xref: /freebsd/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===-- Symtab.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <map>
10 #include <set>
11 
12 #include "Plugins/Language/ObjC/ObjCLanguage.h"
13 
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/RichManglingContext.h"
16 #include "lldb/Core/STLUtils.h"
17 #include "lldb/Core/Section.h"
18 #include "lldb/Symbol/ObjectFile.h"
19 #include "lldb/Symbol/Symbol.h"
20 #include "lldb/Symbol/SymbolContext.h"
21 #include "lldb/Symbol/Symtab.h"
22 #include "lldb/Utility/RegularExpression.h"
23 #include "lldb/Utility/Stream.h"
24 #include "lldb/Utility/Timer.h"
25 
26 #include "llvm/ADT/StringRef.h"
27 
28 using namespace lldb;
29 using namespace lldb_private;
30 
31 Symtab::Symtab(ObjectFile *objfile)
32     : m_objfile(objfile), m_symbols(), m_file_addr_to_index(),
33       m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
34       m_name_indexes_computed(false) {}
35 
36 Symtab::~Symtab() {}
37 
38 void Symtab::Reserve(size_t count) {
39   // Clients should grab the mutex from this symbol table and lock it manually
40   // when calling this function to avoid performance issues.
41   m_symbols.reserve(count);
42 }
43 
44 Symbol *Symtab::Resize(size_t count) {
45   // Clients should grab the mutex from this symbol table and lock it manually
46   // when calling this function to avoid performance issues.
47   m_symbols.resize(count);
48   return m_symbols.empty() ? nullptr : &m_symbols[0];
49 }
50 
51 uint32_t Symtab::AddSymbol(const Symbol &symbol) {
52   // Clients should grab the mutex from this symbol table and lock it manually
53   // when calling this function to avoid performance issues.
54   uint32_t symbol_idx = m_symbols.size();
55   m_name_to_index.Clear();
56   m_file_addr_to_index.Clear();
57   m_symbols.push_back(symbol);
58   m_file_addr_to_index_computed = false;
59   m_name_indexes_computed = false;
60   return symbol_idx;
61 }
62 
63 size_t Symtab::GetNumSymbols() const {
64   std::lock_guard<std::recursive_mutex> guard(m_mutex);
65   return m_symbols.size();
66 }
67 
68 void Symtab::SectionFileAddressesChanged() {
69   m_name_to_index.Clear();
70   m_file_addr_to_index_computed = false;
71 }
72 
73 void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order) {
74   std::lock_guard<std::recursive_mutex> guard(m_mutex);
75 
76   //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
77   s->Indent();
78   const FileSpec &file_spec = m_objfile->GetFileSpec();
79   const char *object_name = nullptr;
80   if (m_objfile->GetModule())
81     object_name = m_objfile->GetModule()->GetObjectName().GetCString();
82 
83   if (file_spec)
84     s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
85               file_spec.GetPath().c_str(), object_name ? "(" : "",
86               object_name ? object_name : "", object_name ? ")" : "",
87               (uint64_t)m_symbols.size());
88   else
89     s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
90 
91   if (!m_symbols.empty()) {
92     switch (sort_order) {
93     case eSortOrderNone: {
94       s->PutCString(":\n");
95       DumpSymbolHeader(s);
96       const_iterator begin = m_symbols.begin();
97       const_iterator end = m_symbols.end();
98       for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
99         s->Indent();
100         pos->Dump(s, target, std::distance(begin, pos));
101       }
102     } break;
103 
104     case eSortOrderByName: {
105       // Although we maintain a lookup by exact name map, the table isn't
106       // sorted by name. So we must make the ordered symbol list up ourselves.
