xref: /freebsd/contrib/llvm-project/lldb/source/Plugins/Disassembler/LLVMC/DisassemblerLLVMC.cpp (revision 0c428864495af9dc7d2af4d0a5ae21732af9c739)
1 //===-- DisassemblerLLVMC.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "DisassemblerLLVMC.h"
10 
11 #include "llvm-c/Disassembler.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/StringExtras.h"
14 #include "llvm/MC/MCAsmInfo.h"
15 #include "llvm/MC/MCContext.h"
16 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
17 #include "llvm/MC/MCDisassembler/MCExternalSymbolizer.h"
18 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
19 #include "llvm/MC/MCInst.h"
20 #include "llvm/MC/MCInstPrinter.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/MC/MCTargetOptions.h"
25 #include "llvm/MC/TargetRegistry.h"
26 #include "llvm/Support/AArch64TargetParser.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ScopedPrinter.h"
29 #include "llvm/Support/TargetSelect.h"
30 
31 #include "lldb/Core/Address.h"
32 #include "lldb/Core/Module.h"
33 #include "lldb/Symbol/SymbolContext.h"
34 #include "lldb/Target/ExecutionContext.h"
35 #include "lldb/Target/Process.h"
36 #include "lldb/Target/RegisterContext.h"
37 #include "lldb/Target/SectionLoadList.h"
38 #include "lldb/Target/StackFrame.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/DataExtractor.h"
41 #include "lldb/Utility/LLDBLog.h"
42 #include "lldb/Utility/Log.h"
43 #include "lldb/Utility/RegularExpression.h"
44 #include "lldb/Utility/Stream.h"
45 
46 using namespace lldb;
47 using namespace lldb_private;
48 
49 LLDB_PLUGIN_DEFINE(DisassemblerLLVMC)
50 
51 class DisassemblerLLVMC::MCDisasmInstance {
52 public:
53   static std::unique_ptr<MCDisasmInstance>
54   Create(const char *triple, const char *cpu, const char *features_str,
55          unsigned flavor, DisassemblerLLVMC &owner);
56 
57   ~MCDisasmInstance() = default;
58 
59   uint64_t GetMCInst(const uint8_t *opcode_data, size_t opcode_data_len,
60                      lldb::addr_t pc, llvm::MCInst &mc_inst) const;
61   void PrintMCInst(llvm::MCInst &mc_inst, std::string &inst_string,
62                    std::string &comments_string);
63   void SetStyle(bool use_hex_immed, HexImmediateStyle hex_style);
64   bool CanBranch(llvm::MCInst &mc_inst) const;
65   bool HasDelaySlot(llvm::MCInst &mc_inst) const;
66   bool IsCall(llvm::MCInst &mc_inst) const;
67   bool IsLoad(llvm::MCInst &mc_inst) const;
68   bool IsAuthenticated(llvm::MCInst &mc_inst) const;
69 
70 private:
71   MCDisasmInstance(std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
72                    std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
73                    std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
74                    std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
75                    std::unique_ptr<llvm::MCContext> &&context_up,
76                    std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
77                    std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up);
78 
79   std::unique_ptr<llvm::MCInstrInfo> m_instr_info_up;
80   std::unique_ptr<llvm::MCRegisterInfo> m_reg_info_up;
81   std::unique_ptr<llvm::MCSubtargetInfo> m_subtarget_info_up;
82   std::unique_ptr<llvm::MCAsmInfo> m_asm_info_up;
83   std::unique_ptr<llvm::MCContext> m_context_up;
84   std::unique_ptr<llvm::MCDisassembler> m_disasm_up;
85   std::unique_ptr<llvm::MCInstPrinter> m_instr_printer_up;
86 };
87 
88 namespace x86 {
89 
90 /// These are the three values deciding instruction control flow kind.
91 /// InstructionLengthDecode function decodes an instruction and get this struct.
92 ///
93 /// primary_opcode
94 ///    Primary opcode of the instruction.
95 ///    For one-byte opcode instruction, it's the first byte after prefix.
96 ///    For two- and three-byte opcodes, it's the second byte.
97 ///
98 /// opcode_len
99 ///    The length of opcode in bytes. Valid opcode lengths are 1, 2, or 3.
100 ///
101 /// modrm
102 ///    ModR/M byte of the instruction.
103 ///    Bits[7:6] indicate MOD. Bits[5:3] specify a register and R/M bits[2:0]
104 ///    may contain a register or specify an addressing mode, depending on MOD.
105 struct InstructionOpcodeAndModrm {
106   uint8_t primary_opcode;
107   uint8_t opcode_len;
108   uint8_t modrm;
109 };
110 
111 /// Determine the InstructionControlFlowKind based on opcode and modrm bytes.
112 /// Refer to http://ref.x86asm.net/coder.html for the full list of opcode and
113 /// instruction set.
114 ///
115 /// \param[in] opcode_and_modrm
116 ///    Contains primary_opcode byte, its length, and ModR/M byte.
117 ///    Refer to the struct InstructionOpcodeAndModrm for details.
118 ///
119 /// \return
120 ///   The control flow kind of the instruction or
121 ///   eInstructionControlFlowKindOther if the instruction doesn't affect
122 ///   the control flow of the program.
123 lldb::InstructionControlFlowKind
124 MapOpcodeIntoControlFlowKind(InstructionOpcodeAndModrm opcode_and_modrm) {
125   uint8_t opcode = opcode_and_modrm.primary_opcode;
126   uint8_t opcode_len = opcode_and_modrm.opcode_len;
127   uint8_t modrm = opcode_and_modrm.modrm;
128 
129   if (opcode_len > 2)
130     return lldb::eInstructionControlFlowKindOther;
131 
132   if (opcode >= 0x70 && opcode <= 0x7F) {
133     if (opcode_len == 1)
134       return lldb::eInstructionControlFlowKindCondJump;
135     else
136       return lldb::eInstructionControlFlowKindOther;
137   }
138 
139   if (opcode >= 0x80 && opcode <= 0x8F) {
140     if (opcode_len == 2)
141       return lldb::eInstructionControlFlowKindCondJump;
142     else
143       return lldb::eInstructionControlFlowKindOther;
144   }
145 
146   switch (opcode) {
147   case 0x9A:
148     if (opcode_len == 1)
149       return lldb::eInstructionControlFlowKindFarCall;
150     break;
151   case 0xFF:
152     if (opcode_len == 1) {
153       uint8_t modrm_reg = (modrm >> 3) & 7;
154       if (modrm_reg == 2)
155         return lldb::eInstructionControlFlowKindCall;
156       else if (modrm_reg == 3)
157         return lldb::eInstructionControlFlowKindFarCall;
158       else if (modrm_reg == 4)
159         return lldb::eInstructionControlFlowKindJump;
160       else if (modrm_reg == 5)
161         return lldb::eInstructionControlFlowKindFarJump;
162     }
163     break;
164   case 0xE8:
165     if (opcode_len == 1)
166       return lldb::eInstructionControlFlowKindCall;
167     break;
168   case 0xCD:
169   case 0xCC:
170   case 0xCE:
171   case 0xF1:
172     if (opcode_len == 1)
173       return lldb::eInstructionControlFlowKindFarCall;
174     break;
175   case 0xCF:
176     if (opcode_len == 1)
177       return lldb::eInstructionControlFlowKindFarReturn;
178     break;
179   case 0xE9:
180   case 0xEB:
181     if (opcode_len == 1)
182       return lldb::eInstructionControlFlowKindJump;
183     break;
184   case 0xEA:
185     if (opcode_len == 1)
186       return lldb::eInstructionControlFlowKindFarJump;
187     break;
188   case 0xE3:
189   case 0xE0:
190   case 0xE1:
191   case 0xE2:
192     if (opcode_len == 1)
193       return lldb::eInstructionControlFlowKindCondJump;
194     break;
195   case 0xC3:
196   case 0xC2:
197     if (opcode_len == 1)
198       return lldb::eInstructionControlFlowKindReturn;
199     break;
200   case 0xCB:
201   case 0xCA:
202     if (opcode_len == 1)
203       return lldb::eInstructionControlFlowKindFarReturn;
204     break;
205   case 0x05:
206   case 0x34:
207     if (opcode_len == 2)
208       return lldb::eInstructionControlFlowKindFarCall;
209     break;
210   case 0x35:
211   case 0x07:
212     if (opcode_len == 2)
213       return lldb::eInstructionControlFlowKindFarReturn;
214     break;
215   case 0x01:
216     if (opcode_len == 2) {
217       switch (modrm) {
218       case 0xc1:
219         return lldb::eInstructionControlFlowKindFarCall;
220       case 0xc2:
221       case 0xc3:
222         return lldb::eInstructionControlFlowKindFarReturn;
223       default:
224         break;
225       }
226     }
227     break;
228   default:
229     break;
230   }
231 
232   return lldb::eInstructionControlFlowKindOther;
233 }
234 
235 /// Decode an instruction into opcode, modrm and opcode_len.
