size == 0 || size_to_next_symbol < sym_size) { 980 sym_size = size_to_next_symbol; 981 } 982 break; 983 } 984 } 985 986 if (sym_size > 0) { 987 entry->SetByteSize(sym_size); 988 Symbol &symbol = m_symbols[entry->data]; 989 symbol.SetByteSize(sym_size); 990 symbol.SetSizeIsSynthesized(true); 991 } 992 } 993 } 994 995 // Sort again in case the range size changes the ordering 996 m_file_addr_to_index.Sort(); 997 } 998 } 999 } 1000 1001 void Symtab::CalculateSymbolSizes() { 1002 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1003 // Size computation happens inside InitAddressIndexes. 1004 InitAddressIndexes(); 1005 } 1006 1007 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { 1008 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1009 if (!m_file_addr_to_index_computed) 1010 InitAddressIndexes(); 1011 1012 const FileRangeToIndexMap::Entry *entry = 1013 m_file_addr_to_index.FindEntryStartsAt(file_addr); 1014 if (entry) { 1015 Symbol *symbol = SymbolAtIndex(entry->data); 1016 if (symbol->GetFileAddress() == file_addr) 1017 return symbol; 1018 } 1019 return nullptr; 1020 } 1021 1022 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { 1023 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1024 1025 if (!m_file_addr_to_index_computed) 1026 InitAddressIndexes(); 1027 1028 const FileRangeToIndexMap::Entry *entry = 1029 m_file_addr_to_index.FindEntryThatContains(file_addr); 1030 if (entry) { 1031 Symbol *symbol = SymbolAtIndex(entry->data); 1032 if (symbol->ContainsFileAddress(file_addr)) 1033 return symbol; 1034 } 1035 return nullptr; 1036 } 1037 1038 void Symtab::ForEachSymbolContainingFileAddress( 1039 addr_t file_addr, std::function<bool(Symbol *)> const &callback) { 1040 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1041 1042 if (!m_file_addr_to_index_computed) 1043 InitAddressIndexes(); 1044 1045 std::vector<uint32_t> all_addr_indexes; 1046 1047 // Get all symbols with file_addr 1048 const size_t addr_match_count = 1049 m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, 1050 all_addr_indexes); 1051 1052 for (size_t i = 0; i < addr_match_count; ++i) { 1053 Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); 1054 if (symbol->ContainsFileAddress(file_addr)) { 1055 if (!callback(symbol)) 1056 break; 1057 } 1058 } 1059 } 1060 1061 void Symtab::SymbolIndicesToSymbolContextList( 1062 std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { 1063 // No need to protect this call using m_mutex all other method calls are 1064 // already thread safe. 1065 1066 const bool merge_symbol_into_function = true; 1067 size_t num_indices = symbol_indexes.size(); 1068 if (num_indices > 0) { 1069 SymbolContext sc; 1070 sc.module_sp = m_objfile->GetModule(); 1071 for (size_t i = 0; i < num_indices; i++) { 1072 sc.symbol = SymbolAtIndex(symbol_indexes[i]); 1073 if (sc.symbol) 1074 sc_list.AppendIfUnique(sc, merge_symbol_into_function); 1075 } 1076 } 1077 } 1078 1079 void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, 1080 SymbolContextList &sc_list) { 1081 std::vector<uint32_t> symbol_indexes; 1082 1083 // eFunctionNameTypeAuto should be pre-resolved by a call to 1084 // Module::LookupInfo::LookupInfo() 1085 assert((name_type_mask & eFunctionNameTypeAuto) == 0); 1086 1087 if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { 1088 std::vector<uint32_t> temp_symbol_indexes; 1089 FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); 1090 1091 unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); 1092 if (temp_symbol_indexes_size > 0) { 1093 std::lock_guard<std::recursive_mutex> guard(m_mutex); 1094 for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { 1095 SymbolContext sym_ctx; 1096 sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); 1097 if (sym_ctx.symbol) { 1098 switch (sym_ctx.symbol->GetType()) { 1099 case eSymbolTypeCode: 1100 case eSymbolTypeResolver: 1101 case eSymbolTypeReExported: 1102 symbol_indexes.push_back(temp_symbol_indexes[i]); 1103 break; 1104 default: 1105 break; 1106 } 1107 } 1108 } 1109 } 1110 } 1111 1112 if (!m_name_indexes_computed) 1113 InitNameIndexes(); 1114 1115 for (lldb::FunctionNameType type : 1116 {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, 1117 lldb::eFunctionNameTypeSelector}) { 1118 if (name_type_mask & type) { 1119 auto map = GetNameToSymbolIndexMap(type); 1120 1121 const UniqueCStringMap<uint32_t>::Entry *match; 1122 for (match = map.FindFirstValueForName(name); match != nullptr; 1123 match = map.FindNextValueForName(match)) { 1124 symbol_indexes.push_back(match->value); 1125 } 1126 } 1127 } 1128 1129 if (!symbol_indexes.empty()) { 1130 llvm::sort(symbol_indexes.begin(), symbol_indexes.end()); 1131 symbol_indexes.erase( 1132 std::unique(symbol_indexes.begin(), symbol_indexes.end()), 1133 symbol_indexes.end()); 1134 SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); 1135 } 1136 } 1137 1138 const Symbol *Symtab::GetParent(Symbol *child_symbol) const { 1139 uint32_t child_idx = GetIndexForSymbol(child_symbol); 1140 if (child_idx != UINT32_MAX && child_idx > 0) { 1141 for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { 1142 const Symbol *symbol = SymbolAtIndex(idx); 1143 const uint32_t sibling_idx = symbol->GetSiblingIndex(); 1144 if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) 1145 return symbol; 1146 } 1147 } 1148 return nullptr; 1149 } 1150