107       s->PutCString(" (sorted by name):\n");
108       DumpSymbolHeader(s);
109       typedef std::multimap<const char *, const Symbol *,
110                             CStringCompareFunctionObject>
111           CStringToSymbol;
112       CStringToSymbol name_map;
113       for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
114            pos != end; ++pos) {
115         const char *name = pos->GetName().AsCString();
116         if (name && name[0])
117           name_map.insert(std::make_pair(name, &(*pos)));
118       }
119 
120       for (CStringToSymbol::const_iterator pos = name_map.begin(),
121                                            end = name_map.end();
122            pos != end; ++pos) {
123         s->Indent();
124         pos->second->Dump(s, target, pos->second - &m_symbols[0]);
125       }
126     } break;
127 
128     case eSortOrderByAddress:
129       s->PutCString(" (sorted by address):\n");
130       DumpSymbolHeader(s);
131       if (!m_file_addr_to_index_computed)
132         InitAddressIndexes();
133       const size_t num_entries = m_file_addr_to_index.GetSize();
134       for (size_t i = 0; i < num_entries; ++i) {
135         s->Indent();
136         const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
137         m_symbols[symbol_idx].Dump(s, target, symbol_idx);
138       }
139       break;
140     }
141   } else {
142     s->PutCString("\n");
143   }
144 }
145 
146 void Symtab::Dump(Stream *s, Target *target,
147                   std::vector<uint32_t> &indexes) const {
148   std::lock_guard<std::recursive_mutex> guard(m_mutex);
149 
150   const size_t num_symbols = GetNumSymbols();
151   // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
152   s->Indent();
153   s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
154             (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
155   s->IndentMore();
156 
157   if (!indexes.empty()) {
158     std::vector<uint32_t>::const_iterator pos;
159     std::vector<uint32_t>::const_iterator end = indexes.end();
160     DumpSymbolHeader(s);
161     for (pos = indexes.begin(); pos != end; ++pos) {
162       size_t idx = *pos;
163       if (idx < num_symbols) {
164         s->Indent();
165         m_symbols[idx].Dump(s, target, idx);
166       }
167     }
168   }
169   s->IndentLess();
170 }
171 
172 void Symtab::DumpSymbolHeader(Stream *s) {
173   s->Indent("               Debug symbol\n");
174   s->Indent("               |Synthetic symbol\n");
175   s->Indent("               ||Externally Visible\n");
176   s->Indent("               |||\n");
177   s->Indent("Index   UserID DSX Type            File Address/Value Load "
178             "Address       Size               Flags      Name\n");
179   s->Indent("------- ------ --- --------------- ------------------ "
180             "------------------ ------------------ ---------- "
181             "----------------------------------\n");
182 }
183 
184 static int CompareSymbolID(const void *key, const void *p) {
185   const user_id_t match_uid = *(const user_id_t *)key;
186   const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
187   if (match_uid < symbol_uid)
188     return -1;
189   if (match_uid > symbol_uid)
190     return 1;
191   return 0;
192 }
193 
194 Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
195   std::lock_guard<std::recursive_mutex> guard(m_mutex);
196 
197   Symbol *symbol =
198       (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
199                           sizeof(m_symbols[0]), CompareSymbolID);
200   return symbol;
201 }
202 
203 Symbol *Symtab::SymbolAtIndex(size_t idx) {
204   // Clients should grab the mutex from this symbol table and lock it manually
205   // when calling this function to avoid performance issues.
206   if (idx < m_symbols.size())
207     return &m_symbols[idx];
208   return nullptr;
209 }
210 
211 const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
212   // Clients should grab the mutex from this symbol table and lock it manually
213   // when calling this function to avoid performance issues.
214   if (idx < m_symbols.size())
215     return &m_symbols[idx];
216   return nullptr;
217 }
218 
219 static bool lldb_skip_name(llvm::StringRef mangled,
220                            Mangled::ManglingScheme scheme) {
221   switch (scheme) {
222   case Mangled::eManglingSchemeItanium: {
223     if (mangled.size() < 3 || !mangled.startswith("_Z"))
224       return true;
225 
226     // Avoid the following types of symbols in the index.
227     switch (mangled[2]) {
228     case 'G': // guard variables
229     case 'T': // virtual tables, VTT structures, typeinfo structures + names
230     case 'Z': // named local entities (if we eventually handle
231               // eSymbolTypeData, we will want this back)
232       return true;
233 
234     default:
235       break;
236     }
237 
238     // Include this name in the index.
239     return false;
240   }
241 
242   // No filters for this scheme yet. Include all names in indexing.
243   case Mangled::eManglingSchemeMSVC:
244     return false;
245 
246   // Don't try and demangle things we can't categorize.
247   case Mangled::eManglingSchemeNone:
248     return true;
249   }
250   llvm_unreachable("unknown scheme!");
251 }
252 
253 void Symtab::InitNameIndexes() {
254   // Protected function, no need to lock mutex...
255   if (!m_name_indexes_computed) {
256     m_name_indexes_computed = true;
257     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
258     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
259     // Create the name index vector to be able to quickly search by name
260     const size_t num_symbols = m_symbols.size();
261     m_name_to_index.Reserve(num_symbols);
262 
263     // The "const char *" in "class_contexts" and backlog::value_type::second
264     // must come from a ConstString::GetCString()
265     std::set<const char *> class_contexts;
266     std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
267     backlog.reserve(num_symbols / 2);
268 
269     // Instantiation of the demangler is expensive, so better use a single one
270     // for all entries during batch processing.
271     RichManglingContext rmc;
272     for (uint32_t value = 0; value < num_symbols; ++value) {
273       Symbol *symbol = &m_symbols[value];
274 
275       // Don't let trampolines get into the lookup by name map If we ever need
276       // the trampoline symbols to be searchable by name we can remove this and
277       // then possibly add a new bool to any of the Symtab functions that
278       // lookup symbols by name to indicate if they want trampolines.
