xref: /freebsd/contrib/llvm-project/lldb/include/lldb/Utility/ArchSpec.h (revision 43a5ec4eb41567cc92586503212743d89686d78f)
1 //===-- ArchSpec.h ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLDB_UTILITY_ARCHSPEC_H
10 #define LLDB_UTILITY_ARCHSPEC_H
11 
12 #include "lldb/Utility/CompletionRequest.h"
13 #include "lldb/Utility/ConstString.h"
14 #include "lldb/lldb-enumerations.h"
15 #include "lldb/lldb-forward.h"
16 #include "lldb/lldb-private-enumerations.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Support/YAMLTraits.h"
20 #include <cstddef>
21 #include <cstdint>
22 #include <string>
23 
24 namespace lldb_private {
25 
26 /// \class ArchSpec ArchSpec.h "lldb/Utility/ArchSpec.h" An architecture
27 /// specification class.
28 ///
29 /// A class designed to be created from a cpu type and subtype, a
30 /// string representation, or an llvm::Triple.  Keeping all of the conversions
31 /// of strings to architecture enumeration values confined to this class
32 /// allows new architecture support to be added easily.
33 class ArchSpec {
34 public:
35   enum MIPSSubType {
36     eMIPSSubType_unknown,
37     eMIPSSubType_mips32,
38     eMIPSSubType_mips32r2,
39     eMIPSSubType_mips32r6,
40     eMIPSSubType_mips32el,
41     eMIPSSubType_mips32r2el,
42     eMIPSSubType_mips32r6el,
43     eMIPSSubType_mips64,
44     eMIPSSubType_mips64r2,
45     eMIPSSubType_mips64r6,
46     eMIPSSubType_mips64el,
47     eMIPSSubType_mips64r2el,
48     eMIPSSubType_mips64r6el,
49   };
50 
51   // Masks for the ases word of an ABI flags structure.
52   enum MIPSASE {
53     eMIPSAse_dsp = 0x00000001,       // DSP ASE
54     eMIPSAse_dspr2 = 0x00000002,     // DSP R2 ASE
55     eMIPSAse_eva = 0x00000004,       // Enhanced VA Scheme
56     eMIPSAse_mcu = 0x00000008,       // MCU (MicroController) ASE
57     eMIPSAse_mdmx = 0x00000010,      // MDMX ASE
58     eMIPSAse_mips3d = 0x00000020,    // MIPS-3D ASE
59     eMIPSAse_mt = 0x00000040,        // MT ASE
60     eMIPSAse_smartmips = 0x00000080, // SmartMIPS ASE
61     eMIPSAse_virt = 0x00000100,      // VZ ASE
62     eMIPSAse_msa = 0x00000200,       // MSA ASE
63     eMIPSAse_mips16 = 0x00000400,    // MIPS16 ASE
64     eMIPSAse_micromips = 0x00000800, // MICROMIPS ASE
65     eMIPSAse_xpa = 0x00001000,       // XPA ASE
66     eMIPSAse_mask = 0x00001fff,
67     eMIPSABI_O32 = 0x00002000,
68     eMIPSABI_N32 = 0x00004000,
69     eMIPSABI_N64 = 0x00008000,
70     eMIPSABI_O64 = 0x00020000,
71     eMIPSABI_EABI32 = 0x00040000,
72     eMIPSABI_EABI64 = 0x00080000,
73     eMIPSABI_mask = 0x000ff000
74   };
75 
76   // MIPS Floating point ABI Values
77   enum MIPS_ABI_FP {
78     eMIPS_ABI_FP_ANY = 0x00000000,
79     eMIPS_ABI_FP_DOUBLE = 0x00100000, // hard float / -mdouble-float
80     eMIPS_ABI_FP_SINGLE = 0x00200000, // hard float / -msingle-float
81     eMIPS_ABI_FP_SOFT = 0x00300000,   // soft float
82     eMIPS_ABI_FP_OLD_64 = 0x00400000, // -mips32r2 -mfp64
83     eMIPS_ABI_FP_XX = 0x00500000,     // -mfpxx
84     eMIPS_ABI_FP_64 = 0x00600000,     // -mips32r2 -mfp64
85     eMIPS_ABI_FP_64A = 0x00700000,    // -mips32r2 -mfp64 -mno-odd-spreg
86     eMIPS_ABI_FP_mask = 0x00700000
87   };
88 
89   // ARM specific e_flags
90   enum ARMeflags {
91     eARM_abi_soft_float = 0x00000200,
92     eARM_abi_hard_float = 0x00000400
93   };
94 
95   enum RISCVSubType {
96     eRISCVSubType_unknown,
97     eRISCVSubType_riscv32,
98     eRISCVSubType_riscv64,
99   };
100 
101   enum Core {
102     eCore_arm_generic,
103     eCore_arm_armv4,
104     eCore_arm_armv4t,
105     eCore_arm_armv5,
106     eCore_arm_armv5e,
107     eCore_arm_armv5t,
108     eCore_arm_armv6,
109     eCore_arm_armv6m,
110     eCore_arm_armv7,
