xref: /freebsd/contrib/llvm-project/lldb/source/Plugins/Disassembler/LLVMC/DisassemblerLLVMC.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- DisassemblerLLVMC.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "DisassemblerLLVMC.h"
10 
11 #include "llvm-c/Disassembler.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/MC/MCAsmInfo.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
17 #include "llvm/MC/MCDisassembler/MCExternalSymbolizer.h"
18 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
19 #include "llvm/MC/MCInst.h"
20 #include "llvm/MC/MCInstPrinter.h"
21 #include "llvm/MC/MCInstrAnalysis.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include "llvm/MC/MCSubtargetInfo.h"
25 #include "llvm/MC/MCTargetOptions.h"
26 #include "llvm/MC/TargetRegistry.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ScopedPrinter.h"
29 #include "llvm/Support/TargetSelect.h"
30 #include "llvm/TargetParser/AArch64TargetParser.h"
31 
32 #include "lldb/Core/Address.h"
33 #include "lldb/Core/Module.h"
34 #include "lldb/Symbol/SymbolContext.h"
35 #include "lldb/Target/ExecutionContext.h"
36 #include "lldb/Target/Process.h"
37 #include "lldb/Target/RegisterContext.h"
38 #include "lldb/Target/SectionLoadList.h"
39 #include "lldb/Target/StackFrame.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/DataExtractor.h"
42 #include "lldb/Utility/LLDBLog.h"
43 #include "lldb/Utility/Log.h"
44 #include "lldb/Utility/RegularExpression.h"
45 #include "lldb/Utility/Stream.h"
46 #include <optional>
47 
48 using namespace lldb;
49 using namespace lldb_private;
50 
51 LLDB_PLUGIN_DEFINE(DisassemblerLLVMC)
52 
53 class DisassemblerLLVMC::MCDisasmInstance {
54 public:
55   static std::unique_ptr<MCDisasmInstance>
56   Create(const char *triple, const char *cpu, const char *features_str,
57          unsigned flavor, DisassemblerLLVMC &owner);
58 
59   ~MCDisasmInstance() = default;
60 
61   uint64_t GetMCInst(const uint8_t *opcode_data, size_t opcode_data_len,
62                      lldb::addr_t pc, llvm::MCInst &mc_inst) const;
63   void PrintMCInst(llvm::MCInst &mc_inst, lldb::addr_t pc,
64                    std::string &inst_string, std::string &comments_string);
65   void SetStyle(bool use_hex_immed, HexImmediateStyle hex_style);
66   void SetUseColor(bool use_color);
67   bool GetUseColor() const;
68   bool CanBranch(llvm::MCInst &mc_inst) const;
69   bool HasDelaySlot(llvm::MCInst &mc_inst) const;
70   bool IsCall(llvm::MCInst &mc_inst) const;
71   bool IsLoad(llvm::MCInst &mc_inst) const;
72   bool IsAuthenticated(llvm::MCInst &mc_inst) const;
73 
74 private:
75   MCDisasmInstance(std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
76                    std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
77                    std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
78                    std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
79                    std::unique_ptr<llvm::MCContext> &&context_up,
80                    std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
81                    std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up,
82                    std::unique_ptr<llvm::MCInstrAnalysis> &&instr_analysis_up);
83 
84   std::unique_ptr<llvm::MCInstrInfo> m_instr_info_up;
85   std::unique_ptr<llvm::MCRegisterInfo> m_reg_info_up;
86   std::unique_ptr<llvm::MCSubtargetInfo> m_subtarget_info_up;
87   std::unique_ptr<llvm::MCAsmInfo> m_asm_info_up;
88   std::unique_ptr<llvm::MCContext> m_context_up;
89   std::unique_ptr<llvm::MCDisassembler> m_disasm_up;
90   std::unique_ptr<llvm::MCInstPrinter> m_instr_printer_up;
91   std::unique_ptr<llvm::MCInstrAnalysis> m_instr_analysis_up;
92 };
93 
94 namespace x86 {
95 
96 /// These are the three values deciding instruction control flow kind.
97 /// InstructionLengthDecode function decodes an instruction and get this struct.
98 ///
99 /// primary_opcode
100 ///    Primary opcode of the instruction.
101 ///    For one-byte opcode instruction, it's the first byte after prefix.
102 ///    For two- and three-byte opcodes, it's the second byte.
103 ///
104 /// opcode_len
105 ///    The length of opcode in bytes. Valid opcode lengths are 1, 2, or 3.
106 ///
107 /// modrm
108 ///    ModR/M byte of the instruction.
109 ///    Bits[7:6] indicate MOD. Bits[5:3] specify a register and R/M bits[2:0]
110 ///    may contain a register or specify an addressing mode, depending on MOD.
111 struct InstructionOpcodeAndModrm {
112   uint8_t primary_opcode;
113   uint8_t opcode_len;
114   uint8_t modrm;
115 };
116 
117 /// Determine the InstructionControlFlowKind based on opcode and modrm bytes.
118 /// Refer to http://ref.x86asm.net/coder.html for the full list of opcode and
119 /// instruction set.
120 ///
121 /// \param[in] opcode_and_modrm
122 ///    Contains primary_opcode byte, its length, and ModR/M byte.
123 ///    Refer to the struct InstructionOpcodeAndModrm for details.
124 ///
125 /// \return
126 ///   The control flow kind of the instruction or
127 ///   eInstructionControlFlowKindOther if the instruction doesn't affect
128 ///   the control flow of the program.
129 lldb::InstructionControlFlowKind
130 MapOpcodeIntoControlFlowKind(InstructionOpcodeAndModrm opcode_and_modrm) {
131   uint8_t opcode = opcode_and_modrm.primary_opcode;
132   uint8_t opcode_len = opcode_and_modrm.opcode_len;
133   uint8_t modrm = opcode_and_modrm.modrm;
134 
135   if (opcode_len > 2)
136     return lldb::eInstructionControlFlowKindOther;
137 
138   if (opcode >= 0x70 && opcode <= 0x7F) {
139     if (opcode_len == 1)
140       return lldb::eInstructionControlFlowKindCondJump;
141     else
142       return lldb::eInstructionControlFlowKindOther;
143   }
144 
145   if (opcode >= 0x80 && opcode <= 0x8F) {
146     if (opcode_len == 2)
147       return lldb::eInstructionControlFlowKindCondJump;
148     else
149       return lldb::eInstructionControlFlowKindOther;
150   }
151 
152   switch (opcode) {
153   case 0x9A:
154     if (opcode_len == 1)
155       return lldb::eInstructionControlFlowKindFarCall;
156     break;
157   case 0xFF:
158     if (opcode_len == 1) {
159       uint8_t modrm_reg = (modrm >> 3) & 7;
160       if (modrm_reg == 2)
161         return lldb::eInstructionControlFlowKindCall;
162       else if (modrm_reg == 3)
163         return lldb::eInstructionControlFlowKindFarCall;
164       else if (modrm_reg == 4)
165         return lldb::eInstructionControlFlowKindJump;
166       else if (modrm_reg == 5)
167         return lldb::eInstructionControlFlowKindFarJump;
168     }
169     break;
170   case 0xE8:
171     if (opcode_len == 1)
172       return lldb::eInstructionControlFlowKindCall;
173     break;
174   case 0xCD:
175   case 0xCC:
176   case 0xCE:
177   case 0xF1:
178     if (opcode_len == 1)
179       return lldb::eInstructionControlFlowKindFarCall;
180     break;
181   case 0xCF:
182     if (opcode_len == 1)
183       return lldb::eInstructionControlFlowKindFarReturn;
184     break;
185   case 0xE9:
186   case 0xEB:
187     if (opcode_len == 1)
188       return lldb::eInstructionControlFlowKindJump;
189     break;
190   case 0xEA:
191     if (opcode_len == 1)
192       return lldb::eInstructionControlFlowKindFarJump;
193     break;
194   case 0xE3:
195   case 0xE0:
196   case 0xE1:
197   case 0xE2:
198     if (opcode_len == 1)
199       return lldb::eInstructionControlFlowKindCondJump;
200     break;
201   case 0xC3:
202   case 0xC2:
203     if (opcode_len == 1)
204       return lldb::eInstructionControlFlowKindReturn;
205     break;
206   case 0xCB:
207   case 0xCA:
208     if (opcode_len == 1)
209       return lldb::eInstructionControlFlowKindFarReturn;
210     break;
211   case 0x05:
212   case 0x34:
213     if (opcode_len == 2)
214       return lldb::eInstructionControlFlowKindFarCall;
215     break;
216   case 0x35:
217   case 0x07:
218     if (opcode_len == 2)
219       return lldb::eInstructionControlFlowKindFarReturn;
220     break;
221   case 0x01:
222     if (opcode_len == 2) {
223       switch (modrm) {
224       case 0xc1:
225         return lldb::eInstructionControlFlowKindFarCall;
226       case 0xc2:
227       case 0xc3:
228         return lldb::eInstructionControlFlowKindFarReturn;
229       default:
230         break;
231       }
232     }
233     break;
234   default:
235     break;
236   }
237 
238   return lldb::eInstructionControlFlowKindOther;
239 }
240 
241 /// Decode an instruction into opcode, modrm and opcode_len.