279       if (symbol->IsTrampoline())
280         continue;
281 
282       // If the symbol's name string matched a Mangled::ManglingScheme, it is
283       // stored in the mangled field.
284       Mangled &mangled = symbol->GetMangled();
285       if (ConstString name = mangled.GetMangledName()) {
286         m_name_to_index.Append(name, value);
287 
288         if (symbol->ContainsLinkerAnnotations()) {
289           // If the symbol has linker annotations, also add the version without
290           // the annotations.
291           ConstString stripped = ConstString(
292               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
293           m_name_to_index.Append(stripped, value);
294         }
295 
296         const SymbolType type = symbol->GetType();
297         if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
298           if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
299             RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
300         }
301       }
302 
303       // Symbol name strings that didn't match a Mangled::ManglingScheme, are
304       // stored in the demangled field.
305       if (ConstString name = mangled.GetDemangledName(symbol->GetLanguage())) {
306         m_name_to_index.Append(name, value);
307 
308         if (symbol->ContainsLinkerAnnotations()) {
309           // If the symbol has linker annotations, also add the version without
310           // the annotations.
311           name = ConstString(
312               m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
313           m_name_to_index.Append(name, value);
314         }
315 
316         // If the demangled name turns out to be an ObjC name, and is a category
317         // name, add the version without categories to the index too.
318         ObjCLanguage::MethodName objc_method(name.GetStringRef(), true);
319         if (objc_method.IsValid(true)) {
320           m_selector_to_index.Append(objc_method.GetSelector(), value);
321 
322           if (ConstString objc_method_no_category =
323                   objc_method.GetFullNameWithoutCategory(true))
324             m_name_to_index.Append(objc_method_no_category, value);
325         }
326       }
327     }
328 
329     for (const auto &record : backlog) {
330       RegisterBacklogEntry(record.first, record.second, class_contexts);
331     }
332 
333     m_name_to_index.Sort();
334     m_name_to_index.SizeToFit();
335     m_selector_to_index.Sort();
336     m_selector_to_index.SizeToFit();
337     m_basename_to_index.Sort();
338     m_basename_to_index.SizeToFit();
339     m_method_to_index.Sort();
340     m_method_to_index.SizeToFit();
341   }
342 }
343 
344 void Symtab::RegisterMangledNameEntry(
345     uint32_t value, std::set<const char *> &class_contexts,
346     std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
347     RichManglingContext &rmc) {
348   // Only register functions that have a base name.
349   rmc.ParseFunctionBaseName();
350   llvm::StringRef base_name = rmc.GetBufferRef();
351   if (base_name.empty())
352     return;
353 
354   // The base name will be our entry's name.
355   NameToIndexMap::Entry entry(ConstString(base_name), value);
356 
357   rmc.ParseFunctionDeclContextName();
358   llvm::StringRef decl_context = rmc.GetBufferRef();
359 
360   // Register functions with no context.
361   if (decl_context.empty()) {
362     // This has to be a basename
363     m_basename_to_index.Append(entry);
364     // If there is no context (no namespaces or class scopes that come before
365     // the function name) then this also could be a fullname.
366     m_name_to_index.Append(entry);
367     return;
368   }
369 
370   // Make sure we have a pool-string pointer and see if we already know the
371   // context name.
372   const char *decl_context_ccstr = ConstString(decl_context).GetCString();
373   auto it = class_contexts.find(decl_context_ccstr);
374 
375   // Register constructors and destructors. They are methods and create
376   // declaration contexts.
377   if (rmc.IsCtorOrDtor()) {
378     m_method_to_index.Append(entry);
379     if (it == class_contexts.end())
380       class_contexts.insert(it, decl_context_ccstr);
381     return;
382   }
383 
384   // Register regular methods with a known declaration context.
385   if (it != class_contexts.end()) {
386     m_method_to_index.Append(entry);
387     return;
388   }
389 
390   // Regular methods in unknown declaration contexts are put to the backlog. We
391   // will revisit them once we processed all remaining symbols.