236 /// Refer to http://ref.x86asm.net/coder.html for the instruction bytes layout.
237 /// Opcodes in x86 are generally the first byte of instruction, though two-byte
238 /// instructions and prefixes exist. ModR/M is the byte following the opcode
239 /// and adds additional information for how the instruction is executed.
240 ///
241 /// \param[in] inst_bytes
242 ///    Raw bytes of the instruction
243 ///
244 ///
245 /// \param[in] bytes_len
246 ///    The length of the inst_bytes array.
247 ///
248 /// \param[in] is_exec_mode_64b
249 ///    If true, the execution mode is 64 bit.
250 ///
251 /// \return
252 ///    Returns decoded instruction as struct InstructionOpcodeAndModrm, holding
253 ///    primary_opcode, opcode_len and modrm byte. Refer to the struct definition
254 ///    for more details.
255 ///    Otherwise if the given instruction is invalid, returns None.
256 llvm::Optional<InstructionOpcodeAndModrm>
257 InstructionLengthDecode(const uint8_t *inst_bytes, int bytes_len,
258                         bool is_exec_mode_64b) {
259   int op_idx = 0;
260   bool prefix_done = false;
261   InstructionOpcodeAndModrm ret = {0, 0, 0};
262 
263   // In most cases, the primary_opcode is the first byte of the instruction
264   // but some instructions have a prefix to be skipped for these calculations.
265   // The following mapping is inspired from libipt's instruction decoding logic
266   // in `src/pt_ild.c`
267   while (!prefix_done) {
268     if (op_idx >= bytes_len)
269       return llvm::None;
270 
271     ret.primary_opcode = inst_bytes[op_idx];
272     switch (ret.primary_opcode) {
273     // prefix_ignore
274     case 0x26:
275     case 0x2e:
276     case 0x36:
277     case 0x3e:
278     case 0x64:
279     case 0x65:
280     // prefix_osz, prefix_asz
281     case 0x66:
282     case 0x67:
283     // prefix_lock, prefix_f2, prefix_f3
284     case 0xf0:
285     case 0xf2:
286     case 0xf3:
287       op_idx++;
288       break;
289 
290     // prefix_rex
291     case 0x40:
292     case 0x41:
293     case 0x42:
294     case 0x43:
295     case 0x44:
296     case 0x45:
297     case 0x46:
298     case 0x47:
299     case 0x48:
300     case 0x49:
301     case 0x4a:
302     case 0x4b:
303     case 0x4c:
304     case 0x4d:
305     case 0x4e:
306     case 0x4f:
307       if (is_exec_mode_64b)
308         op_idx++;
309       else
310         prefix_done = true;
311       break;
312 
313     // prefix_vex_c4, c5
314     case 0xc5:
315       if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
316         prefix_done = true;
317         break;
318       }
319 
320       ret.opcode_len = 2;
321       ret.primary_opcode = inst_bytes[op_idx + 2];
322       ret.modrm = inst_bytes[op_idx + 3];
323       return ret;
324 
325     case 0xc4:
326       if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
327         prefix_done = true;
328         break;
329       }
330       ret.opcode_len = inst_bytes[op_idx + 1] & 0x1f;
331       ret.primary_opcode = inst_bytes[op_idx + 3];
332       ret.modrm = inst_bytes[op_idx + 4];
333       return ret;
334 
335     // prefix_evex
336     case 0x62:
337       if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
338         prefix_done = true;
339         break;
340       }
341       ret.opcode_len = inst_bytes[op_idx + 1] & 0x03;
342       ret.primary_opcode = inst_bytes[op_idx + 4];
343       ret.modrm = inst_bytes[op_idx + 5];
344       return ret;
345 
346     default:
347       prefix_done = true;
348       break;
349     }
350   } // prefix done
351 
352   ret.primary_opcode = inst_bytes[op_idx];
353   ret.modrm = inst_bytes[op_idx + 1];
354   ret.opcode_len = 1;
355 
356   // If the first opcode is 0F, it's two- or three- byte opcodes.
357   if (ret.primary_opcode == 0x0F) {
358     ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
359 
360     if (ret.primary_opcode == 0x38) {
361       ret.opcode_len = 3;
362       ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
363       ret.modrm = inst_bytes[op_idx + 1];
364     } else if (ret.primary_opcode == 0x3A) {
365       ret.opcode_len = 3;
366       ret.primary_opcode = inst_bytes[++op_idx];
367       ret.modrm = inst_bytes[op_idx + 1];
368     } else if ((ret.primary_opcode & 0xf8) == 0x38) {
369       ret.opcode_len = 0;
370       ret.primary_opcode = inst_bytes[++op_idx];
371       ret.modrm = inst_bytes[op_idx + 1];
372     } else if (ret.primary_opcode == 0x0F) {
373       ret.opcode_len = 3;
374       // opcode is 0x0F, no needs to update
375       ret.modrm = inst_bytes[op_idx + 1];
376     } else {
377       ret.opcode_len = 2;
378       ret.modrm = inst_bytes[op_idx + 1];
379     }
380   }
381 
382   return ret;
383 }
384 
385 lldb::InstructionControlFlowKind GetControlFlowKind(bool is_exec_mode_64b,
386                                                     Opcode m_opcode) {
387   llvm::Optional<InstructionOpcodeAndModrm> ret = llvm::None;
388 
389   if (m_opcode.GetOpcodeBytes() == nullptr || m_opcode.GetByteSize() <= 0) {
390     // x86_64 and i386 instructions are categorized as Opcode::Type::eTypeBytes
391     return lldb::eInstructionControlFlowKindUnknown;
392   }
393 
394   // Opcode bytes will be decoded into primary_opcode, modrm and opcode length.
395   // These are the three values deciding instruction control flow kind.
396   ret = InstructionLengthDecode((const uint8_t *)m_opcode.GetOpcodeBytes(),
397                                 m_opcode.GetByteSize(), is_exec_mode_64b);
398   if (!ret)
399     return lldb::eInstructionControlFlowKindUnknown;
400   else
401     return MapOpcodeIntoControlFlowKind(ret.value());
402 }
403 
404 } // namespace x86
405 
406 class InstructionLLVMC : public lldb_private::Instruction {
407 public:
408   InstructionLLVMC(DisassemblerLLVMC &disasm,
409                    const lldb_private::Address &address,
410                    AddressClass addr_class)
411       : Instruction(address, addr_class),
412         m_disasm_wp(std::static_pointer_cast<DisassemblerLLVMC>(
413             disasm.shared_from_this())) {}
414 
415   ~InstructionLLVMC() override = default;
416 
417   bool DoesBranch() override {
418     VisitInstruction();
419     return m_does_branch;
420   }
421 
422   bool HasDelaySlot() override {
423     VisitInstruction();
424     return m_has_delay_slot;
425   }
426 
427   bool IsLoad() override {
428     VisitInstruction();
429     return m_is_load;
430   }
431 
432   bool IsAuthenticated() override {
433     VisitInstruction();
434     return m_is_authenticated;
435   }
436 
437   DisassemblerLLVMC::MCDisasmInstance *GetDisasmToUse(bool &is_alternate_isa) {
438     DisassemblerScope disasm(*this);
439     return GetDisasmToUse(is_alternate_isa, disasm);
440   }
441 
442   size_t Decode(const lldb_private::Disassembler &disassembler,
443                 const lldb_private::DataExtractor &data,
444                 lldb::offset_t data_offset) override {
445     // All we have to do is read the opcode which can be easy for some
446     // architectures
447     bool got_op = false;
448     DisassemblerScope disasm(*this);
449     if (disasm) {
450       const ArchSpec &arch = disasm->GetArchitecture();
451       const lldb::ByteOrder byte_order = data.GetByteOrder();
452 
453       const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
454       const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
455       if (min_op_byte_size == max_op_byte_size) {
456         // Fixed size instructions, just read that amount of data.