242 /// Refer to http://ref.x86asm.net/coder.html for the instruction bytes layout.
243 /// Opcodes in x86 are generally the first byte of instruction, though two-byte
244 /// instructions and prefixes exist. ModR/M is the byte following the opcode
245 /// and adds additional information for how the instruction is executed.
246 ///
247 /// \param[in] inst_bytes
248 ///    Raw bytes of the instruction
249 ///
250 ///
251 /// \param[in] bytes_len
252 ///    The length of the inst_bytes array.
253 ///
254 /// \param[in] is_exec_mode_64b
255 ///    If true, the execution mode is 64 bit.
256 ///
257 /// \return
258 ///    Returns decoded instruction as struct InstructionOpcodeAndModrm, holding
259 ///    primary_opcode, opcode_len and modrm byte. Refer to the struct definition
260 ///    for more details.
261 ///    Otherwise if the given instruction is invalid, returns std::nullopt.
262 std::optional<InstructionOpcodeAndModrm>
263 InstructionLengthDecode(const uint8_t *inst_bytes, int bytes_len,
264                         bool is_exec_mode_64b) {
265   int op_idx = 0;
266   bool prefix_done = false;
267   InstructionOpcodeAndModrm ret = {0, 0, 0};
268 
269   // In most cases, the primary_opcode is the first byte of the instruction
270   // but some instructions have a prefix to be skipped for these calculations.
271   // The following mapping is inspired from libipt's instruction decoding logic
272   // in `src/pt_ild.c`
273   while (!prefix_done) {
274     if (op_idx >= bytes_len)
275       return std::nullopt;
276 
277     ret.primary_opcode = inst_bytes[op_idx];
278     switch (ret.primary_opcode) {
279     // prefix_ignore
280     case 0x26:
281     case 0x2e:
282     case 0x36:
283     case 0x3e:
284     case 0x64:
285     case 0x65:
286     // prefix_osz, prefix_asz
287     case 0x66:
288     case 0x67:
289     // prefix_lock, prefix_f2, prefix_f3
290     case 0xf0:
291     case 0xf2:
292     case 0xf3:
293       op_idx++;
294       break;
295 
296     // prefix_rex
297     case 0x40:
298     case 0x41:
299     case 0x42:
300     case 0x43:
301     case 0x44:
302     case 0x45:
303     case 0x46:
304     case 0x47:
305     case 0x48:
306     case 0x49:
307     case 0x4a:
308     case 0x4b:
309     case 0x4c:
310     case 0x4d:
311     case 0x4e:
312     case 0x4f:
313       if (is_exec_mode_64b)
314         op_idx++;
315       else
316         prefix_done = true;
317       break;
318 
319     // prefix_vex_c4, c5
320     case 0xc5:
321       if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
322         prefix_done = true;
323         break;
324       }
325 
326       ret.opcode_len = 2;
327       ret.primary_opcode = inst_bytes[op_idx + 2];
328       ret.modrm = inst_bytes[op_idx + 3];
329       return ret;
330 
331     case 0xc4:
332       if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
333         prefix_done = true;
334         break;
335       }
336       ret.opcode_len = inst_bytes[op_idx + 1] & 0x1f;
337       ret.primary_opcode = inst_bytes[op_idx + 3];
338       ret.modrm = inst_bytes[op_idx + 4];
339       return ret;
340 
341     // prefix_evex
342     case 0x62:
343       if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
344         prefix_done = true;
345         break;
346       }
347       ret.opcode_len = inst_bytes[op_idx + 1] & 0x03;
348       ret.primary_opcode = inst_bytes[op_idx + 4];
349       ret.modrm = inst_bytes[op_idx + 5];
350       return ret;
351 
352     default:
353       prefix_done = true;
354       break;
355     }
356   } // prefix done
357 
358   ret.primary_opcode = inst_bytes[op_idx];
359   ret.modrm = inst_bytes[op_idx + 1];
360   ret.opcode_len = 1;
361 
362   // If the first opcode is 0F, it's two- or three- byte opcodes.
363   if (ret.primary_opcode == 0x0F) {
364     ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
365 
366     if (ret.primary_opcode == 0x38) {
367       ret.opcode_len = 3;
368       ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
369       ret.modrm = inst_bytes[op_idx + 1];
370     } else if (ret.primary_opcode == 0x3A) {
371       ret.opcode_len = 3;
372       ret.primary_opcode = inst_bytes[++op_idx];
373       ret.modrm = inst_bytes[op_idx + 1];
374     } else if ((ret.primary_opcode & 0xf8) == 0x38) {
375       ret.opcode_len = 0;
376       ret.primary_opcode = inst_bytes[++op_idx];
377       ret.modrm = inst_bytes[op_idx + 1];
378     } else if (ret.primary_opcode == 0x0F) {
379       ret.opcode_len = 3;
380       // opcode is 0x0F, no needs to update
381       ret.modrm = inst_bytes[op_idx + 1];
382     } else {
383       ret.opcode_len = 2;
384       ret.modrm = inst_bytes[op_idx + 1];
385     }
386   }
387 
388   return ret;
389 }
390 
391 lldb::InstructionControlFlowKind GetControlFlowKind(bool is_exec_mode_64b,
392                                                     Opcode m_opcode) {
393   std::optional<InstructionOpcodeAndModrm> ret;
394 
395   if (m_opcode.GetOpcodeBytes() == nullptr || m_opcode.GetByteSize() <= 0) {
396     // x86_64 and i386 instructions are categorized as Opcode::Type::eTypeBytes
397     return lldb::eInstructionControlFlowKindUnknown;
398   }
399 
400   // Opcode bytes will be decoded into primary_opcode, modrm and opcode length.
401   // These are the three values deciding instruction control flow kind.
402   ret = InstructionLengthDecode((const uint8_t *)m_opcode.GetOpcodeBytes(),
403                                 m_opcode.GetByteSize(), is_exec_mode_64b);
404   if (!ret)
405     return lldb::eInstructionControlFlowKindUnknown;
406   else
407     return MapOpcodeIntoControlFlowKind(*ret);
408 }
409 
410 } // namespace x86
411 
412 class InstructionLLVMC : public lldb_private::Instruction {
413 public:
414   InstructionLLVMC(DisassemblerLLVMC &disasm,
415                    const lldb_private::Address &address,
416                    AddressClass addr_class)
417       : Instruction(address, addr_class),
418         m_disasm_wp(std::static_pointer_cast<DisassemblerLLVMC>(
419             disasm.shared_from_this())) {}
420 
421   ~InstructionLLVMC() override = default;
422 
423   bool DoesBranch() override {
424     VisitInstruction();
425     return m_does_branch;
426   }
427 
428   bool HasDelaySlot() override {
429     VisitInstruction();
430     return m_has_delay_slot;
431   }
432 
433   bool IsLoad() override {
434     VisitInstruction();
435     return m_is_load;
436   }
437 
438   bool IsAuthenticated() override {
439     VisitInstruction();
440     return m_is_authenticated;
441   }
442 
443   DisassemblerLLVMC::MCDisasmInstance *GetDisasmToUse(bool &is_alternate_isa) {
444     DisassemblerScope disasm(*this);
445     return GetDisasmToUse(is_alternate_isa, disasm);
446   }
447 
448   size_t Decode(const lldb_private::Disassembler &disassembler,
449                 const lldb_private::DataExtractor &data,
450                 lldb::offset_t data_offset) override {
451     // All we have to do is read the opcode which can be easy for some
452     // architectures
453     bool got_op = false;
454     DisassemblerScope disasm(*this);
455     if (disasm) {
456       const ArchSpec &arch = disasm->GetArchitecture();
457       const lldb::ByteOrder byte_order = data.GetByteOrder();
458 
459       const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
460       const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
461       if (min_op_byte_size == max_op_byte_size) {
462         // Fixed size instructions, just read that amount of data.