111     eCore_arm_armv7l,
112     eCore_arm_armv7f,
113     eCore_arm_armv7s,
114     eCore_arm_armv7k,
115     eCore_arm_armv7m,
116     eCore_arm_armv7em,
117     eCore_arm_xscale,
118 
119     eCore_thumb,
120     eCore_thumbv4t,
121     eCore_thumbv5,
122     eCore_thumbv5e,
123     eCore_thumbv6,
124     eCore_thumbv6m,
125     eCore_thumbv7,
126     eCore_thumbv7s,
127     eCore_thumbv7k,
128     eCore_thumbv7f,
129     eCore_thumbv7m,
130     eCore_thumbv7em,
131     eCore_arm_arm64,
132     eCore_arm_armv8,
133     eCore_arm_armv8l,
134     eCore_arm_arm64e,
135     eCore_arm_arm64_32,
136     eCore_arm_aarch64,
137 
138     eCore_mips32,
139     eCore_mips32r2,
140     eCore_mips32r3,
141     eCore_mips32r5,
142     eCore_mips32r6,
143     eCore_mips32el,
144     eCore_mips32r2el,
145     eCore_mips32r3el,
146     eCore_mips32r5el,
147     eCore_mips32r6el,
148     eCore_mips64,
149     eCore_mips64r2,
150     eCore_mips64r3,
151     eCore_mips64r5,
152     eCore_mips64r6,
153     eCore_mips64el,
154     eCore_mips64r2el,
155     eCore_mips64r3el,
156     eCore_mips64r5el,
157     eCore_mips64r6el,
158 
159     eCore_ppc_generic,
160     eCore_ppc_ppc601,
161     eCore_ppc_ppc602,
162     eCore_ppc_ppc603,
163     eCore_ppc_ppc603e,
164     eCore_ppc_ppc603ev,
165     eCore_ppc_ppc604,
166     eCore_ppc_ppc604e,
167     eCore_ppc_ppc620,
168     eCore_ppc_ppc750,
169     eCore_ppc_ppc7400,
170     eCore_ppc_ppc7450,
171     eCore_ppc_ppc970,
172 
173     eCore_ppc64le_generic,
174     eCore_ppc64_generic,
175     eCore_ppc64_ppc970_64,
176 
177     eCore_s390x_generic,
178 
179     eCore_sparc_generic,
180 
181     eCore_sparc9_generic,
182 
183     eCore_x86_32_i386,
184     eCore_x86_32_i486,
185     eCore_x86_32_i486sx,
186     eCore_x86_32_i686,
187 
188     eCore_x86_64_x86_64,
189     eCore_x86_64_x86_64h, // Haswell enabled x86_64
190     eCore_hexagon_generic,
191     eCore_hexagon_hexagonv4,
192     eCore_hexagon_hexagonv5,
193 
194     eCore_riscv32,
195     eCore_riscv64,
196 
197     eCore_uknownMach32,
198     eCore_uknownMach64,
199 
200     eCore_arc, // little endian ARC
201 
202     eCore_avr,
203 
204     eCore_wasm32,
205 
206     kNumCores,
207 
208     kCore_invalid,
209     // The following constants are used for wildcard matching only
210     kCore_any,
211     kCore_arm_any,
212     kCore_ppc_any,
213     kCore_ppc64_any,
214     kCore_x86_32_any,
215     kCore_x86_64_any,
216     kCore_hexagon_any,
217 
218     kCore_arm_first = eCore_arm_generic,
219     kCore_arm_last = eCore_arm_xscale,
220 
221     kCore_thumb_first = eCore_thumb,
222     kCore_thumb_last = eCore_thumbv7em,
223 
224     kCore_ppc_first = eCore_ppc_generic,
225     kCore_ppc_last = eCore_ppc_ppc970,
226 
227     kCore_ppc64_first = eCore_ppc64_generic,
228     kCore_ppc64_last = eCore_ppc64_ppc970_64,
229 
230     kCore_x86_32_first = eCore_x86_32_i386,
231     kCore_x86_32_last = eCore_x86_32_i686,
232 
233     kCore_x86_64_first = eCore_x86_64_x86_64,
234     kCore_x86_64_last = eCore_x86_64_x86_64h,
235 
236     kCore_hexagon_first = eCore_hexagon_generic,
237     kCore_hexagon_last = eCore_hexagon_hexagonv5,
238 
239     kCore_mips32_first = eCore_mips32,
240     kCore_mips32_last = eCore_mips32r6,
241 
242     kCore_mips32el_first = eCore_mips32el,
243     kCore_mips32el_last = eCore_mips32r6el,
244 
245     kCore_mips64_first = eCore_mips64,
246     kCore_mips64_last = eCore_mips64r6,
247 
248     kCore_mips64el_first = eCore_mips64el,
249     kCore_mips64el_last = eCore_mips64r6el,
250 
251     kCore_mips_first = eCore_mips32,
252     kCore_mips_last = eCore_mips64r6el
253 
254   };
255 
256   /// Default constructor.