457         if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
458           return false;
459 
460         switch (min_op_byte_size) {
461         case 1:
462           m_opcode.SetOpcode8(data.GetU8(&data_offset), byte_order);
463           got_op = true;
464           break;
465 
466         case 2:
467           m_opcode.SetOpcode16(data.GetU16(&data_offset), byte_order);
468           got_op = true;
469           break;
470 
471         case 4:
472           m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
473           got_op = true;
474           break;
475 
476         case 8:
477           m_opcode.SetOpcode64(data.GetU64(&data_offset), byte_order);
478           got_op = true;
479           break;
480 
481         default:
482           m_opcode.SetOpcodeBytes(data.PeekData(data_offset, min_op_byte_size),
483                                   min_op_byte_size);
484           got_op = true;
485           break;
486         }
487       }
488       if (!got_op) {
489         bool is_alternate_isa = false;
490         DisassemblerLLVMC::MCDisasmInstance *mc_disasm_ptr =
491             GetDisasmToUse(is_alternate_isa, disasm);
492 
493         const llvm::Triple::ArchType machine = arch.GetMachine();
494         if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb) {
495           if (machine == llvm::Triple::thumb || is_alternate_isa) {
496             uint32_t thumb_opcode = data.GetU16(&data_offset);
497             if ((thumb_opcode & 0xe000) != 0xe000 ||
498                 ((thumb_opcode & 0x1800u) == 0)) {
499               m_opcode.SetOpcode16(thumb_opcode, byte_order);
500               m_is_valid = true;
501             } else {
502               thumb_opcode <<= 16;
503               thumb_opcode |= data.GetU16(&data_offset);
504               m_opcode.SetOpcode16_2(thumb_opcode, byte_order);
505               m_is_valid = true;
506             }
507           } else {
508             m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
509             m_is_valid = true;
510           }
511         } else {
512           // The opcode isn't evenly sized, so we need to actually use the llvm
513           // disassembler to parse it and get the size.
514           uint8_t *opcode_data =
515               const_cast<uint8_t *>(data.PeekData(data_offset, 1));
516           const size_t opcode_data_len = data.BytesLeft(data_offset);
517           const addr_t pc = m_address.GetFileAddress();
518           llvm::MCInst inst;
519 
520           const size_t inst_size =
521               mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
522           if (inst_size == 0)
523             m_opcode.Clear();
524           else {
525             m_opcode.SetOpcodeBytes(opcode_data, inst_size);
526             m_is_valid = true;
527           }
528         }
529       }
530       return m_opcode.GetByteSize();
531     }
532     return 0;
533   }
534 
535   void AppendComment(std::string &description) {
536     if (m_comment.empty())
537       m_comment.swap(description);
538     else {
539       m_comment.append(", ");
540       m_comment.append(description);
541     }
542   }
543 
544   lldb::InstructionControlFlowKind
545   GetControlFlowKind(const lldb_private::ExecutionContext *exe_ctx) override {
546     DisassemblerScope disasm(*this, exe_ctx);
547     if (disasm){
548       if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86)
549         return x86::GetControlFlowKind(/*is_64b=*/false, m_opcode);
550       else if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86_64)
551         return x86::GetControlFlowKind(/*is_64b=*/true, m_opcode);
552     }
553 
554     return eInstructionControlFlowKindUnknown;
555   }
556 
557   void CalculateMnemonicOperandsAndComment(
558       const lldb_private::ExecutionContext *exe_ctx) override {
559     DataExtractor data;
560     const AddressClass address_class = GetAddressClass();
561 
562     if (m_opcode.GetData(data)) {
563       std::string out_string;
564       std::string comment_string;
565 
566       DisassemblerScope disasm(*this, exe_ctx);
567       if (disasm) {
568         DisassemblerLLVMC::MCDisasmInstance *mc_disasm_ptr;
569 
570         if (address_class == AddressClass::eCodeAlternateISA)
571           mc_disasm_ptr = disasm->m_alternate_disasm_up.get();
572         else
573           mc_disasm_ptr = disasm->m_disasm_up.get();
574 
575         lldb::addr_t pc = m_address.GetFileAddress();
576         m_using_file_addr = true;
577 
578         const bool data_from_file = disasm->m_data_from_file;
579         bool use_hex_immediates = true;
580         Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC;
581 
582         if (exe_ctx) {
583           Target *target = exe_ctx->GetTargetPtr();
584           if (target) {
585             use_hex_immediates = target->GetUseHexImmediates();
586             hex_style = target->GetHexImmediateStyle();
587 
588             if (!data_from_file) {
589               const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
590               if (load_addr != LLDB_INVALID_ADDRESS) {
591                 pc = load_addr;
592                 m_using_file_addr = false;
593               }
594             }
595           }
596         }
597 
598         const uint8_t *opcode_data = data.GetDataStart();
599         const size_t opcode_data_len = data.GetByteSize();
600         llvm::MCInst inst;
601         size_t inst_size =
602             mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
603 
604         if (inst_size > 0) {
605           mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
606           mc_disasm_ptr->PrintMCInst(inst, out_string, comment_string);
607 
608           if (!comment_string.empty()) {
609             AppendComment(comment_string);
610           }
611         }
612 
613         if (inst_size == 0) {
614           m_comment.assign("unknown opcode");
615           inst_size = m_opcode.GetByteSize();
616           StreamString mnemonic_strm;
617           lldb::offset_t offset = 0;
618           lldb::ByteOrder byte_order = data.GetByteOrder();
619           switch (inst_size) {
620           case 1: {
621             const uint8_t uval8 = data.GetU8(&offset);
622             m_opcode.SetOpcode8(uval8, byte_order);
623             m_opcode_name.assign(".byte");
624             mnemonic_strm.Printf("0x%2.2x", uval8);
625           } break;
626           case 2: {
627             const uint16_t uval16 = data.GetU16(&offset);
628             m_opcode.SetOpcode16(uval16, byte_order);
629             m_opcode_name.assign(".short");
630             mnemonic_strm.Printf("0x%4.4x", uval16);
631           } break;
632           case 4: {
633             const uint32_t uval32 = data.GetU32(&offset);
634             m_opcode.SetOpcode32(uval32, byte_order);
635             m_opcode_name.assign(".long");
636             mnemonic_strm.Printf("0x%8.8x", uval32);
637           } break;
638           case 8: {
639             const uint64_t uval64 = data.GetU64(&offset);
640             m_opcode.SetOpcode64(uval64, byte_order);
641             m_opcode_name.assign(".quad");
642             mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
643           } break;
644           default:
645             if (inst_size == 0)
646               return;
647             else {
648               const uint8_t *bytes = data.PeekData(offset, inst_size);
649               if (bytes == nullptr)
650                 return;
651               m_opcode_name.assign(".byte");
652               m_opcode.SetOpcodeBytes(bytes, inst_size);
653               mnemonic_strm.Printf("0x%2.2x", bytes[0]);
654               for (uint32_t i = 1; i < inst_size; ++i)
655                 mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
656             }
657             break;
658           }
659           m_mnemonics = std::string(mnemonic_strm.GetString());
660           return;
661         }
662 
663         static RegularExpression s_regex(
664             llvm::StringRef("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?"));
665 
666         llvm::SmallVector<llvm::StringRef, 4> matches;
667         if (s_regex.Execute(out_string, &matches)) {
668           m_opcode_name = matches[1].str();
669           m_mnemonics = matches[2].str();
670         }
671       }
672     }
673   }
674 
675   bool IsValid() const { return m_is_valid; }
676 
677   bool UsingFileAddress() const { return m_using_file_addr; }
678   size_t GetByteSize() const { return m_opcode.GetByteSize(); }
679 
680   /// Grants exclusive access to the disassembler and initializes it with the
681   /// given InstructionLLVMC and an optional ExecutionContext.
682   class DisassemblerScope {
683     std::shared_ptr<DisassemblerLLVMC> m_disasm;
684 
685   public:
686     explicit DisassemblerScope(
687         InstructionLLVMC &i,
688         const lldb_private::ExecutionContext *exe_ctx = nullptr)
689         : m_disasm(i.m_disasm_wp.lock()) {
690       m_disasm->m_mutex.lock();
691       m_disasm->m_inst = &i;
692       m_disasm->m_exe_ctx = exe_ctx;
693     }
694     ~DisassemblerScope() { m_disasm->m_mutex.unlock(); }
695 
696     /// Evaluates to true if this scope contains a valid disassembler.