463         if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
464           return false;
465 
466         switch (min_op_byte_size) {
467         case 1:
468           m_opcode.SetOpcode8(data.GetU8(&data_offset), byte_order);
469           got_op = true;
470           break;
471 
472         case 2:
473           m_opcode.SetOpcode16(data.GetU16(&data_offset), byte_order);
474           got_op = true;
475           break;
476 
477         case 4:
478           m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
479           got_op = true;
480           break;
481 
482         case 8:
483           m_opcode.SetOpcode64(data.GetU64(&data_offset), byte_order);
484           got_op = true;
485           break;
486 
487         default:
488           m_opcode.SetOpcodeBytes(data.PeekData(data_offset, min_op_byte_size),
489                                   min_op_byte_size);
490           got_op = true;
491           break;
492         }
493       }
494       if (!got_op) {
495         bool is_alternate_isa = false;
496         DisassemblerLLVMC::MCDisasmInstance *mc_disasm_ptr =
497             GetDisasmToUse(is_alternate_isa, disasm);
498 
499         const llvm::Triple::ArchType machine = arch.GetMachine();
500         if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb) {
501           if (machine == llvm::Triple::thumb || is_alternate_isa) {
502             uint32_t thumb_opcode = data.GetU16(&data_offset);
503             if ((thumb_opcode & 0xe000) != 0xe000 ||
504                 ((thumb_opcode & 0x1800u) == 0)) {
505               m_opcode.SetOpcode16(thumb_opcode, byte_order);
506               m_is_valid = true;
507             } else {
508               thumb_opcode <<= 16;
509               thumb_opcode |= data.GetU16(&data_offset);
510               m_opcode.SetOpcode16_2(thumb_opcode, byte_order);
511               m_is_valid = true;
512             }
513           } else {
514             m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
515             m_is_valid = true;
516           }
517         } else {
518           // The opcode isn't evenly sized, so we need to actually use the llvm
519           // disassembler to parse it and get the size.
520           uint8_t *opcode_data =
521               const_cast<uint8_t *>(data.PeekData(data_offset, 1));
522           const size_t opcode_data_len = data.BytesLeft(data_offset);
523           const addr_t pc = m_address.GetFileAddress();
524           llvm::MCInst inst;
525 
526           const size_t inst_size =
527               mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
528           if (inst_size == 0)
529             m_opcode.Clear();
530           else {
531             m_opcode.SetOpcodeBytes(opcode_data, inst_size);
532             m_is_valid = true;
533           }
534         }
535       }
536       return m_opcode.GetByteSize();
537     }
538     return 0;
539   }
540 
541   void AppendComment(std::string &description) {
542     if (m_comment.empty())
543       m_comment.swap(description);
544     else {
545       m_comment.append(", ");
546       m_comment.append(description);
547     }
548   }
549 
550   lldb::InstructionControlFlowKind
551   GetControlFlowKind(const lldb_private::ExecutionContext *exe_ctx) override {
552     DisassemblerScope disasm(*this, exe_ctx);
553     if (disasm){
554       if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86)
555         return x86::GetControlFlowKind(/*is_64b=*/false, m_opcode);
556       else if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86_64)
557         return x86::GetControlFlowKind(/*is_64b=*/true, m_opcode);
558     }
559 
560     return eInstructionControlFlowKindUnknown;
561   }
562 
563   void CalculateMnemonicOperandsAndComment(
564       const lldb_private::ExecutionContext *exe_ctx) override {
565     DataExtractor data;
566     const AddressClass address_class = GetAddressClass();
567 
568     if (m_opcode.GetData(data)) {
569       std::string out_string;
570       std::string markup_out_string;
571       std::string comment_string;
572       std::string markup_comment_string;
573 
574       DisassemblerScope disasm(*this, exe_ctx);
575       if (disasm) {
576         DisassemblerLLVMC::MCDisasmInstance *mc_disasm_ptr;
577 
578         if (address_class == AddressClass::eCodeAlternateISA)
579           mc_disasm_ptr = disasm->m_alternate_disasm_up.get();
580         else
581           mc_disasm_ptr = disasm->m_disasm_up.get();
582 
583         lldb::addr_t pc = m_address.GetFileAddress();
584         m_using_file_addr = true;
585 
586         const bool data_from_file = disasm->m_data_from_file;
587         bool use_hex_immediates = true;
588         Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC;
589 
590         if (exe_ctx) {
591           Target *target = exe_ctx->GetTargetPtr();
592           if (target) {
593             use_hex_immediates = target->GetUseHexImmediates();
594             hex_style = target->GetHexImmediateStyle();
595 
596             if (!data_from_file) {
597               const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
598               if (load_addr != LLDB_INVALID_ADDRESS) {
599                 pc = load_addr;
600                 m_using_file_addr = false;
601               }
602             }
603           }
604         }
605 
606         const uint8_t *opcode_data = data.GetDataStart();
607         const size_t opcode_data_len = data.GetByteSize();
608         llvm::MCInst inst;
609         size_t inst_size =
610             mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
611 
612         if (inst_size > 0) {
613           mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
614 
615           const bool saved_use_color = mc_disasm_ptr->GetUseColor();
616           mc_disasm_ptr->SetUseColor(false);
617           mc_disasm_ptr->PrintMCInst(inst, pc, out_string, comment_string);
618           mc_disasm_ptr->SetUseColor(true);
619           mc_disasm_ptr->PrintMCInst(inst, pc, markup_out_string,
620                                      markup_comment_string);
621           mc_disasm_ptr->SetUseColor(saved_use_color);
622 
623           if (!comment_string.empty()) {
624             AppendComment(comment_string);
625           }
626         }
627 
628         if (inst_size == 0) {
629           m_comment.assign("unknown opcode");
630           inst_size = m_opcode.GetByteSize();
631           StreamString mnemonic_strm;
632           lldb::offset_t offset = 0;
633           lldb::ByteOrder byte_order = data.GetByteOrder();
634           switch (inst_size) {
635           case 1: {
636             const uint8_t uval8 = data.GetU8(&offset);
637             m_opcode.SetOpcode8(uval8, byte_order);
638             m_opcode_name.assign(".byte");
639             mnemonic_strm.Printf("0x%2.2x", uval8);
640           } break;
641           case 2: {
642             const uint16_t uval16 = data.GetU16(&offset);
643             m_opcode.SetOpcode16(uval16, byte_order);
644             m_opcode_name.assign(".short");
645             mnemonic_strm.Printf("0x%4.4x", uval16);
646           } break;
647           case 4: {
648             const uint32_t uval32 = data.GetU32(&offset);
649             m_opcode.SetOpcode32(uval32, byte_order);
650             m_opcode_name.assign(".long");
651             mnemonic_strm.Printf("0x%8.8x", uval32);
652           } break;
653           case 8: {
654             const uint64_t uval64 = data.GetU64(&offset);
655             m_opcode.SetOpcode64(uval64, byte_order);
656             m_opcode_name.assign(".quad");
657             mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
658           } break;
659           default:
660             if (inst_size == 0)
661               return;
662             else {
663               const uint8_t *bytes = data.PeekData(offset, inst_size);
664               if (bytes == nullptr)
665                 return;
666               m_opcode_name.assign(".byte");
667               m_opcode.SetOpcodeBytes(bytes, inst_size);
668               mnemonic_strm.Printf("0x%2.2x", bytes[0]);
669               for (uint32_t i = 1; i < inst_size; ++i)
670                 mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
671             }
672             break;
673           }
674           m_mnemonics = std::string(mnemonic_strm.GetString());
675           return;
676         }
677 
678         static RegularExpression s_regex(
679             llvm::StringRef("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?"));
680 
681         llvm::SmallVector<llvm::StringRef, 4> matches;
682         if (s_regex.Execute(out_string, &matches)) {
683           m_opcode_name = matches[1].str();
684           m_mnemonics = matches[2].str();
685         }
686         matches.clear();
687         if (s_regex.Execute(markup_out_string, &matches)) {
688           m_markup_opcode_name = matches[1].str();
689           m_markup_mnemonics = matches[2].str();
690         }
691       }
692     }
693   }
694 
695   bool IsValid() const { return m_is_valid; }
696 
697   bool UsingFileAddress() const { return m_using_file_addr; }
698   size_t GetByteSize() const { return m_opcode.GetByteSize(); }
699 
700   /// Grants exclusive access to the disassembler and initializes it with the
701   /// given InstructionLLVMC and an optional ExecutionContext.
702   class DisassemblerScope {
703     std::shared_ptr<DisassemblerLLVMC> m_disasm;
704 
705   public:
706     explicit DisassemblerScope(
707         InstructionLLVMC &i,
708         const lldb_private::ExecutionContext *exe_ctx = nullptr)
709         : m_disasm(i.m_disasm_wp.lock()) {
710       m_disasm->m_mutex.lock();
711       m_disasm->m_inst = &i;
712       m_disasm->m_exe_ctx = exe_ctx;
713     }
714     ~DisassemblerScope() { m_disasm->m_mutex.unlock(); }
715 
716     /// Evaluates to true if this scope contains a valid disassembler.