392   backlog.push_back(std::make_pair(entry, decl_context_ccstr));
393 }
394 
395 void Symtab::RegisterBacklogEntry(
396     const NameToIndexMap::Entry &entry, const char *decl_context,
397     const std::set<const char *> &class_contexts) {
398   auto it = class_contexts.find(decl_context);
399   if (it != class_contexts.end()) {
400     m_method_to_index.Append(entry);
401   } else {
402     // If we got here, we have something that had a context (was inside
403     // a namespace or class) yet we don't know the entry
404     m_method_to_index.Append(entry);
405     m_basename_to_index.Append(entry);
406   }
407 }
408 
409 void Symtab::PreloadSymbols() {
410   std::lock_guard<std::recursive_mutex> guard(m_mutex);
411   InitNameIndexes();
412 }
413 
414 void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
415                                     bool add_demangled, bool add_mangled,
416                                     NameToIndexMap &name_to_index_map) const {
417   if (add_demangled || add_mangled) {
418     static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
419     Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
420     std::lock_guard<std::recursive_mutex> guard(m_mutex);
421 
422     // Create the name index vector to be able to quickly search by name
423     const size_t num_indexes = indexes.size();
424     for (size_t i = 0; i < num_indexes; ++i) {
425       uint32_t value = indexes[i];
426       assert(i < m_symbols.size());
427       const Symbol *symbol = &m_symbols[value];
428 
429       const Mangled &mangled = symbol->GetMangled();
430       if (add_demangled) {
431         if (ConstString name = mangled.GetDemangledName(symbol->GetLanguage()))
432           name_to_index_map.Append(name, value);
433       }
434 
435       if (add_mangled) {
436         if (ConstString name = mangled.GetMangledName())
437           name_to_index_map.Append(name, value);
438       }
439     }
440   }
441 }
442 
443 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
444                                              std::vector<uint32_t> &indexes,
445                                              uint32_t start_idx,
446                                              uint32_t end_index) const {
447   std::lock_guard<std::recursive_mutex> guard(m_mutex);
448 
449   uint32_t prev_size = indexes.size();
450 
451   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
452 
453   for (uint32_t i = start_idx; i < count; ++i) {
454     if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
455       indexes.push_back(i);
456   }
457 
458   return indexes.size() - prev_size;
459 }
460 
461 uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
462     SymbolType symbol_type, uint32_t flags_value,
463     std::vector<uint32_t> &indexes, uint32_t start_idx,
464     uint32_t end_index) const {
465   std::lock_guard<std::recursive_mutex> guard(m_mutex);
466 
467   uint32_t prev_size = indexes.size();
468 
469   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
470 
471   for (uint32_t i = start_idx; i < count; ++i) {
472     if ((symbol_type == eSymbolTypeAny ||
473          m_symbols[i].GetType() == symbol_type) &&
474         m_symbols[i].GetFlags() == flags_value)
475       indexes.push_back(i);
476   }
477 
478   return indexes.size() - prev_size;
479 }
480 
481 uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
482                                              Debug symbol_debug_type,
483                                              Visibility symbol_visibility,
484                                              std::vector<uint32_t> &indexes,
485                                              uint32_t start_idx,
486                                              uint32_t end_index) const {
487   std::lock_guard<std::recursive_mutex> guard(m_mutex);
488 
489   uint32_t prev_size = indexes.size();
490 
491   const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
492 
493   for (uint32_t i = start_idx; i < count; ++i) {
494     if (symbol_type == eSymbolTypeAny ||
495         m_symbols[i].GetType() == symbol_type) {
496       if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
497         indexes.push_back(i);
498     }
499   }
500 
501   return indexes.size() - prev_size;
502 }
503 
504 uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
505   if (!m_symbols.empty()) {
506     const Symbol *first_symbol = &m_symbols[0];
507     if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
508       return symbol - first_symbol;
509   }
510   return UINT32_MAX;
511 }
512 
513 struct SymbolSortInfo {
514   const bool sort_by_load_addr;
515   const Symbol *symbols;
516 };
517 
518 namespace {
519 struct SymbolIndexComparator {
520   const std::vector<Symbol> &symbols;
521   std::vector<lldb::addr_t> &addr_cache;
522 
523   // Getting from the symbol to the Address to the File Address involves some
524   // work. Since there are potentially many symbols here, and we're using this
525   // for sorting so we're going to be computing the address many times, cache
526   // that in addr_cache. The array passed in has to be the same size as the
527   // symbols array passed into the member variable symbols, and should be
528   // initialized with LLDB_INVALID_ADDRESS.
529   // NOTE: You have to make addr_cache externally and pass it in because
530   // std::stable_sort
531   // makes copies of the comparator it is initially passed in, and you end up
532   // spending huge amounts of time copying this array...
533 
534   SymbolIndexComparator(const std::vector<Symbol> &s,
535                         std::vector<lldb::addr_t> &a)
536       : symbols(s), addr_cache(a) {
537     assert(symbols.size() == addr_cache.size());
538   }
539   bool operator()(uint32_t index_a, uint32_t index_b) {
540     addr_t value_a = addr_cache[index_a];
541     if (value_a == LLDB_INVALID_ADDRESS) {
542       value_a = symbols[index_a].GetAddressRef().GetFileAddress();
543       addr_cache[index_a] = value_a;
544     }
545 
546     addr_t value_b = addr_cache[index_b];
547     if (value_b == LLDB_INVALID_ADDRESS) {
548       value_b = symbols[index_b].GetAddressRef().GetFileAddress();
549       addr_cache[index_b] = value_b;
550     }
551 
552     if (value_a == value_b) {
553       // The if the values are equal, use the original symbol user ID
554       lldb::user_id_t uid_a = symbols[index_a].GetID();
555       lldb::user_id_t uid_b = symbols[index_b].GetID();
556       if (uid_a < uid_b)
557         return true;
558       if (uid_a > uid_b)
559         return false;
560       return false;
561     } else if (value_a < value_b)
562       return true;
563 
564     return false;
565   }
566 };
567 }
568 
569 void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
570                                       bool remove_duplicates) const {
571   std::lock_guard<std::recursive_mutex> guard(m_mutex);
572 
573   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
574   Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION);
575   // No need to sort if we have zero or one items...