697     operator bool() const { return static_cast<bool>(m_disasm); }
698 
699     std::shared_ptr<DisassemblerLLVMC> operator->() { return m_disasm; }
700   };
701 
702   static llvm::StringRef::const_iterator
703   ConsumeWhitespace(llvm::StringRef::const_iterator osi,
704                     llvm::StringRef::const_iterator ose) {
705     while (osi != ose) {
706       switch (*osi) {
707       default:
708         return osi;
709       case ' ':
710       case '\t':
711         break;
712       }
713       ++osi;
714     }
715 
716     return osi;
717   }
718 
719   static std::pair<bool, llvm::StringRef::const_iterator>
720   ConsumeChar(llvm::StringRef::const_iterator osi, const char c,
721               llvm::StringRef::const_iterator ose) {
722     bool found = false;
723 
724     osi = ConsumeWhitespace(osi, ose);
725     if (osi != ose && *osi == c) {
726       found = true;
727       ++osi;
728     }
729 
730     return std::make_pair(found, osi);
731   }
732 
733   static std::pair<Operand, llvm::StringRef::const_iterator>
734   ParseRegisterName(llvm::StringRef::const_iterator osi,
735                     llvm::StringRef::const_iterator ose) {
736     Operand ret;
737     ret.m_type = Operand::Type::Register;
738     std::string str;
739 
740     osi = ConsumeWhitespace(osi, ose);
741 
742     while (osi != ose) {
743       if (*osi >= '0' && *osi <= '9') {
744         if (str.empty()) {
745           return std::make_pair(Operand(), osi);
746         } else {
747           str.push_back(*osi);
748         }
749       } else if (*osi >= 'a' && *osi <= 'z') {
750         str.push_back(*osi);
751       } else {
752         switch (*osi) {
753         default:
754           if (str.empty()) {
755             return std::make_pair(Operand(), osi);
756           } else {
757             ret.m_register = ConstString(str);
758             return std::make_pair(ret, osi);
759           }
760         case '%':
761           if (!str.empty()) {
762             return std::make_pair(Operand(), osi);
763           }
764           break;
765         }
766       }
767       ++osi;
768     }
769 
770     ret.m_register = ConstString(str);
771     return std::make_pair(ret, osi);
772   }
773 
774   static std::pair<Operand, llvm::StringRef::const_iterator>
775   ParseImmediate(llvm::StringRef::const_iterator osi,
776                  llvm::StringRef::const_iterator ose) {
777     Operand ret;
778     ret.m_type = Operand::Type::Immediate;
779     std::string str;
780     bool is_hex = false;
781 
782     osi = ConsumeWhitespace(osi, ose);
783 
784     while (osi != ose) {
785       if (*osi >= '0' && *osi <= '9') {
786         str.push_back(*osi);
787       } else if (*osi >= 'a' && *osi <= 'f') {
788         if (is_hex) {
789           str.push_back(*osi);
790         } else {
791           return std::make_pair(Operand(), osi);
792         }
793       } else {
794         switch (*osi) {
795         default:
796           if (str.empty()) {
797             return std::make_pair(Operand(), osi);
798           } else {
799             ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
800             return std::make_pair(ret, osi);
801           }
802         case 'x':
803           if (!str.compare("0")) {
804             is_hex = true;
805             str.push_back(*osi);
806           } else {
807             return std::make_pair(Operand(), osi);
808           }
809           break;
810         case '#':
811         case '$':
812           if (!str.empty()) {
813             return std::make_pair(Operand(), osi);
814           }
815           break;
816         case '-':
817           if (str.empty()) {
818             ret.m_negative = true;
819           } else {
820             return std::make_pair(Operand(), osi);
821           }
822         }
823       }
824       ++osi;
825     }
826 
827     ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
828     return std::make_pair(ret, osi);
829   }
830 
831   // -0x5(%rax,%rax,2)
832   static std::pair<Operand, llvm::StringRef::const_iterator>
833   ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi,
834                           llvm::StringRef::const_iterator ose) {
835     std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
836         ParseImmediate(osi, ose);
837     if (offset_and_iterator.first.IsValid()) {
838       osi = offset_and_iterator.second;
839     }
840 
841     bool found = false;
842     std::tie(found, osi) = ConsumeChar(osi, '(', ose);
843     if (!found) {
844       return std::make_pair(Operand(), osi);
845     }
846 
847     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
848         ParseRegisterName(osi, ose);
849     if (base_and_iterator.first.IsValid()) {
850       osi = base_and_iterator.second;
851     } else {
852       return std::make_pair(Operand(), osi);
853     }
854 
855     std::tie(found, osi) = ConsumeChar(osi, ',', ose);
856     if (!found) {
857       return std::make_pair(Operand(), osi);
858     }
859 
860     std::pair<Operand, llvm::StringRef::const_iterator> index_and_iterator =
861         ParseRegisterName(osi, ose);
862     if (index_and_iterator.first.IsValid()) {
863       osi = index_and_iterator.second;
864     } else {
865       return std::make_pair(Operand(), osi);
866     }
867 
868     std::tie(found, osi) = ConsumeChar(osi, ',', ose);
869     if (!found) {
870       return std::make_pair(Operand(), osi);
871     }
872 
873     std::pair<Operand, llvm::StringRef::const_iterator>
874         multiplier_and_iterator = ParseImmediate(osi, ose);
875     if (index_and_iterator.first.IsValid()) {
876       osi = index_and_iterator.second;
877     } else {
878       return std::make_pair(Operand(), osi);
879     }
880 
881     std::tie(found, osi) = ConsumeChar(osi, ')', ose);
882     if (!found) {
883       return std::make_pair(Operand(), osi);
884     }
885 
886     Operand product;
887     product.m_type = Operand::Type::Product;
888     product.m_children.push_back(index_and_iterator.first);
889     product.m_children.push_back(multiplier_and_iterator.first);
890 
891     Operand index;
892     index.m_type = Operand::Type::Sum;
893     index.m_children.push_back(base_and_iterator.first);
894     index.m_children.push_back(product);
895 
896     if (offset_and_iterator.first.IsValid()) {
897       Operand offset;
898       offset.m_type = Operand::Type::Sum;
899       offset.m_children.push_back(offset_and_iterator.first);
900       offset.m_children.push_back(index);
901 
902       Operand deref;
903       deref.m_type = Operand::Type::Dereference;
904       deref.m_children.push_back(offset);
905       return std::make_pair(deref, osi);
906     } else {
907       Operand deref;
908       deref.m_type = Operand::Type::Dereference;
909       deref.m_children.push_back(index);
910       return std::make_pair(deref, osi);
911     }
912   }
913 
914   // -0x10(%rbp)
915   static std::pair<Operand, llvm::StringRef::const_iterator>
916   ParseIntelDerefAccess(llvm::StringRef::const_iterator osi,
917                         llvm::StringRef::const_iterator ose) {
918     std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
919         ParseImmediate(osi, ose);
920     if (offset_and_iterator.first.IsValid()) {
921       osi = offset_and_iterator.second;
922     }
923 
924     bool found = false;
925     std::tie(found, osi) = ConsumeChar(osi, '(', ose);
926     if (!found) {
927       return std::make_pair(Operand(), osi);
928     }
929 
930     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
931         ParseRegisterName(osi, ose);
932     if (base_and_iterator.first.IsValid()) {
933       osi = base_and_iterator.second;
934     } else {
935       return std::make_pair(Operand(), osi);
936     }
937 
938     std::tie(found, osi) = ConsumeChar(osi, ')', ose);
939     if (!found) {
940       return std::make_pair(Operand(), osi);
941     }
942 
943     if (offset_and_iterator.first.IsValid()) {
944       Operand offset;
945       offset.m_type = Operand::Type::Sum;
946       offset.m_children.push_back(offset_and_iterator.first);
947       offset.m_children.push_back(base_and_iterator.first);
948 
949       Operand deref;
950       deref.m_type = Operand::Type::Dereference;
951       deref.m_children.push_back(offset);
952       return std::make_pair(deref, osi);
953     } else {
954       Operand deref;
955       deref.m_type = Operand::Type::Dereference;
956       deref.m_children.push_back(base_and_iterator.first);
957       return std::make_pair(deref, osi);
958     }
959   }
960 
961   // [sp, #8]!