717     operator bool() const { return static_cast<bool>(m_disasm); }
718 
719     std::shared_ptr<DisassemblerLLVMC> operator->() { return m_disasm; }
720   };
721 
722   static llvm::StringRef::const_iterator
723   ConsumeWhitespace(llvm::StringRef::const_iterator osi,
724                     llvm::StringRef::const_iterator ose) {
725     while (osi != ose) {
726       switch (*osi) {
727       default:
728         return osi;
729       case ' ':
730       case '\t':
731         break;
732       }
733       ++osi;
734     }
735 
736     return osi;
737   }
738 
739   static std::pair<bool, llvm::StringRef::const_iterator>
740   ConsumeChar(llvm::StringRef::const_iterator osi, const char c,
741               llvm::StringRef::const_iterator ose) {
742     bool found = false;
743 
744     osi = ConsumeWhitespace(osi, ose);
745     if (osi != ose && *osi == c) {
746       found = true;
747       ++osi;
748     }
749 
750     return std::make_pair(found, osi);
751   }
752 
753   static std::pair<Operand, llvm::StringRef::const_iterator>
754   ParseRegisterName(llvm::StringRef::const_iterator osi,
755                     llvm::StringRef::const_iterator ose) {
756     Operand ret;
757     ret.m_type = Operand::Type::Register;
758     std::string str;
759 
760     osi = ConsumeWhitespace(osi, ose);
761 
762     while (osi != ose) {
763       if (*osi >= '0' && *osi <= '9') {
764         if (str.empty()) {
765           return std::make_pair(Operand(), osi);
766         } else {
767           str.push_back(*osi);
768         }
769       } else if (*osi >= 'a' && *osi <= 'z') {
770         str.push_back(*osi);
771       } else {
772         switch (*osi) {
773         default:
774           if (str.empty()) {
775             return std::make_pair(Operand(), osi);
776           } else {
777             ret.m_register = ConstString(str);
778             return std::make_pair(ret, osi);
779           }
780         case '%':
781           if (!str.empty()) {
782             return std::make_pair(Operand(), osi);
783           }
784           break;
785         }
786       }
787       ++osi;
788     }
789 
790     ret.m_register = ConstString(str);
791     return std::make_pair(ret, osi);
792   }
793 
794   static std::pair<Operand, llvm::StringRef::const_iterator>
795   ParseImmediate(llvm::StringRef::const_iterator osi,
796                  llvm::StringRef::const_iterator ose) {
797     Operand ret;
798     ret.m_type = Operand::Type::Immediate;
799     std::string str;
800     bool is_hex = false;
801 
802     osi = ConsumeWhitespace(osi, ose);
803 
804     while (osi != ose) {
805       if (*osi >= '0' && *osi <= '9') {
806         str.push_back(*osi);
807       } else if (*osi >= 'a' && *osi <= 'f') {
808         if (is_hex) {
809           str.push_back(*osi);
810         } else {
811           return std::make_pair(Operand(), osi);
812         }
813       } else {
814         switch (*osi) {
815         default:
816           if (str.empty()) {
817             return std::make_pair(Operand(), osi);
818           } else {
819             ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
820             return std::make_pair(ret, osi);
821           }
822         case 'x':
823           if (!str.compare("0")) {
824             is_hex = true;
825             str.push_back(*osi);
826           } else {
827             return std::make_pair(Operand(), osi);
828           }
829           break;
830         case '#':
831         case '$':
832           if (!str.empty()) {
833             return std::make_pair(Operand(), osi);
834           }
835           break;
836         case '-':
837           if (str.empty()) {
838             ret.m_negative = true;
839           } else {
840             return std::make_pair(Operand(), osi);
841           }
842         }
843       }
844       ++osi;
845     }
846 
847     ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
848     return std::make_pair(ret, osi);
849   }
850 
851   // -0x5(%rax,%rax,2)
852   static std::pair<Operand, llvm::StringRef::const_iterator>
853   ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi,
854                           llvm::StringRef::const_iterator ose) {
855     std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
856         ParseImmediate(osi, ose);
857     if (offset_and_iterator.first.IsValid()) {
858       osi = offset_and_iterator.second;
859     }
860 
861     bool found = false;
862     std::tie(found, osi) = ConsumeChar(osi, '(', ose);
863     if (!found) {
864       return std::make_pair(Operand(), osi);
865     }
866 
867     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
868         ParseRegisterName(osi, ose);
869     if (base_and_iterator.first.IsValid()) {
870       osi = base_and_iterator.second;
871     } else {
872       return std::make_pair(Operand(), osi);
873     }
874 
875     std::tie(found, osi) = ConsumeChar(osi, ',', ose);
876     if (!found) {
877       return std::make_pair(Operand(), osi);
878     }
879 
880     std::pair<Operand, llvm::StringRef::const_iterator> index_and_iterator =
881         ParseRegisterName(osi, ose);
882     if (index_and_iterator.first.IsValid()) {
883       osi = index_and_iterator.second;
884     } else {
885       return std::make_pair(Operand(), osi);
886     }
887 
888     std::tie(found, osi) = ConsumeChar(osi, ',', ose);
889     if (!found) {
890       return std::make_pair(Operand(), osi);
891     }
892 
893     std::pair<Operand, llvm::StringRef::const_iterator>
894         multiplier_and_iterator = ParseImmediate(osi, ose);
895     if (index_and_iterator.first.IsValid()) {
896       osi = index_and_iterator.second;
897     } else {
898       return std::make_pair(Operand(), osi);
899     }
900 
901     std::tie(found, osi) = ConsumeChar(osi, ')', ose);
902     if (!found) {
903       return std::make_pair(Operand(), osi);
904     }
905 
906     Operand product;
907     product.m_type = Operand::Type::Product;
908     product.m_children.push_back(index_and_iterator.first);
909     product.m_children.push_back(multiplier_and_iterator.first);
910 
911     Operand index;
912     index.m_type = Operand::Type::Sum;
913     index.m_children.push_back(base_and_iterator.first);
914     index.m_children.push_back(product);
915 
916     if (offset_and_iterator.first.IsValid()) {
917       Operand offset;
918       offset.m_type = Operand::Type::Sum;
919       offset.m_children.push_back(offset_and_iterator.first);
920       offset.m_children.push_back(index);
921 
922       Operand deref;
923       deref.m_type = Operand::Type::Dereference;
924       deref.m_children.push_back(offset);
925       return std::make_pair(deref, osi);
926     } else {
927       Operand deref;
928       deref.m_type = Operand::Type::Dereference;
929       deref.m_children.push_back(index);
930       return std::make_pair(deref, osi);
931     }
932   }
933 
934   // -0x10(%rbp)
935   static std::pair<Operand, llvm::StringRef::const_iterator>
936   ParseIntelDerefAccess(llvm::StringRef::const_iterator osi,
937                         llvm::StringRef::const_iterator ose) {
938     std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
939         ParseImmediate(osi, ose);
940     if (offset_and_iterator.first.IsValid()) {
941       osi = offset_and_iterator.second;
942     }
943 
944     bool found = false;
945     std::tie(found, osi) = ConsumeChar(osi, '(', ose);
946     if (!found) {
947       return std::make_pair(Operand(), osi);
948     }
949 
950     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
951         ParseRegisterName(osi, ose);
952     if (base_and_iterator.first.IsValid()) {
953       osi = base_and_iterator.second;
954     } else {
955       return std::make_pair(Operand(), osi);
956     }
957 
958     std::tie(found, osi) = ConsumeChar(osi, ')', ose);
959     if (!found) {
960       return std::make_pair(Operand(), osi);
961     }
962 
963     if (offset_and_iterator.first.IsValid()) {
964       Operand offset;
965       offset.m_type = Operand::Type::Sum;
966       offset.m_children.push_back(offset_and_iterator.first);
967       offset.m_children.push_back(base_and_iterator.first);
968 
969       Operand deref;
970       deref.m_type = Operand::Type::Dereference;
971       deref.m_children.push_back(offset);
972       return std::make_pair(deref, osi);
973     } else {
974       Operand deref;
975       deref.m_type = Operand::Type::Dereference;
976       deref.m_children.push_back(base_and_iterator.first);
977       return std::make_pair(deref, osi);
978     }
979   }
980 
981   // [sp, #8]!