576   if (indexes.size() <= 1)
577     return;
578 
579   // Sort the indexes in place using std::stable_sort.
580   // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
581   // for performance, not correctness.  The indexes vector tends to be "close"
582   // to sorted, which the stable sort handles better.
583 
584   std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
585 
586   SymbolIndexComparator comparator(m_symbols, addr_cache);
587   std::stable_sort(indexes.begin(), indexes.end(), comparator);
588 
589   // Remove any duplicates if requested
590   if (remove_duplicates) {
591     auto last = std::unique(indexes.begin(), indexes.end());
592     indexes.erase(last, indexes.end());
593   }
594 }
595 
596 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
597                                              std::vector<uint32_t> &indexes) {
598   std::lock_guard<std::recursive_mutex> guard(m_mutex);
599 
600   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
601   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
602   if (symbol_name) {
603     if (!m_name_indexes_computed)
604       InitNameIndexes();
605 
606     return m_name_to_index.GetValues(symbol_name, indexes);
607   }
608   return 0;
609 }
610 
611 uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
612                                              Debug symbol_debug_type,
613                                              Visibility symbol_visibility,
614                                              std::vector<uint32_t> &indexes) {
615   std::lock_guard<std::recursive_mutex> guard(m_mutex);
616 
617   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
618   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
619   if (symbol_name) {
620     const size_t old_size = indexes.size();
621     if (!m_name_indexes_computed)
622       InitNameIndexes();
623 
624     std::vector<uint32_t> all_name_indexes;
625     const size_t name_match_count =
626         m_name_to_index.GetValues(symbol_name, all_name_indexes);
627     for (size_t i = 0; i < name_match_count; ++i) {
628       if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
629                              symbol_visibility))
630         indexes.push_back(all_name_indexes[i]);
631     }
632     return indexes.size() - old_size;
633   }
634   return 0;
635 }
636 
637 uint32_t
638 Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
639                                            SymbolType symbol_type,
640                                            std::vector<uint32_t> &indexes) {
641   std::lock_guard<std::recursive_mutex> guard(m_mutex);
642 
643   if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
644     std::vector<uint32_t>::iterator pos = indexes.begin();
645     while (pos != indexes.end()) {
646       if (symbol_type == eSymbolTypeAny ||
647           m_symbols[*pos].GetType() == symbol_type)
648         ++pos;
649       else
650         pos = indexes.erase(pos);
651     }
652   }
653   return indexes.size();
654 }
655 
656 uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
657     ConstString symbol_name, SymbolType symbol_type,
658     Debug symbol_debug_type, Visibility symbol_visibility,
659     std::vector<uint32_t> &indexes) {
660   std::lock_guard<std::recursive_mutex> guard(m_mutex);
661 
662   if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
663                                   symbol_visibility, indexes) > 0) {
664     std::vector<uint32_t>::iterator pos = indexes.begin();
665     while (pos != indexes.end()) {
666       if (symbol_type == eSymbolTypeAny ||
667           m_symbols[*pos].GetType() == symbol_type)
668         ++pos;
669       else
670         pos = indexes.erase(pos);
671     }
672   }
673   return indexes.size();
674 }
675 
676 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
677     const RegularExpression &regexp, SymbolType symbol_type,
678     std::vector<uint32_t> &indexes) {
679   std::lock_guard<std::recursive_mutex> guard(m_mutex);
680 
681   uint32_t prev_size = indexes.size();
682   uint32_t sym_end = m_symbols.size();
683 
684   for (uint32_t i = 0; i < sym_end; i++) {
685     if (symbol_type == eSymbolTypeAny ||
686         m_symbols[i].GetType() == symbol_type) {
687       const char *name = m_symbols[i].GetName().AsCString();
688       if (name) {
689         if (regexp.Execute(name))
690           indexes.push_back(i);
691       }
692     }
693   }
694   return indexes.size() - prev_size;
695 }
696 
697 uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
698     const RegularExpression &regexp, SymbolType symbol_type,
699     Debug symbol_debug_type, Visibility symbol_visibility,
700     std::vector<uint32_t> &indexes) {
701   std::lock_guard<std::recursive_mutex> guard(m_mutex);
702 
703   uint32_t prev_size = indexes.size();
704   uint32_t sym_end = m_symbols.size();
705 
706   for (uint32_t i = 0; i < sym_end; i++) {
707     if (symbol_type == eSymbolTypeAny ||
708         m_symbols[i].GetType() == symbol_type) {
709       if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
710         continue;
711 
712       const char *name = m_symbols[i].GetName().AsCString();
713       if (name) {
714         if (regexp.Execute(name))
715           indexes.push_back(i);
716       }
717     }
718   }
719   return indexes.size() - prev_size;
720 }
721 
722 Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
723                                    Debug symbol_debug_type,
724                                    Visibility symbol_visibility,
725                                    uint32_t &start_idx) {
726   std::lock_guard<std::recursive_mutex> guard(m_mutex);
727 
728   const size_t count = m_symbols.size();
729   for (size_t idx = start_idx; idx < count; ++idx) {
730     if (symbol_type == eSymbolTypeAny ||
731         m_symbols[idx].GetType() == symbol_type) {
732       if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
733         start_idx = idx;
734         return &m_symbols[idx];
735       }
736     }
737   }
738   return nullptr;
739 }
740 
741 size_t
742 Symtab::FindAllSymbolsWithNameAndType(ConstString name,
743                                       SymbolType symbol_type,
744                                       std::vector<uint32_t> &symbol_indexes) {
745   std::lock_guard<std::recursive_mutex> guard(m_mutex);
746 
747   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
748   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
749   // Initialize all of the lookup by name indexes before converting NAME to a
750   // uniqued string NAME_STR below.