962   static std::pair<Operand, llvm::StringRef::const_iterator>
963   ParseARMOffsetAccess(llvm::StringRef::const_iterator osi,
964                        llvm::StringRef::const_iterator ose) {
965     bool found = false;
966     std::tie(found, osi) = ConsumeChar(osi, '[', ose);
967     if (!found) {
968       return std::make_pair(Operand(), osi);
969     }
970 
971     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
972         ParseRegisterName(osi, ose);
973     if (base_and_iterator.first.IsValid()) {
974       osi = base_and_iterator.second;
975     } else {
976       return std::make_pair(Operand(), osi);
977     }
978 
979     std::tie(found, osi) = ConsumeChar(osi, ',', ose);
980     if (!found) {
981       return std::make_pair(Operand(), osi);
982     }
983 
984     std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
985         ParseImmediate(osi, ose);
986     if (offset_and_iterator.first.IsValid()) {
987       osi = offset_and_iterator.second;
988     }
989 
990     std::tie(found, osi) = ConsumeChar(osi, ']', ose);
991     if (!found) {
992       return std::make_pair(Operand(), osi);
993     }
994 
995     Operand offset;
996     offset.m_type = Operand::Type::Sum;
997     offset.m_children.push_back(offset_and_iterator.first);
998     offset.m_children.push_back(base_and_iterator.first);
999 
1000     Operand deref;
1001     deref.m_type = Operand::Type::Dereference;
1002     deref.m_children.push_back(offset);
1003     return std::make_pair(deref, osi);
1004   }
1005 
1006   // [sp]
1007   static std::pair<Operand, llvm::StringRef::const_iterator>
1008   ParseARMDerefAccess(llvm::StringRef::const_iterator osi,
1009                       llvm::StringRef::const_iterator ose) {
1010     bool found = false;
1011     std::tie(found, osi) = ConsumeChar(osi, '[', ose);
1012     if (!found) {
1013       return std::make_pair(Operand(), osi);
1014     }
1015 
1016     std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
1017         ParseRegisterName(osi, ose);
1018     if (base_and_iterator.first.IsValid()) {
1019       osi = base_and_iterator.second;
1020     } else {
1021       return std::make_pair(Operand(), osi);
1022     }
1023 
1024     std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1025     if (!found) {
1026       return std::make_pair(Operand(), osi);
1027     }
1028 
1029     Operand deref;
1030     deref.m_type = Operand::Type::Dereference;
1031     deref.m_children.push_back(base_and_iterator.first);
1032     return std::make_pair(deref, osi);
1033   }
1034 
1035   static void DumpOperand(const Operand &op, Stream &s) {
1036     switch (op.m_type) {
1037     case Operand::Type::Dereference:
1038       s.PutCString("*");
1039       DumpOperand(op.m_children[0], s);
1040       break;
1041     case Operand::Type::Immediate:
1042       if (op.m_negative) {
1043         s.PutCString("-");
1044       }
1045       s.PutCString(llvm::to_string(op.m_immediate));
1046       break;
1047     case Operand::Type::Invalid:
1048       s.PutCString("Invalid");
1049       break;
1050     case Operand::Type::Product:
1051       s.PutCString("(");
1052       DumpOperand(op.m_children[0], s);
1053       s.PutCString("*");
1054       DumpOperand(op.m_children[1], s);
1055       s.PutCString(")");
1056       break;
1057     case Operand::Type::Register:
1058       s.PutCString(op.m_register.GetStringRef());
1059       break;
1060     case Operand::Type::Sum:
1061       s.PutCString("(");
1062       DumpOperand(op.m_children[0], s);
1063       s.PutCString("+");
1064       DumpOperand(op.m_children[1], s);
1065       s.PutCString(")");
1066       break;
1067     }
1068   }
1069 
1070   bool ParseOperands(
1071       llvm::SmallVectorImpl<Instruction::Operand> &operands) override {
1072     const char *operands_string = GetOperands(nullptr);
1073 
1074     if (!operands_string) {
1075       return false;
1076     }
1077 
1078     llvm::StringRef operands_ref(operands_string);
1079 
1080     llvm::StringRef::const_iterator osi = operands_ref.begin();
1081     llvm::StringRef::const_iterator ose = operands_ref.end();
1082 
1083     while (osi != ose) {
1084       Operand operand;
1085       llvm::StringRef::const_iterator iter;
1086 
1087       if ((std::tie(operand, iter) = ParseIntelIndexedAccess(osi, ose),
1088            operand.IsValid()) ||
1089           (std::tie(operand, iter) = ParseIntelDerefAccess(osi, ose),
1090            operand.IsValid()) ||
1091           (std::tie(operand, iter) = ParseARMOffsetAccess(osi, ose),
1092            operand.IsValid()) ||
1093           (std::tie(operand, iter) = ParseARMDerefAccess(osi, ose),
1094            operand.IsValid()) ||
1095           (std::tie(operand, iter) = ParseRegisterName(osi, ose),
1096            operand.IsValid()) ||
1097           (std::tie(operand, iter) = ParseImmediate(osi, ose),
1098            operand.IsValid())) {
1099         osi = iter;
1100         operands.push_back(operand);
1101       } else {
1102         return false;
1103       }
1104 
1105       std::pair<bool, llvm::StringRef::const_iterator> found_and_iter =
1106           ConsumeChar(osi, ',', ose);
1107       if (found_and_iter.first) {
1108         osi = found_and_iter.second;
1109       }
1110 
1111       osi = ConsumeWhitespace(osi, ose);
1112     }
1113 
1114     DisassemblerSP disasm_sp = m_disasm_wp.lock();
1115 
1116     if (disasm_sp && operands.size() > 1) {
1117       // TODO tie this into the MC Disassembler's notion of clobbers.
1118       switch (disasm_sp->GetArchitecture().GetMachine()) {
1119       default:
1120         break;
1121       case llvm::Triple::x86:
1122       case llvm::Triple::x86_64:
1123         operands[operands.size() - 1].m_clobbered = true;
1124         break;
1125       case llvm::Triple::arm:
1126         operands[0].m_clobbered = true;
1127         break;
1128       }
1129     }
1130 
1131     if (Log *log = GetLog(LLDBLog::Process)) {
1132       StreamString ss;
1133 
1134       ss.Printf("[%s] expands to %zu operands:\n", operands_string,
1135                 operands.size());
1136       for (const Operand &operand : operands) {
1137         ss.PutCString("  ");
1138         DumpOperand(operand, ss);
1139         ss.PutCString("\n");
1140       }
1141 
1142       log->PutString(ss.GetString());
1143     }
1144 
1145     return true;
1146   }
1147 
1148   bool IsCall() override {
1149     VisitInstruction();
1150     return m_is_call;
1151   }
1152 
1153 protected:
1154   std::weak_ptr<DisassemblerLLVMC> m_disasm_wp;
1155 
1156   bool m_is_valid = false;
1157   bool m_using_file_addr = false;
1158   bool m_has_visited_instruction = false;
1159 
1160   // Be conservative. If we didn't understand the instruction, say it:
1161   //   - Might branch
1162   //   - Does not have a delay slot
1163   //   - Is not a call
1164   //   - Is not a load
1165   //   - Is not an authenticated instruction
1166   bool m_does_branch = true;
1167   bool m_has_delay_slot = false;
1168   bool m_is_call = false;
1169   bool m_is_load = false;
1170   bool m_is_authenticated = false;
1171 
1172   void VisitInstruction() {
1173     if (m_has_visited_instruction)
1174       return;
1175 
1176     DisassemblerScope disasm(*this);
1177     if (!disasm)
1178       return;
1179 
1180     DataExtractor data;
1181     if (!m_opcode.GetData(data))
1182       return;
1183 
1184     bool is_alternate_isa;
1185     lldb::addr_t pc = m_address.GetFileAddress();
1186     DisassemblerLLVMC::MCDisasmInstance *mc_disasm_ptr =
1187         GetDisasmToUse(is_alternate_isa, disasm);
1188     const uint8_t *opcode_data = data.GetDataStart();
1189     const size_t opcode_data_len = data.GetByteSize();
1190     llvm::MCInst inst;
1191     const size_t inst_size =
1192         mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
1193     if (inst_size == 0)
1194       return;
1195 
1196     m_has_visited_instruction = true;
1197     m_does_branch = mc_disasm_ptr->CanBranch(inst);
1198     m_has_delay_slot = mc_disasm_ptr->HasDelaySlot(inst);
1199     m_is_call = mc_disasm_ptr->IsCall(inst);
1200     m_is_load = mc_disasm_ptr->IsLoad(inst);
1201     m_is_authenticated = mc_disasm_ptr->IsAuthenticated(inst);
1202   }
1203 
1204 private:
1205   DisassemblerLLVMC::MCDisasmInstance *
1206   GetDisasmToUse(bool &is_alternate_isa, DisassemblerScope &disasm) {
1207     is_alternate_isa = false;
1208     if (disasm) {
1209       if (disasm->m_alternate_disasm_up) {
1210         const AddressClass address_class = GetAddressClass();
1211 
1212         if (address_class == AddressClass::eCodeAlternateISA) {