982   static std::pair<Operand, llvm::StringRef::const_iterator>
983   ParseARMOffsetAccess(llvm::StringRef::const_iterator osi,
984                        llvm::StringRef::const_iterator ose) {
985     bool found = false;
986     std::tie(found, osi) = ConsumeChar(osi, '[', ose);
987     if (!found) {
988       return std::make_pair(Operand(), osi);
989     }
990 
991     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
992         ParseRegisterName(osi, ose);
993     if (base_and_iterator.first.IsValid()) {
994       osi = base_and_iterator.second;
995     } else {
996       return std::make_pair(Operand(), osi);
997     }
998 
999     std::tie(found, osi) = ConsumeChar(osi, ',', ose);
1000     if (!found) {
1001       return std::make_pair(Operand(), osi);
1002     }
1003 
1004     std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
1005         ParseImmediate(osi, ose);
1006     if (offset_and_iterator.first.IsValid()) {
1007       osi = offset_and_iterator.second;
1008     }
1009 
1010     std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1011     if (!found) {
1012       return std::make_pair(Operand(), osi);
1013     }
1014 
1015     Operand offset;
1016     offset.m_type = Operand::Type::Sum;
1017     offset.m_children.push_back(offset_and_iterator.first);
1018     offset.m_children.push_back(base_and_iterator.first);
1019 
1020     Operand deref;
1021     deref.m_type = Operand::Type::Dereference;
1022     deref.m_children.push_back(offset);
1023     return std::make_pair(deref, osi);
1024   }
1025 
1026   // [sp]
1027   static std::pair<Operand, llvm::StringRef::const_iterator>
1028   ParseARMDerefAccess(llvm::StringRef::const_iterator osi,
1029                       llvm::StringRef::const_iterator ose) {
1030     bool found = false;
1031     std::tie(found, osi) = ConsumeChar(osi, '[', ose);
1032     if (!found) {
1033       return std::make_pair(Operand(), osi);
1034     }
1035 
1036     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
1037         ParseRegisterName(osi, ose);
1038     if (base_and_iterator.first.IsValid()) {
1039       osi = base_and_iterator.second;
1040     } else {
1041       return std::make_pair(Operand(), osi);
1042     }
1043 
1044     std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1045     if (!found) {
1046       return std::make_pair(Operand(), osi);
1047     }
1048 
1049     Operand deref;
1050     deref.m_type = Operand::Type::Dereference;
1051     deref.m_children.push_back(base_and_iterator.first);
1052     return std::make_pair(deref, osi);
1053   }
1054 
1055   static void DumpOperand(const Operand &op, Stream &s) {
1056     switch (op.m_type) {
1057     case Operand::Type::Dereference:
1058       s.PutCString("*");
1059       DumpOperand(op.m_children[0], s);
1060       break;
1061     case Operand::Type::Immediate:
1062       if (op.m_negative) {
1063         s.PutCString("-");
1064       }
1065       s.PutCString(llvm::to_string(op.m_immediate));
1066       break;
1067     case Operand::Type::Invalid:
1068       s.PutCString("Invalid");
1069       break;
1070     case Operand::Type::Product:
1071       s.PutCString("(");
1072       DumpOperand(op.m_children[0], s);
1073       s.PutCString("*");
1074       DumpOperand(op.m_children[1], s);
1075       s.PutCString(")");
1076       break;
1077     case Operand::Type::Register:
1078       s.PutCString(op.m_register.GetStringRef());
1079       break;
1080     case Operand::Type::Sum:
1081       s.PutCString("(");
1082       DumpOperand(op.m_children[0], s);
1083       s.PutCString("+");
1084       DumpOperand(op.m_children[1], s);
1085       s.PutCString(")");
1086       break;
1087     }
1088   }
1089 
1090   bool ParseOperands(
1091       llvm::SmallVectorImpl<Instruction::Operand> &operands) override {
1092     const char *operands_string = GetOperands(nullptr);
1093 
1094     if (!operands_string) {
1095       return false;
1096     }
1097 
1098     llvm::StringRef operands_ref(operands_string);
1099 
1100     llvm::StringRef::const_iterator osi = operands_ref.begin();
1101     llvm::StringRef::const_iterator ose = operands_ref.end();
1102 
1103     while (osi != ose) {
1104       Operand operand;
1105       llvm::StringRef::const_iterator iter;
1106 
1107       if ((std::tie(operand, iter) = ParseIntelIndexedAccess(osi, ose),
1108            operand.IsValid()) ||
1109           (std::tie(operand, iter) = ParseIntelDerefAccess(osi, ose),
1110            operand.IsValid()) ||
1111           (std::tie(operand, iter) = ParseARMOffsetAccess(osi, ose),
1112            operand.IsValid()) ||
1113           (std::tie(operand, iter) = ParseARMDerefAccess(osi, ose),
1114            operand.IsValid()) ||
1115           (std::tie(operand, iter) = ParseRegisterName(osi, ose),
1116            operand.IsValid()) ||
1117           (std::tie(operand, iter) = ParseImmediate(osi, ose),
1118            operand.IsValid())) {
1119         osi = iter;
1120         operands.push_back(operand);
1121       } else {
1122         return false;
1123       }
1124 
1125       std::pair<bool, llvm::StringRef::const_iterator> found_and_iter =
1126           ConsumeChar(osi, ',', ose);
1127       if (found_and_iter.first) {
1128         osi = found_and_iter.second;
1129       }
1130 
1131       osi = ConsumeWhitespace(osi, ose);
1132     }
1133 
1134     DisassemblerSP disasm_sp = m_disasm_wp.lock();
1135 
1136     if (disasm_sp && operands.size() > 1) {
1137       // TODO tie this into the MC Disassembler's notion of clobbers.
1138       switch (disasm_sp->GetArchitecture().GetMachine()) {
1139       default:
1140         break;
1141       case llvm::Triple::x86:
1142       case llvm::Triple::x86_64:
1143         operands[operands.size() - 1].m_clobbered = true;
1144         break;
1145       case llvm::Triple::arm:
1146         operands[0].m_clobbered = true;
1147         break;
1148       }
1149     }
1150 
1151     if (Log *log = GetLog(LLDBLog::Process)) {
1152       StreamString ss;
1153 
1154       ss.Printf("[%s] expands to %zu operands:\n", operands_string,
1155                 operands.size());
1156       for (const Operand &operand : operands) {
1157         ss.PutCString("  ");
1158         DumpOperand(operand, ss);
1159         ss.PutCString("\n");
1160       }
1161 
1162       log->PutString(ss.GetString());
1163     }
1164 
1165     return true;
1166   }
1167 
1168   bool IsCall() override {
1169     VisitInstruction();
1170     return m_is_call;
1171   }
1172 
1173 protected:
1174   std::weak_ptr<DisassemblerLLVMC> m_disasm_wp;
1175 
1176   bool m_is_valid = false;
1177   bool m_using_file_addr = false;
1178   bool m_has_visited_instruction = false;
1179 
1180   // Be conservative. If we didn't understand the instruction, say it:
1181   //   - Might branch
1182   //   - Does not have a delay slot
1183   //   - Is not a call
1184   //   - Is not a load
1185   //   - Is not an authenticated instruction
1186   bool m_does_branch = true;
1187   bool m_has_delay_slot = false;
1188   bool m_is_call = false;
1189   bool m_is_load = false;
1190   bool m_is_authenticated = false;
1191 
1192   void VisitInstruction() {
1193     if (m_has_visited_instruction)
1194       return;
1195 
1196     DisassemblerScope disasm(*this);
1197     if (!disasm)
1198       return;
1199 
1200     DataExtractor data;
1201     if (!m_opcode.GetData(data))
1202       return;
1203 
1204     bool is_alternate_isa;
1205     lldb::addr_t pc = m_address.GetFileAddress();
1206     DisassemblerLLVMC::MCDisasmInstance *mc_disasm_ptr =
1207         GetDisasmToUse(is_alternate_isa, disasm);
1208     const uint8_t *opcode_data = data.GetDataStart();
1209     const size_t opcode_data_len = data.GetByteSize();
1210     llvm::MCInst inst;
1211     const size_t inst_size =
1212         mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
1213     if (inst_size == 0)
1214       return;
1215 
1216     m_has_visited_instruction = true;
1217     m_does_branch = mc_disasm_ptr->CanBranch(inst);
1218     m_has_delay_slot = mc_disasm_ptr->HasDelaySlot(inst);
1219     m_is_call = mc_disasm_ptr->IsCall(inst);
1220     m_is_load = mc_disasm_ptr->IsLoad(inst);
1221     m_is_authenticated = mc_disasm_ptr->IsAuthenticated(inst);
1222   }
1223 
1224 private:
1225   DisassemblerLLVMC::MCDisasmInstance *
1226   GetDisasmToUse(bool &is_alternate_isa, DisassemblerScope &disasm) {
1227     is_alternate_isa = false;
1228     if (disasm) {
1229       if (disasm->m_alternate_disasm_up) {
1230         const AddressClass address_class = GetAddressClass();
1231 
1232         if (address_class == AddressClass::eCodeAlternateISA) {
1233           is_alternate_isa = true;
1234           return disasm->m_alternate_disasm_up.get();
1235         }
1236       }
1237       return disasm->m_disasm_up.get();
1238     }
1239     return nullptr;
1240   }
1241 };
1242 
1243 std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>
1244 DisassemblerLLVMC::MCDisasmInstance::Create(const char *triple, const char *cpu,
1245                                             const char *features_str,
1246                                             unsigned flavor,
1247                                             DisassemblerLLVMC &owner) {
1248   using Instance = std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>;
1249 
1250   std::string Status;
1251   const llvm::Target *curr_target =
1252       llvm::TargetRegistry::lookupTarget(triple, Status);
1253   if (!curr_target)
1254     return Instance();
1255 
1256   std::unique_ptr<llvm::MCInstrInfo> instr_info_up(
1257       curr_target->createMCInstrInfo());
1258   if (!instr_info_up)
1259     return Instance();
1260 
1261   std::unique_ptr<llvm::MCRegisterInfo> reg_info_up(
1262       curr_target->createMCRegInfo(triple));
1263   if (!reg_info_up)
1264     return Instance();
1265 
1266   std::unique_ptr<llvm::MCSubtargetInfo> subtarget_info_up(
1267       curr_target->createMCSubtargetInfo(triple, cpu, features_str));
1268   if (!subtarget_info_up)
1269     return Instance();
1270 
1271   llvm::MCTargetOptions MCOptions;
1272   std::unique_ptr<llvm::MCAsmInfo> asm_info_up(
1273       curr_target->createMCAsmInfo(*reg_info_up, triple, MCOptions));
1274   if (!asm_info_up)
1275     return Instance();
1276 
1277   std::unique_ptr<llvm::MCContext> context_up(
1278       new llvm::MCContext(llvm::Triple(triple), asm_info_up.get(),
1279                           reg_info_up.get(), subtarget_info_up.get()));
1280   if (!context_up)
1281     return Instance();
1282 
1283   std::unique_ptr<llvm::MCDisassembler> disasm_up(
1284       curr_target->createMCDisassembler(*subtarget_info_up, *context_up));
1285   if (!disasm_up)
1286     return Instance();
1287 
1288   std::unique_ptr<llvm::MCRelocationInfo> rel_info_up(
1289       curr_target->createMCRelocationInfo(triple, *context_up));
1290   if (!rel_info_up)
1291     return Instance();
1292 
1293   std::unique_ptr<llvm::MCSymbolizer> symbolizer_up(
1294       curr_target->createMCSymbolizer(
1295           triple, nullptr, DisassemblerLLVMC::SymbolLookupCallback, &owner,
1296           context_up.get(), std::move(rel_info_up)));
1297   disasm_up->setSymbolizer(std::move(symbolizer_up));
1298 
1299   unsigned asm_printer_variant =
1300       flavor == ~0U ? asm_info_up->getAssemblerDialect() : flavor;
1301 
1302   std::unique_ptr<llvm::MCInstPrinter> instr_printer_up(
1303       curr_target->createMCInstPrinter(llvm::Triple{triple},
1304                                        asm_printer_variant, *asm_info_up,
1305                                        *instr_info_up, *reg_info_up));
1306   if (!instr_printer_up)
1307     return Instance();
1308 
1309   instr_printer_up->setPrintBranchImmAsAddress(true);
1310 
1311   // Not all targets may have registered createMCInstrAnalysis().