751   if (!m_name_indexes_computed)
752     InitNameIndexes();
753 
754   if (name) {
755     // The string table did have a string that matched, but we need to check
756     // the symbols and match the symbol_type if any was given.
757     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
758   }
759   return symbol_indexes.size();
760 }
761 
762 size_t Symtab::FindAllSymbolsWithNameAndType(
763     ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
764     Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
765   std::lock_guard<std::recursive_mutex> guard(m_mutex);
766 
767   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
768   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
769   // Initialize all of the lookup by name indexes before converting NAME to a
770   // uniqued string NAME_STR below.
771   if (!m_name_indexes_computed)
772     InitNameIndexes();
773 
774   if (name) {
775     // The string table did have a string that matched, but we need to check
776     // the symbols and match the symbol_type if any was given.
777     AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
778                                        symbol_visibility, symbol_indexes);
779   }
780   return symbol_indexes.size();
781 }
782 
783 size_t Symtab::FindAllSymbolsMatchingRexExAndType(
784     const RegularExpression &regex, SymbolType symbol_type,
785     Debug symbol_debug_type, Visibility symbol_visibility,
786     std::vector<uint32_t> &symbol_indexes) {
787   std::lock_guard<std::recursive_mutex> guard(m_mutex);
788 
789   AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
790                                           symbol_visibility, symbol_indexes);
791   return symbol_indexes.size();
792 }
793 
794 Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
795                                                SymbolType symbol_type,
796                                                Debug symbol_debug_type,
797                                                Visibility symbol_visibility) {
798   std::lock_guard<std::recursive_mutex> guard(m_mutex);
799 
800   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
801   Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
802   if (!m_name_indexes_computed)
803     InitNameIndexes();
804 
805   if (name) {
806     std::vector<uint32_t> matching_indexes;
807     // The string table did have a string that matched, but we need to check
808     // the symbols and match the symbol_type if any was given.
809     if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
810                                            symbol_visibility,
811                                            matching_indexes)) {
812       std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
813       for (pos = matching_indexes.begin(); pos != end; ++pos) {
814         Symbol *symbol = SymbolAtIndex(*pos);
815 
816         if (symbol->Compare(name, symbol_type))
817           return symbol;
818       }
819     }
820   }
821   return nullptr;
822 }
823 
824 typedef struct {
825   const Symtab *symtab;
826   const addr_t file_addr;
827   Symbol *match_symbol;
828   const uint32_t *match_index_ptr;
829   addr_t match_offset;
830 } SymbolSearchInfo;
831 
832 // Add all the section file start address & size to the RangeVector, recusively
833 // adding any children sections.
834 static void AddSectionsToRangeMap(SectionList *sectlist,
835                                   RangeVector<addr_t, addr_t> &section_ranges) {
836   const int num_sections = sectlist->GetNumSections(0);
837   for (int i = 0; i < num_sections; i++) {
838     SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
839     if (sect_sp) {
840       SectionList &child_sectlist = sect_sp->GetChildren();
841 
842       // If this section has children, add the children to the RangeVector.
843       // Else add this section to the RangeVector.
844       if (child_sectlist.GetNumSections(0) > 0) {
845         AddSectionsToRangeMap(&child_sectlist, section_ranges);
846       } else {
847         size_t size = sect_sp->GetByteSize();
848         if (size > 0) {
849           addr_t base_addr = sect_sp->GetFileAddress();
850           RangeVector<addr_t, addr_t>::Entry entry;
851           entry.SetRangeBase(base_addr);
852           entry.SetByteSize(size);
853           section_ranges.Append(entry);
854         }
855       }
856     }
857   }
858 }
859 
860 void Symtab::InitAddressIndexes() {
861   // Protected function, no need to lock mutex...