257   ///
258   /// Default constructor that initializes the object with invalid cpu type
259   /// and subtype values.
260   ArchSpec();
261 
262   /// Constructor over triple.
263   ///
264   /// Constructs an ArchSpec with properties consistent with the given Triple.
265   explicit ArchSpec(const llvm::Triple &triple);
266   explicit ArchSpec(const char *triple_cstr);
267   explicit ArchSpec(llvm::StringRef triple_str);
268   /// Constructor over architecture name.
269   ///
270   /// Constructs an ArchSpec with properties consistent with the given object
271   /// type and architecture name.
272   explicit ArchSpec(ArchitectureType arch_type, uint32_t cpu_type,
273                     uint32_t cpu_subtype);
274 
275   /// Destructor.
276   ~ArchSpec();
277 
278   /// Returns true if the OS, vendor and environment fields of the triple are
279   /// unset. The triple is expected to be normalized
280   /// (llvm::Triple::normalize).
281   static bool ContainsOnlyArch(const llvm::Triple &normalized_triple);
282 
283   static void ListSupportedArchNames(StringList &list);
284   static void AutoComplete(CompletionRequest &request);
285 
286   /// Returns a static string representing the current architecture.
287   ///
288   /// \return A static string corresponding to the current
289   ///         architecture.
290   const char *GetArchitectureName() const;
291 
292   /// if MIPS architecture return true.
293   ///
294   ///  \return a boolean value.
295   bool IsMIPS() const;
296 
297   /// Returns a string representing current architecture as a target CPU for
298   /// tools like compiler, disassembler etc.
299   ///
300   /// \return A string representing target CPU for the current
301   ///         architecture.
302   std::string GetClangTargetCPU() const;
303 
304   /// Return a string representing target application ABI.
305   ///
306   /// \return A string representing target application ABI.
307   std::string GetTargetABI() const;
308 
309   /// Clears the object state.
310   ///
311   /// Clears the object state back to a default invalid state.
312   void Clear();
313 
314   /// Returns the size in bytes of an address of the current architecture.
315   ///
316   /// \return The byte size of an address of the current architecture.
317   uint32_t GetAddressByteSize() const;
318 
319   /// Returns a machine family for the current architecture.
320   ///
321   /// \return An LLVM arch type.
322   llvm::Triple::ArchType GetMachine() const;
323 
324   /// Returns the distribution id of the architecture.
325   ///
326   /// This will be something like "ubuntu", "fedora", etc. on Linux.
327   ///
328   /// \return A ConstString ref containing the distribution id,
329   ///         potentially empty.
330   ConstString GetDistributionId() const;
331 
332   /// Set the distribution id of the architecture.
333   ///
334   /// This will be something like "ubuntu", "fedora", etc. on Linux. This
335   /// should be the same value returned by HostInfo::GetDistributionId ().
336   void SetDistributionId(const char *distribution_id);
337 
338   /// Tests if this ArchSpec is valid.
339   ///
340   /// \return True if the current architecture is valid, false
341   ///         otherwise.