1213           is_alternate_isa = true;
1214           return disasm->m_alternate_disasm_up.get();
1215         }
1216       }
1217       return disasm->m_disasm_up.get();
1218     }
1219     return nullptr;
1220   }
1221 };
1222 
1223 std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>
1224 DisassemblerLLVMC::MCDisasmInstance::Create(const char *triple, const char *cpu,
1225                                             const char *features_str,
1226                                             unsigned flavor,
1227                                             DisassemblerLLVMC &owner) {
1228   using Instance = std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>;
1229 
1230   std::string Status;
1231   const llvm::Target *curr_target =
1232       llvm::TargetRegistry::lookupTarget(triple, Status);
1233   if (!curr_target)
1234     return Instance();
1235 
1236   std::unique_ptr<llvm::MCInstrInfo> instr_info_up(
1237       curr_target->createMCInstrInfo());
1238   if (!instr_info_up)
1239     return Instance();
1240 
1241   std::unique_ptr<llvm::MCRegisterInfo> reg_info_up(
1242       curr_target->createMCRegInfo(triple));
1243   if (!reg_info_up)
1244     return Instance();
1245 
1246   std::unique_ptr<llvm::MCSubtargetInfo> subtarget_info_up(
1247       curr_target->createMCSubtargetInfo(triple, cpu, features_str));
1248   if (!subtarget_info_up)
1249     return Instance();
1250 
1251   llvm::MCTargetOptions MCOptions;
1252   std::unique_ptr<llvm::MCAsmInfo> asm_info_up(
1253       curr_target->createMCAsmInfo(*reg_info_up, triple, MCOptions));
1254   if (!asm_info_up)
1255     return Instance();
1256 
1257   std::unique_ptr<llvm::MCContext> context_up(
1258       new llvm::MCContext(llvm::Triple(triple), asm_info_up.get(),
1259                           reg_info_up.get(), subtarget_info_up.get()));
1260   if (!context_up)
1261     return Instance();
1262 
1263   std::unique_ptr<llvm::MCDisassembler> disasm_up(
1264       curr_target->createMCDisassembler(*subtarget_info_up, *context_up));
1265   if (!disasm_up)
1266     return Instance();
1267 
1268   std::unique_ptr<llvm::MCRelocationInfo> rel_info_up(
1269       curr_target->createMCRelocationInfo(triple, *context_up));
1270   if (!rel_info_up)
1271     return Instance();
1272 
1273   std::unique_ptr<llvm::MCSymbolizer> symbolizer_up(
1274       curr_target->createMCSymbolizer(
1275           triple, nullptr, DisassemblerLLVMC::SymbolLookupCallback, &owner,
1276           context_up.get(), std::move(rel_info_up)));
1277   disasm_up->setSymbolizer(std::move(symbolizer_up));
1278 
1279   unsigned asm_printer_variant =
1280       flavor == ~0U ? asm_info_up->getAssemblerDialect() : flavor;
1281 
1282   std::unique_ptr<llvm::MCInstPrinter> instr_printer_up(
1283       curr_target->createMCInstPrinter(llvm::Triple{triple},
1284                                        asm_printer_variant, *asm_info_up,
1285                                        *instr_info_up, *reg_info_up));
1286   if (!instr_printer_up)
1287     return Instance();
1288 
1289   return Instance(
1290       new MCDisasmInstance(std::move(instr_info_up), std::move(reg_info_up),
1291                            std::move(subtarget_info_up), std::move(asm_info_up),
1292                            std::move(context_up), std::move(disasm_up),
1293                            std::move(instr_printer_up)));
1294 }
1295 
1296 DisassemblerLLVMC::MCDisasmInstance::MCDisasmInstance(
1297     std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
1298     std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
1299     std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
1300     std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
1301     std::unique_ptr<llvm::MCContext> &&context_up,
1302     std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
1303     std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up)
1304     : m_instr_info_up(std::move(instr_info_up)),
1305       m_reg_info_up(std::move(reg_info_up)),
1306       m_subtarget_info_up(std::move(subtarget_info_up)),
1307       m_asm_info_up(std::move(asm_info_up)),
1308       m_context_up(std::move(context_up)), m_disasm_up(std::move(disasm_up)),
1309       m_instr_printer_up(std::move(instr_printer_up)) {
1310   assert(m_instr_info_up && m_reg_info_up && m_subtarget_info_up &&
1311          m_asm_info_up && m_context_up && m_disasm_up && m_instr_printer_up);
1312 }
1313 
1314 uint64_t DisassemblerLLVMC::MCDisasmInstance::GetMCInst(
1315     const uint8_t *opcode_data, size_t opcode_data_len, lldb::addr_t pc,
1316     llvm::MCInst &mc_inst) const {
1317   llvm::ArrayRef<uint8_t> data(opcode_data, opcode_data_len);
1318   llvm::MCDisassembler::DecodeStatus status;
1319 
1320   uint64_t new_inst_size;
1321   status = m_disasm_up->getInstruction(mc_inst, new_inst_size, data, pc,
1322                                        llvm::nulls());
1323   if (status == llvm::MCDisassembler::Success)
1324     return new_inst_size;
1325   else
1326     return 0;
1327 }
1328 
1329 void DisassemblerLLVMC::MCDisasmInstance::PrintMCInst(
1330     llvm::MCInst &mc_inst, std::string &inst_string,
1331     std::string &comments_string) {
1332   llvm::raw_string_ostream inst_stream(inst_string);
1333   llvm::raw_string_ostream comments_stream(comments_string);
1334 
1335   m_instr_printer_up->setCommentStream(comments_stream);
1336   m_instr_printer_up->printInst(&mc_inst, 0, llvm::StringRef(),
1337                                 *m_subtarget_info_up, inst_stream);
1338   m_instr_printer_up->setCommentStream(llvm::nulls());
1339   comments_stream.flush();
1340 
1341   static std::string g_newlines("\r\n");
1342 
1343   for (size_t newline_pos = 0;
1344        (newline_pos = comments_string.find_first_of(g_newlines, newline_pos)) !=
1345        comments_string.npos;
1346        /**/) {
1347     comments_string.replace(comments_string.begin() + newline_pos,
1348                             comments_string.begin() + newline_pos + 1, 1, ' ');
1349   }
1350 }
1351 
1352 void DisassemblerLLVMC::MCDisasmInstance::SetStyle(
1353     bool use_hex_immed, HexImmediateStyle hex_style) {
1354   m_instr_printer_up->setPrintImmHex(use_hex_immed);
1355   switch (hex_style) {
1356   case eHexStyleC:
1357     m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::C);
1358     break;
1359   case eHexStyleAsm:
1360     m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::Asm);
1361     break;
1362   }
1363 }
1364 
1365 bool DisassemblerLLVMC::MCDisasmInstance::CanBranch(
1366     llvm::MCInst &mc_inst) const {
1367   return m_instr_info_up->get(mc_inst.getOpcode())
1368       .mayAffectControlFlow(mc_inst, *m_reg_info_up);
1369 }
1370 
1371 bool DisassemblerLLVMC::MCDisasmInstance::HasDelaySlot(
1372     llvm::MCInst &mc_inst) const {
1373   return m_instr_info_up->get(mc_inst.getOpcode()).hasDelaySlot();
1374 }
1375 
1376 bool DisassemblerLLVMC::MCDisasmInstance::IsCall(llvm::MCInst &mc_inst) const {
1377   return m_instr_info_up->get(mc_inst.getOpcode()).isCall();
1378 }
1379 
1380 bool DisassemblerLLVMC::MCDisasmInstance::IsLoad(llvm::MCInst &mc_inst) const {
1381   return m_instr_info_up->get(mc_inst.getOpcode()).mayLoad();
1382 }
1383 
1384 bool DisassemblerLLVMC::MCDisasmInstance::IsAuthenticated(
1385     llvm::MCInst &mc_inst) const {
1386   auto InstrDesc = m_instr_info_up->get(mc_inst.getOpcode());
1387 
1388   // Treat software auth traps (brk 0xc470 + aut key, where 0x70 == 'p', 0xc4
1389   // == 'a' + 'c') as authenticated instructions for reporting purposes, in
1390   // addition to the standard authenticated instructions specified in ARMv8.3.
1391   bool IsBrkC47x = false;
1392   if (InstrDesc.isTrap() && mc_inst.getNumOperands() == 1) {
1393     const llvm::MCOperand &Op0 = mc_inst.getOperand(0);
1394     if (Op0.isImm() && Op0.getImm() >= 0xc470 && Op0.getImm() <= 0xc474)
1395       IsBrkC47x = true;
1396   }
1397 
1398   return InstrDesc.isAuthenticated() || IsBrkC47x;
1399 }
1400 
1401 DisassemblerLLVMC::DisassemblerLLVMC(const ArchSpec &arch,
1402                                      const char *flavor_string)
1403     : Disassembler(arch, flavor_string), m_exe_ctx(nullptr), m_inst(nullptr),
1404       m_data_from_file(false), m_adrp_address(LLDB_INVALID_ADDRESS),
1405       m_adrp_insn() {
1406   if (!FlavorValidForArchSpec(arch, m_flavor.c_str())) {
1407     m_flavor.assign("default");
1408   }
1409 
1410   unsigned flavor = ~0U;
1411   llvm::Triple triple = arch.GetTriple();
1412 
1413   // So far the only supported flavor is "intel" on x86.  The base class will
1414   // set this correctly coming in.