1312   std::unique_ptr<llvm::MCInstrAnalysis> instr_analysis_up(
1313       curr_target->createMCInstrAnalysis(instr_info_up.get()));
1314 
1315   return Instance(new MCDisasmInstance(
1316       std::move(instr_info_up), std::move(reg_info_up),
1317       std::move(subtarget_info_up), std::move(asm_info_up),
1318       std::move(context_up), std::move(disasm_up), std::move(instr_printer_up),
1319       std::move(instr_analysis_up)));
1320 }
1321 
1322 DisassemblerLLVMC::MCDisasmInstance::MCDisasmInstance(
1323     std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
1324     std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
1325     std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
1326     std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
1327     std::unique_ptr<llvm::MCContext> &&context_up,
1328     std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
1329     std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up,
1330     std::unique_ptr<llvm::MCInstrAnalysis> &&instr_analysis_up)
1331     : m_instr_info_up(std::move(instr_info_up)),
1332       m_reg_info_up(std::move(reg_info_up)),
1333       m_subtarget_info_up(std::move(subtarget_info_up)),
1334       m_asm_info_up(std::move(asm_info_up)),
1335       m_context_up(std::move(context_up)), m_disasm_up(std::move(disasm_up)),
1336       m_instr_printer_up(std::move(instr_printer_up)),
1337       m_instr_analysis_up(std::move(instr_analysis_up)) {
1338   assert(m_instr_info_up && m_reg_info_up && m_subtarget_info_up &&
1339          m_asm_info_up && m_context_up && m_disasm_up && m_instr_printer_up);
1340 }
1341 
1342 uint64_t DisassemblerLLVMC::MCDisasmInstance::GetMCInst(
1343     const uint8_t *opcode_data, size_t opcode_data_len, lldb::addr_t pc,
1344     llvm::MCInst &mc_inst) const {
1345   llvm::ArrayRef<uint8_t> data(opcode_data, opcode_data_len);
1346   llvm::MCDisassembler::DecodeStatus status;
1347 
1348   uint64_t new_inst_size;
1349   status = m_disasm_up->getInstruction(mc_inst, new_inst_size, data, pc,
1350                                        llvm::nulls());
1351   if (status == llvm::MCDisassembler::Success)
1352     return new_inst_size;
1353   else
1354     return 0;
1355 }
1356 
1357 void DisassemblerLLVMC::MCDisasmInstance::PrintMCInst(
1358     llvm::MCInst &mc_inst, lldb::addr_t pc, std::string &inst_string,
1359     std::string &comments_string) {
1360   llvm::raw_string_ostream inst_stream(inst_string);
1361   llvm::raw_string_ostream comments_stream(comments_string);
1362 
1363   inst_stream.enable_colors(m_instr_printer_up->getUseColor());
1364   m_instr_printer_up->setCommentStream(comments_stream);
1365   m_instr_printer_up->printInst(&mc_inst, pc, llvm::StringRef(),
1366                                 *m_subtarget_info_up, inst_stream);
1367   m_instr_printer_up->setCommentStream(llvm::nulls());
1368 
1369   comments_stream.flush();
1370 
1371   static std::string g_newlines("\r\n");
1372 
1373   for (size_t newline_pos = 0;
1374        (newline_pos = comments_string.find_first_of(g_newlines, newline_pos)) !=
1375        comments_string.npos;
1376        /**/) {
1377     comments_string.replace(comments_string.begin() + newline_pos,
1378                             comments_string.begin() + newline_pos + 1, 1, ' ');
1379   }
1380 }
1381 
1382 void DisassemblerLLVMC::MCDisasmInstance::SetStyle(
1383     bool use_hex_immed, HexImmediateStyle hex_style) {
1384   m_instr_printer_up->setPrintImmHex(use_hex_immed);
1385   switch (hex_style) {
1386   case eHexStyleC:
1387     m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::C);
1388     break;
1389   case eHexStyleAsm:
1390     m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::Asm);
1391     break;
1392   }
1393 }
1394 
1395 void DisassemblerLLVMC::MCDisasmInstance::SetUseColor(bool use_color) {
1396   m_instr_printer_up->setUseColor(use_color);
1397 }
1398 
1399 bool DisassemblerLLVMC::MCDisasmInstance::GetUseColor() const {
1400   return m_instr_printer_up->getUseColor();
1401 }
1402 
1403 bool DisassemblerLLVMC::MCDisasmInstance::CanBranch(
1404     llvm::MCInst &mc_inst) const {
1405   if (m_instr_analysis_up)
1406     return m_instr_analysis_up->mayAffectControlFlow(mc_inst, *m_reg_info_up);
1407   return m_instr_info_up->get(mc_inst.getOpcode())
1408       .mayAffectControlFlow(mc_inst, *m_reg_info_up);
1409 }
1410 
1411 bool DisassemblerLLVMC::MCDisasmInstance::HasDelaySlot(
1412     llvm::MCInst &mc_inst) const {
1413   return m_instr_info_up->get(mc_inst.getOpcode()).hasDelaySlot();
1414 }
1415 
1416 bool DisassemblerLLVMC::MCDisasmInstance::IsCall(llvm::MCInst &mc_inst) const {
1417   if (m_instr_analysis_up)
1418     return m_instr_analysis_up->isCall(mc_inst);
1419   return m_instr_info_up->get(mc_inst.getOpcode()).isCall();
1420 }
1421 
1422 bool DisassemblerLLVMC::MCDisasmInstance::IsLoad(llvm::MCInst &mc_inst) const {
1423   return m_instr_info_up->get(mc_inst.getOpcode()).mayLoad();
1424 }
1425 
1426 bool DisassemblerLLVMC::MCDisasmInstance::IsAuthenticated(
1427     llvm::MCInst &mc_inst) const {
1428   const auto &InstrDesc = m_instr_info_up->get(mc_inst.getOpcode());
1429 
1430   // Treat software auth traps (brk 0xc470 + aut key, where 0x70 == 'p', 0xc4
1431   // == 'a' + 'c') as authenticated instructions for reporting purposes, in
1432   // addition to the standard authenticated instructions specified in ARMv8.3.