342   bool IsValid() const {
343     return m_core >= eCore_arm_generic && m_core < kNumCores;
344   }
345   explicit operator bool() const { return IsValid(); }
346 
347   bool TripleVendorWasSpecified() const {
348     return !m_triple.getVendorName().empty();
349   }
350 
351   bool TripleOSWasSpecified() const { return !m_triple.getOSName().empty(); }
352 
353   bool TripleEnvironmentWasSpecified() const {
354     return m_triple.hasEnvironment();
355   }
356 
357   /// Merges fields from another ArchSpec into this ArchSpec.
358   ///
359   /// This will use the supplied ArchSpec to fill in any fields of the triple
360   /// in this ArchSpec which were unspecified.  This can be used to refine a
361   /// generic ArchSpec with a more specific one. For example, if this
362   /// ArchSpec's triple is something like i386-unknown-unknown-unknown, and we
363   /// have a triple which is x64-pc-windows-msvc, then merging that triple
364   /// into this one will result in the triple i386-pc-windows-msvc.
365   ///
366   void MergeFrom(const ArchSpec &other);
367 
368   /// Change the architecture object type, CPU type and OS type.
369   ///
370   /// \param[in] arch_type The object type of this ArchSpec.
371   ///
372   /// \param[in] cpu The required CPU type.
373   ///
374   /// \param[in] os The optional OS type
375   /// The default value of 0 was chosen to from the ELF spec value
376   /// ELFOSABI_NONE.  ELF is the only one using this parameter.  If another
377   /// format uses this parameter and 0 does not work, use a value over
378   /// 255 because in the ELF header this is value is only a byte.
379   ///
380   /// \return True if the object, and CPU were successfully set.
381   ///
382   /// As a side effect, the vendor value is usually set to unknown. The
383   /// exceptions are
384   ///   aarch64-apple-ios
385   ///   arm-apple-ios
386   ///   thumb-apple-ios
387   ///   x86-apple-
388   ///   x86_64-apple-
389   ///
390   /// As a side effect, the os value is usually set to unknown The exceptions
391   /// are
392   ///   *-*-aix
393   ///   aarch64-apple-ios
394   ///   arm-apple-ios
395   ///   thumb-apple-ios
396   ///   powerpc-apple-darwin
397   ///   *-*-freebsd
398   ///   *-*-linux
399   ///   *-*-netbsd
400   ///   *-*-openbsd
401   ///   *-*-solaris
402   bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub,
403                        uint32_t os = 0);
404 
405   /// Returns the byte order for the architecture specification.
406   ///
407   /// \return The endian enumeration for the current endianness of
408   ///     the architecture specification
409   lldb::ByteOrder GetByteOrder() const;
410 
411   /// Sets this ArchSpec's byte order.
412   ///
413   /// In the common case there is no need to call this method as the byte
414   /// order can almost always be determined by the architecture. However, many
415   /// CPU's are bi-endian (ARM, Alpha, PowerPC, etc) and the default/assumed
416   /// byte order may be incorrect.
417   void SetByteOrder(lldb::ByteOrder byte_order) { m_byte_order = byte_order; }
418 
419   uint32_t GetMinimumOpcodeByteSize() const;
420 
421   uint32_t GetMaximumOpcodeByteSize() const;
422 
423   Core GetCore() const { return m_core; }
424 
425   uint32_t GetMachOCPUType() const;
426 
427   uint32_t GetMachOCPUSubType() const;
428 
429   /// Architecture data byte width accessor
430   ///
431   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
432   /// from the Architecture's data bus
433   uint32_t GetDataByteSize() const;
434 
435   /// Architecture code byte width accessor
436   ///
437   /// \return the size in 8-bit (host) bytes of a minimum addressable unit
438   /// from the Architecture's code bus
439   uint32_t GetCodeByteSize() const;
440 
441   /// Architecture triple accessor.
442   ///
443   /// \return A triple describing this ArchSpec.
444   llvm::Triple &GetTriple() { return m_triple; }
445 
446   /// Architecture triple accessor.
447   ///
448   /// \return A triple describing this ArchSpec.
449   const llvm::Triple &GetTriple() const { return m_triple; }
450 
451   void DumpTriple(llvm::raw_ostream &s) const;
452 
453   /// Architecture triple setter.
454   ///
455   /// Configures this ArchSpec according to the given triple.  If the triple
456   /// has unknown components in all of the vendor, OS, and the optional
457   /// environment field (i.e. "i386-unknown-unknown") then default values are
458   /// taken from the host.  Architecture and environment components are used
459   /// to further resolve the CPU type and subtype, endian characteristics,
460   /// etc.
461   ///
462   /// \return A triple describing this ArchSpec.