1415   if (triple.getArch() == llvm::Triple::x86 ||
1416       triple.getArch() == llvm::Triple::x86_64) {
1417     if (m_flavor == "intel") {
1418       flavor = 1;
1419     } else if (m_flavor == "att") {
1420       flavor = 0;
1421     }
1422   }
1423 
1424   ArchSpec thumb_arch(arch);
1425   if (triple.getArch() == llvm::Triple::arm) {
1426     std::string thumb_arch_name(thumb_arch.GetTriple().getArchName().str());
1427     // Replace "arm" with "thumb" so we get all thumb variants correct
1428     if (thumb_arch_name.size() > 3) {
1429       thumb_arch_name.erase(0, 3);
1430       thumb_arch_name.insert(0, "thumb");
1431     } else {
1432       thumb_arch_name = "thumbv9.3a";
1433     }
1434     thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name));
1435   }
1436 
1437   // If no sub architecture specified then use the most recent arm architecture
1438   // so the disassembler will return all instructions. Without it we will see a
1439   // lot of unknown opcodes if the code uses instructions which are not
1440   // available in the oldest arm version (which is used when no sub architecture
1441   // is specified).
1442   if (triple.getArch() == llvm::Triple::arm &&
1443       triple.getSubArch() == llvm::Triple::NoSubArch)
1444     triple.setArchName("armv9.3a");
1445 
1446   std::string features_str;
1447   const char *triple_str = triple.getTriple().c_str();
1448 
1449   // ARM Cortex M0-M7 devices only execute thumb instructions
1450   if (arch.IsAlwaysThumbInstructions()) {
1451     triple_str = thumb_arch.GetTriple().getTriple().c_str();
1452     features_str += "+fp-armv8,";
1453   }
1454 
1455   const char *cpu = "";
1456 
1457   switch (arch.GetCore()) {
1458   case ArchSpec::eCore_mips32:
1459   case ArchSpec::eCore_mips32el:
1460     cpu = "mips32";
1461     break;
1462   case ArchSpec::eCore_mips32r2:
1463   case ArchSpec::eCore_mips32r2el:
1464     cpu = "mips32r2";
1465     break;
1466   case ArchSpec::eCore_mips32r3:
1467   case ArchSpec::eCore_mips32r3el:
1468     cpu = "mips32r3";
1469     break;
1470   case ArchSpec::eCore_mips32r5:
1471   case ArchSpec::eCore_mips32r5el:
1472     cpu = "mips32r5";
1473     break;
1474   case ArchSpec::eCore_mips32r6:
1475   case ArchSpec::eCore_mips32r6el:
1476     cpu = "mips32r6";
1477     break;
1478   case ArchSpec::eCore_mips64:
1479   case ArchSpec::eCore_mips64el:
1480     cpu = "mips64";
1481     break;
1482   case ArchSpec::eCore_mips64r2:
1483   case ArchSpec::eCore_mips64r2el:
1484     cpu = "mips64r2";
1485     break;
1486   case ArchSpec::eCore_mips64r3:
1487   case ArchSpec::eCore_mips64r3el:
1488     cpu = "mips64r3";
1489     break;
1490   case ArchSpec::eCore_mips64r5:
1491   case ArchSpec::eCore_mips64r5el:
1492     cpu = "mips64r5";
1493     break;
1494   case ArchSpec::eCore_mips64r6:
1495   case ArchSpec::eCore_mips64r6el:
1496     cpu = "mips64r6";
1497     break;
1498   default:
1499     cpu = "";
1500     break;
1501   }
1502 
1503   if (arch.IsMIPS()) {
1504     uint32_t arch_flags = arch.GetFlags();
1505     if (arch_flags & ArchSpec::eMIPSAse_msa)
1506       features_str += "+msa,";
1507     if (arch_flags & ArchSpec::eMIPSAse_dsp)
1508       features_str += "+dsp,";
1509     if (arch_flags & ArchSpec::eMIPSAse_dspr2)
1510       features_str += "+dspr2,";
1511   }
1512 
1513   // If any AArch64 variant, enable latest ISA with all extensions.
1514   if (triple.isAArch64()) {
1515     features_str += "+all,";
1516 
1517     if (triple.getVendor() == llvm::Triple::Apple)
1518       cpu = "apple-latest";
1519   }
1520 
1521   if (triple.isRISCV()) {
1522     uint32_t arch_flags = arch.GetFlags();
1523     if (arch_flags & ArchSpec::eRISCV_rvc)
1524       features_str += "+c,";
1525     if (arch_flags & ArchSpec::eRISCV_rve)
1526       features_str += "+e,";
1527     if ((arch_flags & ArchSpec::eRISCV_float_abi_single) ==
1528         ArchSpec::eRISCV_float_abi_single)
1529       features_str += "+f,";
1530     if ((arch_flags & ArchSpec::eRISCV_float_abi_double) ==
1531         ArchSpec::eRISCV_float_abi_double)
1532       features_str += "+f,+d,";
1533     if ((arch_flags & ArchSpec::eRISCV_float_abi_quad) ==
1534         ArchSpec::eRISCV_float_abi_quad)
1535       features_str += "+f,+d,+q,";
1536     // FIXME: how do we detect features such as `+a`, `+m`?
1537   }
1538 
1539   // We use m_disasm_up.get() to tell whether we are valid or not, so if this
1540   // isn't good for some reason, we won't be valid and FindPlugin will fail and
1541   // we won't get used.
1542   m_disasm_up = MCDisasmInstance::Create(triple_str, cpu, features_str.c_str(),
1543                                          flavor, *this);
1544 
1545   llvm::Triple::ArchType llvm_arch = triple.getArch();
1546 
1547   // For arm CPUs that can execute arm or thumb instructions, also create a
1548   // thumb instruction disassembler.