862   if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
863     m_file_addr_to_index_computed = true;
864 
865     FileRangeToIndexMap::Entry entry;
866     const_iterator begin = m_symbols.begin();
867     const_iterator end = m_symbols.end();
868     for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
869       if (pos->ValueIsAddress()) {
870         entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
871         entry.SetByteSize(pos->GetByteSize());
872         entry.data = std::distance(begin, pos);
873         m_file_addr_to_index.Append(entry);
874       }
875     }
876     const size_t num_entries = m_file_addr_to_index.GetSize();
877     if (num_entries > 0) {
878       m_file_addr_to_index.Sort();
879 
880       // Create a RangeVector with the start & size of all the sections for
881       // this objfile.  We'll need to check this for any FileRangeToIndexMap
882       // entries with an uninitialized size, which could potentially be a large
883       // number so reconstituting the weak pointer is busywork when it is
884       // invariant information.
885       SectionList *sectlist = m_objfile->GetSectionList();
886       RangeVector<addr_t, addr_t> section_ranges;
887       if (sectlist) {
888         AddSectionsToRangeMap(sectlist, section_ranges);
889         section_ranges.Sort();
890       }
891 
892       // Iterate through the FileRangeToIndexMap and fill in the size for any
893       // entries that didn't already have a size from the Symbol (e.g. if we
894       // have a plain linker symbol with an address only, instead of debug info
895       // where we get an address and a size and a type, etc.)
896       for (size_t i = 0; i < num_entries; i++) {
897         FileRangeToIndexMap::Entry *entry =
898             m_file_addr_to_index.GetMutableEntryAtIndex(i);
899         if (entry->GetByteSize() == 0) {
900           addr_t curr_base_addr = entry->GetRangeBase();
901           const RangeVector<addr_t, addr_t>::Entry *containing_section =
902               section_ranges.FindEntryThatContains(curr_base_addr);
903 
904           // Use the end of the section as the default max size of the symbol
905           addr_t sym_size = 0;
906           if (containing_section) {
907             sym_size =
908                 containing_section->GetByteSize() -
909                 (entry->GetRangeBase() - containing_section->GetRangeBase());
910           }
911 
912           for (size_t j = i; j < num_entries; j++) {
913             FileRangeToIndexMap::Entry *next_entry =
914                 m_file_addr_to_index.GetMutableEntryAtIndex(j);
915             addr_t next_base_addr = next_entry->GetRangeBase();
916             if (next_base_addr > curr_base_addr) {
917               addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
918 
919               // Take the difference between this symbol and the next one as
920               // its size, if it is less than the size of the section.
921               if (sym_size == 0 || size_to_next_symbol < sym_size) {
922                 sym_size = size_to_next_symbol;
923               }
924               break;
925             }
926           }
927 
928           if (sym_size > 0) {
929             entry->SetByteSize(sym_size);
930             Symbol &symbol = m_symbols[entry->data];
931             symbol.SetByteSize(sym_size);
932             symbol.SetSizeIsSynthesized(true);
933           }
934         }
935       }
936 
937       // Sort again in case the range size changes the ordering
938       m_file_addr_to_index.Sort();
939     }
940   }
941 }
942 
943 void Symtab::CalculateSymbolSizes() {
944   std::lock_guard<std::recursive_mutex> guard(m_mutex);
945   // Size computation happens inside InitAddressIndexes.
946   InitAddressIndexes();
947 }
948 
949 Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
950   std::lock_guard<std::recursive_mutex> guard(m_mutex);
951   if (!m_file_addr_to_index_computed)
952     InitAddressIndexes();
953 
954   const FileRangeToIndexMap::Entry *entry =
955       m_file_addr_to_index.FindEntryStartsAt(file_addr);
956   if (entry) {
957     Symbol *symbol = SymbolAtIndex(entry->data);
958     if (symbol->GetFileAddress() == file_addr)
959       return symbol;
960   }
961   return nullptr;
962 }
963 
964 Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
965   std::lock_guard<std::recursive_mutex> guard(m_mutex);
966 
967   if (!m_file_addr_to_index_computed)
968     InitAddressIndexes();
969 
970   const FileRangeToIndexMap::Entry *entry =
971       m_file_addr_to_index.FindEntryThatContains(file_addr);
972   if (entry) {
973     Symbol *symbol = SymbolAtIndex(entry->data);
974     if (symbol->ContainsFileAddress(file_addr))
975       return symbol;
976   }
977   return nullptr;
978 }
979 
980 void Symtab::ForEachSymbolContainingFileAddress(
981     addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
982   std::lock_guard<std::recursive_mutex> guard(m_mutex);
983 
984   if (!m_file_addr_to_index_computed)
985     InitAddressIndexes();
986 
987   std::vector<uint32_t> all_addr_indexes;
988 
989   // Get all symbols with file_addr
990   const size_t addr_match_count =
991       m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
992                                                        all_addr_indexes);
993 
994   for (size_t i = 0; i < addr_match_count; ++i) {
995     Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
996     if (symbol->ContainsFileAddress(file_addr)) {
997       if (!callback(symbol))
998         break;
999     }
1000   }
1001 }
1002 
1003 void Symtab::SymbolIndicesToSymbolContextList(
1004     std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1005   // No need to protect this call using m_mutex all other method calls are
1006   // already thread safe.