1433   bool IsBrkC47x = false;
1434   if (InstrDesc.isTrap() && mc_inst.getNumOperands() == 1) {
1435     const llvm::MCOperand &Op0 = mc_inst.getOperand(0);
1436     if (Op0.isImm() && Op0.getImm() >= 0xc470 && Op0.getImm() <= 0xc474)
1437       IsBrkC47x = true;
1438   }
1439 
1440   return InstrDesc.isAuthenticated() || IsBrkC47x;
1441 }
1442 
1443 DisassemblerLLVMC::DisassemblerLLVMC(const ArchSpec &arch,
1444                                      const char *flavor_string)
1445     : Disassembler(arch, flavor_string), m_exe_ctx(nullptr), m_inst(nullptr),
1446       m_data_from_file(false), m_adrp_address(LLDB_INVALID_ADDRESS),
1447       m_adrp_insn() {
1448   if (!FlavorValidForArchSpec(arch, m_flavor.c_str())) {
1449     m_flavor.assign("default");
1450   }
1451 
1452   unsigned flavor = ~0U;
1453   llvm::Triple triple = arch.GetTriple();
1454 
1455   // So far the only supported flavor is "intel" on x86.  The base class will
1456   // set this correctly coming in.
1457   if (triple.getArch() == llvm::Triple::x86 ||
1458       triple.getArch() == llvm::Triple::x86_64) {
1459     if (m_flavor == "intel") {
1460       flavor = 1;
1461     } else if (m_flavor == "att") {
1462       flavor = 0;
1463     }
1464   }
1465 
1466   ArchSpec thumb_arch(arch);
1467   if (triple.getArch() == llvm::Triple::arm) {
1468     std::string thumb_arch_name(thumb_arch.GetTriple().getArchName().str());
1469     // Replace "arm" with "thumb" so we get all thumb variants correct
1470     if (thumb_arch_name.size() > 3) {
1471       thumb_arch_name.erase(0, 3);
1472       thumb_arch_name.insert(0, "thumb");
1473     } else {
1474       thumb_arch_name = "thumbv9.3a";
1475     }
1476     thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name));
1477   }
1478 
1479   // If no sub architecture specified then use the most recent arm architecture
1480   // so the disassembler will return all instructions. Without it we will see a
1481   // lot of unknown opcodes if the code uses instructions which are not
1482   // available in the oldest arm version (which is used when no sub architecture
1483   // is specified).
1484   if (triple.getArch() == llvm::Triple::arm &&
1485       triple.getSubArch() == llvm::Triple::NoSubArch)
1486     triple.setArchName("armv9.3a");
1487 
1488   std::string features_str;
1489   const char *triple_str = triple.getTriple().c_str();
1490 
1491   // ARM Cortex M0-M7 devices only execute thumb instructions
1492   if (arch.IsAlwaysThumbInstructions()) {
1493     triple_str = thumb_arch.GetTriple().getTriple().c_str();
1494     features_str += "+fp-armv8,";
1495   }
1496 
1497   const char *cpu = "";
1498 
1499   switch (arch.GetCore()) {
1500   case ArchSpec::eCore_mips32:
1501   case ArchSpec::eCore_mips32el:
1502     cpu = "mips32";
1503     break;
1504   case ArchSpec::eCore_mips32r2:
1505   case ArchSpec::eCore_mips32r2el:
1506     cpu = "mips32r2";
1507     break;
1508   case ArchSpec::eCore_mips32r3:
1509   case ArchSpec::eCore_mips32r3el:
1510     cpu = "mips32r3";
1511     break;
1512   case ArchSpec::eCore_mips32r5:
1513   case ArchSpec::eCore_mips32r5el:
1514     cpu = "mips32r5";
1515     break;
1516   case ArchSpec::eCore_mips32r6:
1517   case ArchSpec::eCore_mips32r6el:
1518     cpu = "mips32r6";
1519     break;
1520   case ArchSpec::eCore_mips64:
1521   case ArchSpec::eCore_mips64el:
1522     cpu = "mips64";
1523     break;
1524   case ArchSpec::eCore_mips64r2:
1525   case ArchSpec::eCore_mips64r2el:
1526     cpu = "mips64r2";
1527     break;
1528   case ArchSpec::eCore_mips64r3:
1529   case ArchSpec::eCore_mips64r3el:
1530     cpu = "mips64r3";
1531     break;
1532   case ArchSpec::eCore_mips64r5:
1533   case ArchSpec::eCore_mips64r5el:
1534     cpu = "mips64r5";
1535     break;
1536   case ArchSpec::eCore_mips64r6:
1537   case ArchSpec::eCore_mips64r6el:
1538     cpu = "mips64r6";
1539     break;
1540   default:
1541     cpu = "";
1542     break;
1543   }
1544 
1545   if (arch.IsMIPS()) {
1546     uint32_t arch_flags = arch.GetFlags();
1547     if (arch_flags & ArchSpec::eMIPSAse_msa)
1548       features_str += "+msa,";
1549     if (arch_flags & ArchSpec::eMIPSAse_dsp)
1550       features_str += "+dsp,";
1551     if (arch_flags & ArchSpec::eMIPSAse_dspr2)
1552       features_str += "+dspr2,";
1553   }
1554 
1555   // If any AArch64 variant, enable latest ISA with all extensions.
1556   if (triple.isAArch64()) {
1557     features_str += "+all,";
1558 
1559     if (triple.getVendor() == llvm::Triple::Apple)
1560       cpu = "apple-latest";
1561   }
1562 
1563   if (triple.isRISCV()) {
1564     uint32_t arch_flags = arch.GetFlags();
1565     if (arch_flags & ArchSpec::eRISCV_rvc)
1566       features_str += "+c,";
1567     if (arch_flags & ArchSpec::eRISCV_rve)
1568       features_str += "+e,";
1569     if ((arch_flags & ArchSpec::eRISCV_float_abi_single) ==
1570         ArchSpec::eRISCV_float_abi_single)
1571       features_str += "+f,";
1572     if ((arch_flags & ArchSpec::eRISCV_float_abi_double) ==
1573         ArchSpec::eRISCV_float_abi_double)
1574       features_str += "+f,+d,";
1575     if ((arch_flags & ArchSpec::eRISCV_float_abi_quad) ==
1576         ArchSpec::eRISCV_float_abi_quad)
1577       features_str += "+f,+d,+q,";
1578     // FIXME: how do we detect features such as `+a`, `+m`?
1579     // Turn them on by default now, since everyone seems to use them
1580     features_str += "+a,+m,";
1581   }
1582 
1583   // We use m_disasm_up.get() to tell whether we are valid or not, so if this
1584   // isn't good for some reason, we won't be valid and FindPlugin will fail and
1585   // we won't get used.
1586   m_disasm_up = MCDisasmInstance::Create(triple_str, cpu, features_str.c_str(),
1587                                          flavor, *this);
1588 
1589   llvm::Triple::ArchType llvm_arch = triple.getArch();
1590 
1591   // For arm CPUs that can execute arm or thumb instructions, also create a
1592   // thumb instruction disassembler.