1549   if (llvm_arch == llvm::Triple::arm) {
1550     std::string thumb_triple(thumb_arch.GetTriple().getTriple());
1551     m_alternate_disasm_up =
1552         MCDisasmInstance::Create(thumb_triple.c_str(), "", features_str.c_str(),
1553                                  flavor, *this);
1554     if (!m_alternate_disasm_up)
1555       m_disasm_up.reset();
1556 
1557   } else if (arch.IsMIPS()) {
1558     /* Create alternate disassembler for MIPS16 and microMIPS */
1559     uint32_t arch_flags = arch.GetFlags();
1560     if (arch_flags & ArchSpec::eMIPSAse_mips16)
1561       features_str += "+mips16,";
1562     else if (arch_flags & ArchSpec::eMIPSAse_micromips)
1563       features_str += "+micromips,";
1564 
1565     m_alternate_disasm_up = MCDisasmInstance::Create(
1566         triple_str, cpu, features_str.c_str(), flavor, *this);
1567     if (!m_alternate_disasm_up)
1568       m_disasm_up.reset();
1569   }
1570 }
1571 
1572 DisassemblerLLVMC::~DisassemblerLLVMC() = default;
1573 
1574 Disassembler *DisassemblerLLVMC::CreateInstance(const ArchSpec &arch,
1575                                                 const char *flavor) {
1576   if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch) {
1577     std::unique_ptr<DisassemblerLLVMC> disasm_up(
1578         new DisassemblerLLVMC(arch, flavor));
1579 
1580     if (disasm_up.get() && disasm_up->IsValid())
1581       return disasm_up.release();
1582   }
1583   return nullptr;
1584 }
1585 
1586 size_t DisassemblerLLVMC::DecodeInstructions(const Address &base_addr,
1587                                              const DataExtractor &data,
1588                                              lldb::offset_t data_offset,
1589                                              size_t num_instructions,
1590                                              bool append, bool data_from_file) {
1591   if (!append)
1592     m_instruction_list.Clear();
1593 
1594   if (!IsValid())
1595     return 0;
1596 
1597   m_data_from_file = data_from_file;
1598   uint32_t data_cursor = data_offset;
1599   const size_t data_byte_size = data.GetByteSize();
1600   uint32_t instructions_parsed = 0;
1601   Address inst_addr(base_addr);
1602 
1603   while (data_cursor < data_byte_size &&
1604          instructions_parsed < num_instructions) {
1605 
1606     AddressClass address_class = AddressClass::eCode;
1607 
1608     if (m_alternate_disasm_up)
1609       address_class = inst_addr.GetAddressClass();
1610 
1611     InstructionSP inst_sp(
1612         new InstructionLLVMC(*this, inst_addr, address_class));
1613 
1614     if (!inst_sp)
1615       break;
1616 
1617     uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
1618 
1619     if (inst_size == 0)
1620       break;
1621 
1622     m_instruction_list.Append(inst_sp);
1623     data_cursor += inst_size;
1624     inst_addr.Slide(inst_size);
1625     instructions_parsed++;
1626   }
1627 
1628   return data_cursor - data_offset;
1629 }
1630 
1631 void DisassemblerLLVMC::Initialize() {
1632   PluginManager::RegisterPlugin(GetPluginNameStatic(),
1633                                 "Disassembler that uses LLVM MC to disassemble "
1634                                 "i386, x86_64, ARM, and ARM64.",
1635                                 CreateInstance);
1636 
1637   llvm::InitializeAllTargetInfos();
1638   llvm::InitializeAllTargetMCs();
1639   llvm::InitializeAllAsmParsers();
1640   llvm::InitializeAllDisassemblers();
1641 }
1642 
1643 void DisassemblerLLVMC::Terminate() {
1644   PluginManager::UnregisterPlugin(CreateInstance);
1645 }
1646 
1647 int DisassemblerLLVMC::OpInfoCallback(void *disassembler, uint64_t pc,
1648                                       uint64_t offset, uint64_t size,
1649                                       int tag_type, void *tag_bug) {
1650   return static_cast<DisassemblerLLVMC *>(disassembler)
1651       ->OpInfo(pc, offset, size, tag_type, tag_bug);
1652 }
1653 
1654 const char *DisassemblerLLVMC::SymbolLookupCallback(void *disassembler,
1655                                                     uint64_t value,
1656                                                     uint64_t *type, uint64_t pc,
1657                                                     const char **name) {
1658   return static_cast<DisassemblerLLVMC *>(disassembler)
1659       ->SymbolLookup(value, type, pc, name);
1660 }
1661 
1662 bool DisassemblerLLVMC::FlavorValidForArchSpec(
1663     const lldb_private::ArchSpec &arch, const char *flavor) {
1664   llvm::Triple triple = arch.GetTriple();
1665   if (flavor == nullptr || strcmp(flavor, "default") == 0)
1666     return true;
1667 
1668   if (triple.getArch() == llvm::Triple::x86 ||
1669       triple.getArch() == llvm::Triple::x86_64) {
1670     return strcmp(flavor, "intel") == 0 || strcmp(flavor, "att") == 0;
1671   } else
1672     return false;
1673 }
1674 
1675 bool DisassemblerLLVMC::IsValid() const { return m_disasm_up.operator bool(); }
1676 
1677 int DisassemblerLLVMC::OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size,
1678                               int tag_type, void *tag_bug) {
1679   switch (tag_type) {
1680   default:
1681     break;
1682   case 1:
1683     memset(tag_bug, 0, sizeof(::LLVMOpInfo1));
1684     break;
1685   }
1686   return 0;
1687 }
1688 
1689 const char *DisassemblerLLVMC::SymbolLookup(uint64_t value, uint64_t *type_ptr,
1690                                             uint64_t pc, const char **name) {
1691   if (*type_ptr) {
1692     if (m_exe_ctx && m_inst) {
1693       // std::string remove_this_prior_to_checkin;
1694       Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : nullptr;
1695       Address value_so_addr;
1696       Address pc_so_addr;
1697       if (target->GetArchitecture().GetMachine() == llvm::Triple::aarch64 ||
1698           target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_be ||
1699           target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_32) {
1700         if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
1701           m_adrp_address = pc;
1702           m_adrp_insn = value;
1703           *name = nullptr;
1704           *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1705           return nullptr;
1706         }
1707         // If this instruction is an ADD and
1708         // the previous instruction was an ADRP and
1709         // the ADRP's register and this ADD's register are the same,
1710         // then this is a pc-relative address calculation.
1711         if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
1712             m_adrp_insn && m_adrp_address == pc - 4 &&
1713             (m_adrp_insn.value() & 0x1f) == ((value >> 5) & 0x1f)) {
1714           uint32_t addxri_inst;
1715           uint64_t adrp_imm, addxri_imm;
1716           // Get immlo and immhi bits, OR them together to get the ADRP imm
1717           // value.
1718           adrp_imm = ((m_adrp_insn.value() & 0x00ffffe0) >> 3) |
1719                      ((m_adrp_insn.value() >> 29) & 0x3);
1720           // if high bit of immhi after right-shifting set, sign extend
1721           if (adrp_imm & (1ULL << 20))
1722             adrp_imm |= ~((1ULL << 21) - 1);
1723 
1724           addxri_inst = value;
1725           addxri_imm = (addxri_inst >> 10) & 0xfff;
1726           // check if 'sh' bit is set, shift imm value up if so
1727           // (this would make no sense, ADRP already gave us this part)
1728           if ((addxri_inst >> (12 + 5 + 5)) & 1)
1729             addxri_imm <<= 12;
1730           value = (m_adrp_address & 0xfffffffffffff000LL) + (adrp_imm << 12) +
1731                   addxri_imm;
1732         }
1733         m_adrp_address = LLDB_INVALID_ADDRESS;
1734         m_adrp_insn.reset();
1735       }
1736 
1737       if (m_inst->UsingFileAddress()) {
1738         ModuleSP module_sp(m_inst->GetAddress().GetModule());
1739         if (module_sp) {
1740           module_sp->ResolveFileAddress(value, value_so_addr);
1741           module_sp->ResolveFileAddress(pc, pc_so_addr);
1742         }
1743       } else if (target && !target->GetSectionLoadList().IsEmpty()) {
1744         target->GetSectionLoadList().ResolveLoadAddress(value, value_so_addr);
1745         target->GetSectionLoadList().ResolveLoadAddress(pc, pc_so_addr);
1746       }
1747 
1748       SymbolContext sym_ctx;
1749       const SymbolContextItem resolve_scope =
1750           eSymbolContextFunction | eSymbolContextSymbol;
1751       if (pc_so_addr.IsValid() && pc_so_addr.GetModule()) {
1752         pc_so_addr.GetModule()->ResolveSymbolContextForAddress(
1753             pc_so_addr, resolve_scope, sym_ctx);
1754       }
1755 
1756       if (value_so_addr.IsValid() && value_so_addr.GetSection()) {
1757         StreamString ss;
1758 
1759         bool format_omitting_current_func_name = false;
1760         if (sym_ctx.symbol || sym_ctx.function) {
1761           AddressRange range;
1762           if (sym_ctx.GetAddressRange(resolve_scope, 0, false, range) &&
1763               range.GetBaseAddress().IsValid() &&
1764               range.ContainsLoadAddress(value_so_addr, target)) {
1765             format_omitting_current_func_name = true;
1766           }
1767         }
1768 
1769         // If the "value" address (the target address we're symbolicating) is
1770         // inside the same SymbolContext as the current instruction pc
1771         // (pc_so_addr), don't print the full function name - just print it
1772         // with DumpStyleNoFunctionName style, e.g. "<+36>".
1773         if (format_omitting_current_func_name) {
1774           value_so_addr.Dump(&ss, target, Address::DumpStyleNoFunctionName,
1775                              Address::DumpStyleSectionNameOffset);
1776         } else {
1777           value_so_addr.Dump(
1778               &ss, target,
1779               Address::DumpStyleResolvedDescriptionNoFunctionArguments,
1780               Address::DumpStyleSectionNameOffset);
1781         }
1782 
1783         if (!ss.GetString().empty()) {
1784           // If Address::Dump returned a multi-line description, most commonly
1785           // seen when we have multiple levels of inlined functions at an
1786           // address, only show the first line.
1787           std::string str = std::string(ss.GetString());
1788           size_t first_eol_char = str.find_first_of("\r\n");
1789           if (first_eol_char != std::string::npos) {
1790             str.erase(first_eol_char);
1791           }
1792           m_inst->AppendComment(str);
1793         }
1794       }
1795     }
1796   }
1797 
1798   // TODO: llvm-objdump sets the type_ptr to the
1799   // LLVMDisassembler_ReferenceType_Out_* values
1800   // based on where value_so_addr is pointing, with
1801   // Mach-O specific augmentations in MachODump.cpp. e.g.
1802   // see what AArch64ExternalSymbolizer::tryAddingSymbolicOperand
1803   // handles.
1804   *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1805   *name = nullptr;
1806   return nullptr;
1807 }
1808