1007 
1008   const bool merge_symbol_into_function = true;
1009   size_t num_indices = symbol_indexes.size();
1010   if (num_indices > 0) {
1011     SymbolContext sc;
1012     sc.module_sp = m_objfile->GetModule();
1013     for (size_t i = 0; i < num_indices; i++) {
1014       sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1015       if (sc.symbol)
1016         sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1017     }
1018   }
1019 }
1020 
1021 size_t Symtab::FindFunctionSymbols(ConstString name,
1022                                    uint32_t name_type_mask,
1023                                    SymbolContextList &sc_list) {
1024   size_t count = 0;
1025   std::vector<uint32_t> symbol_indexes;
1026 
1027   // eFunctionNameTypeAuto should be pre-resolved by a call to
1028   // Module::LookupInfo::LookupInfo()
1029   assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1030 
1031   if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1032     std::vector<uint32_t> temp_symbol_indexes;
1033     FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1034 
1035     unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1036     if (temp_symbol_indexes_size > 0) {
1037       std::lock_guard<std::recursive_mutex> guard(m_mutex);
1038       for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1039         SymbolContext sym_ctx;
1040         sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1041         if (sym_ctx.symbol) {
1042           switch (sym_ctx.symbol->GetType()) {
1043           case eSymbolTypeCode:
1044           case eSymbolTypeResolver:
1045           case eSymbolTypeReExported:
1046             symbol_indexes.push_back(temp_symbol_indexes[i]);
1047             break;
1048           default:
1049             break;
1050           }
1051         }
1052       }
1053     }
1054   }
1055 
1056   if (name_type_mask & eFunctionNameTypeBase) {
1057     // From mangled names we can't tell what is a basename and what is a method
1058     // name, so we just treat them the same
1059     if (!m_name_indexes_computed)
1060       InitNameIndexes();
1061 
1062     if (!m_basename_to_index.IsEmpty()) {
1063       const UniqueCStringMap<uint32_t>::Entry *match;
1064       for (match = m_basename_to_index.FindFirstValueForName(name);
1065            match != nullptr;
1066            match = m_basename_to_index.FindNextValueForName(match)) {
1067         symbol_indexes.push_back(match->value);
1068       }
1069     }
1070   }
1071 
1072   if (name_type_mask & eFunctionNameTypeMethod) {
1073     if (!m_name_indexes_computed)
1074       InitNameIndexes();
1075 
1076     if (!m_method_to_index.IsEmpty()) {
1077       const UniqueCStringMap<uint32_t>::Entry *match;
1078       for (match = m_method_to_index.FindFirstValueForName(name);
1079            match != nullptr;
1080            match = m_method_to_index.FindNextValueForName(match)) {
1081         symbol_indexes.push_back(match->value);
1082       }
1083     }
1084   }
1085 
1086   if (name_type_mask & eFunctionNameTypeSelector) {
1087     if (!m_name_indexes_computed)
1088       InitNameIndexes();
1089 
1090     if (!m_selector_to_index.IsEmpty()) {
1091       const UniqueCStringMap<uint32_t>::Entry *match;
1092       for (match = m_selector_to_index.FindFirstValueForName(name);
1093            match != nullptr;
1094            match = m_selector_to_index.FindNextValueForName(match)) {
1095         symbol_indexes.push_back(match->value);
1096       }
1097     }
1098   }
1099 
1100   if (!symbol_indexes.empty()) {
1101     llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
1102     symbol_indexes.erase(
1103         std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1104         symbol_indexes.end());
1105     count = symbol_indexes.size();
1106     SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1107   }
1108 
1109   return count;
1110 }
1111 
1112 const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1113   uint32_t child_idx = GetIndexForSymbol(child_symbol);
1114   if (child_idx != UINT32_MAX && child_idx > 0) {
1115     for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1116       const Symbol *symbol = SymbolAtIndex(idx);
1117       const uint32_t sibling_idx = symbol->GetSiblingIndex();
1118       if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1119         return symbol;
1120     }
1121   }
1122   return nullptr;
1123 }
1124