1593   if (llvm_arch == llvm::Triple::arm) {
1594     std::string thumb_triple(thumb_arch.GetTriple().getTriple());
1595     m_alternate_disasm_up =
1596         MCDisasmInstance::Create(thumb_triple.c_str(), "", features_str.c_str(),
1597                                  flavor, *this);
1598     if (!m_alternate_disasm_up)
1599       m_disasm_up.reset();
1600 
1601   } else if (arch.IsMIPS()) {
1602     /* Create alternate disassembler for MIPS16 and microMIPS */
1603     uint32_t arch_flags = arch.GetFlags();
1604     if (arch_flags & ArchSpec::eMIPSAse_mips16)
1605       features_str += "+mips16,";
1606     else if (arch_flags & ArchSpec::eMIPSAse_micromips)
1607       features_str += "+micromips,";
1608 
1609     m_alternate_disasm_up = MCDisasmInstance::Create(
1610         triple_str, cpu, features_str.c_str(), flavor, *this);
1611     if (!m_alternate_disasm_up)
1612       m_disasm_up.reset();
1613   }
1614 }
1615 
1616 DisassemblerLLVMC::~DisassemblerLLVMC() = default;
1617 
1618 lldb::DisassemblerSP DisassemblerLLVMC::CreateInstance(const ArchSpec &arch,
1619                                                        const char *flavor) {
1620   if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch) {
1621     auto disasm_sp = std::make_shared<DisassemblerLLVMC>(arch, flavor);
1622     if (disasm_sp && disasm_sp->IsValid())
1623       return disasm_sp;
1624   }
1625   return lldb::DisassemblerSP();
1626 }
1627 
1628 size_t DisassemblerLLVMC::DecodeInstructions(const Address &base_addr,
1629                                              const DataExtractor &data,
1630                                              lldb::offset_t data_offset,
1631                                              size_t num_instructions,
1632                                              bool append, bool data_from_file) {
1633   if (!append)
1634     m_instruction_list.Clear();
1635 
1636   if (!IsValid())
1637     return 0;
1638 
1639   m_data_from_file = data_from_file;
1640   uint32_t data_cursor = data_offset;
1641   const size_t data_byte_size = data.GetByteSize();
1642   uint32_t instructions_parsed = 0;
1643   Address inst_addr(base_addr);
1644 
1645   while (data_cursor < data_byte_size &&
1646          instructions_parsed < num_instructions) {
1647 
1648     AddressClass address_class = AddressClass::eCode;
1649 
1650     if (m_alternate_disasm_up)
1651       address_class = inst_addr.GetAddressClass();
1652 
1653     InstructionSP inst_sp(
1654         new InstructionLLVMC(*this, inst_addr, address_class));
1655 
1656     if (!inst_sp)
1657       break;
1658 
1659     uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
1660 
1661     if (inst_size == 0)
1662       break;
1663 
1664     m_instruction_list.Append(inst_sp);
1665     data_cursor += inst_size;
1666     inst_addr.Slide(inst_size);
1667     instructions_parsed++;
1668   }
1669 
1670   return data_cursor - data_offset;
1671 }
1672 
1673 void DisassemblerLLVMC::Initialize() {
1674   PluginManager::RegisterPlugin(GetPluginNameStatic(),
1675                                 "Disassembler that uses LLVM MC to disassemble "
1676                                 "i386, x86_64, ARM, and ARM64.",
1677                                 CreateInstance);
1678 
1679   llvm::InitializeAllTargetInfos();
1680   llvm::InitializeAllTargetMCs();
1681   llvm::InitializeAllAsmParsers();
1682   llvm::InitializeAllDisassemblers();
1683 }
1684 
1685 void DisassemblerLLVMC::Terminate() {
1686   PluginManager::UnregisterPlugin(CreateInstance);
1687 }
1688 
1689 int DisassemblerLLVMC::OpInfoCallback(void *disassembler, uint64_t pc,
1690                                       uint64_t offset, uint64_t size,
1691                                       int tag_type, void *tag_bug) {
1692   return static_cast<DisassemblerLLVMC *>(disassembler)
1693       ->OpInfo(pc, offset, size, tag_type, tag_bug);
1694 }
1695 
1696 const char *DisassemblerLLVMC::SymbolLookupCallback(void *disassembler,
1697                                                     uint64_t value,
1698                                                     uint64_t *type, uint64_t pc,
1699                                                     const char **name) {
1700   return static_cast<DisassemblerLLVMC *>(disassembler)
1701       ->SymbolLookup(value, type, pc, name);
1702 }
1703 
1704 bool DisassemblerLLVMC::FlavorValidForArchSpec(
1705     const lldb_private::ArchSpec &arch, const char *flavor) {
1706   llvm::Triple triple = arch.GetTriple();
1707   if (flavor == nullptr || strcmp(flavor, "default") == 0)
1708     return true;
1709 
1710   if (triple.getArch() == llvm::Triple::x86 ||
1711       triple.getArch() == llvm::Triple::x86_64) {
1712     return strcmp(flavor, "intel") == 0 || strcmp(flavor, "att") == 0;
1713   } else
1714     return false;
1715 }
1716 
1717 bool DisassemblerLLVMC::IsValid() const { return m_disasm_up.operator bool(); }
1718 
1719 int DisassemblerLLVMC::OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size,
1720                               int tag_type, void *tag_bug) {
1721   switch (tag_type) {
1722   default:
1723     break;
1724   case 1:
1725     memset(tag_bug, 0, sizeof(::LLVMOpInfo1));
1726     break;
1727   }
1728   return 0;
1729 }
1730 
1731 const char *DisassemblerLLVMC::SymbolLookup(uint64_t value, uint64_t *type_ptr,
1732                                             uint64_t pc, const char **name) {
1733   if (*type_ptr) {
1734     if (m_exe_ctx && m_inst) {
1735       // std::string remove_this_prior_to_checkin;
1736       Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : nullptr;
1737       Address value_so_addr;
1738       Address pc_so_addr;
1739       if (target->GetArchitecture().GetMachine() == llvm::Triple::aarch64 ||
1740           target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_be ||
1741           target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_32) {
1742         if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
1743           m_adrp_address = pc;
1744           m_adrp_insn = value;
1745           *name = nullptr;
1746           *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1747           return nullptr;
1748         }
1749         // If this instruction is an ADD and
1750         // the previous instruction was an ADRP and
1751         // the ADRP's register and this ADD's register are the same,
1752         // then this is a pc-relative address calculation.
1753         if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
1754             m_adrp_insn && m_adrp_address == pc - 4 &&
1755             (*m_adrp_insn & 0x1f) == ((value >> 5) & 0x1f)) {
1756           uint32_t addxri_inst;
1757           uint64_t adrp_imm, addxri_imm;
1758           // Get immlo and immhi bits, OR them together to get the ADRP imm
1759           // value.
1760           adrp_imm =
1761               ((*m_adrp_insn & 0x00ffffe0) >> 3) | ((*m_adrp_insn >> 29) & 0x3);
1762           // if high bit of immhi after right-shifting set, sign extend
1763           if (adrp_imm & (1ULL << 20))
1764             adrp_imm |= ~((1ULL << 21) - 1);
1765 
1766           addxri_inst = value;
1767           addxri_imm = (addxri_inst >> 10) & 0xfff;
1768           // check if 'sh' bit is set, shift imm value up if so
1769           // (this would make no sense, ADRP already gave us this part)
1770           if ((addxri_inst >> (12 + 5 + 5)) & 1)
1771             addxri_imm <<= 12;
1772           value = (m_adrp_address & 0xfffffffffffff000LL) + (adrp_imm << 12) +
1773                   addxri_imm;
1774         }
1775         m_adrp_address = LLDB_INVALID_ADDRESS;
1776         m_adrp_insn.reset();
1777       }
1778 
1779       if (m_inst->UsingFileAddress()) {
1780         ModuleSP module_sp(m_inst->GetAddress().GetModule());
1781         if (module_sp) {
1782           module_sp->ResolveFileAddress(value, value_so_addr);
1783           module_sp->ResolveFileAddress(pc, pc_so_addr);
1784         }
1785       } else if (target && !target->GetSectionLoadList().IsEmpty()) {
1786         target->GetSectionLoadList().ResolveLoadAddress(value, value_so_addr);
1787         target->GetSectionLoadList().ResolveLoadAddress(pc, pc_so_addr);
1788       }
1789 
1790       SymbolContext sym_ctx;
1791       const SymbolContextItem resolve_scope =
1792           eSymbolContextFunction | eSymbolContextSymbol;
1793       if (pc_so_addr.IsValid() && pc_so_addr.GetModule()) {
1794         pc_so_addr.GetModule()->ResolveSymbolContextForAddress(
1795             pc_so_addr, resolve_scope, sym_ctx);
1796       }
1797 
1798       if (value_so_addr.IsValid() && value_so_addr.GetSection()) {
1799         StreamString ss;
1800 
1801         bool format_omitting_current_func_name = false;
1802         if (sym_ctx.symbol || sym_ctx.function) {
1803           AddressRange range;
1804           if (sym_ctx.GetAddressRange(resolve_scope, 0, false, range) &&
1805               range.GetBaseAddress().IsValid() &&
1806               range.ContainsLoadAddress(value_so_addr, target)) {
1807             format_omitting_current_func_name = true;
1808           }
1809         }
1810 
1811         // If the "value" address (the target address we're symbolicating) is
1812         // inside the same SymbolContext as the current instruction pc
1813         // (pc_so_addr), don't print the full function name - just print it
1814         // with DumpStyleNoFunctionName style, e.g. "<+36>".
1815         if (format_omitting_current_func_name) {
1816           value_so_addr.Dump(&ss, target, Address::DumpStyleNoFunctionName,
1817                              Address::DumpStyleSectionNameOffset);
1818         } else {
1819           value_so_addr.Dump(
1820               &ss, target,
1821               Address::DumpStyleResolvedDescriptionNoFunctionArguments,
1822               Address::DumpStyleSectionNameOffset);
1823         }
1824 
1825         if (!ss.GetString().empty()) {
1826           // If Address::Dump returned a multi-line description, most commonly
1827           // seen when we have multiple levels of inlined functions at an
1828           // address, only show the first line.
1829           std::string str = std::string(ss.GetString());
1830           size_t first_eol_char = str.find_first_of("\r\n");
1831           if (first_eol_char != std::string::npos) {
1832             str.erase(first_eol_char);
1833           }
1834           m_inst->AppendComment(str);
1835         }
1836       }
1837     }
1838   }
1839 
1840   // TODO: llvm-objdump sets the type_ptr to the
1841   // LLVMDisassembler_ReferenceType_Out_* values
1842   // based on where value_so_addr is pointing, with
1843   // Mach-O specific augmentations in MachODump.cpp. e.g.
1844   // see what AArch64ExternalSymbolizer::tryAddingSymbolicOperand
1845   // handles.
1846   *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1847   *name = nullptr;
1848   return nullptr;
1849 }
1850