463   bool SetTriple(const llvm::Triple &triple);
464 
465   bool SetTriple(llvm::StringRef triple_str);
466 
467   /// Returns the default endianness of the architecture.
468   ///
469   /// \return The endian enumeration for the default endianness of
470   ///         the architecture.
471   lldb::ByteOrder GetDefaultEndian() const;
472 
473   /// Returns true if 'char' is a signed type by default in the architecture
474   /// false otherwise
475   ///
476   /// \return True if 'char' is a signed type by default on the
477   ///         architecture and false otherwise.
478   bool CharIsSignedByDefault() const;
479 
480   /// Compare an ArchSpec to another ArchSpec, requiring an exact cpu type
481   /// match between them. e.g. armv7s is not an exact match with armv7 - this
482   /// would return false
483   ///
484   /// \return true if the two ArchSpecs match.
485   bool IsExactMatch(const ArchSpec &rhs) const;
486 
487   /// Compare an ArchSpec to another ArchSpec, requiring a compatible cpu type
488   /// match between them. e.g. armv7s is compatible with armv7 - this method
489   /// would return true
490   ///
491   /// \return true if the two ArchSpecs are compatible
492   bool IsCompatibleMatch(const ArchSpec &rhs) const;
493 
494   bool IsFullySpecifiedTriple() const;
495 
496   void PiecewiseTripleCompare(const ArchSpec &other, bool &arch_different,
497                               bool &vendor_different, bool &os_different,
498                               bool &os_version_different,
499                               bool &env_different) const;
500 
501   /// Detect whether this architecture uses thumb code exclusively
502   ///
503   /// Some embedded ARM chips (e.g. the ARM Cortex M0-7 line) can only execute
504   /// the Thumb instructions, never Arm.  We should normally pick up
505   /// arm/thumbness from their the processor status bits (cpsr/xpsr) or hints
506   /// on each function - but when doing bare-boards low level debugging
507   /// (especially common with these embedded processors), we may not have
508   /// those things easily accessible.
509   ///
510   /// \return true if this is an arm ArchSpec which can only execute Thumb
511   ///         instructions
512   bool IsAlwaysThumbInstructions() const;
513 
514   uint32_t GetFlags() const { return m_flags; }
515 
516   void SetFlags(uint32_t flags) { m_flags = flags; }
517 
518   void SetFlags(const std::string &elf_abi);
519 
520 protected:
521   bool IsEqualTo(const ArchSpec &rhs, bool exact_match) const;
522   void UpdateCore();
523 
524   llvm::Triple m_triple;
525   Core m_core = kCore_invalid;
526   lldb::ByteOrder m_byte_order = lldb::eByteOrderInvalid;
527 
528   // Additional arch flags which we cannot get from triple and core For MIPS
529   // these are application specific extensions like micromips, mips16 etc.
530   uint32_t m_flags = 0;
531 
532   ConstString m_distribution_id;
533 
534   // Called when m_def or m_entry are changed.  Fills in all remaining members
535   // with default values.
536   void CoreUpdated(bool update_triple);
537 };
538 
539 /// \fn bool operator< (const ArchSpec& lhs, const ArchSpec& rhs) Less than
540 /// operator.
541 ///
542 /// Tests two ArchSpec objects to see if \a lhs is less than \a rhs.
543 ///
544 /// \param[in] lhs The Left Hand Side ArchSpec object to compare. \param[in]
545 /// rhs The Left Hand Side ArchSpec object to compare.
546 ///
547 /// \return true if \a lhs is less than \a rhs
548 bool operator<(const ArchSpec &lhs, const ArchSpec &rhs);
549 bool operator==(const ArchSpec &lhs, const ArchSpec &rhs);
550 
551 bool ParseMachCPUDashSubtypeTriple(llvm::StringRef triple_str, ArchSpec &arch);
552 
553 } // namespace lldb_private
554 
555 namespace llvm {
556 namespace yaml {
557 template <> struct ScalarTraits<lldb_private::ArchSpec> {
558   static void output(const lldb_private::ArchSpec &, void *, raw_ostream &);
559   static StringRef input(StringRef, void *, lldb_private::ArchSpec &);
560   static QuotingType mustQuote(StringRef S) { return QuotingType::Double; }
561 };
562 } // namespace yaml
563 } // namespace llvm
564 
565 LLVM_YAML_IS_SEQUENCE_VECTOR(lldb_private::ArchSpec)
566 
567 #endif // LLDB_UTILITY_ARCHSPEC_H
568